EQUIVARIANT ALEXANDER-SPANIER COHOMOLOGY FOR ACTIONS OF COMPACT LIE GROUPS

HANNU HONKASALO

Introduction.

In [3] we constructed for a finite group G an equivariant cohomology theory, defined on all G-pairs and having properties analogous to those of ordinary Alexander-Spanier cohomology. The purpose of this paper is to extend the construction of this "equivariant Alexander-Spanier cohomology theory" to the case of a compact Lie group G.

Recall that the ordinary Alexander-Spanier cohomology groups ([7], 6.4), as well as the equivariant groups of [3], are computed from a cochain complex which is obtained by first defining certain cochain groups and then deviding out "locally zero" cochains. The main difficulty in the generalization from a finite group G to a compact Lie group G is the proper formulation of the notion of a locally zero cochain. We give this definition in section 3 below. The cochains themselves can be defined in almost the same way as in [3], cf. section 2. In these two sections it appears useful to keep in mind certain aspects of the correspondence between G-maps from a homogeneous space G/H to a G-space X, and H-fixed points of X. Therefore we devote a short section 1 to these matters; this section is essentially based on [5], 3.2.i).

The remaining two sections show that the properties of the equivariant Alexander-Spanier cohomology proved in [3] remain valid after the generalization to a compact Lie group G. In section 4 we indicate how the proofs given in [3] can be modified to show that the equivariant Eilenberg-Steenrod axioms still hold. Section 5 contains three results: a) In a paracompact G-space any closed G-subspace is taut; b) the equivariant Alexander-Spanier cohomology of a paracompact G-space X is isomorphic to the ordinary cohomology of the orbit space X/G with coefficients in a certain sheaf; c) if the paracompact G-space X is locally sufficiently nice, then the equivariant Alexander-Spanier cohomology of X is isomorphic to its equivariant singular cohomology, as defined in [4].

I wish to thank Erkki Laitinen for valuable comments concerning this work.

Received October 5, 1989.

Notation and terminology.

In this paper G is a compact Lie group. The notation $H \leq G$ means that H is a closed subgroup of G. Recall the discrete orbit category $\operatorname{Or}_d G$ of G: its objects are the homogeneous spaces G/H, $H \leq G$, and its morphisms are the G-homotopy classes of G-maps between them. A contravariant G-coefficient system is a contravariant functor $\operatorname{Or}_d G \to \operatorname{Ab}$; we typically denote such a coefficient system by m. Finally, all G-spaces are assumed to be Hausdorff, as usual.

1. G-maps $G/H \rightarrow X$.

Let X be a G-space and $H \leq G$ a closed subgroup of G. In this preliminary section we recall some facts about G-maps $G/H \to X$; the set of these maps is denoted by $\operatorname{Map}_G(G/H, X)$.

First of all, the formula $f \mapsto f(eH)$ defines a natural bijection

$$(1.1) \operatorname{Map}_{G}(G/H, X) \xrightarrow{\sim} X^{H}.$$

Both sides of 1.1 have a natural left action of the Weyl group WH = NH/H such that 1.1 is WH-equivariant; in $Map_G(G/H, X)$ the action is given by

$$(1.2) (nH) \cdot f \colon gH \mapsto f(gnH), \ n \in NH, \ f \in \operatorname{Map}_{G}(G/H, X), \ g \in G.$$

Let WH_0 be the identity component of WH. From 1.1 we get the bijection $\operatorname{Map}_G(G/H,X)/WH_0 \xrightarrow{\sim} X^H/WH_0$. It is clear from the considerations in 3.2.i) of [5] that two G-maps $f_1, f_2 \colon G/H \to X$ are in the same WH_0 -orbit of $\operatorname{Map}_G(G/H,X)$ if and only if they are G-homotopic by a homotopy h_t satisfying $h_t(G/H) = f_1(G/H) = f_2(G/H)$ for every $t \in [0,1]$. In this case we say that f_1 and f_2 are G-fiber homotopic (as maps from $G/H \to *$ to $X \to X/G$). Hence 1.1 induces a natural bijection

(1.3)
$$\begin{cases} G\text{-fiber homotopy classes} \\ \text{of } G\text{-maps } G/H \to X \end{cases} \xrightarrow{\sim} X^H/WH_0.$$

Assume now that $u: G/K \to G/H$ is a G-map; then u(gK) = gaH for every $g \in G$, where u(eK) = aH and $a \in G$ satisfies $a^{-1}Ka \le H$. The map u induces the map $X(u): X^H \to X^K, x \mapsto ax$ (the notation X(u) is from [5]). By 1.3 it is clear that X(u) further induces the arrow $\bar{X}(u)$ making the diagram

commutative, and in addition $\bar{X}(u)$ depends only on the G-homotopy class of u. Altogether we have now reviewed the definition of the functor

$$\bar{X}$$
: Or_d $G \to \text{Top}$, $G/H \mapsto X^H/WH_0$

of [5], 3.2.i).

