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EQUIVARIANT BUNDLES OVER A SINGLE ORBIT TYPE

BY

RICHARD LASHOF

In this paper we analyze equivariant bundles over a space with a single orbit
type. In particular, we reduce the classification of such bundles to a non-
equivariant homotopy lifting problem (Corollary 1.12). We have used these
ideas to analyze equivariant bundles with abelian structure group [5] and equi-
variant bundles over semi-free spaces [2]. In a future paper we will analyze
bundles over general spaces by reassembling the results given here and replace
the equivariant obstruction theory of [3] by another type of lifting problem. In
the case that the structure group of the bundle is also a compact Lie group our
results are closely related to those of Conner and Floyd [1].

Let p E--X be a principal G-A bundle, G compact Lie group, X complete-
ly regular. We also assumep is G locally trivial. (For the definition of G locally
trivial and the general theory of equivariant bundles we refer the reader to [2].)
Let Hbe a closed subgroup of G and let x E XH. If z E p’l(x), then hz zo(h)
for some homomorphism o:H--A and all h @H. For any other point
z’ za over x, hz’ z’ o’(h) where o’(h) a-O(h)a. Thus the A equiv-
alence class of 0 is well determined by x. We will say that x or more properly
the fibre over x belongs to (0). Let

Xp> Ix - Xn[x belongs to (0)1.

Let Rn be the set of A equivalence classes of homomorphisms of H to A.

LEMMA 1.1. X is open in X" and X _EL. x, (o) Rn.

Proof. If x X, then by G local triviality there is a Gx in,ariant neighbor-
hood U of x and a homomorphism k:Gx--.A such that p-I(U) is G equivalent
to U A, G acting on A via k. If x E Xt then HCG and (klH) (0). It
follows that if x’ XH fq U, x’ belongs to (0). Thus X is open in X". The
second statement follows from this and the above discussion.

Let E [z E lhz zo(h ), h HI.

LEMMA 1.2. E is an A bundle over X, where

A [aAlao(h) o(h)a, hEH}.

Further, p-I(Xo) =EtpXaA, as an A-bundle.
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Proof. If z E Ep, then p(z) X. Further, za E if and only if a C A.
If x Xto, then by G local triviality, x has a Gx invariant neighborhood U
such that p-I(U) is Gx-A equivalent to UA, where Gx acts on A through a
homomorphism k:Gx-.A such that (X[H) (0). In fact is unique only up to
its A equivalence class and we can choose h, so that k lH 0. Then

p-I(U) N E" UH xA ".

Thus E is a locally trivial A bundle over Xp and

p-l(X") E"

as an A bundle.

LEMMA 1.3. Let c E--E’ be a G-A bundle map of the principal G-A bun-
dle p E--X into the principal bundle p’ E’-.X’ over the G map
f: X---X’. Then ck-(E ’’) p-(X) E,’.

Proof. Clearly, O(E) C E’ . Now E may be identified with

f*E’ [(x,z’) XE’ If(x) p’(z’)}

and 0 corresponds to the projection (x,z’)-z’. But if x E X and z’ C E’,,
then h(x,z’) (x,z’)o(h) and (x,z’) E. So

ck-(E ’) 71 p-’(X) E".

Let

A [(n,a) N(H) A[o(nhn-) ao(h)a-, all h Hi.

Then A is a closed subgroup of N(H)A.

LEMMA 1.4. Let p E--X and E be as above. Then

A [(n,a) EN(H)xA [nE"a-CE"].

Proof. If z G E" and nza- E, then hnza- nza-O(h).

But hnza- n(n-hn )za- nzo(n-hn )a-.
Hence o(n-hn) a-o(h)a and (n,a) A.

Conversely, if (n,a) G A and z E E, then

hnza-= n(n-hn)za-= nzo(n-hn)a-= nza-to(h).

Hence nza- E.
Let N,(H) In N(H)](n,a) A for some a A ].

LEMMA 1.5. N(H) In
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Proof. If nXt) tqXt), then for z E E, nz z’ a, z’ E, a A. Thus

nza-1 E

and as in the first part of the proof of (1.4), (n,a) A. Hence n No(H).
Conversely, if n No(H), nEa-1C E for some a A by (1.4); and by (1.2),

nX CX).

Let H be the image of H under the embedding

(i, O) H--N(H) A, (i, o)(h) (h, o,(h)).

