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1 Introduction

(1.1) This paper concerns three aspects of the action of a compact group K
on a space X . The ®rst is concrete and the others are rather abstract.

(1) Equivariantly formal spaces. These have the property that their
cohomology may be computed from the structure of the zero and one
dimensional orbits of the action of a maximal torus in K.

(2) Koszul duality. This enables one to translate facts about equivariant
cohomology into facts about its ordinary cohomology, and back.

(3) Equivariant derived category. Many of the results in this paper apply
not only to equivariant cohomology, but also to equivariant intersection
cohomology. The equivariant derived category provides a framework in
both of these may be considered simultaneously, as examples of ``equivar-
iant sheaves''.

We treat singular spaces on an equal footing with nonsingular ones.
Along the way, we give a description of equivariant homology and equi-
variant intersection homology in terms of equivariant geometric cycles.

Most of the themes in this paper have been considered by other authors
in some context. In Sect. 1.7 we sketch the precursors that we know about.
For most of the constructions in this paper, we consider an action of a
compact connected Lie group K on a space X , however for the purposes of
the introduction we will take K � �S1�n to be a torus.
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(1.2) Equivariantly formal spaces. Suppose a compact torus K acts on a (pos-
sibly singular) space X . The equivariant cohomology of X is the cohomology
H �K�X ; R� � H ��XK ; R� of the Borel construction XK � X �K EK: Let
p : XK ! BK denote the ®brationofXK over the classifying spaceBK with ®ber
pÿ1�b� � X :We say that X is equivariantly formal if the spectral sequence

H p�BK; H q�X ; R���)Hp�q
K �X ; R� �1:2:1�

for this ®bration collapses. (This condition is discussed at length in [B3]
Sect. XII.) The class of equivariantly formal spaces is quite rich: it includes
(1) symplectic manifolds with Hamiltonian K-actions, (2) any space with a
K-invariant CW decomposition, and (3) any K-space whose (ordinary)
cohomology vanishes in odd degrees (cf. Sect. 14.1).

Now suppose that X is a (possibly singular) complex projective algebraic
variety with an algebraic action of a complex torus T � �C��n: Let
K � �S1�n � T denote the compact subtorus. The equivariant cohomology
H �K�X ; R� is an algebra: it is a ring under the cup product and it is a module
over the symmetric algebra S � H ��BK; R� � S�k�� of polynomial functions
on the Lie algebra k of K: Suppose that T acts with only ®nitely many ®xed
points x1; x2; . . . ; xk and ®nitely many one-dimensional orbits E1;E2; . . . ;E`.
If X is equivariantly formal, then there is a concise and explicit formula for
its equivariant cohomology algebra: Each 1-dimensional T -orbit Ej is a
copy of C� with two ®xed points (say xj0 and xj1 ) in its closure. So
�Ej � Ej [ fxj0g [ fxj1g is an embedded Riemann sphere. The K action
rotates this sphere according to some character Nj : K ! C�. The kernel of
Nj may be identi®ed,

kj � kerNj � Lie�StabK�e�� � k

with the Lie algebra of the stabilizer of any point e 2 Ej: In Sect. 7.2 we prove

Theorem 1.2.2. Suppose the algebraic variety X is equivariantly formal. Then
the restriction mapping H�K�X ; R� ! H�K�F ; R� �axi2F S�k�� is injective, and
its image is the subalgebra

H � � f1; f2; . . . ; fk� 2a
k

i�1
S�k��

���� fj0 jkj � fj1jkj for 1 � j � `
( )

�1:2:3�

consisting of polynomial functions � f1; f2; . . . ; fk� such that for each 1-
dimensional orbit Ej, the functions fj0 and fj1 agree on the subalgebra kj:

Remarks. The K action admits a moment map l : X ! k� which takes each
1-dimensional orbit Ej to a straight line segment connecting the points l�xj0�
and l�xj1�: Let heji � k� denote the 1-dimensional subspace of k� which is
parallel to this straight line segment. Then the subspace kj � k is the anni-
hilator of heji. So the equivariant cohomology module H �K�X � is completely
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determined by the ``graph'' l�X1� � k� (where X1 � X is the union of the 0
and 1 dimensional T orbits in X .) This is made explicit in Sect. 7.5. (Actu-
ally, l�X1� � k� may fail to be an embedded graph because the moment map
images of distinct orbits may cross or even coincide.)