The commutativity of 1.4 has the following immediate consequence:

LEMMA 1.5. In the preceding notation, if $A \subset X^K$ is WK_0 -invariant, then $X(u)^{-1}(A) \subset X^H$ is WH_0 -invariant. As a special case (with $K = \{e\}$), if $A \subset X$ is G_0 -invariant, then $A \cap X^H$ is WH_0 -invariant.

2. Definition of cochains.

Let again X be a G-space. Given $n \in \mathbb{N}$ and $H \subseteq G$, we denote by $V_n^H(X)$ the set of all (n+1)-tuples $\varphi = (\varphi_0, \ldots, \varphi_n)$, where each φ_i is a G-map $G/H \to X$, i.e. $V_n^H(X) = \operatorname{Map}_G(G/H, X)^{n+1}$. Further we set

$$V_n(X) = \bigcup_{H \le G} V_n^H(X) = \bigcup_{H \le G} \operatorname{Map}_G(G/H, X)^{n+1}.$$

Let $m: \operatorname{Or}_d G \to \operatorname{Ab}$ be a contravariant coefficient system and $M = \bigoplus_{H \leq G} m(G/H)$.

We can now define the n^{th} cochain group $C^n(X; m)$ of X with coefficients m in the same way as in [3], namely

$$C^{n}(X; m) = \{c: V_{n}(X) \to M \mid c(\varphi) \in m(G/H) \text{ if } \varphi \in V_{n}^{H}(X)\}.$$

These form the cochain complex $C^*(X; m)$ with the usual coboundary operator.

A cochain $c \in C^n(X; m)$ is equivariant, if the following condition holds: given $\varphi = (\varphi_0, \ldots, \varphi_n) \in V_n^H(X)$ and $\alpha = (\alpha_0, \ldots, \alpha_n) \in V_n^K(G/H)$ such that the G-maps α_i : $G/K \to G/H$ are all G-homotopic,

$$c(\varphi \circ \alpha) = m(\alpha_0)(c(\varphi)),$$

where of course $\varphi \circ \alpha = (\varphi_0 \circ \alpha_0, \dots, \varphi_n \circ \alpha_n)$; note that $m(\alpha_0) = \dots = m(\alpha_n)$. The equivariant cochains form a cochain subcomplex $C_G^*(X; m) \subset C^*(X; m)$.

We point out the following functoriality property: any equivariant function $f: X \to Y$, not necessarily continuous, between G-spaces induces a cochain map $f^*: C^*(Y; m) \to C^*(X; m)$ by the formula

$$(f^*(c))(\varphi_0,\ldots,\varphi_n)=c(f\circ\varphi_0,\ldots f\circ\varphi_n);\ c\in C^n(Y;m),\ \varphi\in V_n(X).$$

Namely, the composite $f \circ \varphi \colon G/H \to Y$ is a G-map if $\varphi \colon G/H \to X$ is one, even if f is not continuous. It is also clear that $f^*C^*_G(Y;m) \subset C^*_G(X,m)$.

Next we give another description of the cochain complex $C_G^*(X; m)$. We begin with

LEMMA 2.1. If $c \in C_G^n(X; m)$, $\varphi, \varphi' \in V_n^H(X)$ and φ_i is G-fiber homotopic to φ'_i for every $i \in \{0, \ldots, n\}$, then $c(\varphi) = c(\varphi')$.

PROOF. By 1.3 there are elements $n_i H \in WH_0$ such that $\varphi_i'(gH) = \varphi_i(gn_i H)$ for $i \in \{0, \ldots, n\}$, $g \in G$. This means that $\varphi_i' = \varphi_i \circ \alpha_i$, where $\alpha_i : G/H \to G/H$ is the G-map $gH \mapsto gn_i H$, and $\alpha_i \approx G$ id for all $i \in \{0, \ldots, n\}$. By the equivariance of c we have

$$c(\varphi') = c(\varphi \circ \alpha) = m(\alpha_0)(c(\varphi)) = m(\mathrm{id})(c(\varphi)) = c(\varphi).$$

This shows that in the definition of $C^n(X; m)$ above, instead of $V_n(X) =$

$$\bigcup_{H \leq G} V_n^H(X), \text{ we could have used } \bar{V}_n(X) = \bigcup_{H \leq G} \bar{V}_n^H(X), \text{ where }$$

 $\bar{V}_n^H(X) = \{(n+1) \text{-tuples of } G\text{-fiber homotopy classes of } G\text{-maps } G/H \to X\}.$

Let C_* be the functor which to a topological space A associates the chain complex $C_*(A)$, $C_n(A)$ = free abelian group with basis A^{n+1} . Because

$$\bar{V}_n^H(X) \cong (X^H/WH_0)^{n+1}$$

by 1.3, we get the following identification (where $Z-Or_dG$ is the abelian category of contravariant coefficient systems):

Proposition 2.2.
$$C_G^*(X; m) = \operatorname{Hom}_{Z-\operatorname{Or}_d G}(C_*(\bar{X}), m)$$
.

