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EQUIVARIANT COFIBRATIONS AND NILPOTENCY
BY

ROBERT H. LEWIS

Abstract. Let /: B -» Y be a cofibration whose cofiber is a Moore space. We give
necessary and sufficient conditions for/ to be induced by a map of the desuspen-
sion of the cofiber into B. These conditions are especially simple if B and Y are
nilpotent.

We obtain some results on the existence of equivariant Moore spaces, and use
them to construct examples of noninduced cofibrations between nilpotent spaces.
Our machinery also leads to a cell structure proof of the characterization of
pre-nilpotent spaces due to Dror and Dwyer [7], and to a simple proof, for finite
fundamental group, of the result of Brown and Kahn [4] that homotopy dimension
equals simple cohomological dimension in nilpotent spaces.

0. Introduction. Much work has recently been done on the structure of nonsimply
connected spaces, particularly nilpotent spaces. It has been shown that in many
ways they are just as tractible as simply connected spaces. For example, Brown and
Kahn [4] have shown that for nilpotent spaces homotopy dimension equals simple
cohomological dimension.

In one significant respect, at least, nilpotent spaces remain as obscure as other
nonsimply connected spaces: one cannot visualize how the cell structure relates to
the homology. The reason is that nilpotency has so far been analyzed using
fibrations, not cofibrations. By "visualize" I take as paradigm the homology
decomposition of [10], whereby it is possible to picture a simply connected space as
arising by attaching Moore spaces together, one for each homology group. (A
Moore space is a simply connected CW complex having a single nonvanishing
homology group.) Dually, it is possible to kill the homology dimension by dimen-
sion by successively attaching Moore spaces.

This paper is a step toward producing analogous ideas for nilpotent spaces.
The first section derives many algebraic lemmas, several of interest in their own

right. They all concern finitely generated modules over finitely generated nilpotent
groups tt. In Proposition 1.5 we show that if the trivializing map M —> M /IM splits
over Z (the integers) and if 77,(77, M) = 0, then H¡(tt, M) = 0 V i > 1. As a
corollary, we have the theorem that if 3/i > 1 such that 77n(77, M) is a free Abelian
group and H„+x(tt, M) = 0 then H ¡(it, M) = 0 V (' > n + 1. Additional corollaries
relating to nilpotent modules are derived. The main technique here is the idea of
resolving a module by a free chain complex of length one that is not acyclic, but
whose homology modules are perfect.
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140 R. H. LEWIS

In the second section we are concerned with the equivariant version of cofibra-
tions whose cofiber is a Moore space. By an equivariant cofibration we mean a pair
( y, B), usually a CW pair, which some group tt acts upon (cellularly). We supply
several criteria for deciding when such a cofibration is induced. Theorem 2.5
determines exactly when this occurs in the nilpotent case.

The third section opens with a discussion of one of the fundamental problems
about equivariant cofibrations, the existence of equivariant Moore spaces. This
problem was posed by Steenrod around 1960. We show that such a complex
K'(M, n) exists for 77 and M nilpotent if M satisfies certain stringent homology
conditions (relating back to §1) (Theorem 3.4). We also have a theorem (3.1)
stating that topological actions on Moore spaces can be made cellular in a nice
way. The section closes with the construction of many examples of equivariant
cofibrations.

§§4 and 5 are applications of the machinery developed earlier. In §4 we give a
cell structure proof of the theorem due to Dror and Dwyer [7] characterizing
pre-nilpotent spaces. For 77 a finite /»-group this is an equivariant version of killing
homology by attaching Moore spaces. §5 provides a short easy proof of the
theorem [4] that homotopy dimension of a nilpotent space equals simple cohomo-
logical dimension. Our proof is for the most difficult case, finite fundamental
group, but would work in general if a certain algebraic result (next paragraph) were
proven.

This research points out two questions about the homology of finitely generated
modules over finitely generated nilpotent groups:

(1) If 77 is finite and M is nilpotent with 77,(77, M) = H2(tt, M) = 0, must M be
cohomologically trivial? (See Theorems 3.4-3.6.)

(2) If M is torsion free and 77,(a, M) = 0 V / > 1, V a normal in 77, must M be
projective? (See §5.)

I believe that the answer to (2) is yes.
Some comments on notation. "A" means the universal cover of A. "Space"

means CW complex whenever convenient. All tensor products are taken over the
ground ring Z, the integers. All modules are left modules. "I" is the augmentation
ideal of Z77 and IM is the submodule of M generated by all elements of the form
am - m, a E tt, m E M. Refer to [5] and [14] for basic homological algebra.

I thank the referee for the present (more powerful) version of 1.9 and 1.10, and
for pointing out 3.6.

I wish to acknowledge the help and encouragement given me by Ken Brown and
Peter Kahn.

1. Algebraic preliminaries. All of the results of this section are corollaries of the
following theorem due to Dwyer, proven in [8].

Theorem 1.1. 7/77 is a finitely generated nilpotent group and M is a finitely
generated perfect ir-module, then 77,(77, M) = 0, V / > 0.

Recall that a 77-module is said to be perfect if 7A7 = M, or equivalently if
770(77, M) = 0. For the rest of this section, M will be a finitely generated 77-module
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EQUIVARIANT COFIBRATIONS AND NILPOTENCY 141

and 77 will be a finitely generated nilpotent group. Z77 is then (left and right)
Noetherian [12].

Let M = lim M/IkM. In [3] Brown and Dror show that the natural map
M —> M preserves exact sequences of finitely generated modules. Several of the
results of this section can be derived very quickly from their techniques. We have
chosen to take the much more elementary 1.1 as our starting point (even the proof
in [8] is unnecessarily complex) in order to emphasize the elementary nature of the
results.

