
 29

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 14, No 4

Sofia • 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081
DOI: 10.1515/cait-2014-0003

Equivalent Transformations and Regularization
in Context-Free Grammars

Ludmila Fedorchenko
1
, Sergey Baranov

2

1 St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences,

14 liniya, 39, V.O. St. Petersburg, 199178, Russia
2ITMO University, Av. Kronverkski, 49, St. Petersburg, Russia

Emails: LNF@iias.spb.su SNBaranov@gmail.com

http://www.spiiras.nw.ru/index.php?newlang=english

Abstract: Regularization of translational context-free grammar via equivalent

transformations is a mandatory step in developing a reliable processor of a formal

language defined by this grammar. In the 1970-ies, the multi-component oriented

graphs with basic equivalent transformations were proposed to represent a formal

grammar of ALGOL-68 in a compiler for IBM/360 compatibles. This paper

describes a method of grammar regularization with the help of an algorithm of

eliminating the left/right-hand side recursion of nonterminals which ultimately

converts a context-free grammar into a regular one. The algorithm is based on

special equivalent transformations of the grammar syntactic graph: elimination of

recursions and insertion of iterations. When implemented in the system SynGT, it

has demonstrated over 25% reduction of the memory size required to store the

respective intermediate control tables, compared to the algorithm used in

Flex/Bison parsers.

Keywords: CFR-grammar, a syntactic flow-chart (graph-scheme), equivalent

transformations of grammars.

1. Introduction

The automated analysis of formal languages which started in 1960-ies, is a natural
part of computational linguistics. Various tools were developed for processing
context free and context dependent formal languages, which need to be formalized
so that their properties to be studied by computer machinery.

Nowadays data processing technologies are widely used in translation systems
for a variety of computer devices with many applications supporting them. For
example Flex/Bison parsers [7, 13] are often used to quickly obtain a particular

 30

language processor from a formal definition of a language. However, these parsers
have certain limitations on the type of the input formal grammar, and the employed
algorithm often requires enormous memory for storing intermediate data.

A significant problem was that of the prompt adjustment (transformation) of
the syntactic definition of a particular language to a particular form to allow for
automated or manual development of its processor; another problem concerns the
limitations of the selected method of syntactic analysis.

The former problem is aggravated by the great diversity of tools employed for
formal language definition and representation, from conventional Backus-Naur
Forms (BNF) to two-level affix (or other types) grammars, to various versions of
the HyperText Markup Language (HTML). The latter often leads to linguistic
ambiguity (or non-determinism) of the processing automaton. Solutions to these
two problems are closely connected to the formal presentation of the given formal
language and the processing environment.

The system SynGT (Syntax Graph Transformations), developed at SPIIRAS
provides a solution to the above mentioned problems. The diagrams (graphs) of the
rules are used to represent a context-free grammar (CF-grammar) of a formal
language. The graph transformations are applied to perform equivalent grammar
transformations of the input grammar to obtain its context-free regular form.

The paper is structured as follows.
Section 2 provides an overview of the existing tools for automated grammar

transformations based on authors’ experience and literature search, including the
Compiler Compilers News Group [8] in Internet.

In Section 3 we recall the definition of a CF-grammar in a regular form
(CFR-grammar) and give examples of graphic representation of such grammars
rules.

In Sections 5 and 6 the system SynGT is presented, as well as the main results
concerning regularization with it. A new algorithm implemented in SynGT
eliminates the recursion (left, central, or right) that often spoils CF-grammar rules
and imposes unnecessary limitations on the language syntax. Examples of SynGT
applications are discussed, where the maximal regularization of a grammar resulted
in the maximal efficiency of the generated language processor.

2. Tools for automated grammar transformations

The existing approaches to the language development and commercial tools for
automated construction of language processors, such as Lex-Yacc [9, 10], Antlr
[11], SYNTAX [12], Forth Technology [6] and Flex/Bison [13] anticipate
equivalent transformations of the source CF-grammar; some of them are executed
automatically during the compilation of a new parser; others are expected to be
performed manually at the user’s discretion, which is error-prone and may
significantly hamper the development process.

The regularization procedure in SynGT [2] performs equivalent
transformations of the initial CF-grammar in order to obtain a form, suitable for
further optimization of the respective language parser. The user interface with an
adequate set of transformation functions [4] is designed for quick finding and

 31

resolving linguistic ambiguities (elimination of non-determinism) in the given set of
grammar rules in the form of graphs. Theoretical research performed in 1980-ies [1]
laid a solid foundation for automated generation of a syntactic parser from an input
grammar with respective constraints. Later on, this mathematical model and the
respective grammar regularization algorithm were refined to optimize the parser
(see [2, 4, 5]) in SynGT.

The variety and diversity of the syntactic definitions of languages requires the
adjusting of their grammars to a particular translational automaton of SynGT, which
means that equivalent transformations of these grammars must be performed
(automatically or manually) prior to generation of its syntactic parser.