In the rest of this paper, however, we prefer to use the original definition of $C_G^*(X; m)$ to keep our notation consistent with [3].

3. Locally zero cochains.

To get an adequate notions of locally zero cochains, when G is a compact Lie group, we must replace the open G-coverings used in [3] with a more complicated concept.

DEFINITION 3.1. An open G-covering of the G-space X is a pair $(\mathcal{U}, \mathcal{P})$, where \mathcal{U} is a covering of X by G_0 -invariant open sets and \mathcal{P} is a function assigning to every $U \in \mathcal{U}$ and $H \leq G$ a partition $\mathcal{P}_H(U)$ of $U \cap X^H$ into disjoint WH_0 -invariant open subsets. Furthermore we require:

- i) \mathscr{U} is G-invariant, i.e. $g \in G$, $U \in \mathscr{U} \Rightarrow gU \in \mathscr{U}$;
- ii) $\mathcal{P}_{\{e\}}(U) = \{U\}$ for every $U \in \mathcal{U}$;
- iii) $U \in \mathcal{U}, H \leq G, g \in G \Rightarrow g \cdot \mathscr{P}_{H}(U) = \mathscr{P}_{gHg^{-1}}(gU);$
- iv) $H \leq K \leq G$, $U \in \mathcal{U} \Rightarrow \mathscr{P}_K(U)$ is a refinement of $\mathscr{P}_H(U) \cap X^K$;
- v) Assume $U \in \mathcal{U}$; then x has an open neighborhood V_x in X with the following property: whenever $x \in X^H$, i.e. $H \leq G_x$, the set $V_x \cap X^H$ is contained in some set of $\mathscr{P}_H(U)$ (in particular $V_x \subset U$).

REMARK 3.2. i) The sets $U \cap X^H$ for $U \in \mathcal{U}$ are WH_0 -invariant by 1.5.

ii) If a) X is a locally smooth G-manifold, or b) G is finite, then condition v) is automatically satisfied.

PROOF a) In the notation of 3.1.v), let $K = G_x$. Because X is also a locally smooth K-manifold, x has an open K-neighborhood V_x such that V_x is K-homeomorphic to a linear representation of K. Now $V_x \cap X^H$ is connected and hence contained in some set of $\mathcal{P}_H(U)$, for every $H \leq K$.

b) Let again $x \in U \in \mathcal{U}$. For each $H \leq G_x$ choose an open set $V_H \subset U$ such that $x \in V_H \cap X^H \in \mathcal{P}_H(U)$. Then $V_x = \bigcap_{H \leq G_x} V_H$ is the required open neighborhood of x, the intersection being finite, because G is finite.

EXAMPLE 3.3. For a locally smooth G-manifold X, take $\mathscr{U} = \text{set}$ of components of X and $\mathscr{P}_H(U) = \text{set}$ of components of $U \cap X^H(U \in \mathscr{U}, H \leq G)$. Then $(\mathscr{U}, \mathscr{P})$ is an open G-covering of X.

Using this concept of a G-covering we can now define locally zero cochains. Note that if $H \leq G$ and $\varphi \in V_n^H(X)$, then $\{\varphi_0(eH), \ldots, \varphi_n(eH)\}$ is contained in X^H by 1.1.

DEFINITION 3.4. A cochain $c \in C^n(X; m)$ is locally zero, if there exists an open G-covering $(\mathcal{U}, \mathcal{P})$ of X with the property that $c(\varphi) = 0$ whenever $\varphi \in V_n^H(X)$ $(H \leq G)$ and $\{\varphi_0(eH), \ldots, \varphi_n(eH)\}$ is contained in a set of $\mathcal{P}_H(U)$ for some $U \in \mathcal{U}$.

In the situation of 3.4 we also say that c is locally zero with respect to $(w.r.t.)(\mathcal{U}, \mathcal{P})$.

It is clear that two open G-coverings $(\mathcal{U}, \mathcal{P})$ and $(\mathcal{U}', \mathcal{P}')$ of X have a common refinement (intersect the sets of $(\mathcal{U}, \mathcal{P})$ with those of $(\mathcal{U}', \mathcal{P}')$). Therefore the locally zero n-cochains form a subgroup $C_0^n(X; m)$ of $C^n(X; m)$, and in fact $C_0^*(X; m)$ is a subcomplex of $C^*(X; m)$. We also denote

$$\begin{split} &C^*_{G,0}(X;m) = C^*_G(X;m) \cap C^*_0(X;m), \\ &\bar{C}^*(X;m) = C^*(X;m)/C^*_0(X;m) \text{ and } \bar{C}^*_G(X;m) = C^*_G(X;m)/C^*_{G,0}(X;m) \end{split}$$

as in [3].

