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EQUIVARIANT COBORDISM AND DUALITY^)

BY

EDWARD C. HOOK

ABSTRACT.   We consider equivariant cobordism theory, defined by means of
an equivariant Thorn spectrum; in particular, we investigate the relationship be-
tween this theory and the more geometric equivariant bordism theory, showing
that there is a Poincare-Lefschetz duality theorem which is valid in this setting.

This paper is an attempt to present further evidence for the proposition that

the stable equivariant bordism theories introduced in [2] are the "correct" equivar-

iant bordism theories, in the sense that stabilization enables one to prove many

desirable theorems which are probably false prior to stabilization.   As examples

of the kind of result we have in mind, we may take all theorems about bordism

whose proofs rely on transversality arguments.

In [2], we were concerned with the equivariant analogue of the Pontrjagin-

Thom isomorphism theorem; as our present test case, we ask whether there is a

Poincaré-Lefschetz duality theorem which is valid in this framework, eventually

finding that there is such a result.   (The author is indebted to Professor R. E.

Stong for the crucial observation that "suspension introduces as much transverse-

regularity as one needs", as well as many other helpful comments.)

We begin, after recalling the major results in [2], by outlining the definition

of equivariant cobordism theory as the cohomology theory with coefficients in the

equivariant Thom spectrum MO     and then noting the existence of cup and cap pro-

ducts of the usual sort.   These considerations enable us, in §2, to define Thom

homomorphisms in equivariant cobordism which we then show to be isomorphisms,

deducing as a corollary the existence of a Gysin sequence.   These Thom isomor-

phisms also play a vital role in §3, where they occur in our initial definition of the

first of the duality isomorphisms.   Finally, we show that this isomorphism is

actually given by cap product with the stable bordism fundamental class, from

which we are able to deduce painlessly the existence of the other duality isomor-

phism.

1.   Preliminaries.   Throughout, we shall use the definitions and results of

[2], so a brief summary of that paper seems in order.   We present such a summary
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242 EDWARD C. HOOK

in the next few paragraphs and then proceed to the definition of equivariant cobor-

dism, followed by some elementary remarks concerning this theory.

Let G be a compact Lie group, and let R°°(G) be the direct sum of countably

many copies of each of the irreducible finite-dimensional orthogonal representations

of G.   There is an obvious action of G on R°°(G) which induces an action of G

on BO (R°°(G)), where in general BO  (W) is the space of all 72-dimensional sub-
77 ' O n L

spaces of the representation  W.   There is also the "tautological" 72-plane bundle

y"  over BO  (R°°(G))  which we may view as a G-vector bundle; it is, in fact,.the

universal equivariant 22-plane bundle.   Finally, since  G's action on y"  is fiber-

wise orthogonal, we receive an action of G  on the Thom space  MO    = Dyn/Sy",

fixing the obvious basepoint.

Now let V be any finite-dimensional orthogonal representation, let D(V) be

the unit disk in  V,   S(V) the unit sphere and define 2(V) = D(V)/S(V), provided
with the evident action of  G.   By appealing to the universal property of the bun-

dles  y", we obtain  G-maps

mn>M:   ZiV)AMOGn-+MOGnAvl

where   |V|  denotes the dimension of V.   The spaces MO     (n > 0), together with

all of these "binding" maps, constitute the (orthogonal) Thom specttum for the

group G,   MO   .   Once provided with  MO   , we may define a homology theory with

coefficients in MO     by imitating the usual construction.   Briefly, being given a

pair (X, A)  of G-spaces, and an integer k, we consider the sets of basepoint-

preserving homotopy classes

12(V),(X/A) AMOcv\_k]

where  V  is a G-rep.-esentation; these sets form a directed system over the di-

rected set M(G) consisting of the isomorphism classes of finite-dimensional G-

representations, the maps of the system being defined using suspension and the

maps 722     .   We define H AX, A; MO  )  to be the direct limit of this system; in
[2], it was shown that these groups determine an equivariant homology theory in

the sense there defined.   This theory is   homotopy-theoretic equivariant bordism.

There is also a geometric version of equivariant bordism, the details of whose

construction may be found in [3].   This is an equivariant homology theory in the

sense of Bredon [1] but not in the sense of [2], in  view of the paucity of suspen-

sion isomorphisms in this theoty.   There are, however, natural suspension homo-

morphisms and, in [2], we detailed the procedure by which one can use these

homomorphisms to "stabilize" equivariant bordism.   In particular, we showed

the existence of an equivariant homology theory it* :  ( ) which is the stabilization
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EQUIVARIANT COBORDISM AND DUALITY 243

of îl*( ), the bordism theory of "singular G-manifolds" in a space with no restric-

tions on the isotropy subgroups.

