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EQUIVARIANT ALEXANDER-SPANIER COHOMOLOGY
FOR ACTIONS OF COMPACT LIE GROUPS

HANNU HONKASALO

Introduction.

In [3] we constructed for a finite group G an equivariant cohomology theory,
defined on all G-pairs and having properties analogous to those of ordinary
Alexander-Spanier cohomology. The purpose of this paper is to extend the
construction of this “equivariant Alexander-Spanier cohomology theory” to the
case of a compact Lie group G.

Recall that the ordinary Alexander-Spanier cohomology groups ([7], 6.4), as
well as the equivariant groups of [3], are computed from a cochain complex
which is obtained by first defining certain cochain groups and then deviding out
“locally zero” cochains. The main difficulty in the generalization from a finite
group G to a compact Lie group G is the proper formulation of the notion of
a locally zero cochain. We give this definition in section 3 below. The cochains
themselves can be defined in almost the same way as in [3], cf. section 2. In these
two sections it appears useful to keep in mind certain aspects of the correspon-
dence between G-maps from a homogeneous space G/H to a G-space X, and
H-fixed points of X. Therefore we devote a short section 1 to these matters; this
section is essentially based on [5], 3.2.i).

The remaining two sections show that the properties of the equivariant
Alexander-Spanier cohomology proved in [3] remain valid after the generaliz-
ation to a compact Lie group G. In section 4 we indicate how the proofs given in
[3] can be modified to show that the equivariant Eilenberg-Steenrod axioms still
hold. Section 5 contains three results: a) In a paracompact G-space any closed
G-subspace is taut; b) the equivariant Alexander-Spanier cohomology of a para-
compact G-space X is isomorphic to the ordinary cohomology of the orbit space
X /G with coefficients in a certain sheaf; ¢) if the paracompact G-space X is locally
sufficiently nice, then the equivariant Alexander-Spanier cohomology of X is
isomorphic to its equivariant singular cohomology, as defined in [4].

I wish to thank Erkki Laitinen for valuable comments concerning this work.
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Notation and terminology.

In this paper G is a compact Lie group. The notation H < G means that H is
aclosed subgroup of G. Recall the discrete orbit category Or,G of G: its objects are
the homogeneous spaces G/H, H < G, and its morphisms are the G-homotopy
classes of G-maps between them. A contravariant G-coefficient system is a con-
travariant functor Or,G — Ab; we typically denote such a coefficient system by
m. Finally, all G-spaces are assumed to be Hausdorff, as usual.

1. G-maps G/H - X.

Let X be a G-space and H < G a closed subgroup of G. In this preliminary
section we recall some facts about G-maps G/H — X; the set of these maps is
denoted by Maps(G/H, X).

First of all, the formula f — f(eH) defines a natural bijection

(L.1) Mapg (G/H, X) = XH.

Both sides of 1.1 have a natural left action of the Weyl group WH = NH/H such
that 1.1 is WH-equivariant; in Mapg(G/H, X) the action is given by

(1.2) (nH): f: gH — f(gnH), ne NH, f e Maps(G/H, X), g€G.

Let WH,, be the identity component of WH. From 1.1 we get the bijection
Mapg (G/H, X)/WH, = X" /WH,. It is clear from the considerations in 3.2.i) of
[5] that two G-maps f,,f,: G/H—>X are in the same WHj-orbit of
Map;(G/H, X) if and only if they are G-homotopic by a homotopy h, satisfying
h(G/H) = f,(G/H) = f,(G/H) for every te [0, 1]. In this case we say that f; and
f, are G-fiber homotopic (as maps from G/H — » to X — X/G). Hence 1.1 induces
a natural bijection

(1.3) {G-ﬁber homotopy classes

o~ H
of G-maps G/H —» X } X"/ WHo.