If $f: X \to Y$ is a (continuous) G-map, then $f^*C_0^*(Y; m) \subset C_0^*(X; m)$; namely, if $c \in C^n(Y; m)$ is locally zero w.r.t. $(\mathscr{V}, \mathscr{Q})$, then $f^*(c) \in C^n(X; m)$ is locally zero w.r.t. $(f^{-1}\mathscr{V}, f^{-1}\mathscr{Q})$, where

$$f^{-1}\mathcal{V} = \{ f^{-1}(V) | V \in \mathcal{V} \},$$

$$(f^{-1}\mathcal{Q})_{H}(f^{-1}(V)) = \{ f^{-1}(V_{H}) | V_{H} \in \mathcal{Q}_{H}(V) \} \ (H \le G, V \in \mathcal{V}).$$

Thus we get $f^*: \bar{C}^*(Y; m) \to \bar{C}^*(X; m)$ and $f^*: \bar{C}^*_G(Y; m) \to \bar{C}^*_G(X; m)$.

To end this section, we show that in case G is finite, definition 3.4 agrees with the definition of locally zero cochains given in [3].

PROPOSITION 3.5. Suppose G is a finite group. Then a cochain $c \in C^n(X; m)$ is locally zero in the sense of 3.4, if and only if it is locally zero in the sense of [3].

PROOF. The "if"-part is trivial, for an open G-covering \mathscr{U} of X in the sense of [3] can also be regarded as an open G-covering $(\mathscr{U},\mathscr{P})$, with $\mathscr{P}_H(U) = \{U \cap X^H\}$ $(U \in \mathscr{U}, H \leq G)$.

To prove the "only if"-part, assume that c is locally zero w.r.t. $(\mathcal{U}, \mathcal{P})$. Let $x \in X$ and pick $U \in \mathcal{U}$ such that $x \in U$. Choose an open neighborhood V_x of x as in 3.1.v)

(cf. 3.2.ii) b)). Because $\bigcup_{H \, \leq \, G_x} X^H$ is closed (since X is Hausdorff) and $x \notin \bigcup_{H \, \leq \, G_x} X^H$, we may assume that $V_x \cap X^H = \emptyset$ for $H \, \leq \, G_x$. Further we may assume that V_x is

 G_x -invariant (take $\bigcap_{g \in G_x} gV_x$ if necessary). Then, if y = gx ($g \in G$) is in the orbit of x, define $V_y = gV_x$.

Now we have constructed an open neighborhood V_y of every point y in the orbit of x. Performing this construction for every orbit we obtain an open G-covering $\mathscr{V} = \{V_x | x \in X\}$ of X in the sense of [3], and c is locally zero w.r.t. \mathscr{V} in the sense of [3].

Note that here the Hausdorff condition on X was needed, while in [3] it played no role until section 5.

4. Definition of the cohomology theory.

Let X be a G-space and $A \subset X$ a G-subspace. Let $i: A \subset X$ be the inclusion. We give the same definition as in [3]:

DEFINITION 4.1. $\bar{C}_G^*(X,A;m) = \ker [i^*: \bar{C}_G^*(X;m) \to \bar{C}_G^*(A;m)]$ is the equivariant Alexander-Spanier cochain complex of the G-pair (X,A) with coefficients m. Its cohomology groups $\bar{H}_G^n(X,A;m) = H^n(\bar{C}_G^*(X,A;m))$ are the equivariant Alexander-Spanier cohomology groups of (X,A) with coefficients m.

THEOREM 4.2. The functors \bar{H}_G^n satisfy all the Eilenberg-Steenrod axioms for an equivariant cohomology theory, including the dimension axiom.

As in [3], exactness is immediate from the definition of \bar{H}_{G}^{*} , and the proof of the excision axiom needs only marginal modifications. As for the dimension axiom, the essential point is that lemma 2.2 of [3] holds in this more general setting, too:

LEMMA 4.3. Assume $H \leq G$ and $c \in C_G^n(G/H; m)$. Then c is locally zero if and only if $c(\mathrm{id}_{G/H}, \ldots, \mathrm{id}_{G/H}) = 0$.

PROOF. Let $c(\mathrm{id},\ldots,\mathrm{id})=0$. The equivariance of c then implies that $c(\varphi_0,\ldots,\varphi_n)=0$, if the G-maps $\varphi_i\colon G/K\to G/H$ are G-homotopic. Let $(\mathscr{U},\mathscr{P})$ be the open G-covering of G/H described in 3.3. Now c is locally zero w.r.t. $(\mathscr{U},\mathscr{P})$,

for if $\varphi = (\varphi_0, \dots, \varphi_n) \in V_n^K(G/H)$ is such that $\{\varphi_0(eK), \dots, \varphi_n(eK)\}$ is contained in a set of $\mathscr{P}_K(U)$, $U \in \mathscr{U}$, then the G-maps $\varphi_i \colon G/K \to G/H$ are G-homotopic, and so $c(\varphi) = 0$.

The reader may convince himself that the proof of the homotopy axiom given in section 4 of [3] can also be modified to hold in the present situation. However, we want to be more specific about two particular modifications needed; here we restrict to the absolute case to keep notation more simple, and leave the case of G-pairs in peace.