Then H is contained in A and is a closed normal subgroup of A. Let
I’ 0 A/H. We can identify A with Ao C Ao. Since H C Ao 1, we can
further identify A with the image of A in Fo. (Since H is a compact Lie
group, AO--" F 0 is a locally trivial bundle and A 0 maps homeomorphically
onto its image in F.) A is a normal subgroup of I’, since (n,a)C A requires
that a N(o(H)) and the centralizer A is normal in the normalizer N(o(H))
of o(H).
Now consider the No(H) trivial No(H)-A bundle E No(H) x nA over the

orbit No(H No(H)/H, where H acts on A via 0. Then r’ may be identified
with E under the map In, a]--. In, a-q, which extends to the No(H) equivalence

(No(H) x A)/Ho--,No(H) x hA.

Further the homeomorphism I’/A E/A E/A = No(H)/His induced
by the homomorphism [n,a]--.[n] of I’ onto No(H)/H by passage to the quo-
tient. Thus Fo/A is isomorphic to No(H)/H as a topological group.
Note that E above can be considered a principal ITM bundle over a point

(under the right action z--. n-za). This generalizes"

PROPOSITION 1.6. Let p:E--X be a principal G-A bundle. The action
z(n,a) n-za ofA on E induces a right action off on E% extending the A
action. If X has a single orbit type (H), E is a principal F bundle over
X Xo/No(H),

Proof. By the definition of E, the above action of A restricted to H is
trivial and induces a F action. Now p-(Xo) is an No(H) locally trivial bun-
dle. To show E is a locally trivial F bundle when X has a single orbit type (H)
it is sufficient to consider for x X(o) a slice I/in Xto such that

p-’(No(H) V) No(H) x n(V x A),

H acting on A via 0. Then by (1.3),

p-’(No(H) V) 7r-’(No(H) .A )%

where r No(H) ,(V A)--No(H) x nA is the projection. Since r induces a
rTM map of p-(No(H)V) onto (No(H) hA) =- I’, p-(No(H)V) is a trivial
1-’p bundle over V; and E is a locally trivial 1-’o bundle over X. (Note that
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E./r. (Ep/Ap)/(rp/A p) Xp/Np(H),

N(H) acting on the right of X by x- -lx and hence E"/I" Xp.)

Let R(.) denote the family of G-A equivalence classes of homomorphisms
0 H--A; i.e., 0 H--A is equivalent to O’ H’-.A, H’ gHg-, if

o’(ghg-I) ao(h)a- for some a E A and all h E H.

Note that this is the same as the N(H)-A equivalence classes. From (1.5) we
have:

LEMMA 1.7.

X [I N(H) X N,()X(’)

(0) E R ()

If X has a single orbit type (H), then

(a) X =_G/H x N,(.)X(,),(O) R(),

(b)

Let p E-.X be a G-A bundle. Then

Al_ -(H) x ,.,x’’.(o)R(.)

X X/G Xn/N(H) X(’)/N,(H), (0) G

From (1.2) and (1.6) we have:

LEMMA 1.8. Let p:E--X be a G-A bundle. Then

p-(X) =_]J_N(H) p(n)E x ,A, (0) E g(,)

If X has a single orbit type (H), then

(o)R,
The F" structure of E" determines the N,,(H)-,4 structure of E, x ,A by the
formula n[z,a] [z[n-,ao-],aoa], z E", a ,4, ao (F. A such that [n, ao]
and hence determines the G-A structure of E.

DEFINITION. Let X be a G-space with a single orbit type (H), and assume
G Np(H) for some homomorphism 0" H--A. Let G G/H and
X X/G X/G. A principal F bundle p E-X extends X if there is a G
equivalence k E/A--X over X (after switching the right G F/A action
on E/A to a left G action). Two F extensions of X, (E,p,) and (E’,p
are equivalent if there exists a F bundle equivalence 4)’E’--E such that
b(O/AO is G isotopic to ’ over X, where O/A" E’/A--E/A is the G
equivalence induced by

Now let X be a paracompact G-space with the single orbit type (H) and
G N,,(H)"

THEOREM 1.9.
dence:

With X as above, .the following are in bijective correspon-
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(a) Equivalence classes of G-A bundles over X with all fibres in (0).
(b) Equivalence classes of U bundles over-extending X.
(c) Homotopy classes of lifts to BITM of a fixed classifying map

f" X--B--
for the G bundle X. (B F is considered here as a bundle

0 BFp-.BG B(Fp/A )

with fibre BA
(d) Equivariant homotopy classes of--maps ofX into Bp, where

B

as a G Fp/A space.

Proof. We construct surjective maps (a) (b) (c) (d) (a) and show the
composition is the identity.