Corollary 1.2. A submodule of a finitely generated perfect module is perfect.
Thus, finitely generated perfect modules form a Serre class.

Proof. If M is perfect and A c M, look at the long exact homology sequence of
0 —> A —> M -> M/A —> 0. It is elementary that the image of a perfect module is
perfect. By Theorem 1.1, 77,(77, M/A) = 0 and the result follows.

Corollary 1.3. Given an exact sequence of tt-modules 0—»./V—>Af—»T"—*0 with
Pperfect, 3 an exact sequence 0 —> IN —> IM -» P —» 0. Inductively, 0 -» I"N —> I"M
^P^O.

Proof. From the long exact homology sequence associated with the given
sequence, it follows from Theorem 1.1 that 770(77, N)-* Hq(tt, M). Complete the
proof by applying the Nine-Lemma, or similar diagram chase, to the following.

0     -+ IN -+     N     -*      N/IN     —    0
■* •+' vL '>-'

0     -+        IM        -*     M     -^     M/IM     -►    0
I 4

IM/IN     ->     P
I 1
0 0

Recall that a 77-module M is said to be pre-nilpotent if I"M is perfect for some
n > 0. Thus, the class of pre-nilpotent modules includes both the nilpotent and
perfect modules.

Corollary 1.4. Finitely generated pre-nilpotent tt-modules form a Serre class.

Proof. Given 0—>/l—>A7—>7?—>0, suppose first that M is pre-nilpotent. Then
I"M is perfect for some n. The induced map 7"A7 —» I"B is a surjection so 7"7i is
perfect. Furthermore, I "A c I"M so I"A is perfect by Corollary 1.2.

On the other hand, suppose A and B are pre-nilpotent. Standard methods yield
the sequence 0 -» A n I"M -» I"M -h> I"B -+0, where we take n so that I"B is
perfect. By Corollary 1.3 we derive, for every k > 0, 0 -> Ik(A n I"M) -> In+kM
-^ lnB -^ 0. But Ik(A n I"M) c IkA and so is perfect for large enough k. Thus,
for this value of k, Ia+k is perfect.

Proposition 1.5. If the map M —» M/IM splits over Z (i.e., as a group homomor-
phism) and Hx(tt, M) = 0, then H,(tt, M) = 0 V / > 1.
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142 R. H. LEWIS

Proof. Let /: M/IM -> M be a Z-splitting and map the induced module
Z77 ® M/ IM ^> M by h(X ® x) = Xf(x). This homomorphism induces an isomor-
phism on 770(77, - ). Denote its image in M by 70.

0 0

¡o
S  h' "*i

Ztt® M/IM X M
? \

K M/I0

0 0

The map induced on 770(77, — ) by h' is surjective because h' is surjective, and it is
injective because h induces an isomorphism on 770(77, — ). It follows that M/I0 is
perfect, and so 77,(77, 70) = 77,(77, M) = 0.

Now, the induced module Z77 ® M/IM has, of course, no homology above
dimension zero. But the vanishing of 77,(77, 70) forces K to be perfect, so it too has
no homology above dimension zero.

Therefore, all the higher homology of both 70 and M/I0 vanish, and the result
follows.

The same technique is used in the following theorem, which could be called
"resolving M using frees and perfects".

Theorem 1.6. Suppose that 77,(77, M) is a free Abelian group and H2(tt, M) = 0.
Then 3 finitely generated free tt-modules F0 and Fx and maps

3, 30

Fx-»Fo^M^0,
where d0 is onto, ker 30/Im 3, is perfect, and ker 9, is perfect.

Proof. Let F0 —> M be any surjection of a finitely generated free module onto
M, and let K0 be the kernel. Observe that since 77,(77, M) is free Abelian and
772(77, M) = 0, 770(77, K0) is free Abelian and 77,(77, K0) = 0. We may therefore
apply the method of Proposition 1.5 to K0, and the result follows as a porism of
Proposition 1.5.

Corollary 1.7. If Hn(tT, M) is free Abelian and H„+x(tt, M) = 0 then H¡(tt, M)
= 0 V/ > n + 1.

Proof. By induction on n, using Theorem 1.6. Given such an M, take a (finitely
generated) free F mapping onto M, call the kernel K, and look at the long exact
homology sequence of 0 —> 7Í ̂ > T7 —> M ^0.

Finally, we shall add nilpotency assumptions to Proposition 1.5.

Corollary 1.8. Let M be as in Proposition 1.5 and assume in addition that M and
Ztt ® M/IM are nilpotent. Then M = Ztt <8> M/IM.
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EQUIVARIANT cofibrations AND NILPOTENCY 143

Proof. Examine the proof of Proposition 1.5. The new assumptions obviously
force M/ 70 and K to vanish.

If only M is nilpotent, then Z77 ® M/IM is pre-nilpotent. The next two results
show that induced modules are not often pre-nilpotent or nilpotent.

Proposition 1.9. Let tt be a nontrivial finitely generated nilpotent group and A be
a nontrivial finitely generated Abelian group. Then Ztt ® A is pre-nilpotent iff tt and
A are both finite.

Proof. If: trivial, since Ztt ® A has only finitely many subgroups.
Only if: We first verify the theorem for the special cases tt = Z and tt = Zp, p

prime.
If 77 = Z , decompose A as F © S1 where F is free and S consists of torsion.

Then 7"(Z77 ® F) is a direct summand of 7"(Zt7 ® A). But for 77 = Zp, I"(Ztt) is
strictly contained in I"~x(Ztt), for every n (Gruenberg [9]), so Z7r ® A cannot be
pre-nilpotent unless F = 0, as claimed.