Proceeding by analogy with the development of ordinary bordism theory, we

next proved the existence of a Pontrjagin-Thom construction

$S:3t£:S()-ff*( ;M0G);

this is a natural transformation of equivariant homology theories, preserving the

îl*-module structures which are present.   (Here, as elsewhere, ?l* denotes Thorn's

unoriented cobordism ring.)   If we define a pair (X, A) of G-spaces to be admis-

sible if X is Hausdorff and A   c, X  is an equivariant cofibration, then the major

result of [2] may be stated as follows:

Theorem 1.1.   For any admissible pair (X, A), the homomorphism

tfx.AY K%'S&. A) ^H^iX, A; M0G)
is an 'ílurmodule isomorphism.

We shall make repeated use of this theorem (as well as some of the observa-

tions necessary for its ptoof) in §3.

The above result suggests that we define equivariant cobordism to be the

cohomology theory with coefficients  MO   , and this is the course that we follow.

Suppose we are given a pair (X, A) of G-spaces and an integer k, and let V, W

be finite-dimensional orthogonal  G-representations.   Then we define a function

qbv'w:     [liv) AiX/A),M0fv\+k]  - [2iW (B V) A iX/A), MOfw\+WUk]

to be the composite

[S(vO A (X/A), MO,   .    ]
\v\+k

-"   [2(HO A   2,iV) AiX/A),   2iW) A M0?v,k]
^M*!*!*   ,   [2iW(BV)AiX/A),H0?whWUk\,

where the first map is given by suspension.   We note that if V  contains a two-

dimensional trivial representation, then all of the sets above are abelian groups

and <7j   '     is a group homomorphism.   It is readily verified that we obtain in this

way a directed system over MiG) and we define H (X, A; MO   ) to be the abelian

group which is the direct limit of this system.   It is clear that this construction

is functorial on  PÍG)  (the category of pairs of G-spaces) and, letting 21  denote

the category of abelian groups, we have

Theorem 1.2. The sequence of contravariant functors \H ( ; MO ): PiG) —•

ÎI I k £ Z\ determines an equivariant cohomology theory, i.e. the following state-

ments are true:
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244 EDWARD C. HOOK

(1) '/ f Q- fyiX, A) —> (Y, B) are equivariantly homotopic as maps of pairs, then

/* = /*: Hk(Y, B; MOG) -. Hk(X, A ■ MOG)

¡or ail k £ Z;
(2) if (X, A)  is admissible, then there is an exact sequence

Hk(X, A;MOG)  C   Hk(X;MOG)   —   Hk(A; M0G)

for each  k £ Z, the homomorphisms being induced by the inclusions;

(3) for each  [P] £ M(G) and each pointed G-space X there is a natural sus-

pension isomorphism

Ôiv):   Î/*(2(P) A X; M0G) - r>-lp!(X; MOG),

for all k £ Z, where H  (   ; MO   )  denotes the reduced theory determined by

H*i ; MOG).

Proof.   The validity of (1) is an evident consequence of the definitions.   To

verify (2), note that this sequence is the direct limit of a collection of correspond-

ing exact sequences of homotopy sets.   Finally (3) is immediate:   there is an

obvious identification

[2(V)  A (2(P) A X), M0Gv|+fe]   sg [S.ive P) A X, A40f^| +|p|+(/e_ 1^1^'
which gives us the desired isomorphism.    D

We should remark that the equivariant Puppe sequence, together with (1)—(3)

above, enables us to construct a long exact cohomology sequence for any admis-
sible pair (X, A).   In the sequel we will assume this construction to have been

carried out when the need arises.

We wish now to discuss an important property of the spectrum  MO     which

we have not yet mentioned and then apply out observations to define cup and cap

products.   We proceed by straightforward imitation of the usual definitions.

Let y"   (resp. ym) denote the universal G-vector bundle over  BO  (R°°(G))

(resp. BO   (R°°(G))).    We may form the bundle  y" x ym   in the usual way, obtaining

an equivariant (22 + m)-plane bundle over BO (R   (G)) x BO   (R°°,G).    Classifying

this bundle gives us a G-map

9       : BO (R°°(C)) x BO   (R°°(C)) - BO       (R°°(g));
n,m n m n+m '

as always, this map gives rise to a G-map of Thom spaces

ô„ m- Miyn x ym) -^ M0G    .
n.m ' 1 n+m

But Miyn x ym) = My" A  Mym, so we actually have maps

d      : M0G A M0G — M0G     ,       n,m£Z + ;n,m n m n+rn
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EQUIVARIANT COBORDISM AND DUALITY 245

and it is these maps which allow us to define the necessary products.

Let X be a compact G-space and let A, B  be G-stable subsets of X with the

property that all of the pairs (X, A), (X, B),  and (X, A u B)  are admissible.   Note

that the diagonal map A.,: X     * X x X  induces a G-map

A: X/(A  U B) — (X/A) A (X/ß).