Firstly, given a G-space X and an open G-covering $(\mathcal{U}, \mathcal{P})$ of X, we define a simplicial complex $X(\mathcal{U}, \mathcal{P})$ as follows: its set of vertices is $V_0(X)$, and the vertices $\varphi_0, \ldots, \varphi_n$ span a simplex, if $\varphi_0, \ldots, \varphi_n \in V_0^H(X)$ for some $H \leq G$ and $\{\varphi_0(eH), \ldots, \varphi_n(eH)\}$ is contained in some set of $\mathcal{P}_H(U)$ for some $U \in \mathcal{U}$. The complex $X(\mathcal{U}, \mathcal{P})$ is clearly a natural generalization of the complex $X(\mathcal{U})$ considered in [3].

Secondly, let X be a G-space, I = [0, 1] the unit interval with trivial G-action and $(\mathcal{U}, \mathcal{P})$ an open G-covering of $X \times I$. The core of the proof of the homotopy axiom is, as in [3], to construct a suitable open G-covering $(\mathcal{V}, \mathcal{Q})$ of X and a suitable chain homotopy $C_*(X(\mathcal{V}, \mathcal{Q})) \to C_{*+1}((X \times I)(\mathcal{U}, \mathcal{P}))$. We want to explain the construction of $(\mathcal{V}, \mathcal{Q})$.

Let $x \in X$. By the compactness of I we can find an open neighborhood V_x of x in X satisfying

(4.4) there is an $n = n_x \in \mathbb{N}$ with the property that for each $k \in \{0, 1, \dots, 2^n - 1\}$, $V_x \times [k/2^n, (k+1)/2^n] \subset U_{x,k}$ for some $U_{x,k} \in \mathcal{U}$.

Because the sets $U_{x,k}$ are G_0 -invariant, $G_0 \cdot V_x$ also satisfies 4.4; thus we may assume that V_x is G_0 -invariant. In addition, V_x may be assumed G_x -invariant (replace it with a smaller neighborhood, if necessary, by [1], Exercise I.9 applied to the group $\langle G_0, G_x \rangle$). Finally, if y = gx $(g \in G)$ is in the orbit of x, define $V_y = gV_x$.

In this way we obtain a G-invariant covering $\mathscr{V} = \{V_x | x \in X\}$ of X by G_0 -invariant open subsets. Let $H \leq G$. Then

$$(V_x \cap X^H) \times [k/2^n, (k+1)/2^n] \subset U_{x,k} \cap (X^H \times I) \quad (n=n_x),$$

and the partitions $\mathscr{P}_H(U_{x,k})$ of $U_{x,k} \cap (X^H \times I)$ $(0 \le k \le 2^n - 1)$ induce a partition $Q_H(V_x)$ of $V_x \cap X^H$; this is due to the fact that, by connectedness, every slice $\{y\} \times [k/2^n, (k+1)/2^n]$ is contained in some set of $\mathscr{P}_H(U_{x,k})$. This finishes the construction of the required G-covering $(\mathscr{V}, \mathscr{Q})$ of X.

5. Some properties.

In this section we explain, how the proofs of the results of sections 5, 6 and 7 of [3] carry over to the present situation.

a) Tautness

PROPOSITION 5.1. Suppose X is a paracompact G-space and $A \subset X$ a closed G-subspace. Then the canonical homomorphism

$$\xrightarrow[N]{\lim} \bar{H}_G^n(N;m) \to \bar{H}_G^n(A;m)$$

is an isomorphism (N runs through the G-neighborhoods of A).

As in [3], the proof of 5.1 is similar to the classical case ([7] 6.6.2), and is based on the following two lemmas:

LEMMA 5.2. Let X be a paracompact G-space and $(\mathcal{U}, \mathcal{P})$ an open G-covering of X. Then there exists an open G-covering $(\mathcal{V}, \mathcal{Q})$ of X such that for each $H \subseteq G$, the

covering
$$\mathscr{V}_H = \bigcup_{V \in \mathscr{V}} \mathscr{Q}_H(V)$$
 is a star refinement of $\mathscr{U}_H = \bigcup_{U \in \mathscr{U}} \mathscr{P}_H(U)$.

PROOF. We first show that there is a locally finite open refinement \mathcal{U}' of \mathcal{U} such that \mathcal{U}' is G-invariant and consists of G_0 -invariant subsets of X.

The sets U/G_0 ($U \in \mathcal{U}$) form an open covering of X/G_0 . Because X/G_0 is paracompact by the theorem of E. Michael ([2], p. 165), this covering has an open locally finite refinement. Taking inverse images in X we obtain an open locally finite refinement \mathcal{W} of \mathcal{U} such that the sets of \mathcal{W} are G_0 -invariant. Then, because G/G_0 is finite,

$$\mathscr{U}' = \bigcap_{gG_0 \in G/G_0} g\mathscr{W}$$

is furthermore G-invariant (compare $\lceil 1 \rceil$, p. 133).