Assume now that u: G/K — G/H is a G-map; then u(gK) = gaH forevery g€ G,
where u(eK) = aH and aeG satisfies a"!Ka < H. The map u induces the map
X(u): X¥ - XX, x > ax (the notation X (u) is from [5]). By 1.3 it is clear that X (u)
further induces the arrow X (u) making the diagram

X (u)

X4 Xx

(1.4)

X(u)

XH/WH, X*/WK,
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commutative, and in addition X (u) depends only on the G-homotopy class of u.
Altogether we have now reviewed the definition of the functor

X: Or,G - Top, G/H — X"/WH,

of [5], 3.2.1).
The commutativity of 1.4 has the following immediate consequence:

LEMMA 1.5. In the preceding notation, if A < XX is WK-invariant, then
X(u)"(A) = X" is WHy-invariant. As a special case (with K = {e}),if A < X is
Go-invariant, then A ~ X! is WHy-invariant.

2. Definition of cochains.

Let again X be a G-space. Given ne N and H £ G, we denote by V#(X) the set
of all (n + 1)-tuples ¢ = (@o,. - ., ®,), Where each ¢; is a G-map G/H - X, i.e.
VE(X) = Mapg(G/H, X)"*!. Further we set

ViX)= U %X = |J Mape(G/H,X)"**.

H=G H=ZG

Let m: Or,G — Ab be a contravariant coefficient system and M = @ m(G/H).
H=ZG
We can now define the n'® cochain group C"(X; m) of X with coefficients m in the

same way as in [3], namely
CX;m) = {c: V,(X) - M| c(p)em(G/H) if pe VI (X)}.

These form the cochain complex C*(X; m) with the usual coboundary operator.

A cochain c e C"(X;m) is equivariant, if the following condition holds: given
© = (@g,...,p.)eVE(X)and a = (a,. .. ,x,) € VX(G/H) such that the G-maps a;:
G/K — G/H are all G-homotopic,

c(p oa) = m(xo)(c()),

where of course p oo = (o0 do, . . . , ¢, O &,); nOte that m(ap) = ... = m(a,). The
equivariant cochains form a cochain subcomplex C¥(X;m) = C*(X; m).

We point out the following functoriality property: any equivariant function
f:X - Y, not necessarily continuous, between G-spaces induces a cochain map
f*: C*(Y;m) - C*(X;m) by the formula

(f*©O)N@os - -, 0n) =c(fO@o,...f0p,); ceC'(Y,;m), p € V,(X).

Namely, the composite f o ¢: G/H — Y is a G-map if ¢: G/H — X is one, even if
f is not continuous. It is also clear that f*C¥(Y; m) = C§(X,m).

Next we give another description of the cochain complex C¥(X; m). We begin
with
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LEMMA 2.1. If ce Ci(X;m), @, ¢’ € VE(X) and ¢, is G-fiber homotopic to ¢, for
every i€ {0,...,n}, then c(p) = c(¢').

ProoF. By 1.3 there are elements n;H € WH,, such that ¢(gH) = ¢,(gn;H) for
i€{0,...,n}, geG. This means that ¢} = ¢;00a;, where a;: G/H — G/H is the
G-map gH +— gn;H, and o; Fid for all i€ {0,...,n}. By the equivariance of ¢ we
have

c(@") = c(e o a) = m(ao)(c(@)) = m(id)(c(p)) = c(¢).
This shows that in the definition of C"(X;m) above, instead of V,(X) =

(J VH#(X), we could have used ¥,(X) = (J VZ(X), where
HZG HSG
r/H

(X) = {(n + 1)-tuples of G-fiber homotopy classes of G-maps G/H — X}.

Let C,, be the functor which to a topological space A associates the chain complex
C,(A), C,(A) = free abelian group with basis 4"**. Because

V(X)) = (XH/WHoy

by 1.3, we get the following identification (Where Z—Or, G is the abelian category
of contravariant coefficient systems):

PROPOSITION 2.2. C¥(X;m) = Hom,_o,,6(C4(X),m).