If 77 = Z, then /(Z77) = Z77, and it is easy to see that I"~x(Ztt ® A)/I"(Ztt ® A)
= A, for all n.

In the general case, given any nontrivial 77 find an epimorphism 77 —» Zp, some
prime p. If a is the kernel of this map, then Z77 ® /l/(a-action) is isomorphic as a
77- (or Zp-) module to Z(Zp)® A. Thus, if I"(Ztt ® A) is 77-perfect then
I"(Z(Zp) <8> A) is Zp-perfect, so A must be finite.

If 77 is infinite argue as in the preceeding paragraph, but with an epimorphism
77 ̂ Z.

Proposition 1.10. With it and A as in 1.9, Ztt ® A is nilpotent iff there is some
prime p such that tt and A are both finite and of exponent p.

Proof. Only if: 77 and A are finite by 1.9. For primes/? and q let Zp be a normal
subgroup of 77 and Aq the ^-torsion subgroup of A. Then Z(Zp) ® Aq <z Ztt ® A
must be nilpotent over Z(Zp). It is easy to check then (a simple proof is in [11]) that

q ^p ^Aq=0.
If: By 1.9 Ztt ® A is pre-nilpotent, so contains a perfect module that consists

entirely of /^-torsion. But such a module must be trivial (prove it first for 77 = Zp,
then use induction on |77|).

Another theorem about induced modules is in [2].

2. Induced cofibrations. We are chiefly concerned here with cofibrations A —* X
-^X/A, where the pair (X, A) is (n — l)-connected, n > 3. We set 77 = 77,X,
G = Hn(X, A), and G = tt„(X, A) = Hn(X, A). By the relative Hurewicz Theorem,
G —» G is just G—* G/IG. In most of the applications, X/A is a Moore space
K'(G, n).

Definition. The cofibration A -h> X —> K'(G, n) is said to be induced if X arises
from A by attaching the cone on K'(G, n — 1) via a map K'(G, n — I)—* A.

If A is simply connected then every cofibration A —» X —» K'(G, n) is induced
(see Hilton [10]). This is obviously not the case if A is not simply connected. For
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144 R. H. LEWIS

example, consider RP2 —> RP4 —> K'(Z2, 3). Here G = Z with Z2-action 1 K-l,
and X/ A is not a Moore space.

The two main results of this section are

Theorem A. A -^ X -h> K'(G, n) is induced iff X/Ä = 7C(G, n) and G is an
induced tt-module.

Theorem B. If A -> X is as in Theorem A and A and X are nilpotent, then A -» X
is induced iff G —> G splits over Z and Ztt <8> G is nilpotent.

We begin with

Theorem 2.1 (easy half of Theorem A). If the cofibration A -> X -» K'(G, n) is
induced then X/A = K'(G, n) and G is an induced tt-module.

Proof. Since A -» X is induced, 3/: K'(G, n — 1) —> A such that the induced
map (Ap A) —* (X, A) is a homotopy equivalence of pairs

(Aj = A \jf CK'(G, n - 1)).
The map/ has a lift/a for each element a of 77. If A¡ denotes the indicated pushout

© K'(G, n - 1)      ->     À
a

i l    \
A

© CK'(G, n - 1)     ->    A, i

\
Af

it is easy to see that the induced map Af -h> Aj is a universal covering. The result
follows.

The next proposition generalizes a construction due to Wall [18]. It allows
induced modules to be used instead of free modules to kill homotopy groups of a
pair.

Proposition 2.2. Given the (n — l)-connected cofibration A —* X —* X/A, n > 3,

suppose that there is an induced module F and a tt-epimorphism F^> Hn(X, A). Then
3 an induced cofibration A —> Xx —> K'(G, n) and a map Xx -» X which is the identity
on A, such that (X, Xx) is n-connected, Hn(Xx, A) is F, and Hn(Xx, A)^> H„(X, A) is

f-
Proof. Write F = Ztt ® F and let Tí: F-+ Ztt ® F be x i-* 1 ® x, the natural

splitting of the map of F to its trivialization. From the Universal Coefficient
Theorem for homotopy groups (Hilton [10]), we have the diagram:

tt„(F;X,A)      -»     Hom(F,TTn(X,A))     -*     0

1 I
77„(F;*A4)     -»     Uom(F,TT„(X/A))     ->    0
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EQUIVARIANT COFIBRATIONS AND NILPOTENCY 145

Pick a pair of maps (<¡>, \p) representing an element of TTn(F; X,A) whose image in
Hom(F, tt„(X, A)) is fh. Let A', be the indicated pushout

K'(F, n - 1) X A

I *, i
7* \

CK'(F, n-l) -+ X
i * i

K'(F, n) -» X/A

The proof is completed by examining the homology exact sequences of the triples
(X,Xx,A)<md(X,Xx,Ä).

Definition. A pseudo-induced cofibration, A —> X —> K'(G, n), n > 3, (X, A) (n
— l)-connected, is one in which X/A is a Moore space.

Problem. Given A and G, does there exist a pseudo-induced cofibration? If so,
classify all such up to equivariant homotopy type. The next theorem, as well as
Theorem 3.8, shed some light on the question.

Theorem 2.3. In our standard situation of A -* X -> K'(G, n), it is always true
that 77,(77, G) = 0. If the cofibration is pseudo-induced then 77,(77, G) = 0 V / > I. If
in addition the pair (X, A) is finite dimensional, then G has a finite free resolution.