Let $U' \in \mathcal{U}'$ and choose some $U \in \mathcal{U}$ such that $U' \subset U$. If $H \subseteq G$, we define

$$\mathscr{P}_{H}(U') = \left(\bigcap_{g \in G} \mathscr{P}_{H}(gU)\right) \cap U',$$

the first (finite) intersection being taken over those $gG_0 \in G/G_0$ for which gU' = U' (note: if $\mathscr A$ and $\mathscr B$ are collections of subsets of a certain set Y, we denote $\mathscr A \cap \mathscr B = \{A \cap B \mid A \in \mathscr A, B \in \mathscr B\}$). For a set gU' in the orbit of U' in $\mathscr U'$, we can now define $\mathscr P'_H(gU') = g \cdot \mathscr P'_{g^{-1}Hg}(U')$. In this way we obtain an open G-covering $(\mathscr U', \mathscr P')$ of X, and if we replace $(\mathscr U, \mathscr P)$ with $(\mathscr U', \mathscr P')$, we can (and henceworth will) assume that the original $\mathscr U$ is locally finite.

Next we construct, using the method of [2], p. 167, a star refinement $\mathscr V$ of $\mathscr U$ such that $\mathscr V$ is G-invariant and consists of G_0 -invariant open subsets of X. Fix $V \in \mathscr V$, $V \neq \emptyset$. The set

$$\mathscr{U}_V = \{ U \in \mathscr{U} \mid V \subset U \}$$

is finite, because \mathcal{U} is locally finite. For $H \leq G$ define

$$\mathscr{Q}_{H}(\mathscr{V}) = \left(\bigcap_{U \in \mathscr{U}_{V}} \mathscr{P}_{H}(U)\right) \cap V.$$

Then $(\mathscr{V}, \mathscr{Q})$ is an open G-covering of X.

To prove that $(\mathscr{V}, \mathscr{Q})$ has the required property, let $H \subseteq G$ and $W \in \mathscr{Q}_H(V)$ for some $V \in \mathscr{V}$. Choose $U \in \mathscr{U}$ such that $\operatorname{st}(V, \mathscr{V}) \subset U$. Then $U \in \mathscr{U}_V$. Assume that $W' \in \mathscr{Q}_H(V')$, $V' \in \mathscr{V}$, and $W \cap W' \neq \emptyset$. Now $V \cap V' \neq \emptyset$, $V' \subset \operatorname{st}(V, \mathscr{V}) \subset U$ and so $U \in \mathscr{U}_{V'}$. By the definition of $\mathscr{Q}_H(V)$ and $\mathscr{Q}_H(V')$, W and W' are each contained in a set of $\mathscr{P}_H(U)$, and in fact $W \cap W' \neq \emptyset$ implies that they are both contained in the same set of $\mathscr{P}_H(U)$. It follows that $\operatorname{st}(W, \mathscr{V}_H)$ is contained in this set of $\mathscr{P}_H(U)$.

LEMMA 5.3. Let X be a completely regular (e.g. paracompact) G-space and $A \subset X$ a G-subspace. Given an open G-covering $(\mathscr{V}, \mathscr{Q})$ of X, there is an open G-neighborhood N of A and an equivariant function $f: N \to A$ (not necessarily continuous) satisfying

- i) f(x) = x for $x \in A$, and
- ii) if $H \leq G$ and $W \in \mathscr{V}_H$, then $f(W \cap N) \subset \operatorname{st}(W, \mathscr{V}_H)$.

Proof. Let

$$N = \{x \in X \mid \text{there is a } V \in \mathscr{V} \text{ with } x \in V, \text{ and a } G\text{-map}$$

 $f_x \colon Gx \to A \text{ such that } f_x(x) \in W \cap A \text{ whenever}$
 $x \in X^H \ (H \leq G) \text{ and } x \in W \in \mathcal{Q}_H(V)\}.$

Clearly $A \subset N$ and N is a G-subset. We show that N is open. Let $x \in N$, and choose $V \in \mathscr{V}$ and $f_x \colon Gx \to A$ as above. Also, let $V_x \subset V$ be an open neighborhood of x as in v) of 3.1. Pick a slice $S_x \subset V_x$ at x([1], II 5.4). For every $y \in S_x$ there is a G-map $h_y \colon Gy \to Gx$ with $h_y(y) = x$. Now the set G_0S_x is an open neighborhood of x, and $G_0S_x \subset G_0V = V$. We claim that $G_0S_x \subset N$.

Let $z \in G_0 S_x$, z = gy $(g \in G_0, y \in S_x)$. Then $z \in V$ and $f_x \circ h_y$: $Gy \to Gx \to A$ is a G-map. If $z \in X^K$, $z \in W \in \mathcal{Q}_K(V)$, then $y \in X^{g^{-1}Kg}$, $y \in g^{-1}W \in \mathcal{Q}_{g^{-1}Kg}(g^{-1}V) = \mathcal{Q}_{g^{-1}Kg}(V)$. Because $G_y \subseteq G_x$ and $g \in S_x \subset V_x$, also $g \in G_x$ and thus

$$(f_x \circ h_y)(z) = g \cdot f_x(x) \in g \cdot ((g^{-1} W) \cap A) = W \cap A.$$

Therefore $z \in N$. This completes the proof that N is open.