In the rest of this paper, however, we prefer to use the original definition of
C%(X; m) to keep our notation consistent with [3].

3. Locally zero cochains.

To get an adequate notions of locally zero cochains, when G is a compact Lie
group, we must replace the open G-coverings used in [3] with a more compli-
cated concept.

DEFINITION 3.1. An open G-covering of the G-space X is a pair (%, %), where
% is a covering of X by Go-invariant open sets and 2 is a function assigning to
every Ue# and H < G apartition Z4(U) of U n X¥ into disjoint WH,-invariant
open subsets. Furthermore we require:

i) % is G-invariant, i.e. ge G, Ue ¥ = gU e %,

il) Z,(U) = {U} for every Ue%;
iii) Ue¥,H £ G,geG = g- Py(U) = Z,y,-1(gU);
iv) H < K £ G, Ue¥ = #(U) is a refinement of Zy(U) n XX;

v) Assume U e %; then x has an open neighborhood V, in X with the following
property: whenever xe X9, i.e. H < G,, the set V, n X is contained in some set
of Z4(U) (in particular V, < U).
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REMARK 3.2. i) The sets U n X* for U e % are WH,-invariant by 1.5.
ii) If a) X is a locally smooth G-manifold, or b) G is finite, then condition v) is
automatically satisfied.

PROOF a) In the notation of 3.1.v), let K = G,. Because X is also a locally
smooth K-manifold, x has an open K-neighborhood V, such that V, is
K-homeomorphic to a linear representation of K. Now V, n X is connected and
hence contained in some set of Zy4(U), for every H < K.

b) Let again xe U e#. Foreach H < G, choose an open set V; = U such that

xeVynX"ePy(U).ThenV, = () Vyisthe required open neighborhood of x,
H=SGx
the intersection being finite, because G is finite.

ExaMPLE 3.3. For a locally smooth G-manifold X, take % = set of compo-
nents of X and %4(U) = set of components of U N X# (Ue%,H £ G). Then
(#, #) is an open G-covering of X.

Using this concept of a G-covering we can now define locally zero cochains.
Note that if H < G and ¢ € V#(X), then {@¢(eH),. .., ,(eH)} is contained in X#
by 1.1.

DEFINITION 3.4. A cochain ce C"(X;m) is locally zero, if there exists an open
G-covering (%, %) of X with the property that c(p) = 0 whenever ¢ e VH(X)
(H £ G)and {@o(eH),. .., p,(eH)} is contained in a set of Zy(U) for some U e .

In the situation of 3.4 we also say that c is locally zero with respect to
(w.r.t.) (%, P).

It is clear that two open G-coverings (%, %) and (', #’) of X have a common
refinement (intersect the sets of (%, 2) with those of (%', #')). Therefore the locally
zero n-cochains form a subgroup Cy(X;m) of C*(X;m), and in fact C¥(X;m) is
a subcomplex of C*(X; m). We also denote

CE.o(X;m) = CEX; m) n C§(X; m),
C*(X;m) = C*(X; m)/CE(X;m) and C(X; m) = CA(X; m)/C% o(X; m)

asin [3].

If f: X - Yis a (continuous) G-map, then f*C¥(Y: m) = C§(X; m); namely, if
ce C"(Y.m) is locally zero w.r.t. (¥, 2), then f*(c)e C"(X;m) is locally zero w.r.t.
(f ', f19), where

[Ty =T mvery,
7' Dul(f V) = {f "' (V)| Vue 2u(V)} (H £ G, VeEY)

Thus we get f*: C*(Y;m) -» C*(X;m) and f*: C4(Y;m) - C¥X;m).
To end this section, we show that in case G is finite, definition 3.4 agrees with
the definition of locally zero cochains given in [3].
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PROPOSITION 3.5. Suppose G is a finite group. Then a cochain ce C*"(X;m) is
locally zero in the sense of 3.4, if and only if it is locally zero in the sense of [3].