Proof. The last statement is obvious from the exact sequence

•• ■ -^Hn + x(Xn + x,X")^HnXn-*Hn(X,A)^0,

in which Xk = (X, Äf.
Consider the spectral sequence E2 = Hs(tt, Ht(X, A))=* HS+I(X, A). If EXn were

not zero it would survive to ExMn, which would imply that 77n+,(A", A) =£ 0.
If the cofibration is pseudo-induced then E2 = 0 V / > n + 1. Thus, any non-

zero entry in the row Efn would survive into Ex, which is impossible for s > 1
since Hn+s(X, A) = 0.

Theorem 2.4 (other half of Theorem A). If G is an induced tr-module then the
pseudo-induced cofibration is actually induced.

Proof. In Proposition 2.2 choose/: F—» Hn(X, A) to be the identity map. The
induced map Xx -^ X is easily checked to be a homotopy equivalence.

In combination with Theorem 2.1, this last result says that a pseudo-induced
cofibration is induced iff G is induced. Examples of pseudo-induced cofibrations
which are not induced will be constructed at the end of §3.

Given the standard situation A —> A1—> K'(G, n), we remarked earlier that if A
(and therefore A") is simply connected then the cofibration is induced. This suggests
the conjecture that if A and X are nilpotent then the cofibration is induced. The
conjecture is false; examples will be given at the end of §3. However, we can now
prove Theorem B.
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146 R. H. LEWIS

Proof of Theorem B. Only if: trivial, by Theorem 2.1.
If: By Theorem 2.3, 77,(7r, G) = 0. The hypotheses of Corollary 1.8 are now

satisfied and so G is induced.
Consider again the spectral sequence E2 = Hs(tt, H,(X, Ä)) => HS+I(X, A). E2 =

0 if t = n and s > 0. E^n+X = 0: otherwise 7s0" + , would be nontrivial and so then
would Hn+x(X, A). Hn+x(X, A) is therefore both perfect and nilpotent. Its vanish-
ing allows us to repeat the argument with £,02„+2. We conclude inductively that
Hn + i(X, A) = 0 V /' > 1, so the cofibration is pseudo-induced. Applying Theorem
2.4 completes the proof.

Proposition 1.10 shows that Z77 ® G can be nilpotent in interesting cases.

3. Equivariant cell complex constructions.
Definition. A (free) 77-complex is a CW complex X on which 77 acts cellularly

(and freely). It will usually be simply connected, and the action will usually be
either free or free-based (which means there is precisely one point of X which is
fixed, and everything in 77 fixes it).

If a universal cover cofibration A —> X —> K'(M, n) exists, as in the previous
section, then X/A is a simply connected 77-complex having the 77-module M as the
only nonvanishing homology group. We shall refer to such a complex as an
equivariant Moore space of type (M, n, tt). It behooves us to discuss, first of all,
whether such a complex exists for a given triple (M, n, tt), and, if so, whether.it can
be realized as the cofiber of such a cofibration, given A.

The first question is a fairly well-known problem, first asked by Steenrod in 1960
and considered by Swan [17] (who required in addition a finite complex). We
answer the question affirmatively in Theorem 3.4 for certain nilpotent modules M
over finitely generated nilpotent 77. However, the preliminary nature of 3.4 is
emphasized by 3.6, which shows that the conditions imposed on the nilpotent
module M are quite stringent. Our approach is quite different from that of Arnold
[1] and Smith [15] who have recently obtained partial results.

As for the second question, the answer is "yes" in three cases. If 3 an equivariant
Moore space of type (A/, n, tt) and A = K(tt, 1) then we can find an X such that
X/A is the desired Moore space. Secondly, if M has a free resolution of length < 1
then A can be any complex with ttxA = tt. Thirdly, if A and M are nilpotent and 77
and M satisfy the sort of finite generation and homology conditions of §1, then we
may create the desired X. The question of how many X exist up to equivariant
homotopy type is left open.

Returning now to the first question, the obvious way to begin is to generalize the
simple construction which shows that ordinary K'(G, n) Moore spaces exist for
arbitrary Abelian groups G. Given a 77-module M and a free 77-module resolution
• • • —> Fx —> F0 —> M -» 0, the procedure would be to realize F0 with a wedge of

«-spheres and then attach n + I, n + 2, . . . cells equivariantly according to the
maps in the resolution, thereby creating a 77-complex X geometrically realizing the
resolution, i.e., with Hm(Xm, Xm~x) a Fm_n and boundary maps corresponding.

The problem with this inductive construction is that in order to kill homology by
attaching cells we must know that the map 77mA"" -» HmXm is a surjection, and
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EQUIVARIANT COFIBRATIONS AND NILPOTENCY 147

there is no simple way to show that, as m gets large. (However the method does
work if M has a resolution of length < 2.)

There appear, then, to be two distinct questions: Given the triple (M, n, tt),
(1) Is there some particular resolution of M which can be realized?
(2) Can every resolution be geometrically realized?
Our first theorem shows that these questions are equivalent.
Definition. A topological action of a group 77 on a space y is a homomorphism

from 77 into the group of homeomorphisms Y -» Y.

Theorem 3.1. Given the triple (M, n, tt), n > 2, suppose there exists an ordinary
Moore space Y = K'(M, n) and a topological action of tt on Y such that HnY = M.
Then any free tt-resolution of M can be geometrically realized.

Proof. Let
3, 30

• • . _>F,-»Fo->Af-*0
be a free ^-resolution of M. The idea is to construct inductively the desired
7r-complex X, using Y to guarantee that the construction can proceed from step to
step.