The significant requirements to the technologies of language processor
development (and, in particular, to parsers) are in efficient use of the development
resources (namely, the time and effort required to develop such software product),
the minimal size of the parser in case it is incorporated into microprocessors, and
the overall low cost of the development. It is desirable to minimize the time
required to compile a new grammar adapted to the selected method of analysis. This
is achieved through creation of specialized tools for developers.

A characteristic feature of such systems is that the information about conflicts
is so highly redundant that it is difficult for the user to interpret it. For example, the
Bisons system can sometimes generate a few pages of warnings for possible errors
in a grammar, most of which are superimposed as a result of an automated
correction of one primary error.

Other typical features of these systems are their price and limitations on the
types of the initial grammar, even though modern systems have already expanded
the initial grammar class up to LALR (Look Ahead Left to Right) grammars, which
is the basis for almost all deterministic languages. According to the information
from the Compiler Compilers Newsgroup [9], no sound techniques exist to resume
the analysis of the grammar rules after a conflict situation (error) was detected.
Equivalent transformation of the grammar is performed manually and is often
incomplete. A parser generated from the resulting grammar does not have the
minimal number of the parsing automaton states.

The Kleene theorem (see [1]) states that the class of regular sets is the minimal
class containing all final-state sets closed w.r.t. the operations of union,
concatenation, and closure; therefore, regular sets (sets, recognizable by final-state
machines) may be represented by regular expressions.

This mathematical model can only be used for regular languages; the whole set
of regular expressions over a fixed alphabet can be regarded as a regular language
described by a context-free grammar (meta-grammar) with a single rule, and then
this language is recognized by a final-state machine with a minimal number of
states; thus, an optimal verifier of regular expressions can be created.

In SynGT such a finite-state machine is implemented for verification of the
correctness of regular expressions representing the rules of translational grammar. It
has displayed 25% reduction of memory consumption compared to the algorithm
used in the Flex/Bison parsers on the same examples.

 32

3. Definitions

In this section we give the classic definitions and notations used in the theory of
formal languages and abstract automata and then modify some of them. We recall a
definition of the CF-grammar in a Regular form (CFR-grammar) and give examples
of graphic representation of the rules of such a grammar.

The language syntax is usually defined via the notation, called Backus-Naur
form. In the SynGT system regular expressions with binary operations are used.
They are much easier to transform into a reversed Polish notation for subsequent
analysis and processing. From the viewpoint of the generated language, these forms
are equivalent.

Definition 1. An alphabet },...,,{ 21 nV ξξξ= is a finite set of letters iξ . The

concept of a letter is not defined. A word in the alphabet V is either a letter of V, or

a concatenation ξx where x is a word in the alphabet V and .V∈ξ If x is a word

in ,V then | x | denotes its length – the number of occurrences of letters in x ; a

word of the length zero which contains no letters is called an empty word and is

sometimes denoted as ε ; +V is the set composed by all words in V, and

}.{* ε∪= +VV A language VL over some alphabet V is an arbitrary subset of

*V : .*VLV ⊂

For an infinite language there is a problem of its finite representation which in
its turn, is a representation itself by words over an alphabet with implied
interpretation, which relates it to concrete representation of the given language.
Usually such an ”upper-level” representation language is called a meta-language,
which, like any other language, is nothing more than a countable set of words.
Further discussions are devoted to the meta-language of regular expressions which
is a basis for the class of generative systems – CFR-grammars.

Definition 2. A union of two languages VA and VB denoted as VV BA ; is a

set-theoretic union of sets VA and VB of words over .V A product of two

languages VA and VB denoted as VV BA , is a set of words in V which consists of

all possible words of the type xy where VAx∈ and VBy∈ . A generalized iteration

of two languages VA and VB denoted as VV BA # (occasionally called iteration with

a separator, or iteration according to G. S. Tseytin) is a set which consists of all

possible words of the type nn xyyxyx ,,...,,, 12211 − where ,Vi Ax ∈ ni ≤≤1 ,

,Vj By ∈ ,11 −≤≤ nj and n is a positive integer.

Two particular cases when an operand of the generalized iteration is empty,
are called a right-hand side iteration and a left-hand side iteration respectively:

};,,;,;{}{## KAAAAAAAA == ε and };;,;;{}#{# KAAAAA εε == the

operation # is treated as a unary operation in this case.
The generalized iteration # can be expressed through the classical Kleene

operation *:),(,# ABABA = *.

Definition 3. The regular languages in V (subsets of V*) are defined

 33

inductively:

− the sets }{},{},{ 21 nξξξ K and }{ε where Vi∈ξ are regular;

− if VA and VB are regular, and ⊗ is one of the operations: union (;),

product (,), or generalized iteration (#), then the set VVV BAC ⊗= is

regular.
The set of all Regular Languages (RL) in the alphabet V, denoted by)(RL V is

the minimal subset of the set 2V* that contains }{},{,},{},{ 21 εξξξ nK , and is closed

under operations in ⊗ .