ProoF. The “if”-part is trivial, for an open G-covering % of X in the sense of
[3] can also be regarded as an open G-covering (%, 2), with Zy4(U) = {U n XH}
(Ueu,H £ G).

To prove the “only if ”-part, assume that c is locally zero w.r.t. (%, 2). Let xe X
and pick U € % such that x e U. Choose an open neighborhood V, of x asin 3.1.v)

(cf. 3.2.ii) b)). Because | ) X" isclosed (since X is Hausdorff) and x¢ () X*,
H$Gx H$Gy
we may assume that V, n X = @for H £ G,. Further we may assume that V, is

G.-invariant (take (") gV if necessary). Then, if y = gx (g € G)is in the orbit of x,
9€G x
define V, = gV,.
Now we have constructed an open neighborhood V¥, of every point y in the
orbit of x. Performing this construction for every orbit we obtain an open
G-covering ¥ = {V,|xe X} of X in the sense of [3], and c is locally zero w.r.t.

¥ in the sense of [3].

Note that here the Hausdorff condition on X was needed, while in [3] it played
no role until section 5.

4. Definition of the cohomology theory.

Let X be a G-space and A = X a G-subspace. Leti: 4 —, X be the inclusion.
We give the same definition as in [3]:

DEFINITION 4.1. C¥(X, A;m) = ker [i*: C¥(X; m) - C%(A; m)] is the equivariant
Alexander-Spanier cochain complex of the G-pair (X, A) with coefficients m. Its
cohomology groups H%(X, A; m) = H"(C%(X, A; m)) are the equivariant Alexan-
der-Spanier cohomology groups of (X, A) with coefficients m.

THEOREM 4.2. The functors H, satisfy all the Eilenberg-Steenrod axioms for an
equivariant cohomology theory, including the dimension axiom.

Asin[3], exactness is immediate from the definition of H%, and the proof of the
excision axiom needs only marginal modifications. As for the dimension axiom,
the essential point is that lemma 2.2 of [3] holds in this more general setting, too:

LeMMA 4.3. Assume H < G and ce C§{(G/H; m). Then c is locally zero if and
only if c(idgy, . . . ,idg ) = 0.

PrOOF. Let c(id,...,id) = 0. The equivariance of c¢ then implies that
c(@o,-- -, ¢,) = 0,if the G-maps ¢;: G/K — G/H are G-homotopic. Let (%, ) be
the open G-covering of G/H described in 3.3. Now c is locally zero w.r.t. (%, %),
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forif @ = (@o,- - -, @,) € VX(G/H)is such that {@o(eK),. . ., ,(eK)} is contained in
a set of Zx(U), U e, then the G-maps ¢;: G/K — G/H are G-homotopic, and so
clg) = 0.

The reader may convince himself that the proof of the homotopy axiom given in
section 4 of [ 3] can also be modified to hold in the present situation. However, we
want to be more specific about two particular modifications needed; here we
restrict to the absolute case to keep notation more simple, and leave the case of
G-pairs in peace.

Firstly, given a G-space X and an open G-covering (%, ) of X, we define
a simplicial complex X (%, %) as follows: its set of vertices is V,(X), and the
vertices @o,...,®, span a simplex, if ¢, ..., @, VI (X) for some H £ G and
{@oleH),. .., @, (eH)} is contained in some set of Zy(U) for some Ue#. The
complex X(#%,%) is clearly a natural generalization of the complex X (%) con-
sidered in [3].

Secondly, let X be a G-space, I = [0, 1] the unit interval with trivial G-action
and (%, 2) an open G-covering of X x I. The core of the proof of the homotopy
axiom is, as in [3], to construct a suitable open G-covering (¥",2) of X and
a suitable chain homotopy C. (X (¥, 2)) —» C, (X x I)(%,%)). We want to
explain the construction of (¥, 2).

Let x € X. By the compactness of I we can find an open neighborhood V; of x in
X satisfying

(4.4) thereisann = n, e N with the property that for each ke {0,1,...,2" — 1},
V. x [k/2",(k + 1)/2"] < U, , for some U, ,e%.

