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EQUIVARIANT CHOW COHOMOLOGY

OF NONSIMPLICIAL TORIC VARIETIES

HAL SCHENCK

Abstract. For a toric variety XΣ determined by a polyhedral fan Σ ⊆ N ,
Payne shows that the equivariant Chow cohomology is the Sym(N)-algebra
C0(Σ) of integral piecewise polynomial functions on Σ. We use the Cartan-
Eilenberg spectral sequence to analyze the associated reflexive sheaf C0(Σ) on
PQ(N), showing that the Chern classes depend on subtle geometry of Σ and

giving criteria for the splitting of C0(Σ) as a sum of line bundles. For certain

fans associated to the reflection arrangement An, we describe a connection
between C0(Σ) and logarithmic vector fields tangent to An.

1. Introduction

In [1], Bifet, De Concini, Procesi show that the integral equivariant cohomology
ring H∗

T (XΣ) of a smooth toric variety XΣ is isomorphic to the integral Stanley-
Reisner ring AΣ of the unimodular fan Σ, and in [5], Brion shows that for Σ
simplicial, the rational equivariant Chow ring A∗

T (XΣ)Q is isomorphic to the ring
of rational piecewise polynomial functions C0(Σ)Q. A result of Billera [2] shows
that for a simplicial fan, C0(Σ)Q is isomorphic to the rational Stanley-Reisner ring
of the fan, so Brion’s result is similar in spirit to [1]. Brion and Vergne completed
the picture for the simplicial case by showing in [6] that

A∗
T (XΣ)Q � H∗

T (XΣ)Q.

Integral cohomology is more delicate; in [9] Payne exhibits a complete toric surface
with 2-torsion in H3

T . For a nonsimplicial fan Σ there is no Stanley-Reisner ring,
but the results of Billera and Brion suggest that C0(Σ) could serve as a possible
substitute. In [9] Payne proves that the integral equivariant Chow ring A∗

T (XΣ)
does indeed satisfy

A∗
T (XΣ) � C0(Σ).

We analyze the S = SymQ(N)-module structure of C0(Σ)Q and the associated

reflexive sheaf C0(Σ) on PQ(N). In contrast to the simplicial case, where C0(Σ)Q is
completely determined by the combinatorics of Σ, in the nonsimplicial case there are
surprising and subtle contributions from the geometry of Σ. We begin by defining
a cellular chain complex C whose top homology module is C0(Σ), then study the
lower homology modules of the complex. We give a complete description of the loci
of the top dimensional support of the modules Hi(C). Using a Cartan-Eilenberg
spectral sequence, we also obtain sufficient criteria for the splitting of C0(Σ) as a
sum of line bundles.
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1.1. Main results.

Theorem 1. For all i ≥ 1, Hd−i(C) is supported in codimension at least i+1, and
all associated primes of codimension i+ 1 are linear.

In Theorem 2.6 we give a combinatorial description of the codimension i + 1
associated primes of Hd−i(C) in terms of Σd−i and Σd−i+1.

Theorem 2. If Hi(C) is either Cohen-Macaulay of codimension d− i + 1 or zero
for all i < d, then C0(Σ) is free.

In particular, C0(Σ) can be free even when some lower homology modules are
nonzero, whereas in the simplicial case, C0(Σ) is free iff Hd−i(C) = 0 for all i ≥ 1.

Example 1.1 ([8]). Let Σ be the polyhedral fan obtained by coning over the
complex below:

a0

3a

1aa2

Figure 1. A two-dimensional section of Σ

The fan Σ defines a three-dimensional toric variety, having four maximal cones, and
a computation shows that the Hilbert polynomial of C0(Σ) is

HP (C0(Σ), k) = 2k2 + 2.

The fan Σ is nongeneric; in Figure 1 the three lines connecting boundary vertices to
interior vertices meet at a point. Perturbing one vertex in Figure 1 so the symmetry
is broken yields a combinatorially equivalent fan Σ′, with

HP (C0(Σ′), k) = 2k2 + 1.

Both of these calculations follow from Corollary 2.9. The six interior facets of
Σ correspond to six lines in P2 defining the braid arrangement A3. Theorem 4.6
provides a second interpretation of the Hilbert polynomial.