In accordance with the given definitions, a set of words from the alphabet V is

regular if and only if it equals to either }{ε=e (ε is an empty word), or }{ iξ for

some Vi ∈ξ , or if it can be constructed from them by a finite number of operations

from ⊗ .

S. C. Kleene (see [1]) has introduced the notion of a regular expression in an
alphabet V . Kleene iterations A* and A+ may thus be identified with AA }#{# ε= ,

and }{## εAA = respectively.

We introduce the notion of a generalized regular expression. When
unambiguity allows, the brackets around the regular subexpressions may be
omitted. We also introduce square brackets as a shorthand: });{;(][εAA = i.e., for

“possible A”.
Definition 4. A generalized regular expression representing a regular language

VL over the alphavet V and denoted as)(VLr is defined inductively: ξξ =})({r

where }{εξ ∪∈V ,))()(()(BrArBAr ⊗=⊗ for any)(RL, VBA ∈ .

The set of all regular expressions in V is denoted by)(Vℜ . For each regular

expression A let)(AL be the corresponding regular language.

Each regular expression represents a regular language, and for each regular
language a regular expression exists which represents this language (this can be
easily proved through induction on the construction process). However, since a
regular language can be constructed with operations from ⊗ in many different

ways, in general, different regular expressions may represent the same regular
language.

Here the well known problem stems – how to find a minimal regular
expression representing the given language.

Definition 5. Two regular expressions)(, VBA ℜ∈ are equivalent (denoted as

A≡B), if they represent the same regular language in).()(: BLALV =

It is well known that regular expressions representing the same regular
language can be transformed into each other using certain identities. Some of them
are provided in Table 1 below, where)(,, VCBA ℜ∈ .

Table 1. Identities for regular expressions

(A; B)≡(B; A) ((A; B); C)≡(A; (B; C))(C, (A; B))≡((C, A);(C, B))

(A, {ε})≡({ε}, A)((A, B), C)≡(A, (B, C)) ((A; B), C)≡((A, C); (B, C))

(A; {ε})≡[A] (A#B)#C≡A#(B; C) A*≡[A+]

 34

All operations in a generalized regular expression are binary, which is
convenient for the program stack to be used when working with the reverse Polish
form of regular expressions. Regular expressions can be used within a larger
grammatical framework to represent regular CF-grammars (CFR-grammars).

It is convenient to add semantics to the grammar alphabet as operands of
regular expressions. The aim is to allow some executable code be incorporated into
the compiled text.

Definition 6. A contex-free grammar in a regular form (CFR-grammar) RG is

a quintuple of finite sets =RG (N, T, Σ, P, S), where N is a set of nonterminals, T is

a set of terminals, Σ is a set of semantics (contexts), P is a finite set of CFR-rules

for the nonterminals: ∪∪ℜ×⊂ TNNP (Σ), and S is the starting (initial)

nonterminal of the grammar.
A CFR-rule for a nonterminal NA∈ (also called an A-rule for the nonter-

minal A) is a pair (A, R) where ∪∪ℜ∈ TNR (Σ); it is represented as “A: R.” with

a period after R.

In CF-grammar terms, each pair (A , R) can be interpreted as a set of rules for
A : xA →{ | ∪∪ℜ∈∈ TNRRLx (),(Σ)}.

Definition 7. A nonterminal NA∈ is called recursive, if an inference of the

type A βαA exists, where ∪∪∈ TN(, βα Σ)*. In other words, if A may be

derived from itself. In particular, a recursive nonterminal is called left/right-
recursive when εβα =/ .

An algorithm eliminating recursive nonterminals from a CF-grammar is
described in Section 6.1 along with its generalization for a CFR-grammar.

4. Transformation of a CF-grammar into an equivalent CFR-grammar

Usually, the development of a language parser starts with transforming the
initial CF-grammar into an equivalent well-formed (proper) CFR-grammar.

The process consists of the following steps:

• eliminating non-productive nonterminals;

• substituting regular expressions for non-recursive nonterminals;

• eliminating left/right-recursive nonteminals;

• identifying common prefixes for nonterminals;

• eliminating recursive alternatives for a nonterminal;

• eliminating the remaining recursive nonterminals;

• introducing a new nonterminal for common subexpressions;

• deleting superfluous nonterminals.

For a detailed description of the process see [5].

5. CFR-Rules for Transformations in SynGT

In SynGT the right-hand sides of rules are regular expressions with binary
operations from ⊗ over terminals, semantics, and nonterminals. Without loss of

 35

generality each nonterminal may be assumed to be defined by a single CFR-rule;
i.e., this nonterminal occurs in the left-hand side of all rules only once. Indeed, two

CFR-rules “ .: 1RA ” and “ .: 2RA ” can be replaced by just one: “ .;: 21 RRA ”. In the

examples below the terminal symbols are enclosed in single quotes (like ’,’ or ’;’)
and semantics symbols start with the character ’$’.