The ordinary cohomology of an equivariantly formal space X may be
obtained from its equivariant cohomology by extension of scalars,

H��X ; Q� � H�K�X ; Q�
M � H �K�X ; Q� �1:2:4�

where M denotes the augmentation ideal in the polynomial algebra
S � H�K�pt�: So Theorem 1.2.2 also gives a formula for the ordinary coho-
mology (ring) in terms of the graph l�X1� � k�: Even if the ordinary coho-
mology groups H��X ; R� are known (say, from a Bialynicki-Birula
decomposition), the formulas (1.2.3) and (1.2.4) have several advantages:
they determine the cup product structure on cohomology, and they are
functorial. If a ®nite group (a Weyl group, for example) acts on X in a way
which commutes with the action of K, then it will take ®xed points to ®xed
points and it will take 1-dimensional orbits to 1-dimensional orbits, so its
action on H �K�X ; R� and on H��X ; R� are determined by these equations.

There are many situations in which an algebraic torus T acts with ®nitely
many ®xed points and ®nitely many 1-dimensional orbits on an algebraic
variety X (e.g. toric varieties, or Schubert varieties [Ca]). But there exist
formulas analogous to (1.2.3) which may be used in more general situations
as well (cf. Sect. 6.3).

The space X1 � X is a kind of algebraic 1-skeleton of X . Theorem 1.2.2 is
parallel to Witten's point of view on Morse theory: the cohomology of a
Riemannian manifold with a generic Morse function is determined by the
graph whose vertices are the critical points and whose edges are the gradient
¯ow orbits which connected critical points whose Morse indices di�er by 1.

Theorem 1.2.2 says that the equivariant cohomology of X coincides with
the coordinate ring of the a�ne variety which is obtained from the disjoint
union

S
xi2F k by making the following identi®cations: for each

j � 1; 2; . . . ; `, identify the subspace kj in the copy of k corresponding to the
®xed point xj0 with the subspace kj in the copy of k corresponding to the ®xed
point xj1 :

(1.3) Cohomology operations. In order to apply this formula for equivariant
cohomology, we need a way to identify equivariantly formal spaces. In
Theorem 14.1 we list nine su�cient conditions for a space to be equivari-
antly formal, perhaps the most interesting of which is given in terms of
cohomology operations.

If a torus K � �S1�n acts on a reasonable space X , then for each mo-
nomial a � xa1

1 xa2
2 . . . xan

n in n variables, there is a cohomology operation ka

which lowers cohomology by degree i � 2Rai ÿ 1. If the monomial a has
degree one, the operation ka is de®ned on all of H��X ; R�: it is a primary
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operation. If the monomial a has degree greater than one, then ka is de®ned
on elements for which the previous cohomology operations (kb for bja)
vanish, and it is de®ned up to an indeterminacy given by the images of these
previous cohomology operations. In this case ka is a higher operation. In
Sect. 13.4 we prove,

Theorem 1.3.1. The space X is equivariantly formal if and only if all the
cohomology operations ka vanish on the (ordinary) cohomology of X .

The proof of this theorem consists of identifying these higher coho-
mology operations with the di�erentials of the spectral sequence (1.2.1).

To illustate the geometry behind the operation ka let us consider the case
K � S1. Denote by k�i� the homology operation which raises degree by 2iÿ 1
and which is adjoint to kxi . A geometric k-chain n on X may be swept around
by the circle orbits to produce a K-invariant �k � 1�-chain Sn. If n was a
cycle then Sn is also. It is easy to see that the resulting homology class �Sn�
depends only on the homology class �n� of n. So we obtain a homomorphism
k�1� : Hk�X ; R� ! Hk�1�X ; R�. If k�1���n��� � 0 then Sn is the boundary of
some chain, call it @ÿ1Sn. Then S@ÿ1Sn turns out to be a cycle, and the map
sending �n� to �S@ÿ1Sn� is k�2�. The indeterminacy comes from a choice of
pre-image @ÿ1. Similarly, k�3� sends �n� to �S@ÿ1S@ÿ1Sn� and so on.