(a)-(b). Ifp E--X is a G-A bundle with all p’l(x) in (0), then X Xtp)

and E is a I’p bundle over -by (1.6). Let k Ep/Ap--E/A Xbe the map in-
duced by inclusion; then b is a -equivalence by (1.2) and (1.6). Thus

(Eo, q(p [Eo),), q X---the quotient map,

is a 1’p extension of X defined by p.
If p’ E’--X is G-A equivalent to p, say

is a r’p bundle equivalence over and
equivalence such that b(O[E’O/Ap k’. Thus p--(Esq(plEO,b) is well
defined on equivalence classes.
Now if (Eo,po, bo) is a r’p extension of X, E Eo ApA is a G-A bundle over

X, defining the G action by the formula in (1.8) and identifying E/A Eo/A
with X via bo. But then Eo E and po q(plEo) and by definition
Eo/Ap--E/A X is ko. Thus the map is surjective.

(b)-(c). Pick a fixed 3-map 0 X-Ecoveringf. Iff" ?--BrTM covers
f, there is a uniquely defined 3-map 0s X--EI’p/A overf such that O0s 0,
where O EFp/A"--E-G-is a fixed -map over . Note that if O’ X-E-G-is
any 7-map, then 0’ is 3-homotopic to 0 by the universality of E,, and this
homotopy covers a homotopyf,, fl f. If 0, is any Yhomotopy of O’ overf,,
then 0 is 3-homotopic over fl to 01 and 0 0iX, , X-X a 3-equivalence --isotopic to the identity over .
Now given a I"p extension (E,p, b) ofX, letfo SI?--BI-’ bea classifying map

for E. Since Of is covered by the 3-map

O’ O(/AO-’,
where fo" E--EI"p is a I"p bundle map over fo, the -homotopy of 0’ to 0
covers a homotopyf, of Of tof. Let f, -BI’p be a homotopy off covering
f,---and f, a U homotopy of fo over f,. Then
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O(f,/Ao)- X---E-
covers f, and 0 O(f/Ao)-’k, k" X--.X as above. Setting f f, we have

(*) f/A"-’k
Thus, we can assign to (E,p, ) a classifying map f" W-BF. covering f and
satisfying (*) for some F" bundle map f" E---EF. covering f.

Let (E’,p’,’) be equivalent to (E,p,) and suppose we have chosen f’
coveringfnd if’ covering f’ such that f’/A.’-k’ 0,. Let E’ --E be
the F. equivalence such that (/A.)’-’ is Uisotopic to the identity over
Now f’ is F homotopic to by say f/, and 0, is isotopic to

/Ao)(/Ao)" -k’ f/A,-’(/Ao)’-k
which is isotopic to f/Ao-k and hence to f/Ao-k 0. The isotopy of
0, to 0 covers a Uisotopy 0, of 0’ 00, to 0 00 and an isotopyf, off’ to
f, which in turn covers an isotopyf,ffo itself. Since Eis universal, 0, is U
homotopic to the constant map rel endpoints, andf, must be homotopic to the
constant map rel endpoints. But then f, is homotopic rel endpoints to a
homotopy of f’ to f over f.
Thus the assignment of a classifying map f covering f and satisfying (*) to

(E,p, ) gives a well defined homotopy class of lifts of f to each equivalence
class of F extensions of X.
Now iff" W--BF. is any lift of*(EF) is a F. bundle over and since

(f*EF,)/AEF,/A,--EG

covers Of fiwheref" f*EF"-E. is the cononical projection) there is a well
defined G equivalence

f*EFo/A X

over Wsuch that O/A)-’ 0. But this means that we may assign the liftf
to (f*E F,,p, ), and this shows (b)-(c) is surjective.

(c)-(d). By the remarks at the beginning of the previous step of the proof,
the assignment f--Oi sends a homotopy class of lifts of f to an equivariant
homotopy class of maps of X to Er’,’/A,’.

Now given any equivariant map b X-Er’’/A ,’, 04, X-EG is G isotopic
to 0. Thus if covers b-: ---BI"p is homotopic to-y a homotopy,. If,
covers f, and , is a G homotopy of covering ,, then 0, is G isotopic to 0
overfand 0 0), ) X--.X a G equivalence G isotopic to the identity. Let
f b-. Then 0i k which is G isotopic to . Thus (c)-(d) is surjective.

(d)-(a). Er’p A,A is a G-A bundle over (EI’,’)/A,’, using the formula of
(1.8). (Note that the I" local triviality of EI"p implies the G-A local triviality of
EI". x AA, since

(U I") aA U (G ,A) Gx ,(UA),
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U any trivializing open set in Br, by the arguement preceding (1.6).) Hence
equivariant homotopy classes of G maps of X into (EFp)/Ap pull back G-A
equivalence classes of G-A bundles over X. But since H acts trivially on X, G
maps are the same as ’-maps.