Assume then that Xm, m > n + 1, has been constructed such that Xm realizes
the resolution up to Fm_n, in particular

(1) 77„A"" = M, 77,A"" = 0 for m > i > n, HmXm = ker dm_n.
(2) 3 a map fm: Xm —> Y commuting with the 77-action on each space and

inducing an isomorphism on 77„.
Note that/m is /n-connected. The initial construction of Xn + X and/n+, is routine.
The key observation is that 77mA"" —> HmXm is a 77-split surjection. This is evident

from the diagram:

•••       -      *m+xfm      -»      *mXm      "-*     "mY     ->     0

0 -»     77m+,/m      ~      HmX"     -*        0

Use this 7r-splitting to equivariantly attach m + 1 cells, creating Xm+X, such that
Hm+x(Xm+x, Xm) à Fm_n+X. Since the image of Trm+x(Xm+x, Xm)^TtmXm is pre-

cisely that of TTm+xfm —> iTmXm, the map fm may be extended to a 77-map/m+1,
completing the inductive step.

Corollary 3.2. If M is tt-trivial then any resolution of M can be geometrically
realized.

Proof. Take Y to be an ordinary K'(M, n) with trivial homotopy action.
The next construction is the basic technique which allows us to kill homology.

Theorem 3.3. Let X be a Tr-complex, n > 2. Suppose M is a submodule of HnX
which can be split back to TrnX, i.e., 3AÍ' C 77nA' carried isomorphically onto M by
TTnX —> HnX. Any free chain complex

91       30
Fx^F0^M^>0
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148 R. H. LEWIS

can be used to attach n + 1 and n + 2 cells to X, creating a ir-complex Y with
Hn Y = HnX/M. If the chain complex is acyclic, no new homology will be introduced
in dimensions n + 1 and n + 2.

Proof. Essentially routine. For each 77-basis element bi of F0 attach an n + 1 cell
to X via a map/: S" —> A' obtained as the composite F0—» A/—» A/' c 77„A'. Then
attach a cell via a/ for each a G 77. Call this new complex Yn+X. Since Im 9, c
ker90, 9,: Fx-+ F0 = Trn+x(Yn+x, X) can be lifted to Fx^>TTn+xY"+l. We can
therefore attach n + 2 cells in the same manner as for n + 1 and create the desired
complex Y.

The exact sequence of the pair ( Y, X) breaks into the two sequences

0^ 77n + 2A-^ 77n + 2F^ker 9, ^ 77n+,A-^ 77„+,y^ker 90/Im 9, ^0,
0 -* M -* HnX -h» 77„ y -+ 0,

establishing the proposition.

Theorem 3.4. Suppose that tt is a finitely generated nilpotent group, M is a finitely
generated nilpotent ir-module, and n > 2. If 77,(77, M) is free Abelian and H2(tt, M)
= 0 then 3 an equivariant Moore space of type (M, n, tt).

Proof. Using Theorem 1.6 we find a chain complex
3, 30

Fx -^F0-> M -^0
with ker 90/Im 3, and ker 9, perfect. Realize F0 with a wedge of «-spheres and
attach n + 1 cells equivariantly using 9,. If the resulting 77-complex is Xn+X,
observe that Hn+lX"+x is perfect and that HnXn + x appears in the sequence
0 ^ 7> ̂  77nAn + 1 -> M -> 0 with P = ker 90/Im 9, a perfect module.

Now P certainly satisfies the hypotheses of Theorem 1.6, so we resolve it with
F[ -> F¿ -» P -* 0. Since TrnX"+x ~ HnXn+x we may use Theorem 3.3 to attach
n + 1 and n + 2 cells to Xn+X, forming a 77-complex X" + 2. From the proof of
Theorem 3.3 we see that HnXn + 2 s M and that Hn+xXn+2 and 77„ + 2A"'+2 are
perfect (by Corollary 1.2).

We proceed inductively to construct a 77-complex X" + m, m > 2, satisfying
(1) HnXn + m a M, H,Xn + m - 0 for n + m - 2 > í > n + I, Hn + mXn+m and

Hn + m   \Xn + m are perfect 77-modules.
Given xn + m~x, the idea is to use Theorem 3.3 to kill 77„ + m_2A"' + m"1 by

attaching n + m — 1 and n + m cells according to a resolution obtained by
Theorem 1.6. This creates x" + m satisfying (1). The crucial point is that the
homology to be killed is perfect, and all lower dimensional homology is nilpotent
(being either 0 or M). Thus, the isomorphism hypothesis of Theorem 3.3 is satisfied
because of the follwoing lemma:

Lemma 3.5. Let X be a simply connected ir-complex and suppose that HjX is
nilpotent for 2 < i < a — I. If M is any finitely generated perfect submodule ofH„X,
then 3 a submodule M' C 77,^ carried isomorphically onto M by the Hurewicz map.

Proof. Let 9L denote the Serre class of nilpotent 77-modules. By elementary
S-theory the map TTnX -* HnX is a 91-isomorphism. This means that 3 nilpotent
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modules Nx and N2 and an exact sequence

0 -+ Nx -* TTnxX HnX ->N2->Q.
M goes to 0 in N2 so it lies in the image of h. Let B = h~x(M) c 7rnA\ We have

h
then the exact sequence 0^>A/,—>7Î—>A/—>0, which yields V/ > 0,

0-> IJNx^IJB^M->0,
by Corollary 1.3. But IJNX = 0 for large enough/, and the proof is complete.

Proposition 3.6. Suppose that tt is a finitely generated nilpotent group and M is a
finitely generated nilpotent rr-module such that 77,(77, M) is free Abelian and
H2(tt, M) = 0. Then one of the following three alternatives holds:

(1) tt is infinite cyclic.
(2) tt is infinite but not infinite cyclic, and M = 0.
(3) 77 is finite and 77,(77, M) = 0.