Now, suppose we are given  a £ z7"(X, A; M0C),  ß £ HmiX, B; M0G);  choose rep-

resentative maps /: 2(V.)  A (X/A) — MOf u   ,     , g: £(V,) A  (X/B) — M0G    .I   v 11 +" ¿ ] V 21 +m
and consider the composite

S(l/j) A   2iV2) A (X/A u B) —?L   I(V,) A   2(v2) A (X/A) A (X/ß)

^ 2(Vj) A (X/A) A  2(v2) A (X/B)

fte    unG A  A-inC |v |+tz,|v   |+m
->   MOi,.   i       A M0\w  i        -!-> M0\,,  i   i,,  i

The homotopy class of this map represents an element of H"+miX, A U B; MO   ),

which is easily seen to depend only upon a and ß; we shall call this element the

cup product of a and ß and denote it by au ß.   This product has all of the ex-

pected properties, as the reader may verify; we content ourselves with mentioning

only one of these properties, which we shall need later.

Proposition 1.3.   Let f: (Y; Yy  Y2) —» (X; Xy X2)  be an equivariant map,

and let

/*: H*iX, X,  u X2; M0G) - H*iY, Y,  u Y2; M0G),

/*: H*iX, X • M0G) -> H*iY, Y ; M0G)        (i = 1, 2)

¿>e induced by j.   If a £ H*iX, Xj) W /3 e H*(X, X2), then

f*(a u jS) = /î(a) u/*(ß)-

Proof.   This is immediate from the definitions.    D

With the assumptions above, we may also define a cap product.   This time,

let a e H"(X, A; M0G) and ß £ H AX, A u B; M0G) be given; then there is an
e lement  a n ß £ H,_   (X, B; MO   ), called the cap product of  a and /3.   To de-

fine this element, we once again choose representative maps  /: 2(V.) A   (X/A)

—* ¡M0G     .     ,   p: UVA —* (X/A U ß) A MOf     .      ; then a representative map
I  V11+7J ' Iv'2l~^

for a n ß is defined by the composite
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246 EDWARD C. HOOK

2(1^) A   2(V2) lA%   2(y,) A (X/A u B) A M0GV |_A

—-    2(1/^ A (X/A) A (X/B) A zMOGv |

»(X/B) A   2(Vj) A (X/A) A MOGy |_fe

(X/B) A MOfi.  i      A MO?.,Vj|+» |v2| —*.

lAtfl..     I !..     I       .
\V1\+n,\V2\-k     (y /a\    a   ,.nG

-■-» (X/ß) AM0|v/1|+|v2|-(fe_„)-

This is easily seen to be well defined; we leave to the reader an investigation of

the properties of this product, as its mere existence is sufficient for our present

purposes.

2.   The Thom isomorphism.   We wish to show that the considerations of the

preceding section enable us to define Thom homomorphisms for the theory

H  i  ; MO   ).   Having done this, we will prove that these are, in fact, isomorphisms

in all of the cases which we consider.   The proof of this assertion will be model-

led on the proof in [2] of the corresponding statement concerning stable bordism.

Let  £    be an equivariant vector bundle over the compact Hausdorff G-space

X.   Then zf    is classified by a G-map

u: X - BOkiR°°iG))

which is unique up to equivariant homotopy.   This map is covered by a G-map

z7: (Drf, SO — iDyk, Syk),

where  D¿; is the disk bundle of tf, S¿j the boundary sphere bundle, and similarly

for y  .   Collapsing the sphere bundles, we receive a map a: Mtf —' MO, , whose

G-homotopy class represents an element  Up £ H (Dif, 5<f; MO   ),  to which we

shall refer as the Thom class of the bundle <f.   This class we have constructed

is natural in an appropriate sense.   Specifically, let f: Y —> X  be a G-map, so

that we may form the bundle /  £  over  Y.   Then there is a G-map /: (D(/  £),

Sif   0) —' (O^» S<f)  covering / and it is immediate from the definitions involved

that  U .* ç = f*iUc), where

/*: hHd£, SO M0G) - HkiDif*£), Sif*0; M0G).

is the homomorphism induced by /.   Note that we could just as well use the

above procedure to define a relative Thom class.

The other property of the Thom class which we shall need' requires somewhat

more preparation.   Suppose that £ , rf  ate G-vector bundles over X  and form
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EQUIVARIANT COBORDISM AND DUALITY ¿47

£ ©T/S their Whitney sum.   There is a commutative diagram (in fact , a pullback

diagram)
ffl

D(f  © 7/)-►  DT/

DC   -ïl_^ x

in which all the maps are bundle projections and we have homomorphisms

77*: H*iDt S£ M0G) - H*(D(£ © r?), Ddrjiil^); M0G),

7?* : H*(Dr¡, St,; M0g) - tf*(D(f © Ty), D0r*flÍT?); M0G).