We now construct $f: N \to A$. Set f(x) = x for $x \in A$. To define $f \mid N \setminus A$, let S be a set of representatives for the G-orbits of $N \setminus A$. Given $y \in S$, we choose a $V_y \in \mathscr{V}$ with $y \in V_y$ and a G-map f_y : $Gy \to A$ as in the definition of N. We define $f \mid Gy = f_y$.

By definition, f satisfies i). To prove ii), assume that $H \subseteq G$, $W \in \mathcal{Q}_H(V)$, $V \in \mathscr{V}$ and $x \in W \cap N$; we claim that $f(x) \in \operatorname{st}(W, \mathscr{V}_H)$. This is obvious if $x \in A$. Let then $x \in N \setminus A$, x = gy with $g \in G$, $y \in S$. Because $x \in X^H$, we have $y \in X^{g^{-1}Hg}$; assume

 $y \in W' \in \mathcal{Q}_{g^{-1}Hg}(V_y)$ $(V_y \in \mathscr{V} \text{ was chosen in the preceding paragraph). Then } gW' \in \mathcal{Q}_H(gV_y) \text{ and } x = gy \in W \cap gW', \text{ whence } gW' \subset \operatorname{st}(W, \mathscr{V}_H). \text{ Finally } f(x) = g \cdot f(y) = g \cdot f_y(y) \in g \cdot (W' \cap A) \subset gW' \subset \operatorname{st}(W, \mathscr{V}_H), \text{ so } f(x) \in \operatorname{st}(W, \mathscr{V}_H).$

b) Interpretation as sheaf cohomology of X/G

Let X be a paracompact G-space. Because the canonical projection π : $X \to X/G$ is a closed surjection, the theorem of E. Michael referred to above implies that X/G is also paracompact. Exactly as in section 6 of [3] we obtain the exact sequence

(5.4)
$$\bar{C}_G^0 \xrightarrow{d} \bar{C}_G^1 \xrightarrow{d} \bar{C}_G^2 \rightarrow \dots$$

of fine sheaves on X/G, where \bar{C}_G^n is the sheaf associated to the presheaf $U \mapsto \bar{C}_G^n(\pi^{-1}U; m)$, $U \subset X/G$ open. Recall in particular that the exactness of 5.4 is a consequence of the tautness result 5.1. The proof of 6.3 in [3] can also be modified to show that the global sections of \bar{C}_G^n are

$$\Gamma(X/G, \bar{C}_G^n) = \bar{C}_G^n(X; m).$$

Define $A = \ker \left[\bar{C}_G^0 \xrightarrow{d} \bar{C}_G^1\right]$, a sheaf on X/G. As in [3], the above remarks suffice to prove

THEOREM 5.5. $H^n(X/G; A) \cong \bar{H}^n_G(X; m)$ for all $n \in \mathbb{N}$.

We say that a 0-cochain $c \in C_G^0(X; m)$ is locally constant, if there exists an open G-covering $(\mathscr{V}, \mathscr{P})$ of X with the property that $c(\varphi) = c(\varphi')$ for C-maps φ, φ' : $G/H \to X$ $(H \le G)$ whenever $\{\varphi(eH), \varphi'(eH)\}$ is contained in a set of $\mathscr{P}_H(V)$ for some $V \in \mathscr{V}$. As in 6.5.a) of [3], the sections of A on an open set $U \subset X/G$ are given by

(5.6)
$$\Gamma(U,A) = \{c \in C_G^0(\pi^{-1}U;m) \mid c \text{ is locally constant}\}.$$

As to the stalks of A, the result of 6.5.b) of [3] holds, but the proof needs some modifications:

PROPOSITION 5.7. If $y \in X/G$, $x \in \pi^{-1}(y)$ and $H = G_x \subseteq G$, then the stalk A_y of A at y is isomorphic to m(G/H).

PROOF. We have the canonical homomorphism

$$\gamma: A_y = \frac{\lim}{U} \Gamma(U, A) \to m(G/H), y \in U \subset X/G, U \text{ open,}$$

defined as follows: Let $\varphi_x : G/H \to Gx$ be the G-homeomorphism $gH \mapsto gx$. If $U \subset X/G$ is an open neighborhood of y, we denote the composite $G/H \xrightarrow{\varphi_x} Gx \subset \pi^{-1}U$ by the same symbol φ_x . Now γ is the direct limit of the homomorphisms $\gamma_U : \Gamma(U, A) \to m(G/H)$, $\gamma_U(c) = c(\varphi_x)$. We claim that γ is an isomorphism.