In Example 2.10, we use Theorem 1 to analyze the four-dimensional analog of
Example 1.1, showing that the module C0(Σ) is free with generators in degrees
{0, 1, 2, 3, 4}. Motivated by this, we define two families of fans associated to the
reflection arrangement An. One family corresponds to projective space, so the fans
are all smooth and complete. The second family of fans generalizes the example
above, and the fans are neither complete nor simplicial. We show:

Theorem 3. For both families of fans described above, C0(Σ) is isomorphic to the
module of logarithmic vector fields on the reflection arrangement An.
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2. Cellular homology

Let Σ be a d-dimensional polyhedral fan embedded in Qd. We make the sim-
plifying assumption that Σ is hereditary; this means for every nonempty face σ of
Σ, the dual graph of the star of σ is connected. Henceforth, we use fan in place of
hereditary rational polyhedral fan embedded in Qd. A C0-spline on Σ is a piecewise
polynomial function such that two polynomials supported on d-faces which share a
common (d− 1)-face τ meet continuously along that face. Let Σ0

i denote the set of
interior i faces of Σ (Σ0

d = Σd), and let f0
i = |Σ0

i |; for a face τ write τ for the linear
span. The set of all C0-splines on Σ is a graded module over both Z[x1, . . . , xd]
and Q[x1, . . . , xd]. In [3], Billera and Rose observe that the module of splines of
smoothness r arises as the kernel of a matrix; for r = 0 their result shows that there
is a graded exact sequence,

0 −→ C0(Σ) −→ Sfd ⊕ Sf0
d−1(−1)

φ−→ Sf0
d−1 −→ N −→ 0,

where φ =

⎡
⎢⎣∂d

∣∣∣∣∣
lτ1

. . .

lτm

⎤
⎥⎦ .

(1)

Write [∂d | D] for φ. To describe ∂d, note that the rows of ∂d are indexed by
τ ∈ Σ0

d−1. If a1, a2 denote the d-faces adjacent to τ , then in the row corresponding
to τ the continuity condition means that the only nonzero entries occur in the
columns corresponding to a1, a2, and are ±(+1,−1). When Σ is simplicial, ∂d is
the top boundary map in the (relative) chain complex. By equation (1), C0(Σ)
is a second syzygy, so the associated sheaf is a reflexive OPd−1 -module, and by
the Hirzebruch-Riemann-Roch theorem the coefficients of HP (C0(Σ), k) yield the
Chern classes of C0(Σ). Since

N �
( ⊕

τ∈Σ0
d−1

S/Iτ

)
/∂d,

this suggests constructing a chain complex. For each k-dimensional face ξ ≺ Σ,
let Iξ be the ideal of ξ. In [10], a chain complex C(Δ) is defined for a simplicial
fan Δ, such that the top homology module of C(Δ) computes splines of a fixed
order of smoothness on Δ. Using cellular homology, we next carry out a similar
construction for polyhedral Σ.

Definition 2.1. For a polyhedral fan Σ, let C be the complex of S = Q[x1, . . . , xd]
modules, with cellular differential ∂i.

0 −→
⊕
σ∈Σd

S
∂d−→

⊕
τ∈Σ0

d−1

S/Iτ
∂d−1−→

⊕
ψ∈Σ0

d−2

S/Iψ
∂d−2−→ . . .

∂2−→
⊕
v∈Σ0

1

S/Iv −→ 0.

By construction, Hd(C) = C0(Σ), and taking Euler characteristics yields

Proposition 2.2.

HP (C0(Σ), k) =

d∑
i=1

(−1)d−if0
i ·

(
k + i− 1

i− 1

)
+

d−1∑
i=1

(−1)d−1−iHP (Hi(C), k).

Lemma 2.3. For i ≥ 1, Hd−i(C) is supported in codimension at least i+ 1.
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Proof. Since

Hd−i(C) = H
( ⊕

σ∈Σd−i+1

S/Iσ
∂d−i+1−→

⊕
τ∈Σ0

d−i

S/Iτ
∂d−i−→

⊕
ψ∈Σ0

d−i−1

S/Iψ

)
,

localizing at a prime P of codimension i forces the vanishing of the middle term,
unless P = Iτ . But in this case, there exists σ ∈ Σ0

d−i+1 with τ ⊆ σ, and so the

localized map ∂d−i+1 is onto: though there can be several distinct τi ∈ Σ0
d−i with

τi = V (P ), convexity implies that a d− i+ 1 face σ containing one such τi cannot
contain any others. Thus Hd−i(C)P = 0 if codim(P ) ≤ i. �
Lemma 2.4. All associated primes of Hd−i(C) of codimension i+ 1 are linear.