Note that  0(77*77^^) u D("*^S    ^ = •*(£©»,), so that the following assertion at

least makes sense.

Lemma 2.1.   U¿97¡ = fi*{U¿) u ¿*(U J.

Proof.   Choose G-maps fy X -» BOfe(R°°(G)), f2: X ^ BO (R°°(G)) classify-
ing rf and 77 respectively.   Then the composite

xÍxxX   1><2, BO.(R°°(G)) x BO (R°°(G))fe l?

-H    BO.     (R°°(G))
classifies  tf © 77.   The corresponding map of D(<f 0 77)  into  Dy  +l?  factors as the

composite

(77   , 77  ) / x/,
D(^©>7)-*   DfxDz,—4  DykxDyq -^Dyk+q;

hence the map of M(£ © 77)  into MO        which represents  Ucffi_   is easily seen to

factor as the composite

D(£©7j)     â/D(^©77)\      /DiÇ®q)

S(Çeri) \DÍTT*r,\^)J     \DÍTT*C\Sv)

!^£fA£?^,   MO* AMO*   *^<   .SÇ     Sr¡ k q k + q

Since this map obviously represents ír*iU A U t}*AU   ), the lemma follows.    □

We now define the Thom homomorphism for the G-vector bundle ff    over X

in the way which suggests itself.   Let 77: Drf —* X  be the projection, which is an

equivariant homotopy equivalence for the usual reasons.   Then, if   X. £-> X  is

a G-cofibration, define a homomorphism

¿:HniX, X   ;   MQG) -Hn+kiDÇ,DiÇ\x  )  U^;M0G),        77 £ Z,
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248 EDWARD C. HOOK

to be the composite

HniX, X0; MOG)Í   H"iDO DiOx ); M0G)

--   H"+kiDO DiOx ) U SO M0G).
o

We shall refer to this homomorphism as the (cobordism) Thom homomorphism for

the bundle f    and the pair (X, X.); it is natural in an obvious sense, because of

the above-mentioned naturality of the Thom class.

We isolate the crucial properties of the Thom homomorphism in our next result.

Lemma 2.2.   (a)   // ¿j is a product bundle over X, with fibre the finite-dimen-

sional representation Q, then r^   coincides with the suspension isomorphism

ÔAQ).
(b)   // rf    and r]q  are bundles over X and 27,: D^ —> X  is the projection,

then  r^®7) = r77!7? orf.

Proof,   (a)   This is a straightforward computation   (b)   This statement requires

a bit of interpertation.   Specifically, we wish to show that, for any n £ Z,

¿(BV. Hn{x>  x   )  ^Hn+k+q{D{£ ffi     ̂  D(£ $     |       )  ,j   c(£ 0 ^

may be computed as the composite of

¿: H"iX, X0) -^ r/»+*(D6 D(^|x  ) uS#

and
*

/l7'. H"+*(d/;, D(f|„  ) uS<f) -*H"+*+«(D(í 0 7,), fX£ © 271      ) u $(£©27))
0 0

where we have dropped all mention of MO   .   To this end we shall need the re-

sult of Lemma 2.1, so we use the notation introduced for the proof of that asser-

tion.   Let x £ H"iX, XQ) be given.   Then

r^ix) = 7T*ix) U Uç9v = n*ix) U S$(U£)   U %{UV)

= 7?*27*<X)U   #*(üjr)   UZ7*(i/7])=7?*(77*(x)   U   (/,)   U  »T* ÍU J

= 2?*(^(x))   Uif*iUv).

Since 77,: D(f ©22) —' Dzf is the projection of the disk bundle associated to

27*77  and since Tr\iU   ) = Un*      (by naturality), we have

zr1(^(*))u77*(^) = r^(*)),

which proves (b).    D
With this result in hand, we can easily prove
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EQUIVARIANT COBORDISM AND DUALITY 249

Theorem 2.3.   Let  (X, X.)  be an admissible pair with X a compact Hausdorff

G-space,   and let ç     be an equivariant vector bundle over X.    Then, ¡or any

n £ Z,
r* : H"iX, X0; M0G) - H"+kiD{, D(£|x ) u SÇ; M0G)

is an isomorphism.