Let W be a tube around the orbit $\pi^{-1}(y) = Gx$ and $r: W \to Gx$ a G-retraction. For the surjectivity of γ , let $a \in m(G/H)$. We define $c \in C_G^0(W; m)$ by $c(\varphi) = m(r \circ \varphi)(a) \in m(G/K)$ for a G-map $\varphi: G/K \to W$. Let $(\mathcal{U}, \mathcal{P})$ be the open G-covering of $Gx \cong G/H$ described in 3.3; then c is locally constant w.r.t. the open G-covering $(r^{-1}\mathcal{U}, r^{-1}\mathcal{P})$ of W. Thus $c \in \Gamma(\pi W, A)$, and clearly $\gamma_{\pi W}: c \mapsto a$, proving surjectivity.

For injectivity, let $c \in \Gamma(U, A)$, $U \subset X/G$ an open neighborhood of y, and assume that $\gamma_U(c) = c(\varphi_x) = 0$. By assumption, c is locally w.r.t. an open G-covering $(\mathscr{V}, \mathscr{P})$ of $\pi^{-1}U$. Choose $V \in \mathscr{V}$ such that $x \in V$. By 3.1.v) there is an open neighborhood V_x of x, which we may assume H-invariant, with the property that $V_x \cap X^K$ is contained in some set of $\mathscr{P}_K(V)$, whenever $K \subseteq H$.

Let $S_x = r^{-1}(x)$ be the slice at x corresponding to the above tube W and retraction r. Then $G(S_x \cap V_x)$ is also a tube around Gx; to simplify notation we denote this smaller tube again by W. Now we have $r^{-1}(x) \subset V_x$. We intend to show that $c \mid \pi W = 0 \in \Gamma(\pi W, A)$.

Let $\varphi: G/K \to W$ be a G-map, and let $\varphi': G/K \to W$ be the composite

$$\varphi' \colon G/K \xrightarrow{\varphi} W \xrightarrow{r} Gx \hookrightarrow W.$$

We have $\varphi'(eK) = gx \in gV_x$ for some $g \in G$, $g^{-1}Kg \subseteq H$ and $\varphi(eK) \in r^{-1}(gx) = g \cdot r^{-1}(x) \subset gV_x$. By the choice of V_x , $gV_x \cap X^K$ is contained in a set of $\mathscr{P}_K(gV)$. Therefore $\{\varphi(eK), \varphi'(eK)\}$ is contained in a set of $\mathscr{P}_K(gV)$, and the local constantness of c w.r.t. $(\mathscr{V}, \mathscr{P})$ implies that $c(\varphi) = c(\varphi')$.

Finally, $\varphi' = \varphi_x \circ \alpha$, where $\alpha: G/K \to G/H$ is the G-map given by $g_1 K \mapsto g_1 g H$ $(g_1 \in G; g \text{ as in the preceding paragraph})$, and thus $c(\varphi) = c(\varphi') = m(\alpha)(c(\varphi_x)) = 0$.

c) Comparison with equivariant singular cohomology

The result of section 7 of [3] (Theorem 7.2) is true in the present context, too:

THEOREM 5.8. Suppose that X is a paracompact G-space and every orbit $Gx \subset X$ is taut with respect to equivariant singular cohomology $H_G^*(\cdot;m)$. Then there is a natural isomorphism

$$\bar{H}_G^*(X;m) \cong H_G^*(X;m).$$

In fact section 7 of [3] can be read almost word for word to get a proof of 5.8. The following two comments are in order, however:

Firstly, we must define an equivariant singular cochain $c \in S_G^n(X; m)$ to be locally zero, if there is an open G-covering $(\mathscr{V}, \mathscr{P})$ of X with the property that $c(\sigma) = 0$ for any equivariant singular simplex $\sigma: G/H \times \Delta^n \to X$ such that $\sigma(\{eH\} \times \Delta^n)$ is contained in a set of $\mathscr{P}_H(V)$ for some $V \in \mathscr{V}$. Again the proof of Prop. I.6.4 in [4] essentially shows that the cohomology of $S_G^*(X; m)$ does not change, if we divide out the locally zero cochains.

Secondly, in the article [6] of Piacenza referred to in [3], it is assumed that G is

a discrete group. However, the result we need, i.e. that $H_G^*(X; m)$ can be computed from the exact sequence $S_G^0 \to S_G^1 \to S_G^2 \to \dots$ of fine sheaves on X/G, clearly holds under the assumptions of 5.8, too.

REFERENCES

- 1. G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
- 2. J. Dugundji, Topology, Allyn and Bacon, 1966.
- 3. H. Honkasalo, Equivariant Alexander-Spanier cohomology, Math. Scand. 63(1988), 179-195.
- 4. S. Illman, Equivariant singular homology and cohomology, Mem. Amer. Math. Soc. 156, 1975.
- 5. E. Laitinen and W. Lück, Eqivariant Lefschetz classes, Osaka J. Math. 26 (1989), 491-525.
- R. J. Piacenza, Cohomology of diagrams and equivariant singular theory, Pacific J. Math. 91 (1980), 435–443.
- 7. E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.