Because the sets U, are Go-invariant, G, V, also satisfies 4.4; thus we may
assume that V, is Gy-invariant. In addition, V, may be assumed G,-invariant
(replace it with a smaller neighborhood, if necessary, by [ 1], Exercise 1.9 applied
to the group <{Gy, G,). Finally, if y = gx (g€ G) is in the orbit of x, define
V, =gV

In this way we obtain a G-invariant covering ¥ = {V,|xe X} of X by
Go-invariant open subsets. Let H < G. Then

(Ven XH) x [k/2%,(k + 1)/2"] € U 0 (X7 x 1) (n = ny),

and the partitions Z4(U, ;) of U,, n(X¥ x I) (0 < k £ 2" — 1) induce a parti-
tion Qy(V,) of V, n X¥; this is due to the fact that, by connectedness, every slice
{y} x [k/2",(k 4+ 1)/2"] is contained in some set of Py(U,,). This finishes the
construction of the required G-covering (¥", 2) of X.

5. Some properties.

In this section we explain, how the proofs of the results of sections 5, 6 and 7 of
[3] carry over to the present situation.
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a) Tautness

PROPOSITION 5.1. Suppose X is a paracompact G-space and A = X a closed
G-subspace. Then the canonical homomorphism

dm s (N m) > H (45 m)
is an isomorphism (N runs through the G-neighborhoods of A).

Asin [3], the proof of 5.1 is similar to the classical case ([7] 6.6.2), and is based
on the following two lemmas:

LEMMA 5.2. Let X be a paracompact G-space and (U, %) an open G-covering of
X. Then there exists an open G-covering (¥", 2) of X such that for each H < G, the
covering ¥y = | ) 2u(V) is a star refinement of Uy = | ) Py(U).

VeYy Ued

Proor. Wefirst show that there is a locally finite open refinement %’ of % such
that %' is G-invariant and consists of G,-invariant subsets of X.

The sets U/G, (U e %) form an open covering of X/G,. Because X/G, is
paracompact by the theorem of E. Michael ([ 2], p. 165), this covering hasan open
locally finite refinement. Taking inverse images in X we obtain an open locally
finite refinement %~ of % such that the sets of #~ are G,-invariant. Then, because
G/G, is finite,

U = ﬂ gw
9GoeG/Go
is furthermore G-invariant (compare [1], p. 133).
Let U' €' and choose some U € % such that U’ < U. If H £ G, we define

u(U’) = (ﬂ g”u(gU)> nU,
9Gq

the first (finite) intersection being taken over those gG,e G/G, for which
gU’ = U’ (note: if o and & are collections of subsets of a certain set Y, we denote
oA "B ={AnB|Ae o, Be B}). For aset gU’ in the orbit of U’ in %', we can
now define #y(gU’) = g- #-1,(U’). In this way we obtain an open G-covering
', ') of X, and if we replace (¥, 2) with (%', #'), we can (and henceworth will)
assume that the original % is locally finite.

Next we construct, using the method of [2], p. 167, a star refinement ¥~ of
% such that ¥ is G-invariant and consists of Gy-invariant open subsets of X. Fix
Vev ,V % 0. The set

U, = {Ue¥|V < U}
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is finite, because % is locally finite. For H < G define

24(¥V) = ( N %(U)> nV.
UeUyv
Then (77, 2) is an open G-covering of X.

To prove that (¥, 2) has the required property, let H < G and W e 24(V) for
some Ve¥". Choose U € % such that st(V,¥") « U. Then U e %,. Assume that
We2y(V),Ver,and WnW £0. Now VAV £0, V' cst(V,¥) < U and
so U e %y . By the definition of 24(V) and 24(V’), W and W' are each contained
in a set of Zy4(U), and in fact W n W’ % @ implies that they are both contained in
the same set of Z4(U). It follows that st (W, ¥4) is contained in this set of Zy4(U).