Proof.   Since X  is compact and Hausdorff, the bundle tf is stably invertible,

i.e. there is a G-vector bundle   77   over X  such that £ © 7?  is isomorphic to a pro-

duct bundle.   Choose such a bundle  77  and suppose that the fibre of the correspond-

ing product bundle is the finite-dimensional representation Q.   Then by the

above lemma,  ôiQ) = r^®77 = r  1     °r,   Since SiQ) is an isomorphism, r^   is at

least monic.   By the same argument, r7rlT'   is monic.   We immediately deduce that

both rç   and r  1     must be isomorphisms, concluding the proof.    D

As an application of this result, we show that there is a Gysin sequence in

equivariant cobordism.   If rf    is a G-vector bundle over the compact Hausdorff

G-space X, we define the Euler class of <f, eiÇ), by the requirement that

ei£) = o*,*iUç) £HkiX;MOC)

where o: X —> D¿;  is the zero-section and  i: Dzf —> (D<f, S£)  is the inclusion.

Then we have

Theorem 2.4.   There is a inatural) long exact sequence

->H"~liSO ^H"-kiX)   ^   H"(X)-H"(5a —••••

where all coefficients lie in MO     and the homomorphism  E  is given by  E(x) =

x ue(tf).

Proof.   We begin with the long exact cobotdism sequence for the pair (D<f,

SO:
->Hn-liSO-->   Hn(D£,S&£   HniDO £   H"iSO £.   ••••

We have isomorphisms

r^ : H"- kiX) - H"(D<f, S<f>,        o*: HniDÇ) - HniX)

where 0: X —> D¿;  is the zero-section as before; it is then immediate that there

is an exact sequence of the desired sort which is clearly natural.   Hence it only

remains to identify the homomorphism E: H"~  (X)     ' HniX), and this is a straight-

forward computation.   Let x £ H"~  (X); then by definition,

E(x) = o*iVW) - o-W(x) u U€)

= o*in*ix) U i*Uç) = ffV(x) u a*i*Uç = x u eiÇ),

as desired.    D
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3.   The duality theorems.   Our goal in this section is to prove that there is a

Poincaré duality isomorphism relating the stable G-bordism of a closed G-manifold

M and the G-cobordism of M.   More generally, we prove a Poincare-Lefschetz

duality theorem in this setting.   Our proof is modelled on one of the standard proofs

of the corresponding theorem concerning ordinary bordism and cobordism, but there

ate some complications which arise from the lack of a decent equivariant 5-duality

theory.   Overcoming these difficulties will occupy our attention for much of the

remainder of this paper.

We need a preliminary definition and a lemma.   Let /: N" —> Mm  be a smooth

G-map between G-manifolds.   An equivariant imbedding a: N —>DiW) x M([W] £ MiG))

is said to be "an imbedding over ¡"it and only if the diagram

DiW) x M
a     /^ I   pr2

N ----> M

is commutative.

We remark that given / as above, there always exist imbeddings over /.   We

simply choose some imbedding e: N —> DÍW) and define a: N —» DiW) x M  by
ain) = iein), fin)).

Lemma 3.1.   Let f: N" —> Mm   be a smooth G-map and let

ax: N -» D(Vj)x M,      a2: N—, DÍV2) x M

be imbeddings over f.    Then there is a level-preserving G-imbedding

A: N x I -» DiVx © V2) x M x I

such that Ain, 0) = (prj »a,W, 0, fin), 0), Ain,  1) = (0, prj ° a2(w), fin), 1),
prM o A (22, t) = fin).

Proof.   Define Ain, t) = ((1 - /)pr, °axin), tptx °a2in), fin), t).   This map

has the desired properties.    G

Now suppose that M"  is a G-manifold; choose an equivariant imbedding (p:

Mn —> DiW) tot some [W] £ MiG) and let v,   denote the normal bundle of this

imbedding.   We shall define, for each k £ Z, homorphisms

*V *?*<*"> -HM-kiD^,Di^\dM) uSv)

IJjiíll'l-^^íui^-^ÜI«)
which are   mutually inverse.
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We first define  Dfc.   Let /: (/vlQl+fe, dN) -> iDiÇf) x M, SiQ) x M) represent
an element x £ îcr7    (M) and let /   denote the composite of / and the homotopy

equivalence    ÍDÍQ) x M, SiQ) x M) — iDiQ) x Di^, 5(0) x ZV0) given by the
zero-section.   Choose an imbedding over / , say

a : iN, dN) — iDiV) x DiQ) x DV(j>, DiV) x SiQ) x Dv^);

there is then an equivariant collapsing map

k:   2iV) A   1(Q) A {Dvf/Db^) u SV<f)) - Dvj/dvj

whete  v,  is the normal bundle of   a...   Classifying v. gives us a map

4> yiDv rSv^iDy\v\^\-k,Sy\V\^\-k),

and we have a map

yj2: iDvf, Divf\dN)) - (D(g), 5(g))

obtained in evident fashion from the map f: N —> DÍQ) x M; these combine to give

a map

if,: iDvr dDuf) - iDiQ) x Dy\v\+M~k, diDiQ) x Dy\v\^W\~k)).