Proof. If 77 is finite then it is not hard to prove that 77,(77, M) is finite for any
finitely generated M (show it first for 77 = Zp, then use the Serre spectral sequence
ofO^Z^,—>77-*a-»0 and induction). Hence case (3).

If 77 is infinite but not infinite cyclic, find a surjection tt —> Z with kernel a ¥= 0.
The Serre spectral sequence of this fibration is E2 = HS(Z, H,(a, M)) =>
Hs + ,(tt, M). Since 772(t7, M) = 0, 77,(Z, 77,(a, A/)) = 0. But for any Z(Z)-module
N, HX(Z, N) is the submodule consisting of elements fixed by the Z(Z) action.
Since 77,(a, M) is nilpotent over Z(Z), this submodule is nontrivial if 77,(o, A7) is
nontrivial. We conclude that 77,(a, M) = 0.

Consequently, 7s02, = 0, so that Exo = HX(Z, H0(o, M)) is free Abelian. By
Lemma 3.7 (below), 770(a, M) is free Abelian. But now we can apply Corollary 1.9
to M and a. a is nontrivial so M must be 0.

Notice that only case (3) is of interest in constructing equivariant Moore spaces.
Must M be cohomologically trivial in that case? If so, it has a free resolution of
length < 1, and we do not need 3.4 to construct the equivariant Moore space.

Lemma 3.7. If M is a finitely generated Z(Z)-module and HX(Z, M) is free
Abelian, then M is free Abelian.

Proof. Note first that any submodule of M has free Abelian 77,. Thus, any
submodule of M consisting only of fixed points must be free Abelian.

Now proceed by induction on the nilpotency length of M. Since there is an
epimorphism M —> 7A7 whose kernel consists of fixed points, the proof is complete.

The remainder of this section is concerned with the relative case: constructing
equivariant cofibrations whose cofiber is a space of type (M, n, tt).

Theorem 3.8. Let A be a CW complex with ttxA = tt, M a ir-module, n > 2. If
either of the following conditions hold then 3 an equivariant cofibration Ä -> X -»
K'(M, n).

(1) M has a free resolution of length < 1.
(2) 77 is finite nilpotent and M is finitely generated nilpotent with Hx(tt, M) =

772(t7, M) = 0.
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Note. The homology condition in (2) is always satisfied in pseudo-induced
cofibrations (Theorem 2.3). This theorem says that, conversely, in the nilpotent
case any module satisfying 77,(77, A/) = 0 V / > 1 can appear as the cofiber of a
pseudo-induced cofibration.

Proof of 3.8. Take a resolution

In case (1) it will be a free resolution; in case (2) it will be a resolution by frees and
perfects (Theorem 1.6).

Call one of the points of the fiber of A —> A "the" basepoint, and pick a maximal
tree T in the one-skeleton of A. T contains all of the fiber. Attach to the basepoint
one «-sphere for each basis element of F0, then put the same bouquet of spheres at
every other point of the fiber. There is an obvious free 77-action on the resulting
space X", and Hn(X"/Ä) = F0.

F0 is a direct summand of 77nA^", so we may use the map 9,: F, —» F0 and the
maximal tree T to attach one « + 1 cell for each 77-basis element of F,. Then attach
other « + 1 cells to create Xn+X with Trn+x(Xn+x, X") = F, and 77 acting freely on
Xn+X. In case (1) we are now done: take X = Xn+X.

In case (2) the argument now mimics that of Theorem 3.4. 77„A'''+1 = HnÄ ©
F0/Im 3,. F0/Im 3, has the perfect submodule ker 30/Im 3,. Find a resolution by
frees and perfects for this module and use Proposition 3.3 to kill it, obtaining, say,
Xn + 2. Since M and A are nilpotent, H¡X" + 2 is nilpotent for 2 < / < «, while
Hn+xXn + 2 and 77„ + 2A" + 2 are pre-nilpotent. The perfect homology which has been
introduced into Hn+lXn+1 can, by Lemma 3.5, be killed by the method of
Proposition 3.3, returning the homology to Hn+XA. The inductive argument pro-
ceeds exactly as in Theorem 3.4, yielding X with X/A = K'(M, «).

Proposition 3.9. If A = A"(77, 1) and M is any tt-module for which 3 a space of
type (M, «, 77), then 3 an equivariant cofibration A —> X —> K'(M, n).

Proof. Use Theorem 3.1 to obtain a K'(M, n) with free-based 77-action, and give
À X K'(M, «) the diagonal action. Then the cofibration A —> A X K'(M, n) —>
K'(M, n) is 77-equivariant.

We can now construct examples of pseudo-induced cofibrations. The easiest
examples of modules A7 with vanishing homology occur over finite 77 when M is
cohomologically trivial.

For example, if 77 = Z2 one can make Z8 a nilpotent cohomologically trivial
77-module by the action 1 h> 5. Many similar examples can be constructed. Since
cohomologically trivial modules over finite groups have resolutions of length < 1,
equivariant Moore spaces of type (M, n, tt) need have cells only in dimensions «
and « + 1.

The following examples show that the hypotheses of Theorem B, §2, cannot be
weakened.

Examples 3.10. Let 77 = Z2, A any nilpotent CW complex with 77,^ = 77. If
M = Z8 with action 1 i-> 5, M/IM = Z4 and Z77 ® Z4 is nilpotent. Construct the
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pseudo-induced cofibration A —> X -» K'(M, «), yielding A —> X —> K'(Z4, n) with
A and X nilpotent. The cofibration fails to be induced because M —> M/IM is not
Z-split.