Proof. Let P be an associated prime of codimension i+ 1, minimally generated by
〈f1, . . . , fm〉. If less than i+ 1 of the fj are linear, then Lemma 2.3 shows( ⊕

τ∈Σ0
d−i

S/Iτ

)
P

= 0,

unless P contains exactly i linear forms such that 〈f1, . . . , fi〉 = Iτ , and in this
case, the localization of ∂d−i+1 is surjective. So if Hd−i(C)P �= 0, then P must
have at least i + 1 minimal generators which are linear. Since codim(P ) = i + 1,
P = 〈l1, . . . , li+1〉. �
Definition 2.5. Let Σ be a d-dimensional fan, and ξ a codim(i+1) linear subspace.
Define a graph Gξ(Σ), with a vertex vτ for every τ ∈ Σ0

d−i with ξ ∈ τ and an edge

vτvσ if there exists γ ∈ Σ0
d−i+1 with ∂d−i+1(γ) = τ ± σ + · · · and ξ = τ ∩ σ.

Theorem 2.6. For ξ a linear subspace of codimension i + 1, Iξ is an associated
prime of Hd−i(C) iff Gξ(Σ) = �Δj has a component Δj such that the following two
conditions hold:

(1) Δj does not correspond to a loop around τ ∈ Σ0
d−i−1.

(2) Δj has no vertex of valence one.

Proof. Localize C at Iξ, and write the localized complex as Cξ.
Case 1. Suppose some (possibly several) τ ∈ Σ0

d−i−1 have τ ∈ ξ. In the localized
complex, we have

· · · ∂d−i+1−→
⊕
ξ≺ψ

ψ∈Σ0
d−i

(S/Iψ)Iξ
∂d−i−→

⊕
ξ=τ

τ∈Σ0
d−i−1

(S/Iτ )Iξ −→ 0.

A codimension i face ψ can contain at most one facet τ of the form above, and
choosing any such facet shows that (in the localization) ∂d−i is surjective. This
yields

0 −→ Hd−i(Cξ) −→
( ⊕

ξ≺ψ

ψ∈Σ0
d−i

(S/Iψ)Iξ

)
/ im(∂d−i+1)

∂d−i−→
⊕
ξ=τ

τ∈Σ0
d−i−1

(S/Iτ )Iξ −→ 0.

The map ∂d−i splits in Cξ. To see this, note that in Cξ, two types of codi-
mension i face ψ can appear: those which actually have a codim(i + 1) face
τ lying in ξ, and those which do not. In the first situation, fix τ ∈ Σ0

d−i−1

such that τ ∈ ξ. By convexity, there exists a codimension i − 1 face γ with
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∂d−i+1(γ) = ψ1 ± ψ2 ± · · · , and τ = ψ1 ∩ ψ2. Looping around τ yields an iso-
morphism

⊕
τ∈ψ∈Σ0

d−i
(S/Iψ)Iξ/ im(∂d−i+1) � (S/Iτ )Iξ , and Hd−i(Cξ) vanishes. In

the latter situation, the localized map ∂d−i is zero, so

(2) Hd−i(Cξ) �
⊕

ξ≺ψ,ψ∈Σ0
d−i

ξ �=τ |τ∈∂(ψ)

(S/Iψ)Iξ/ im(∂d−i+1).

Case 2. No τ ∈ Σd−i−1 satisfies τ ∈ ξ. Since no τ ∈ ξ,( ⊕
τ∈Σ0

d−i−1

S/Iτ

)
Iξ

= 0.

Hence, Hd−i(Cξ) is as in equation (2). By convexity, a codimension i − 1 face γ

can have at most two facets ψi with ξ ≺ ψi. Thus, the localized map ∂d−i+1 will
have columns with either one or two nonzero entries. In the former case, the cor-
responding generator of S/Iψ is killed by ∂d−i+1. In the latter case, quotienting by
a column with two nonzero entries gives a cokernel of the form S/Iψ1

+ Iψ2
, where

ψ1 and ψ2 are the two codimension i faces with ξ ≺ ψi. Thus, Iψ1
+ Iψ2

= Iξ.
Write Gξ(Σ) = �Δj . If Δi has a vertex with valence one, this means the localized
map ∂d−i+1 has column with single nonzero entry. Let aξ denote the number of Δi

with no vertex of valence one. We have shown Hd−i(Cξ) � (S/Iξ)
aξ

Iξ
, and the result

follows. �
Corollary 2.7. Let Li denote the Grassmannian of codim(i) linear subspaces.
Associate to a point of Li the corresponding subspace, let aξ be as above, and

αi =
∑

ξ∈Li+1

aξ.