The above definition of a CFR-grammar ensures that every rule of a classical
CF-grammar is also a rule in a CFR-grammar. However, the reverse is not true.
Usually, several CF-rules are needed to represent a regular set of words generated
by a single CFR-rule. As an example see the rule for a “procedure call” in ADA.

A new feature distinguishing CFR-grammar from a classical CF-grammar is
its mechanism of generating language words. In a conventional CF-grammar, this is
a derivation tree, whereas in the CFR-grammar for each nonterminal A the set of
words derivable by its A -rule is a value of the regular expression in the right-hand
side of this A -rule, which thus generates an infinite set of words.

In SynGT this set is represented by a finite oriented labeled graph considered
as a deterministic Finite State Machine (FSM), each node corresponding to a state
of the FSM, and its label specifying the letter to be generated when the FSM transits
into this state. A collection of such graphs representing the right-hand sides of
CFR-rules of the given CFR-grammar G is called a syntactic flow-chart

(graph-scheme) for G. Thus, an infinite set of words generated by the grammar G is
represented by an infinite set of paths in such graph.

Syntactic flow-charts (as a mechanism of language generating) render the
structure of CFR-rules more clearly for the user than regular expressions or various
derivatives of a CF-grammar [2]. The conversion of a generating scheme into a
recognizing one and then into a parsing scheme becomes more transparent; the
invocations of semantics are easily associated with the flow-chart arcs labeled with
the names of the respective procedures. A set of paths in a flow-chart is easier to
understand than the source CFR-grammar G, in order to define the process of
generation of words of the language L(G) and check its grammar properties.

Definition 8. A syntactic flow-chart is a set of finite oriented graphs with la-

belled nodes and arcs. Each graph corresponds to some CFR-rule of the

CFR-grammar and is called a graph for the nonterminal defined by this rule.
More formally, with each CFR-grammar =G (N, T, Σ, P, S) its counterpart is

associated, which is a syntactic flow-chart ,,(TNГG = Σ, C, S), such that the

language)()(GLГL G = . Here }{ AГC = is a set of component graphs AГ defining

nonterminas }{ NA∈ . Each AГ defines a language construct (possibly with

executable actions specified by its semantics interpreted as names of operations to

be performed in this order while traversing the respective path in AГ).

The syntactic flow-chart for a CFR-grammar is recursively created from
schemes for terminals/nonterminals and semantic – Fig. 1a-c – and the operations
defined previously – Fig. 1d-f. The starting and finishing nodes have special
notations. The internal nodes are labeled with terminals and nonterminals (operands
of the regular expression of the right-hand side of the rule defining the nonterminal
A), and the arcs are labeled with semantics – the names of procedures to be

 36

executed when moving along the path.

a) Terminal b) Nonterminal c) Semantic

d) (A;B) e) (A,B) f) (A#B)

Fig. 1. Graphic representation of the basic elements of regular expressions and operations

Fig. 2 presents a flow-chart for the regular expression:
(((‘a’; ‘b’), $S1, ‘ ‘, $S2, (‘a’; ‘b’), ‘abc’)) # (($S3,”, $S4) # ‘abc’). Note that

this expression contains only terminals (‘a’, ‘b’, and ‘abc’) and semantics (named
$S1, $S2, $S3, and $S4). In Fig. 2 $ sign is omitted because the arcs are labeled
only by semantics words.

Fig. 2. Sample flow-chart representing a regular expressions with semantics

Fig. 3 represents the right-hand side of a CFR-rule for the non-terminal
procedure_call defining the construct “procedure call” in Ada programming
language.

Fig. 3. A flow-chart corresponding to the rule for a non-terminal procedure_call

In order to generate language words, the relation of reachability in graph GГ

is introduced for the nodes of the SFC (syntactic flow-chart); it reflects the letter
order in the generated words.

A path xP in the graph GГ which generates a word GLx∈ contains a

sequence of nodes marked by letters of the word x ; its first and last elements are

the initial and the last nodes of the graph for the starting nonterminal of the CFR-
grammar, with each element being reachable from the previous one (if it exists),
and the corresponding sequence of node marks composes the word x .

Each state of the respective FSM (language processor) is matched to a set of

nodes in the syntactic flow-chart GГ with constraints to ensure its determinism.

procedure_call:procedure_name,

 ('(',((formal_parameter, '⇒';ε),
 actual_parameter)# ',', ')';), ';' .

 37

These constraints are formulated in terms of the flow-chart properties and are taken
into account during its construction. In fact, an FSM-state is either an output node

of a flow-chart for a nonterminal, or a terminal node, or a pair of states),(21 SS –

the former, 1S , called the transition state and the latter, 2S – called the return state,

or a union of a number of states.

Occurrences of nonterminal nodes in GГ violate the regularity of the language

)(GГL generated by GГ that is why a state cannot be always just a set of nodes (as

in the regular case), but also a pair – the transition state and the return state. Each
state may contain other states as well, thus forming a hierarchy of complex states.