Finally, there is the usual map

o: iDiQ) x DyM+M-*, d{D(Q) x DyM+M-*))
_(Dy\Q\Av\+\w\-kt   Sy\Q\*\V\Aw\-t)

the composite of the last two maps induces a basepoint-pteserving G-map

Dv/dDvl -MOfpi^i^i^
which, when composed with  k, yields a basepoint-preserving G-map

7:   ZiV) A   v(o) A(DV<f>/D(u,p\dM) u SvJ - MOf0,+,v| +|«,|_fe.

The G-homotopy class of /   represents an element D,(x) £ H'w'~kiDv, , DiuA     ) u Su A,
fe <p 01   Af 0

and it is easily verified that we have defined in this way a function

Dk.^-SiM) ^H^-HD^,Di^\dM) uSu^).

(One first checks that, given the map /, the above construction is independent of

the particular imbedding a, which is used; this is an application of Lemma 3.1.

Then a standard argument shows that a cobordism leads to a homotopy of the

resulting maps, the imbeddings being carefully chosen.)

In order to define D,, we first note that there is a collapsing map
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r:    2(W)   -DV'D(^|3m)  U5^;

furthermore, thete is the map  22 x 1 : Di/,  —> M x Dvj,   which collapses to give a

map

V Du^/Diu^) U^ - M + A D^/D(^|5m) U î^.

Now, given an element of H>    '"  (¿5V,, D(iy, | ÄAI) uSi^), choose a representative

map

g:   £(V)A^/^|a-)u^  -*«0.fV|+|lK|-*'
Consider the composite

1 Ar2(V)  A liW) 1_   2(V) A Di^/Dd^l^) uSv¿

1^   2(V)AM+AD^/D(^|áA|) u^

-?-. M+ A   2(V) A D^/M^l^) u Sv<j)

— «•+AMOfv|+|l|r|_/k;

the homotopy class of this map represents an element of H AM) and hence an

element of St, :  (M).   This construction defines a function

Dk:H\W\-HD^,Di^\dM)uSU)^nG-SiM);

the necessary verifications are trivial.

It is reasonably clear that  D,   and  D,   are group homomorphisms, so that we

shall not verify this in proving

Theorem 3.2.   For each  k £ Z, D,   and D,   are inverse isomorphisms.

Remarks.   (1)   In case  G = Il i, so that we are dealing with ordinary bordism

and cobordism, the isomorphism

Hk(M; MO) ss hW-HDv^, D(^\dM) uSv¿; MO)

is an immediate consequence of Atiyah's observation that M/0 and

MVM("ifc|aM;  are  ^-dual.
(2)   The following proof is a straightforward generalization of the proof we

gave for Theorem 4.1 in [2],
Proof.   We compute the composites  D,  °D,   and  D,  ° D,, showing them to

be the relevant identity automorphisms.

First, consider Dk ° Dk.   Let /: (N^Q\+k, dN)->(D(Q) x M, S(Q) x M) represent
an element of 3t, '   (M), and choose an imbedding

a : (N, dN) — (Div) x D(Q) x Dv<j}, D(V) x S(Q) x Dv^)
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as in the definition of D, .   We shall first construct the element of H AM) which

corresponds to  D,  ° DAN, f]  under the Pontrjagin-Thom isomorphism.   We claim

that this element may be obtained in the following fashion, the notation being that

previously established.   We have a map / = pr2 ° f ° n: Dv, —» M  and hence a map

(/, l): Dv, —> M x Dv,; in defining DAN, f] we produced a map yj: Dv, —> D(Q) x
Dy\v\+\    \~   ,   It is easily checked that the composite

Dvf --1 MxDv^-^Lmx D(Q) x DyM+M-*

^   MxDylQl+M+M-*
sends  dDv, into M x Sy<^^+'    '+'    I"   , so that there is an induced map

Dvf/dDvf^M + A MOfgi^i^j.fc.
We also have a collapsing map

2(V) A   2(Q) A   2(W) KO(1AlAr), Dvf/dDvf;

composing the last two maps mentioned yields a map

F:  2(V)   A   2(0)   A   2(W)-M+ A M0GQ|+|v|+|n,|_^
representing an element of H AM).   It is immediate from the definitions involved

that this element is the desired one, so we need only produce the corresponding

bordism element.   For this purpose note that we have, in the above construction,

imbedded  N  in  D(V) x D(Q) x D(W) and that the normal bundle of this imbedding
is just v,.   It is easily checked that, if we apply the Pontrjagin-Thom construction

to the bordism element  [/V, /]  and the given imbedding of N  into  D(V) x D(Q) x