LEMMA 5.3. Let X be a completely regular (e.g. paracompact) G-space and
A = X a G-subspace. Given an open G-covering (v, 2) of X, there is an open
G-neighborhood N of A and an equivariant function f: N — A (not necessarily
continuous) satisfying

1) f(x) = x for xe A4, and
i) if H £ G and We ¥y, then f(W N N) < st(W, 7).

PrROOF. Let

N = {xe X |thereisa Ve¥ with xeV, and a G-map
f<:Gx — A such that f,(x)e W n A whenever
xe X" (H £ G)and xe We 24(V)}.

Clearly A = N and N is a G-subset. We show that N is open. Let xe N, and
choose Ve ¥ and f,: Gx — A as above. Also, let V, = V be an open neighbor-
hood of x asinv) of 3.1. Pick aslice S, = V,at x([1],115.4). Forevery y€ S, there
is a G-map h,: Gy - Gx with h,(y) = x. Now the set G,S, is an open neighbor-
hood of x, and G,S, = GoV = V. We claim that G,S, = N.

Let ze GoS,, z = gy (g€ Gy, yeS,). Then zeV and f,oh,: Gy > Gx » A is
a G-map. If ze XX, ze We 24(V), then ye X? X8, yeg ' We 2,-1ke(g " 'V) =
2,-1kg(V). Because G, < G, and yeS, < V,, also xeg™'W, and thus

(fcoh)2) =g f(x)eg-(g" ' W)nA)=Wn A

Therefore ze N. This completes the proof that N is open.

We now construct f: N — A. Set f(x) = x for xe A. To define f | N\ 4, let S be
a set of representatives for the G-orbits of N\ 4. Given ye S, we choose a V,e 7"
with yeV, and a G-map f;: Gy - A as in the definition of N. We define
f1Gy = f,.

By definition, f satisfies i). To prove ii), assume that H < G, We 2y(V), Ve?”
and xe W N N; we claim that f(x)est(W, ¥g). This is obvious if xe A. Let then
xe N\ 4, x = gy with ge G, yeS. Because xe X", we have ye X? ™ 'H8; assume
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yeW' eZ,-14,(V,) (V,e¥" was chosen in the preceding paragraph). Then
gW’' e 24(gV,) and x = gye W ngW’, whence gW’ < st(W, ¥g). Finally f(x) =
g f(N =9 f,(y)eg (W nA) cgW < st(W,¥g), so f(x)est(W, 7).

b) Interpretation as sheaf cohomology of X/G

Let X be a paracompact G-space. Because the canonical projection =:
X — X/G is a closed surjection, the theorem of E. Michael referred to above
implies that X /G is also paracompact. Exactly as in section 6 of [3] we obtain the
exact sequence

(5.4) Co4CL4 ...

of fine sheaves on X/G, where C% is the sheaf associated to the presheaf
U Ci(n~'U;m), U c X/G open. Recall in particular that the exactness of 5.4
is a consequence of the tautness result 5.1. The proof of 6.3 in [3] can also be
modified to show that the global sections of C% are

r(x/G,Cq) = Cg(X;m).
Define 4 = ker [C2 2 CL1], a sheaf on X/G. As in [3], the above remarks
suffice to prove
THEOREM 5.5. H"(X/G; A) = H%(X;m) for all ne N.

We say that a 0-cochain ¢ € C(X; m) is locally constant, if there exists an open
G-covering (¥, %) of X with the property that c(¢) = c(¢’) for C-maps ¢, ¢"
G/H - X (H £ G) whenever {¢(eH), ¢’(eH)} is contained in a set of Z,(V) for
some Ve . Asin 6.5.a) of [3], the sections of 4 on an open set U = X/G are
given by

(5.6) Ir'(U, A) = {ce C&(rn~'U;m)|c is locally constant}.