The transition from one state into another, which is also a set of nodes
(including an empty set) in SFC, is controlled by the current letter taken from the
input word. Only certain letters are allowed in each state for a transition from this
state to any next one; therefore, one can see which subword of the language being
recognized resulted in transition into this state and it becomes possible to establish
whether the input word belongs to the language generated by the given syntactic

flow-chart GГ .

To illustrate the SynGT approach, let us consider building up a simple
language recognizer from SFC. For this we need the following definition.

Definition 9. The state of any node β other than any finishing node in a flow-

chart GГ denoted as βS , is

⎩
⎨
⎧

∈
∈

=
,in node lnontermina a is if)succ(|)S ,(S

,in node finishingor terminala is if)succ(|

))((GmE

G

Г
Г

S
αβα
αβαα

αα
β

where succ(β) is a set of nodes – direct descendents of ,β АЕ − the entering

(starting) node of the flow-chart for the nonterminal A and)(αm is the label which

marks α .

Example 1. Let G be a CFR-grammar with three nonterminals: S , 1C , 2C ;

two terminals: ‘a’; ‘b’ and three grammar rules with graphs presented in Fig. 4:

G= ({S, C1, C2},{‘a’; ‘b’}, {(S : ‘a’, (C1; C2), ‘a’.), (C1: ‘b’, S .), (C2: ‘b’.)}, S).

Each node in the graphs is additionally marked with a number from 1 up to 7
in brackets to distinguish them.

The states of the entering (starting) and the finishing nodes of each flow-chart
are denoted by)(NE and)(NF respectively, N being the name of the

nonterminal of the respective flow-chart. Thus:

;))},1(({)};)},7(({),),5(()};1({)6()5()3()2()1()(21 SbCCaSE SaSSbSbSaS ===

)}.4({)};({)};({)};({)3()2(2)7(1)6()4(21
aSSCFSCFSSFS CCbSa =====

Fig. 4. Graphic representation of rules in Example 1

 38

Definition 10. A transition state from the state S by letter ξ , denoted by ξ/S

is a projection on the set of the nodes of S which are marked by ξ .

A transition state ξ/S in the flow-chart GГ may be defined recursively:

− if ∅=S or)}({ iAFS = , iA being a nonterminal node in GГ , then ∅=ξ/S ;

− if }{α=S , α being a terminal node in GГ , then ∅=ξ/S if ξα ≠)(m or

αξ SS =/ if ξα =)(m ,)(αm being the label of α ;

− if),(21 SSS = then

⎪
⎩

⎪
⎨

⎧

∅
∈∅=

∅≠
=

otherwise.

;someforand/if/

;/if),/(

/ 112

121

AA ГSFSS

SSS

S ξξ
ξξ

ξ

The following transitions exist in Example 1 for the word ‘abc’:

)}1({)(0 aSS SE == ;

)})},7(({),)},5({(/)3()2()1(01 21 CCa SbSbSaSS === ;

===)},(),,{(/)3()7()2()5(12 21 CbCb SSSSbSS

)}),((),),)},1({(({)3(2)2()6(21 CCS SCFSSa= ;

=== }/),),,{((/)3()2()6()1(23 21
aSSSSaSS CCSa

== }/)}4({),),,{(()2()6()1(1
aaSSS CSa

== }),),,{(()4()2()6()1(1 aCSa SSSS

)}.(),),)},)},7(({),)},5({(({)2()6()3()2(121
SFSSSbSb CSCC=

Various methods of defining the notion of a state in SFC and a transition state
make possible the modeling of a push-gown translator.

References [1-5] describe the features of the syntactic flow-charts when the
states of any nodes always exist (i.e., the process of generation of the transitional
state is not cycled and is terminated), and formulate the determinacy conditions for
the transition operation for the current symbol in the process of PDA-recognizer
synthesis.

A description of the model [5] ends by a formulation of the theorem about the
language that can be processed by the described recognizer; this theorem yields an
algorithm, with which it is possible to check whether a word belongs to the
language generated by the syntactic flow-chart, the number of algorithm steps being
proportional to the length of the word.

6. Regularization algorithms in parser development

Regularization of the language grammar is a part of the language implementation
cycle, which consists of a user’s cycle and a semi-automatic developer’s
(implementer’s) cycle. The development of a language (selecting the language

 39

model, the parsing model and other implementation models) is made by the user,
while the further language transformation process is carried out automatically.

The problem of equivalence of two context-free languages defined by different
grammars is known to be generally unsolvable. However, quite often a language
grammar can be equivalently converted into a form feasible for particular
deterministic analysis, preserving the language defined by this new grammar form.

Let us consider some equivalent transformations of CFR-grammars used in
language parsing and describe the algorithms for automated regularization of their
grammars implemented in SynGT.