D(W), the resulting element $[N, /] £ H\n\   AD(Q) x M, SiQ) x M) is represented
j lei | +&

by the composite

2(V)   A 2(Q)   A 2(H0-» DiytfDi^ —   2(e) A M+ A M0GV\ +\w\_k

where the first map is the collapse mentioned previously and the second is induced

by the composite

DVf ifAH   MxDVfl-^tMxD(Q)xDy\v\^\-k

_SL, D(Q)xMxDy\v\+\W\-k,

when we perform the appropriate collapses.   But it is then clear  that

(He)" 1(I>[/V, /] = IF] £ Hk(M) where

oiQ)-1: H|Q|+fc(D(Q) x M, SiQ) x M) — H ¿M)
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is the inverse of the suspension isomorphism for the representation Q.   (See [2]

for the construction of oiQ)~     which we use here.)   By the definition of the

stable Pontrjagin-Thom construction, we then have that D, ° D AN, f] =

($ )~  [F] = [N, /].   Thus D, °D,   is the identity automorphism.

In order to compute D, ° D,, let

g:  2ÍV) A iDv^/Div^)  US^)-M0GV|+,W|_,

represent an element of H'W'~  iDv,, Div, \ dM) U Sv , ).   Then, for some [Q] £

MiG), we may view g  as a map of pairs

g: iDiV) x Dv^, diDiV) x Dv<f>)) - iMy\V\+\W\~kiQ), *),

and we may find a submanifold  L<    l+l    ' C D(V) x Dv ,   such that g\.    is a map

of pairs

g\L:iL, dL) ^ÍDy\v\+\W\~kiQ), Sy\v\+\W\-HQ)).

Furthermore, if we vary g  within its  G-homotopy class, we may assume that

there is a commutative diagram

Div) x Dv./diDiv) x DvA)
1                      \*

L/dL-.   My
T sIl T

(L, dL)-.   iDy, Sy)

in which the vertical maps are all collapsing maps and we have adopted the ab-

breviation  y=yM+lH/|-fe(Q).
We have a map

DiV) x Dv<£ — M x DiV) x Dv.: iv, w) (-» (77(177), tz, w)

and this restricts to give a map n : L —► M x L,   Then the composite

L JL,   M x L   1XglL.   M x Dy(Q) -. M+ A My,

in which the final map is the standard quotient map, is seen to send dL   into

the basepoint in M   A My; hence there is an induced basepoint-preserving G-

map L/dL —* M    A My.   Finally, there is a collapsing map S(V) A  £(W0 —<
L/dL; the last two maps compose to yield a basepoint-preserving G-map

H:  2(V)  A   2(HO — M+ A My
and hence an element of H AM).   We assert that it is obvious that the correspond-

ing element of ??G:S(M)  is just  Dklg].
Thus, to compute  D,[g], it suffices to apply the inverse of the Pontrjagin-
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Thom construction to the map H  defined above.   For this purpose, consider the

G-vector bundle rf = pr*y over M x BOi yt jw\kiQ); it is clear that tf is stably-

invertible.   In fact, there is a G-vector bundle  0~   such that <f © if~   is a product

bundle with fibre Q.   Let g: L —♦ Df be defined by g = (1 x g\L) ° n , as above,
and let p: DB, —* B¿; be the projection.   Then we may form the G-manifold

D(g*p*¿;~), which comes to us provided with a G-map into D(p*£~) = D(Q) x B¿¡.

Let h: Dig*p*¿j~) —' D(Q) x M be the composite of this map and the projection

of D(Q) x B¿; onto D(Q) x M.   Then a representative of the element D Ag] £

9tG:S(M)   is the bordism element  lD(g*pH~). b] £ $G   .     (2(e) A M+); a proof of
* | Q \ +k

this assertion may be found in [2].

Using this representative for D,[g], it is an easy matter to compute  D,  °

Dklg].   Note that  D(g*p*Ç~)  is given with an imbedding into D(Q) x D(V) x Dv¿
and that the normal disk bundle of this imbedding may be identified with  D(Q) x
L.    To make use of this observation, we remark that the composite

D(Q) x L 1XglL,   D(Q) x DyM+M-*(0)  f. Dy\Q\+W\+\w\-k

obviously induces a basepoint-preserving G-map

2(e)  AiL/dL)-*MOfQ\+\v]+\w\_k.
If we compose the latter map with the collapsing map,

2(e)   A 2(V) A iDu^/Div^fa) U Sv¿) -».2(g) A (L/dL),

we clearly receive a representative of D, ° D, lg].   But it is equally clear that

the  above map is just the "e-fold" suspension of the map g  with which we

began.    This demonstrates that D, ° D,   is the identity automorphism, concluding
the proof of the theotem.    D

As an immediate consequence of this theorem, we have the Poincare-Lefschetz
duality theorem.