Finally to prove (d)-(a) is surjective and that all the maps are bijective, it is
sufficient to prove that (a) (b) (c) (d) (a) is the identity: Let f"
cover f. There is a uniquely defined k (f*EI’O/A--X such that

Ob Or/A or r/A-1= O:
where r "f*EFp--EF is the projection. Then

[r,1] f*EI" x AA--EF x ApA and bq f*ErTM x AA--x
satisfy O:/q r/Aq q[r, 1] and hence define a G-A equivalence
f*EI’ ApA--.O,(EF 0 AA) with G action given by (1.8), q the quotient
under A.
Now let p:E--X be a G-A bundle of type (0). Then E is G-A equivalent to

E x AA with G action defined by (1.8). As in (b)--(c), let

f.

coverf--nd be covered by a F bundle mapf" E--EF such thatf/A)
where E/A E/A is identified with X via p. E is equivalent tof*EF by
an equivalence 4) E-’f*EF such that f r. Then

r/Apep/AX f/Ak 0.
Hence with 6 X-1(4)/A)-t we see from the paragraph above that

Oq "f*Er x AA--X
is equivalent to

O,(EI’" x .A --X.

But (E,p) is G-A equivalent to (E x a.A,q) and [4,1] is a G-A bundle map of
this last to (f*EI’p A.A,q) over k-. Since ) is "homotopic to the identity, it
follows from the equivariant covering homotopy property that E is G-A
equivalent tof*EI". x aA and hence to O.(EI’. x apA). So the cycle of maps is
the identity, proving the theorem.

COROLLARY 1.10. For any closed subgroup H0 G, the universal G-A bun-
dle for spaces of orbit type (H) is

E(H) II G utn)EF aoA,

B(H) --[J- G x 2v,,(.)B" [[ -’x
(o) GR(.)

with projection induced by the quotient map EF#-.B EF#/A,. If X is a
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G-space of orbit type (H) only, equivalence classes of G-A bundles over X are
in bijective correspondence with [X,B(H)]G.

COROLLARY 1.11. Let 0 B(H)--BA classify E(H) as an A bundle. IfX is a
G-space of orbit type (H) only, an A bundle over X admits a G-A structure if
and only if its classifying mapf X--BA factors up to homotopy through an
equivariant map ck X--B(H); i.e., f--04.

The inclusion of ;r(H) in (H) allows us to consider BN’(H) and hence
BF as bundles over BTV(H). BF has fibre BAo NomTV(H). (Since
N-(H)/N-(H) is finite, this is just a finite number of copies of BA when we
forget the action.)

COROLLARY 1.12. Let X be a G space of orbit type (H) only, and let

f 7r--.B(H)

be a classifying mapforX as an -N-(H) bundle over The equivalence classes
of G-A bundles over X are in bijective correspondence with homotopy classes
of lifts ofyto II Sr.

(0) E Rm

Examples. 1. X a free G-space, H (1), 0 trivial. Then A G A, H
trivial, F A G A, No(H) G, A A. Thus

B E(GA)/A EG(EA/A) EGBA

and G-A bundles over a free G-spaceX are classified by equivariant homotopy
classes of maps of X--EG BA. But [7,,EG BA]G [,,BA]. So G-A
bundles over X are in bijective correspondence with A bundles overr X/G

(as is well known).
2. X a trivial G-space, H G, 0 G--A any homomorphjsm. Then A is

isomorphic to G A by 4" G A-,A, d(g,a) (g,o(g)a) and F A.
Of course, No(H) G and Fo/A is trivial. Thus B0 EA/A BA
with trivial action. So G-A bundles over a connected trivial G-space X are
classified by homotopy classes of maps of X into BAo, some 0 G-A.

3. G abelian, X has orbit type (H) only. Suppose o:H--A extends to a
homomorphism :G--.A with A o. (This is always true if A is the unitary
group U(n).) Then N(H)= G, A G A, No(H) G. Further
F G A/H is isomorphic to G/H Ao. In fact, let ck:G A--.G A
be the isomorphism

4,(g, a) (g, 0(g)-’a).

Then oh(h, o(h)) (h, 1). So 4 induces

49 F G A/H G/H Ao.

Thus
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B; E(G/H) EA,/A, E(G/H)

and

[X,E(G/H) x BA,’] [,,BA"I.
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