More formally, the regularization of a CF-grammar consists in applying a
series of equivalent transformations starting with the source CF-grammar G and

ending with a new CFR-grammar G′ equivalent to G , but with no recursive

nonterminals. If all nonterminals of the CF-grammar G are not recursive, they can

be eliminated from the right-hand sides of the grammar rules. In that case CFR-
rules for these nonterminals are deleted and the grammar G is transformed into a

grammar G′ consisting of a single rule, the right-hand side being a regular

expression composed of terminals, semantics, and regular operations only. This

regular expression defines the same regular language)()(GLGLL ′== . The

algorithm will be described in Section 6.1.
During regularization of a grammar, the right-hand sides of its rules become

regular expressions, and a syntax graph built up from the source grammar can be
converted into a final state automaton.

Let us consider an algorithm for eliminating the left/right-recursive
nonterminals in a CFR-grammar G, when the regular expression in the right-hand
side of the rule for a recursive nonterminal contains a generalized iteration. This
case was not considered in [1-3].

To make it simpler, let us consider a rule for a nonterminal A which is both
left- and right-recursive and the recursion is direct (an indirect recursion is known
to be reducible to a direct one through a series of substitutions). In SynGT a new
algorithm of direct equivalent transformation of a left/right-recursive terminal is
implemented which uses binary operations only.

6.1. Elimination of recursion in CFR-rules

Let us consider the following A -rule: “(A: (A, r11, A; A, r12; r21, A; r22)).”, where

,11r ,12r ,21r and 22r are regular expressions over the alphabet ∪∪TN Σ. The

right-hand side of the rule consists of four parts (iA -fragments), :4,3,2,1=i

• 1A -fragment ArA ,, 11 contains both a left- and a right-hand side recursive

occurrences of A ;

• 2A -fragment 12, rA contains a left-hand side recursive occurrence of A ;

• 3A -fragment Ar ,21 contains a right-hand side recursive occurrence of A ;

and

• 4A -fragment 22r contains no occurrences of 2A .

 40

Let us consider what words of)(AL can be generated by this A -rule in four

steps.

Step 1. Let us consider the 1A -fragment of the A -rule: ArA ,, 11 . It generates

words ,,;, 111111 KAArArAArA also generated by the regular expression 11#rA .

Step 2. Let us consider the 2A -fragment of the 2A -rule: 12, rA . It generates

words K,,, 121212121212 rrArrArAr , are also generated by the regular expression

.)(, *
12rA Substituting this regular expression for A in the expression of Step 1, the

expression 11
*

12)#)(,(rrA is obtained.

Step 3. A similar substitution is performed for the right-hand side recursive

occurrence of A in the 3A -fragment which generates words ,,,, 212121212121 KArrrArrAr

also generated by the regular expression Ar ,)(*
21 . The substitution of this

expression for A in the expression obtained at Step 2 results in the regular

expression 11
*

12
*

21)#)(,,)((rrAr .

Step 4. Substituting the 4A -fragment 22r for A in the expression obtained at

Step 3 results in the final recursion-free regular expression 11
*

1222
*

21)#)(,,)((rrrr

for the nonterminal A .
After these preliminary transformations of regular expressions having been

performed, the rule is reduced to a form in which the set)(12rL does not contain

any words of the type Aα , the set)(21rL does not contain any words of the type

αA , and the set)(22rL does not contain any words of the type Aα and αA , α

being a random word; thus there is neither left-hand side, nor right-hand side
recursion for the nonterminal A .

Enumerating all nonterminals in the grammar G and applying the described

transformation to each nonterminal one-by-one with immediate substituting the
transformation results for all occurrences of the given nonterminal in the remaining

rules, produces a grammar G′ with no left-(right-)recursions, which is equivalent to

the initial grammar .G

If 11r , 12r , 21r , and 22r are regular expressions with no occurrences of a

nonterminal A , then A and the rule for it can be deleted from the grammar with

simultaneous substituting the expression 11
*

1222
*

21)#)(,,)((rrrr for all occurrences

of A in the remaining rules.

6.2. Converting a CF-grammar into a non-recursive regular expression

Let),,,(SPTNG = be a proper CF-grammar without recursive nonterminals.

Definition 11. Nonterminal A depends on nonterminal B , if there is an

A -rule of the form)),,(:(βα BA where))((, *TN ∪∈βα . The set D of all such

pairs DBA ∈),(is called the dependency relation among nonterminals of G . If

AB = then nonterminal A is called to be recursive.

 41

Nonterminal A is called absolutely independent if DBAB ∈¬∃),(: . In other

words, the independent nonterminals are determined by rules with terminals only in
their right-hand sides.

The scheme of converting a CF-grammar into a regular expression is the
following.

1. The set N of all nonterminals is split into non-intersecting subsets (levels)

il , ||0 Nki <≤≤ , according to the level of nonterminal dependency. Nonterminals,

whose rules contain only terminals in their right-hand sides compose the lowest,

zero level 0l ; i.e., a regular set of words composed of terminals only is derivable

from nonterminals of 0l with just a single application of the respective grammar

rule.