Corollary 3.3.   Let M"  be a compact G-manifold.   Then, for each k £ Z, there
is an isomorphism

9k: 3tG:*(AT) => H"-kiMn, dM"; M0G).

Proof.   To define 9, , we choose an equivariant imbedding </>: M —» DiW) as

before.   Then we have isomorphisms

Dk. S1G:*(,M") i h\w\-HDv^ Div^) u Sv<t>; M0G)

and

(/*)-l: H^-HDv^, Div^\dM) u Sv¿; M0G) ^ Hn~kiM", dM"; M0G);
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we let  9 ,   be the composite of these isomorphisms.    G

We can say even more about  9, ; in particular, 9,   is actually independent of

the imbedding qb which we used in its definition.   This is a consequence of the

following considerations.

First note that for any G-manifold M"  there is a distinguished class  [M, dM]

£ 31      iM, dM) which is represented by the bordism class of the identity map

iM, dM) —> iM, dM).   We shall refer to this class as the stable bordism fundamen-

tal class of M.   We wish to prove

Theorem 3.4.   Let  Mn be a G-manifold and let  x £Hn~kiM, dM; M0G).   Then
9~Hx) = x n [M, dM],

Proof.   This statement deserves some amplification; we are using the

Pontrjagin-Thom isomorphism here to replace [M, dM] by a certain homology

element and we are to show that 9~     coincides with taking the cap product with

this element.
Our first task is to specify our homology version of [M, dM].    To produce

this element, choose an imbedding  qS: M   —> DiW) as usual; then the element we

want is that which is represented by the composite

2(110 - Mi^/Md^l^) £ iM/âM) A /%/AKi/J^) ~t iM/âM) A Mofw\_n.

Here the first map is the usual collapsing map, the second map is induced by the

obvious map Dv ± —> M x Dv ,   and the third map is constructed using a represen-

tative of the Thom class of v.   over (M, <9M).   Call this composite  F: 2(W) —*

(M/r3M) A MOCt    .      .
Now suppose we are given  x £ Hn~  (M, dM) and choose a representative

/:  2(V0 A (M/rJM) ̂ MOGv|+(n_fe)

for x.   A representative map for x n [M, dM]  is then easily constructed; it is

just the composite

2(„)  A   2(H0 ̂     2(V0 A iM/dM) MAOfw\_n

1AAA1      v/.,\   a   .,+   a  i../j»A  A   unP .♦   2(V) A M+ A iM/dM) A MO\

_=^  M+  A 2(V) A iM/dM) A MOGH,|_n

lAfAl^M+AMOfvU{n_k)AMOfw\_n
IA*    „+   A   ,.„G

♦ M+ A MO\V   + \W   _fc'
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where the unnamed homeomorphism interchanges  2(V)  and M     and the other maps

are as previously defined.

It is then easy to show that the above composite may also be computed as the

composite

2(V)   A   2iW)l-—l    2(V) A iM/dM) A Mv^/Miv^^)

i^i,    S(v) A M+ A iM/dM) A Mv^/Miv^^)

M+  A 2(V) A iM/dM) A Uv^/Uiv.^)
I A/Au ,

* M+ A M0\v\+U-k) A M0\w\-n — M^ A M0Gv]+]w]_k;

this follows essentially ftom the definition of F  and the existence of various

(obviously) commutative diagrams.   The argument is completed by the observation

that the composite of the  first three maps above may also be computed as the

composite

2(V)   A  2(W) '-^i    2(y) A M+ A Mv^/Miv^^)

_^   M+   A 2(V) A Mv^/Miv^^)

1ÙÎÙ*. m + A   2(V) A D^SU' A Mv¿/MÍv¿\dM)

1J}1^/±1  m+ A 2(V) A M/dM A M^/AK^I^),

where  A  is induced by the diagonal map Dv j. —> Dx^ x Df .   and  72   is induced

by the bundle projection  27: Dz/j —• M.    If we now make the indicated replacement,

then it is clear from the definitions involved that the map we have been considering

is a representative fot 9~  (x), and this proves the theorem.    □

This theorem allows us to prove the existence of the usual companion iso-

motphism to  9,   above.

Corollary 3.5.   Let  M"  be a compact G-manifold with bordism fundamental

class [M, dM] e3tG:S(M, dM).   Then

- fl [M, dM]: H"~kiM; M0g) - 3tG:S(M, dM)

is an isomorphism for each  k £ Z.

Proof.   This follows immediately from the existence of the commutative

diagram
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d" H"~kiM,dM) A-~   H"-kiM) Hn- k idM) â*

-fit«, dM]

-*  Hk^
I*

-f][M,dM] -HUM]

->-HkiM,dM)-±>   Wfe_j((9M)

with exact rows, the above theorem, the Five Lemma and the naturality of the

Pontrjagin-Thom construction.    D
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