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EQUIVARIANT BORDISM AND CYCLIC GROUPS

peter s. landweber1

Abstract.   For a finite cyclic group G the equivariant complex

bordism module 05(G) is shown to be a free module over

1. Introduction. Let G be a finite group. The equivariant complex

bordism module O^(G) is formed from actions of G on compact stably

complex manifolds without restriction on isotropy subgroups. In [5], R. E.

Stong shows that (G) is a free module over the complex bordism ring

£2jjf on even-dimensional generators, provided that G is a finite p-primary

abelian group. One may ask if the same statement holds for other classes

of finite groups. In this note we successfully examine this question for

finite cyclic groups.

Theorem 1. If G is a finite cyclic group then (G) is a free Q%-module

on even-dimensional generators.

At the same time we study the following more general situation. Let G

and H be cyclic groups whose orders are relatively prime, and let B(G, H)

be a classifying space for //-bundles on which G acts as a group of bundle

maps (see [4]). Thus B(G, H) is a G-space, and the equivariant bordism

module Cl*(G)(B(G, H)) classifies actions of GxH on compact stably

complex manifolds such that H acts freely. Let H=P1 x • • • xPr where the

Pt are the Sylow subgroups of H (cyclic of order pap say).

Theorem 2.   (a) £2e^(G)(5(G, 7/))^Qe^(G).

(b) QV(G)(B(G, H))^®Ua&(G)(B(G,P2).
(c) 0^(G)(P(G, P,.)) is an D.*-module of projective dimension 1, and

consists entirely of p(-torsion.

Here il^( )^i2^( )©ü^( ) is the decomposition into even and odd

components.

The argument we give uses techniques developed by P. E. Conner and

E. E. Floyd [2] and R. E. Stong [5] for the analysis of equivariant bordism.
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Mainly we follow the notation of [5]. The next two sections contain

preliminaries and a reformulation of the theorems, which are proved in

the final section.

2. Families of subgroups. Fix a cyclic group G. If G=KxL we let

Jri=the family of all subgroups of the complementary summand K.

Thus an action of G is 3*L-free [5, §2] if and only if L acts freely, hence

QV(G, 3FL) ~ Q?(K)(B(K, L)).

Note that if L= {1} then S*{l) = a.ll subgroups of G and we recover (G).

And if L=G then ^"G={{1}} and we find the usual isomorphism

Q?(G,{{l}})^Qjf(BG)
for free G-actions.

Our plan is to proceed from £2* (G, {{1}}) to Q* (G) through the inter-

mediate stages £1% (G, 3^L). For the induction step we find it necessary to

consider bundle bordism modules

Q^G, &£){B{G, Y))

where Y is a product of unitary groups. Thus we shall really show that the

conclusions of Theorems 1 and 2 hold for

n?(G)(B(G, Y))   and   Q^(G)(ß(G, H) x P(G, Y))

respectively (see §3 for a more precise statement).

The proof begins by examining the free case, i.e.,

Q?(G, {{1}})(B(G, D)^ Ü^(ßG x BY)^ Qjf(BG) ®fi£ Qjf(BJ?).

Since G is cyclic, say G=yD1x • • • xPr where theP; are its Sylow subgroups:

of order p"', it follows from the bordism spectral sequence that

0£(BG)^Q£   and   Q0ud(ßG) = Q^(BG) ^ 0 ^(BP,).
i=l

We know that (BPJ has projective dimension 1 [1, §46] and consists

entirely of /jf-torsion. Thus O* (G, {{l}})(ß(G, Y)) has the desired form

and we have begun the induction.

3. Extensions of actions. Since we are only considering subgroups of

the cyclic group G which are summands, extension takes a very simple

form. Let

G = K x L,      P =     X L2,      G, = K X Lt.