2. For every next level il and for all nonterminals at this level, a substitution

of the values of nonterminals of the level 1−il for all these nonterminals is

performed. The last, highest level kl contains only one element – the starting

nonterminal S , which is replaced by the resulting regular expression at the final

step of this conversion.
This is done through the hierarchy of dependency relation D for all

nonterminals NA∈ ; i.e., if the right-hand side of an jA -rule contains an

occurrence of a nonterminal jB , then the pair belongs to the dependency relation

D by Definition 11. If D is represented in the form of a table, then pairs of

terminals),(jj BA identify its cells.

Now the task is to split all non-recursive nonterminals into disjoint subsets

msss ,,, 10 K where ||Nm ≤ with the following properties:

− all nonterminals 0sA∈ are absolutely independent;

− nonterminals of any set ,is ,1 mi ≤≤ are independent from each other; i.e.,

for two nonterminals isBA ∈),();,(DBA ∉

− nonterminals of any set ,is ,1 mi ≤≤ are directly computable from the

regular values of nonterminals from the previous sets ,js ;11 −≤≤ ij in

other words, if isA∈ then all occurrences of nonterminals in the right-hand

side of its A -rule are replaced with regular values of these nonterminals

from already calculated sets ,js 11 −≤≤ ij .

The set of nonterminals ls is said to refer to the level ,l ml ≤≤0 . The

highest level m consists of the starting nonterminal S only, if it does not occur in

the right-hand sides of the rules.
Left/right-hand side recursions are eliminated as described in Section 6.1 when

identified in rules being transformed.
This splitting method was described in [14]. Here an example is provided.
Example 2. Let G = (N, T, P, S) be a CFG, where:

T = {‘d’, ‘.’, ‘\’ , ‘e’, ‘+’ ; ‘−’};

 42

N = { A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15};
S = A15;
P consists of 15 rules enlisted in Table 2. With the described algorithm we

obtain the following dependency relation D among the nonterminals:

D ={),,(12 AA),,(23 AA),,(143 AA),,(35 AA),,(45 AA),,(116 AA),,(146 AA

),,(57 AA),,(67 AA),,(148 AA),,(149 AA),,(910 AA),,(811 AA),,(1011 AA

),,(1213 AA),,(1313 AA),,(1314 AA),,(715 AA),,(1115 AA),(1415 AA }.

The element),,(1313 AA being self-dependent, which means that the

nonterminal 13A is left-recursive. The described equivalent transformation for this

grammar results in the following grammar rule:)#.(.)(,: 12
*

121213 AAAA ≡

Table 2. Rules for Example 2

A1: ‘+’ ; ‘−’. A2: A1; ε. A3: A2, A14. A4: ‘\’ ; ‘e’.

A5: A4, A3. A6: A14; A11. A7: A6, A5. A8: ‘.’ , A14.

A9: A14. A10: A9; ε. A11: A10, A8. A12: ‘d’.

A13: A12; A13, A12. A14: A13. A15: A14; A11; A7.

6.3. Sorting grammar nonterminals by independency levels

The final resulting set is obtained using the following
Sorting algorithm

Input:),,,(SPTNG = is a converted CF-grammar without left recursion;

NND ×⊆ is the dependency relation among nonterminals in .G

Output: },,,{ 10 msssM K= , where for mkk ≤≤∀ 0, , Nsk ⊂ is a subset of

nonterminals of the given grammar of the level .k

Step 1. Identifying the initial level of all absolutely independent nonterminals:

;0=l)}.:)(,(:),(|{0 PBATNNBAAs ∈→∪∈¬∃∈∀= βαβα

Step 2. Constructing a set of nonterminals of the next level of independency:

;1+= ll)}.(),()(:)(:)(|{ 1 BARBAsBNBNAAs ll ≠∧∈∧∈∈∃∈∀= −

Step 3. Eliminating nonterminals of the subset ls from all subsets ,ks

;10 −≤< lk

for)(lsA∈∀ :

do for k from 0 to 1−l do if ksA∈ then }{\ Ass kk = od od.

Step 4. Deciding whether to continue sorting of non-terminals:

if ∅≠ls then goto Step 2.

Step 5. Terminating the process of sorting non-terminals:
1−= lm ; {The maximal level of non-terminals}

Applying this algorithm to Example 2, we receive the following:

};,,{ 12410 AAAs = };,{ 1321 AAs = };{ 142 As = };,,{ 9833 AAAs =

};,{ 1054 AAs = };{ 115 As = };{ 66 As = };{ 77 As = }.{ 158 As =

 43

The dynamics of calculating the dependency levels is provided in Table 3.
Here ’T’ denotes the identified nonterminal and ’ ’ denotes its elimination from a
lower level of the dependency relation.

Table 3. Dynamics of calculating the dependency levels

sj A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

8 Τ

7 Τ
6 Τ
5 Τ
4 Τ Τ

3 Τ Τ Τ
2 Τ

1 Τ Τ

0 Τ Τ Τ

Calculation of the regular values of nonterminals starts by grammar rules
without nonterminals in their right-hand sides, such A -rules always exist because

the given grammar is well-formed [1]. They all are at zero level 0s of dependency.