As to the stalks of A, the result of 6.5.b) of [3] holds, but the proof needs some
modifications:

PROPOSITION 5.7. If ye X/G, xen~'(y)and H = G, £ G, then the stalk A, of
A at y is isomorphic to m(G/H).
PRrROOF. We have the canonical homomorphism
y: A, = l‘g-l-» I'(U,A) -» m(G/H),yeU < X/G, U open,

defined as follows: Let ¢,: G/H — Gx be the G-homeomorphism gH — gx. If
UcX/G is an open neighborhood of y, we denote the composite
G/H —®x, Gx =, n~'U by the same symbol ¢,. Now y is the direct limit of the
homomorphisms yy: I'(U, A) = m(G/H), yy(c) = c(p,). We claim that y is an
isomorphism.
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Let W be a tube around the orbit 7~ !(y) = Gx and r: W — Gx a G-retraction.
For the surjectivity of 7y, let aem(G/H). We define ceC2(W:m) by
c(p) = m(r o )(@)e m(G/K) for a G-map ¢: G/K — W. Let (%, %) be the open
G-covering of Gx = G/H described in 3.3; then c is locally constant w.r.t. the
open G-covering (r~'%,r™ ') of W. Thus ce I'(nW, A), and clearly y,»: c — a,
proving surjectivity.

For injectivity, let ceI'(U, 4), U « X/G an open neighborhood of y, and
assume that yy(c) = c(p,) = 0. By assumption, ¢ is locally w.r.t. an open
G-covering (¥, 2) of n~ ' U. Choose V € ¥ such that x e V. By 3.1.v) there is an
open neighborhood V, of x, which we may assume H-invariant, with the property
that ¥, n X¥ is contained in some set of Z(V), whenever K < H.

Let S, = r~%(x) be the slice at x corresponding to the above tube W and
retraction r. Then G(S, N V,) is also a tube around Gx; to simplify notation we
denote this smaller tube again by W. Now we have r~(x) ¢ V,. We intend to
show that c|#W = 0e I'(zW, A).

Let ¢: G/K — W be a G-map, and let ¢": G/K — W be the composite

0:GK L, w L, Gx = W

We have ¢'(eK)=gxegV, for some geG, g 'Kg<H and
p(eK)er '(gx) = g-r~!(x) = gV.. By the choice of V,, gV, n XX is contained in
a set of Zx(gV). Therefore {p(eK), ¢'(eK)} is contained in a set of Z(gV'), and the
local constantness of ¢ w.r.t. (¥, %) implies that c(¢) = c(¢’).

Finally, ¢’ = ¢, 0a, where a: G/K — G/H is the G-map given by g, K — g,gH
(9, € G; g asin the preceding paragraph), and thus c(¢) = c(¢') = m(a)(c(p,)) = 0.

c) Comparison with equivariant singular cohomology
The result of section 7 of [3] (Theorem 7.2) is true in the present context, too:

THEOREM 5.8. Suppose that X is a paracompact G-space and every orbit
Gx < X is taut with respect to equivariant singular cohomology H¥(-;m). Then
there is a natural isomorphism

HY(X; m) = H¥X; m).

In fact section 7 of [3] can be read almost word for word to get a proof of 5.8.
The following two comments are in order, however:

Firstly, we must define an equivariant singular cochain ceSg(X;m) to be
locally zero, if there is an open G-covering (¥7,2) of X with the property that
¢(0) =0 for any equivariant singular simplex o: G/H x 4" - X such that
o({eH} x 4") is contained in a set of (V) for some Ve ¥ . Again the proof of
Prop. 1.6.4 in [4] essentially shows that the cohomology of S§(X;m) does not
change, if we divide out the locally zero cochains.

Secondly, in the article [6] of Piacenza referred to in [3], it is assumed that G is
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adiscrete group. However, the result we need, i.e. that H§(X; m) can be computed
from the exact sequence S — S5 — S2 — ... of fine sheaves on X/G, clearly holds
under the assumptions of 5.8, too.
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