Then

HP (Hd−i(C), k) = αi ·
(
k + d− i− 2

d− i− 2

)
+O(kd−i−3).

Corollary 2.8. α1 =
∑

ξ∈L2

rankH1(Gξ(Σ),Z)− f0
d−2.

Proof. For ξ ∈ L2, the components Δi are homeomorphic to circles or segments. �
Corollary 2.9. For a fan Σ ∈ Z3,

HP (C0(Σ), k) = f3 ·
(
k + 2

2

)
− f0

2 (k + 1) + f0
1 + α1.

Example 2.10. Consider a four-dimensional version of Example 1.1: place a small
regular tetrahedron T symmetrically inside a large regular tetrahedron T ′, and
connect corresponding vertices. The maximal faces are the convex hulls of the
corresponding facets of T and T ′. C0(Σ) is a free S-module, with generators in
degrees {0, 1, 2, 3, 4}, so the Hilbert polynomial is

4∑
i=0

(
k + 3− i

3

)
= 5 ·

(
k + 3

3

)
− 10

(
k + 2

2

)
+ 10

(
k + 1

1

)
− 5.

If v is the central point of symmetry, Gv(Σ) is the 1-skeleton of a tetrahedron, so
HP (H2(C), k) = HP (S/Iv, k) = 1. Since f0 = 4, this yields the expected constant
term in the Hilbert polynomial.
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3. Cartan-Eilenberg spectral sequence

Write the complex C in the first quadrant, with Ci appearing in position
(i, 0). Taking a Cartan-Eilenberg resolution for C and applying the functor
HomS(•, S) yields a first quadrant double complex. For the vertical filtration, vE

1
ij

is ExtjS(Ci, S), so since the S/Iτ are complete intersections,

vE
1
ij =

⎧⎨
⎩

⊕
τ∈Σ0

i

S(i)/Iτ if j = d− i;

0 otherwise.

Thus vE
1
ij = vE

∞
ij . Write Gij for the jth module in a free resolution for Hi(C).

From the Cartan-Eilenberg construction, it follows that for the horizontal filtration

hE
1
ij = HomS(Gij , S).

Thus,

hE
2
ij = ExtjS(Hi(C), S).

Example 3.1. Let d = 4. Then the vE
1
i,j terms are:

i = 0 1 2 3 4
j = 3

⊕
v∈Σ0

1

S/Iv

j = 2
⊕

τ∈Σ0
2

S/Iψ

j = 1
⊕

τ∈Σ0
3

S/Iτ

j = 0
⊕

σ∈Σ4

S

By Lemma 2.3, for i ≥ 1, Hd−i(C) is supported in codimension at least i+1, so for
the horizontal filtration, the hE

2
ij terms are:

i=0 1 2 3 4

j=4 Ext4(H1(C), S) Ext4(H2(C), S) Ext4(H3(C), S) Ext4(C0(Σ), S)

j=3 Ext3(H2(C), S) Ext3(H3(C), S) Ext3(C0(Σ), S)

j=2 Ext2(H3(C), S) Ext2(C0(Σ), S)

j=1 Ext1(C0(Σ), S)

j=0 C0(Σ)∨

Theorem 3.2. If Hi(C) is Cohen-Macaulay with codim(Hi(C)) = d− i+ 1 for all
i < d, then C0(Σ) is free.

Proof. By local duality, Exti(M,S) vanishes if i < codim(M) and i > pdim(M).
The Cohen-Macaulay condition implies codim(M) = pdim(M), which combined
with the assumption that codim(Hi(C)) = d− i+ 1 implies that

hE
2
ij =

{
Extj(Hi(C), S) if j + i = d+ 1;

0 otherwise.

Thus, the d2 and higher differentials from the terms hE
2
dj must all vanish. Compar-

ing to the vertical filtration shows that Hi(Tot) is concentrated in degree d, so that

hE
2
dj = Extj(C0(Σ), S) = 0 for j > 0. Note that the condition codim(Hi(C)) =

d− i+ 1 can be weakened to include the case Hi(C) = 0. �
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Corollary 3.3. If Hi(C) is Cohen-Macaulay with either codim(Hi(C)) = d− i+ 1
or Hi(C) = 0 for all i < d, then (letting α0 = α−1 = 0)

HP (C0(Σ), k) =
d∑

i=1

(−1)d−i(f0
i + αd−1−i) ·

(
k + i− 1

i− 1

)
.