Then there is an extension homomorphism

E
(3.1) Q?(Glt JrLl)(ß(G1, T)) —► £2jf(G, ̂ )(ß(G, Y))
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which is obtained by simply forming the product with L2. That is, if

X-^-M is a ((?!, T)-bundle and L, acts freely on M, then XxL2-+MxL2

is a (G, T)-bundle and L acts freely on MxL2.

Lemma 3.2. The extension homomorphisms (3.1) are split monomorphisms.

Proof.  A left inverse

F
n?(g, s*l)(b(g, r» —► Q?(Glf ̂ x^c,, r»

is obtained by passing to the orbit space of the free Z,2-act'on. That is, if

X-+M is a (G, T)-bundle and L acts freely on M, then X\L2-+M\L2 is a

(G1; T)-bundle and L, acts freely on MjL2. It is clear that F°E is the

identity. □

It is convenient to prove the theorems in the following equivalent form.

Let G be a finite cyclic group, G=KxL, and let L=P1x- ■ xPr where

the P{ are the Sylow subgroups of L. Let T be a finite product of unitary

groups.

Theorem 1'. Q,*(G)(b(G, t)) is a free ü,*-module on even-dimensional

generators.

Theorem 2'.   Extension from K and KxPt to G induces isomorphisms

n&G, ^l)(b(g, r))^ q&kkb(k, r»
and

Q5(G. *l)(B(G, F)>SS © QS(K x Pt, Srpt)(b(K x Pit F)).
i=l

Moreover £2^(G, 3*l)(b(G, T)) ts a« Q.*-module of projective dimension 1

consisting entirely of torsion, and contains p-torsion exactly for those

primes dividing the order of L.

4. The induction. We now consider the general equivariant bordism

module

Q?(G, 3^£){b{G, O)

for L^G. Assume the theorems true if L is replaced by a larger summand

of G (if L=G this is the free case treated in §2; it is easy to check that the

isomorphisms are induced by extension), or if G is replaced by a smaller

cyclic group. Write

G = K x P x L
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where P is a Sylow subgroup of G. Then we have an exact triangle

Q?(G, ^PXL)(B(G, r»        Q?(G, J^£)(fl(G, r»

\ /

d*\ /f»

Q*(G, ̂  •Fj.xiXW T))

Let P have order />a and let Z, denote its subgroup of order p. Then

Stong's analysis [5, Proposition 3.4] shows that the relative group is iso-

morphic to a direct sum

© Q^,„<G/Z,. &£Wßlz„ r x G(i)))
<3)

where each f7(i) is a product of unitary groups [/^ X • • • X £/, and

|/|==/i4-" ' "4-yr. This arises by passing to the fixed point set of Z„.

For brevity we now drop G and B(G, Y) from the notation. By in-

duction QYv^pxl) is a free module over £2* (and so is torsion-free),

while Q.v&(3*L, 3%PxL) consists entirely of torsion. Thus

is zero, hence we obtain a six-term exact sequence

1$ / #

0 ^evG^Pxi)      *" ̂ evG^I,)      *" ̂ evO^i. &Pxl)

(4.1)       Ö* I* 7*
f" ̂ odG^Pxi)      *" ̂ odG^i)      *" ̂ odO^L, ^ PxL)       * 0-

In fact we know more. We have an isomorphism of ^odC^Pxi) witn

Q&(K x P, j?P)(B(K X P, T)) © Q&(K x L, ^)(B(X x L, T))

(induced by extension from KxP and Kx L to G) which we regard as an

identification. We proceed to determine im on these summands; this is the

key step.

Lemma 4.2.  i«, A/to Cl^KxP, 3?P)(B(KxP, t%

Lemma 4.3. The restriction of /# to O.^KxL, 3^L){B{KxL, Y)) is a

split monomorphism.

Proof of Lemma 4.2.   We consider the commutative diagram

Cl&iK X P, ^P)(B(K x P, Y)) -± Q^G, <FPxL)(B(G, Y))

I'* j<*
qvd(K x P)(B(K x P, D) ^ £2&(G, ̂ L)(B(G, Y))
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and want to show that i*E=0. We claim that D.^d{KxP){B{KxP, T))=0.