There are three nonterminals of the zero level: 1A , 4A and 12A in

the considered Example 2. The relevant regular expressions for them are

)(1AR = (’+’ ; ’–’),)(41AR = (’\’ ; ’e’), and)(12AR = (’d’). Raising to higher levels

of dependency and substituting regular expressions for the respective nonterminals,

the final regular value)(15AR for the starting nonterminal 15AS = is obtained:

==)()(15ARSR ((d), (d)*) ;

(((((d), (d)*)) ; ε), ‘.’, ((d), (d)*)) ;

(((d), (d)*), ((((d), (d)*)) ; ε),‘.’, ((d), (d)*)) ,

((‘\’ ; ‘e’), (((((‘+’ ; ‘−’), ε), ε)), ((d), (d)*)))) ≡

≡ d+ ; d*, ‘.’, d+ ; (d+; d*, ‘.’, d+), (‘\’ ; ‘e’), [‘+’ ; ‘−’], d+ ≡

≡ (d+; d*, ‘.’, d+), [(‘\’ ; ‘e’), [‘+’ ; ‘−’], d+].

7. Conclusion

A method of automated generation of language processors for a large class of
grammars was proposed. Grammar regularization is a method for converting a
CF-grammar into a new grammar in the regular form (CFR-grammar) through a
series of equivalent transformations performed on the grammar syntactic flow-
charts – a graphic analogue of grammar rules in a formal textual notation.

The proposed new algorithm of regularization demonstrated an increase in
efficiency as compared to the methods used in parser compiling systems Flex/Bison
and ANTLR [7]–[11].

 44

Table 4. Comparative characteristics of compilers and tools for their development

№ Characteristics
SynGT

(ver. 1.4)
Beta FORTH

95
LexYacс Flex/Bison

(ver. 2.85)
ANTLR

(ver. 3.5.2)

1 Grammar type CF-regular LALR(1) LALR(1) LALR(2) LL-regular

2 Platform Wndows XP Wndows XP Wndows XP Wndows XP Wndows XP

3 Time (hours) 10 20 32 45 25

4 Space(bytes) 618 455 178 462 112 205 416 038 Archve 19.5 Mbytes

The algorithm can be used for developing software for small-size ad hoc

language processors. Algorithms of equivalent transformations of grammars which
were developed and implemented demonstrated a improvement, compared to other
known systems of the compiler series GNU [7]–[10].

The algorithm and the method were realized in the system SynGT of
equivalent transformations of CFR-grammars which allows for automated
adjustment using language syntax within the framework of a simple syntactic
analysis. The system can be used in other technologies for constructing language
processors in a variety of domains, including computational linguistics.

This work was partially financially supported by the Government of the
Russian Federation, Grant 074-U01.

R e f e r e n c e s

1. A h o , A., R. S e t h i , J. U l l m a n. Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1986.

2 . F e d o r c h e n k o , L. An Algorithm of Parsing Languages Generated with R-Grammars. – In:
Algorithms and Systems for Research Automation. Moscow, Nauka, 2008, 15-20
(in Russian).

3. F e d o r c h e n k o, L. Syntax Graph Transformations in the System SynGT and Regularization of
Grammars. – In: International Multi- Conference on Advanced Computer Systems
(ACS-CISIM’2004), 14-16 June 2004, Elk, Poland.
http://acs.wi.ps.pl/info.php

4. F e d o r c h e n k o, L. On Regularization of Context-Free Grammars. – Izvestiya Vuzov.
Priborostroyeniye, Vol. 49, 2006, No 11, 50-54 (in Russian).

5. F e d o r c h e n k o, L. Regularization of Context-Free Grammars. LAP LAMBERT Academic
Publishing, Saarbrucken, 2011.

6. B a r a n o v, S., C. L a v a r e n n e. Open C Compiler in Forth. – In: EuroForth’95, 27-29 October
1995, Schloss Dagstuhl.

7. Bison – GNU Parser Generator.
http://www.gnu.org/software/bison/

8. The comp.compilers newsgroup.
http://compilers.iecc.com/index.phtml/

9. http://plan9.bell-labs.com/magic/man2html/1/lex/
10. Lex – A Lexical Analyzer Generator.

http://dinosaur.compilertools.net/lex/
11. ANTLR (A Nother Tool for Language Recognition).

http://www.antlr.org/
12. Syntax: An Advanced Technology of Directed Syntax Processing (in Russian).

http://www.math.spbu.ru/user/mbk/SYNTAX/Syntax.html/
13. Win Flex-Bison.

http: / / sourceforge. net/ projects/ winflexbison/
14. M a r t y n e n k o , B . K . Regular Languages and CF Grammars. – Computer Tools in

Education, Vol. 1, 2012, 14-20 (in Russian).