When Σ is simplicial, Lemma 2.3 can be strengthened [10] to show that for i ≥ 1,
Hd−i(C) is supported in codimension at least i+ 2, and that

C0(Σ) is free iff Hi(C) = 0 for all i < d.

In Example 1.1, C0(Σ) and C0(Σ′) are both free; for Σ′ all the lower homology
modules of C vanish, while for Σ, H2(C) �= 0. Even in the simplicial case, there are
easy examples where C0(Σ) is nonfree.

Example 3.4. Consider the cone over the planar complex Σ below, where the
(cone over) the central triangle has been removed:

Figure 2. A simplicial nonfree Σ

The topological nontriviality of Σ manifests in the nonvanishing of H2(C), which
has high codimension: Ext2(H2(C)) = 0, but Ext3(H2(C)) �= 0. Comparing terms
in the spectral sequence shows that this forces

Ext1(C0(Σ), S)) �= 0.

C0(Σ) is reflexive sheaf on P2, so is locally free. The above shows it does not split.

Definition 3.5. A pure dimensional polyhedral complex is shellable if there exists
an ordering of facets {P1, . . . , Pk} so that ∂(P1) is shellable, and Pi ∩ (

⋃
j<i Pj) is

the start of a shelling of ∂(Pi)

If P is simplicial, an induction shows that shellability implies the Stanley-Reisner
ring AΔ is Cohen-Macaulay [7]. For Σ a pure polyhedral complex, if Σ′ is obtained
from Σ by removing a full-dimensional cell P , then all faces of P are part of the
boundary of Σ′. This gives a short exact sequence of complexes as in Definition 2.1,
where C and C′ correspond to Σ and Σ′, and C′′ comes from P and all its faces.
This yields a long exact sequence.

0 −→ 〈
∏

τ∈Pd−1

lτ 〉 −→ C0(Σ) −→ C0(Σ′) −→ Hd−1(C′′) −→ · · · .

In the simplicial case, Hd−1(C′′) = 0, but this need not hold in the polyhedral case.
Nevertheless, computational evidence leads us to ask,

Question 3.6. If Σ is shellable, is C0(Σ) a free S-module?
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4. Fans associated to type A root systems

In this section, we analyze two very different families of fans associated to the
reflection arrangement An. Though the fans are quite different, for both families
C0(Σ) is isomorphic to the module of vector fields tangent to An. Given a fan, we
associate to it the hyperplane arrangement in Pd−1 defined by τ such that τ ∈ Σ0

d−1.
For a collection of hyperplanes

A =
n⋃

i=1

Hi ⊆ Cd,

the intersection lattice L(A) consists of the intersections of the elements of A; the

rank of x ∈ LA is simply the codimension of x. Cd is the lattice element 0̂; the
rank one elements are the hyperplanes themselves.

Definition 4.1. The Möbius function μ : L(A) −→ Z is defined by

μ(0̂) = 1,
μ(t) = −

∑
s<t

μ(s), if 0̂ < t.

The Poincaré polynomial is

π(A, t) =
∑

x∈L(A)

μ(x) · (−t)rank(x).

One of the main algebraic objects associated to an arrangement is the graded
S-module D(A) of vector fields tangent to A.

Definition 4.2. D(A) = {θ | θ(αi) ∈ 〈αi〉 for all V (αi) ∈ A} ⊆ DerQ(S).

It follows immediately from the definition that D(A) can be computed as the
kernel of a matrix similar to φ in equation (1): D(A) is the kernel of⎡

⎢⎣D(l)

∣∣∣∣∣
lτ1

. . .

lτm

⎤
⎥⎦ ,

where D(l) is an |A| × d matrix. If lj =
∑

ajixi, then the jth row of D(l) is

[aj1, . . . , a
j
d].

Definition 4.3. A is free if D(A) �
⊕

S(−di); the di are the exponents of A.

In [11], Terao proves that if D(A) �
⊕

S(−di), then π(A, t) =
∏
(1 + dit), and

in [12] shows that if G is a finite reflection group acting with no fixed points, then
the arrangement of reflecting hyperplanes AG is free, with di equal to the degrees
of generators of SG.