If KxP^G then this is true by induction, and so we have to consider the

case KxP=G (i.e.,L={l}) further. In this case we extract the exact

sequence

from (4.1) and want to conclude that Q^A{3^{l])=0. Now by induction

Q^O^V) consists of/j-torsion and Q^A\S^{X), JrP)=0. Therefore a^(^{1})

consists of />torsion for each prime which divides \G\ (the order of G),

hence £2^(^"{1)) =0 if \G\ is not a prime power. On the other hand if

\G\=pa so G=P^Z„a then it is well known that ü,^d(3^p)-^Q.Yd(^is

zero (the usual generators of the free bordism groups are actions on spheres

which bound in the unrestricted bordism group [1]) and so we find again

that £2£(^{1,)=0. □

Proof of Lemma 4.3.   We must show that the composition

Ö&fK X K, ^L)(B(K x L, V))       Ü^(G, ^PxL)(B(G, T))

^> Q^G, ^L)(B(G, D)

is a split monomorphism. If we follow i+E by the restriction back to Kx L

the composition is just multiplication by \P\. By induction

aud{K x L, ^L)(B(K x L, V))

is a torsion group on which multiplication by |jP| is an isomorphism. □

We now observe that (4.1) breaks into two exact sequences

(4.4)

and

(4.5)

- Qoa(K X P, ^P)(B(K X P, F)) -> 0

0 ~> Q^K x L, ^L)(B(K x L, T))

- Q&fJ^) -* ClYai^l, ^pxl) ~* 0,

and the second of these splits. In (4.4) the first and third modules are free

and the last one has projective dimension 1, hence £2^0^'£) is a free

module (this argument is due to P. E. Conner and L. Smith [3]). If L={1}

we have already seen in the proof of Lemma 4.2 that £2^d(Jr{1})=0. If

Pt^{1} then induction and (4.5) imply that D^d(Jri) has projective

dimension 1 and consists entirely of torsion, admitting ^-torsion if and

only if the prime q divides \L\.

It remains to establish the isomorphisms of Theorem 2'. Consider the
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commutative diagram with exact rows

0 - n?Y(K x P, &P) — Q£(K x P, JFft>) * Ofv(K x P, &{lh 3*p)

I \e \
o-> ayv(G, ̂ PXL) ± a&G, *>d   - o?M <fpxl)

->Qfd(KxP/P)->0

-Q^K x P,^P)^0

obtained from (4.4) by extension from KxP to G. By induction the first and

third vertical maps are isomorphisms, hence the five lemma implies that

also

Q*(K x P)(B(K x P, fjj •—^ fl&GJ ̂ )(ß(G, T))

is an isomorphism.

Next let L=P,x- • -xPr where the P( are the Sylow subgroups of L.

By induction we have isomorphisms

Q&fX x L, ^L)(B(K x L, T))^ © Q?a(K x P„ ^ PA{B{K x Pi5 T))
i=l

and

0,^1, ^pxJ 3* © £>oa-2m(G/Za, &L)<B{GIZ„ T x [/„,))
(j)

^ © © a£_.w(G,/Z„ PjXBiGjZ,, T x £/,,,))

where we have put Gt=KxPxPv Thus (4.5) yields a commutative

diagram with split exact rows

0 -> © Qfd(K x Pt, 3?P) -> © Qfd(G<9 J^p,.)

-* © Q&(G(,        ^pxP,.)   -> 0" I

->     £2^(0,       J*pxi) ^0

for brevity we have omitted the various classifying spaces from the
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notation). Thus by the five lemma we obtain an isomorphism

© QfaCG* FplWGt, V)) ̂ QUO, ̂ L)(B(G, F)).

This completes the induction and so both theorems are proved.
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