On the other hand, suppose A7 is Z3 with trivial (therefore nilpotent) Z2-action.
M —» M/IM is certainly Z-split. Construct again A —> X —* K'(M, n) yielding
A —> X —> K'(Z3, «). The cofibration fails to be induced because Z77 ® Z3 is not
nilpotent.

4. Pre-nilpotent spaces. In this section we use the techniques of the previous
sections to prove a theorem due to Dror and Dwyer [7] characterizing pre-nilpotent
spaces. Our proof has the advantage of being very geometrical.

Definition. A space X is said to be pre-nilpotent if 3 a homology equivalence
X -* N where N is nilpotent.

Definition. We will say that a space X is of finite type if:
(1) 77^ is a finitely generated group.
(2) HjX is a finitely generated group for all/.
(3) HjX is a finitely generated 77,A-module for all/.
(4) HjXv is a finitely generated 77,Af-module for all/. Xr denotes the cover of X

having fundamental group the maximal 77,Ar-perfect subgroup of ttxX. In other
words, 77^ acts on its normal subgroups by conjugation, and T is the largest of
those which are perfect with respect to this action.

For example, a locally finite space is of finite type (a locally finite space is one
which has a finite number of cells in each dimension). Also, a space that satisfies
the first three conditions and has a nilpotent fundamental group is of finite type.

Proposition 4.1. Let A be a space of finite type and suppose that there is a
homology equivalence A —» X in which X is nilpotent. Then X is of finite type.

Proof. By a result of Stallings [16] (see also Dror [6]) the map ttxA -h> irxX is a
surjection, so 77^ is also finitely generated. It remains to show that each 77 A^ is
finitely generated over 77,A\ It is well known for nilpotent spaces X that HtX is
finitely generated (over Z) iff 77^ is finitely generated (over Z). Thus we conclude
that TTçX = tt^X is finitely generated over Z. Therefore 77„A^ is finitely generated.

Proposition 4.1 assures us that, in discussing pre-nilpotent spaces, we do not have
to leave the class of spaces of finite type.

Our first theorem is the easy half of the characterization of pre-nilpotent spaces.

Theorem 4.2. If A is a pre-nilpotent space of finite type then ttxA acts pre-nilpo-
tently on HtAr.

Proof. Find a homology equivalence to a nilpotent X, A —> X. Assume that the
map is a cofibration. By Stallings' result in [16], the kernel of ttxA —> 77,A" is
FttxA = TjTtxA for some/. The inverse image of A in X is therefore Av.

Consider the spectral sequence E2 = Hs(ttxX, H,(X, Aß) => Hs + l(X, A). Because
the pair (X, A) has no homology, £022 = 0. H2(X, Aß is therefore a perfect
77,A'-module, and we have enough finite generation to use Theorem 1.1. The entire
second row in the E2 term is trivial, so we deduce that H3(X, Ar) is perfect, and so
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on inductively. These modules are also perfect over ttxA because of the surjection
on fundamental groups. Examination of • • • —> Hn+x(X, Aß —> HnAT —> HnX
—» • • •   completes the proof.

Theorem 4.3 (converse of 4.2). Let A be a space of finite type in which ttxA acts
pre-nilpotently on H^Ar. Then 3 a nilpotent space X and a homology equivalence
A^X.

Proof. In order to see the simplicity of the basic idea we will assume that
YttxA = 0 and thus that ttxA = 77 is nilpotent. In an appendix we will reduce the
general case to this situation. We are given, then, that tt acts pre-nilpotently on

Begin with the short exact sequence 0 —> YH2A —> H2A —» 772.4 /YH2A -* 0, in
which the last module is nilpotent by assumption. Use Theorem 1.6 to form a
"resolution by frees and perfects" of TH2A. Using this resolution, attach three- and
four-cells to A as in Proposition 3.3, to form a free 7r-complex A (2). The cofiber
A{2)/A has homology only in dimensions three and four, where it is perfect. Thus,
A -^> A(2) is a homology equivalence. Also observe that H2A(2) is nilpotent and
that all higher homology modules of A (2) are pre-nilpotent by Corollary 1.4.

We now proceed inductively, patching up the 77-action on each homology group
in order. We assume a homology equivalence A —> A(n — 1) where tt acts nilpo-
tently on H,A(n - 1) for 2 < . < « — 1 and pre-nilpotently on the higher homol-
ogy. From a resolution of frees and perfects of THnA(n — 1) we use Proposition
3.3 to attach cells of dimension « + 1 and « + 2 in such a way that 77 acts freely on
the resulting complex A(n), HnA(n) is a nilpotent 77-module, the higher homology
remains pre-nilpotent, and A(n — 1) —> A(n) is a homology equivalence. The only
detail to be checked is the isomorphism hypothesis of Proposition 3.3, i.e., that
HnA(n — 1) can be split back to TTnA(n — 1). But we have already verified this in
Lemma 3.5. The theorem is proved by setting X = lim A(n).

If 77 is a finite /7-group the cell construction is particularly elegant. In that case,
each module YHnA(n — 1) is cohomologically trivial (Rim [13]). Thus, the resolu-
tion by frees and perfects is in fact a free resolution. No new perfect modules are
introduced into the higher homology as the "bad part" of HnA(n — 1) is neatly
excised.

We now give the reduction of the general case to the nilpotent fundamental
group case used in the proof of Theorem 4.3.

Appendix. We are in the general case, where ttxA acts pre-nilpotently on H,Ar.
Notice that HxAr is in fact perfect. This is because ttxA acts perfectly on I\
therefore on T/[r, T] = 77,r = HxAr. Let 77 = ttxA/Y.