Example 4.4. The reflecting hyperplanes of SL(n) are
⋃

1≤i<j≤n+1 V (xj − xi) =

An ⊆ Cn+1. The symmetric group Sn action fixes the subspace (t, . . . , t). Pro-
jecting along this subspace yields An ⊆ Cn, with Sn acting without fixed points.
By [12], An ⊆ Cn is free with exponents {1, 2, . . . , n} and An ⊆ Cn+1 is free with
exponents {0, 1, 2, . . . , n}. Up to projective transformation, A3 is exactly the con-
figuration defined by the six τ ∈ Σ0

2 appearing in Example 1.1. The corresponding
τ yield an arrangement of six planes through the origin C3, depicted in Figure 3 as
a set of lines in P2.
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Figure 3. The braid arrangement A3 and its intersection lattice in C3

In Example 2.10, C0(Σ) is free, with generators in degrees {0, 1, 2, 3, 4}, and the
associated arrangement is A4. This motivates:

Definition 4.5. Let vi = (n+1)ei −
∑n

i=1 ei and Δ2 = {v1, . . . , vn}. Define cones
a0 = cone{e1, . . . , en}, and for i ∈ {1, . . . , n}, ai = cone{Δ2 \ vi, a0 \ ei}. Then
P2(An) = {a0, a1, . . . , an} is a polyhedral fan, which is a subdivision of the simplex
cone S = cone(Δ2).

P2(A3) appears in Example 1.1 and P2(A4) in Example 2.10.

Theorem 4.6. C0(P2(An)) � D(An).

Proof. The main point is that the passage from n to n+ 1 induces the same mod-
ification in the matrices which compute D(An) and C0(P2(An)). A computation
shows that the hyperplanes τ for τ ∈ P (An)

0
d−1 are of the form V (xi) or V (xj −xi)

for 1 ≤ i < j ≤ n. Order the d-faces of P2(An) as {ad, ad−1, . . . , a0} (see Figure 1),
and order τ ∈ Σ0

d−1 so that the xi are the first n elements, and the remaining
hyperplanes form a second block. For example, the lines L1, L2, L3 in Figure 3
correspond to the boundary of the inner triangle in Figure 1, and lines L4, L5, L6

correspond to the τ ∈ Σ0
2 defining V (xi − xj). Thus, the matrix which computes

C0(P2(A3)) has the form⎡
⎢⎢⎢⎢⎢⎣

−1 0 0 1
0 −1 0 1
0 0 −1 1
−1 0 1 0
0 −1 1 0
−1 1 0 0

x1 0 0 0 0 0
0 x2 0 0 0 0
0 0 x3 0 0 0
0 0 0 x3 − x1 0 0
0 0 0 0 x3 − x2 0
0 0 0 0 0 x2 − x1

⎤
⎥⎥⎥⎥⎥⎦.

If we consider A3 ⊆ C4, and order so that the equations x4 − xi appear first, then
the matrix which computes D(A3) has the form⎡

⎢⎢⎢⎢⎢⎣

−1 0 0 1
0 −1 0 1
0 0 −1 1
−1 0 1 0
0 −1 1 0
−1 1 0 0

x4 − x1 0 0 0 0 0
0 x4 − x2 0 0 0 0
0 0 x4 − x3 0 0 0
0 0 0 x3 − x1 0 0
0 0 0 0 x3 − x2 0
0 0 0 0 0 x2 − x1

⎤
⎥⎥⎥⎥⎥⎦.
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Since A3 ⊆ C4 contains the subspace (t, t, . . . , t), D(A3) has a free summand of
degree zero. To apply [12], G must act with no fixed points. Specializing to x4 = 0
yields A3 ⊆ C3 with this property. The general case follows by induction. �

Corollary 4.7. As an S-module, A∗
T (XP2(An))Q �

n⊕
i=0

S(−i).

Proposition 4.8. Let P1(An) denote the fan such that XP1(An) = Pn. Then

C0(P1(An)) � D(An).

Proof. P1(An) has defining hyperplanes An, and n+1 top-dimensional cones; order
the cones in the same way as for P2(An). Intuitively, the correspondence comes
from a “mirror” Schlegel diagram for an n-simplex, where the facets are reflected
outwards from the hyperplane of projection. �

Example 4.9. The fan P1(An) is simplicial, with the Stanley-Reisner ring
Z[x0, . . . , xn]/〈x0 · · ·xn〉. This is easily seen to have Hilbert series

1− tn+1

(1− t)n+1
=

n∑
i=0

ti/(1− t)n,

which is indeed equal to the Hilbert series of D(An) �
⊕n

i=0 S(−i). By Corol-
lary 4.7, this is also equal to HS(A∗

T (XP2(An))Q, t).

Question 4.10. Is it possible to extend Theorem 4.6 to other classical groups?
Types B and D have equations of the form (xi ± xj), so it is not obvious how to
make such an extension. Computational evidence indicates a generalization might
be possible for deformations of type A arrangements.
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