The idea is essentially the same as before: to attach cells to AT according to a
free-perfect resolution of HtAr. The low dimension complicates the situation.

Lemma 4.4. Let B be a (free) ir-complex with perfect fundamental group (¥= tt).
Then two- and three-cells can be attached to B to create a simply connected (free)
TT-complex D with the inclusion B —> D a homology equivalence.
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Proof. Attach two-cells equivariantly to kill 77,5 and create a 77-complex C. We
have the sequence 0 -» 7727? —> 772C -» 772(C, B) -» 0. 772(C, B) is a free 77-module,
finitely generated if 77,5 is finitely generated, so the sequence splits. Since 772C =
772C we may attach three-cells equivariantly to kill the submodule 772(C, 77) c
772C, thereby creating D. The composite 77277 —> 772C —* H2D is an isomorphism.

Now, take a 7r-resolution of 77,^r by frees and perfects

3, 30
Fx^>Fo^>HxAr^>0.

Since ttxAt -* HXÄV is surjective we may attach two-cells to kill HxAr via 90. This
complex, B say, has perfect fundamental group. Apply Lemma 4.4 to form D.
Since 772t3 -» 772t5, we can apply Proposition 3.3 and finish the construction (using
9,), creating F with É/Ar having perfect homology in dimensions two and three.
Modding out by the 77-action yields A —> E, a homology isomorphism with 77,F =
77. Therefore, F fits the assumptions of Theorem 4.3.

5. Homotopy dimension. In [4] Brown and Kahn showed that the homotopy
dimension of a nilpotent space is the same as its simple cohomological dimension,
if the fundamental group is finitely generated. Paraphrased somewhat, they proved

Theorem 5.1. Suppose that X is a nilpotent complex with a finitely generated
fundamental group, and that there is an integer « > 3 such that HnX is free Abelian
and all higher homology vanishes. Then X is homotopy equivalent to an n-dimensional
complex.

As an application of the techniques of §§1-3 we will present here a short simple
proof of this theorem. The proof, however, depends on the following characteriza-
tion of projective 77-modules:

5.2. A finitely generated 77-module A7 is projective iff it is torsion free and
77,(a, M) = 0, V / > 1, V a normal in tt.

By Rim's results [13] the characterization 5.2 is valid for every finite group 77.
Since 5.1 is known to be true, it is reasonable to conjecture that 5.2 is satisfied for
any finitely generated nilpotent group.

We will prove

Theorem 5.1'. Theorem 5.1 is true if 5.2 holds for tt and if H„(X, X"~ ') is finitely
generated.

Proof. Let C denote the chain complex of the universal cover X, regarded as a
complex of free 77-modules. If Bn is the module of «-dimensional boundaries, it
suffices to show that Cn/Bn is projective and that 77,C = 0 V i > « + 1. (See
Proposition 1.1 of [4]: also [18] and [19].) The point is that one may then take a free
complement 7? of C„/7?„, wedge on « - 1 cells to X"~x to realize R, and reattach
the « cells to realize CJ Bn © R. The resulting complex is easily shown to be
homotopy equivalent to X.

Note that C„/B„ = Hn(X, X"'1).
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Let a be any normal subgroup of 77. We use Xa to denote the cover of X with
fundamental group a (when a = 0 we suppress the subscript). By a standard
spectral sequence argument, 77/a acts nilpotently on H^Xa.

One checks easily that the cofiber of X"~x —> X is K'(F,ri), where F is free
Abelian. Look at the spectral sequence

E2, = HX-rt/a, H,(Xa, A;""1)) =» HS + I(X, X"~x).

Set Ma - Hn(Xa, A;-1). As in Theorem 2.5, Hx(ir/a, Mß = 0. Ma -» MJIMa is
Z-split. Therefore, Hs(ir/a, Ma) = 0 Vs > 1 (Proposition 1.5), which means that
the entire row E2„ = 0. This forces H0(ir/a, Hn+x(Xa, X£~x)) to be trivial, so
Hn+xXa is both perfect and nilpotent. Consequently the entire row E2n+X = 0. The
obvious inductive argument shows that Hn + iXa = 0 V / > 1. In particular, Hn+iX
= 0V/> 1.

We have established that X£~1—>Xa is pseudo-induced. By Theorem 2.5,
77,(a, M) = OVi >  1.

The only thing left is to show that M is torsion free.
Let G be any Abelian group; consider it a 77-trivial module. Examine the spectral

sequence £,2 = Hs(tt, H,(X, X"~X;G)) ^ HS + ,(X, X"-X;G). Note that
Hn(X,X"-l;G)= M ® G and Hn+x(X, X "_1; G) = Af * G. Since F is free
Abelian, 77„ + ,(A-, r"';G) = 0V/ > 1. Hence 77,(tt, M ® G) = 0 (Theorem 2.5
again).

Now, the sequence 0 -^ IM -^ Af -h. M/IM -> 0 is Z-split so 0 -> 7A7 ® G -> M
® G^> M/IM ® G^>Q is also Z-split. But G is 77-trivial, so IM ® G =
7(A7 ® G). Therefore, A/ ® G -+ M ® G/I(M ® G) is Z-split, and thus
77,(77, M ® G) = 0 V i > 1 (Proposition 1.5).

Once again we may conclude that E¿n + X =0, so that Hn+x(X, X"~X;G) is
perfect. But Hn+x(X; G)^ Hn+x(X, Xn~x; G) and Hn+X(X;G) is nilpotent since G
is nilpotent. Therefore, M * G = 0 for every Abelian group G, and the proof is
complete.
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