If X � S3 is the three sphere with the free (Hopf) action of the circle,
and if the cycle n is represented by a single point in X , then Sn is a single
circle, which bounds a disk @ÿ1Sn, whose sweep S@ÿ1Sn is X itself. So
k�2���n�� � �X � 2 H3�X � is the fundamental class.

For a general torus K, all the homology operations on a class �n� involve
sweeping the cycle n around by subtori K 0 � K. Therefore we have, (cf Sect. 14.1)

Corollary 1.3.2. Suppose the ordinary homology H��X ; R� is generated by
classes which are representable by cycles n, each of which is invariant under the
action of K. Then X is equivariantly formal.

(1.4) Geometric cycles for equivariant homology and intersection homology.
Let us say that an equivariant geometric chain is a geometric chain n together
with a free action of K, and an equivariant mapping n! X . In Sects. 4.2 and
4.6 we show that the equivariant homology groups HK

� �X � are given by the
homology of the complex of equivariant geometric chains. Similarly the
equivariant intersection homology IHK

� �X � is isomorphic to the homology of
the subcomplex of such geometric chains which satisfy the allowability
conditions for intersection homology. The proof is essentially a remark.
However these descriptions will appeal to those who want to think about
equivariant homology geometrically. They played a role in the development
of the ideas in this paper, but are not needed for the proofs of the main
results in this paper.

(1.5) Koszul duality. Suppose a compact torus K acts on a reasonable space
X . Our object now is to treat the ordinary cohomology H��X ; R� and the
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equivariant cohomology H �K�X ; R� in a completely parallel manner. The
equivariant cohomology is a module over the symmetric algebra S�k��
� H��BK; R�. The ordinary cohomology H��X � is a module over the exte-
rior algebra K� �

V�k� in the following way: There is a canonical
isomorphism K� � H��K; R�. Let �n� 2 H��X � and let k 2 H��K�. Then k � �n�
is the slant product of k with the cohomology class l���n�� 2 H ��K � X �
(where l denotes the K-action mapping l : K � X ! X ). For each
1-dimensional subtorus S1 � K the action of its fundamental class
x � �S1� 2 H1�K� coincides with the primary cohomology operation kx

described in Sect. 1.3.
There is a beautiful relation between modules over the symmetric algebra

S�k�� and modules over the exterior algebra K� �
V�k� given by the Koszul

duality of Bernstein, Gelfand and Gelfand [BGG], which was further de-
veloped by Beilinson, Ginzburg, and Soergel [B][BB][G][BGS]. For any
given K-space X , one might hope that the S�k�� module H�K�X � and the K�
module H��X � determine each other by Koszul duality (as anticipated by V.
Ginzburg [G]), but this turns out to be false: the homology H��S3� of the
three-sphere, as a module over K� � H��S1�, is the same whether S1 acts
trivially on S3 or whether it acts nontrivially via the Hopf action. But the
equivariant cohomology H�K�S3� is di�erent for these two actions.

However the corresponding statement is true on the cochain level, up to
quasi-isomorphism. It is possible to lift the action of the exterior algebra K�
(on the cohomology H ��X �) to an appropriate model of the cochain com-
plex C��X ; R�, thus giving an element of the derived category D��K�� of
cochain complexes which are (di�erential graded) K�-modules, in such a
way that elements of k lower degree by one. This ``enhanced'' cochain
complex C��X � 2 D��K�� is a ®ner invariant of the K-space X than the
K�ÿmodule H��X �. For example, it contains the information of all the
cohomology operations from Sect. 1.3 whereas the K� action on H ��X �
contains only the information of the primary cohomology operations.

Similarly, it is possible to lift the action of the symmetric algebra
S � S�k�� (on the equivariant cohomology H�K�X ; R�) to an action on an
appropriate model for the equivariant cochain complex C�K�X ; R�, in such a
way that that elements x 2 k� � S�k�� raise degrees by two. This gives rise to
an element of the derived category D��S� of di�erential graded S-modules.
In Sects. 8.4 and 11.2 we show,

Theorem 1.5.1. The Koszul duality functor h : D��S� ! D��K�� is an equiv-
alence of categories, with an explicit quasi-inverse functor t : D��K�� !
D��S�. For any K-space X , the functor h takes C�K�X � to C��X �.

The functors h and t are modi®cations of the Koszul duality is-
omorphisms of Bernstein, Gelfand, and Gelfand (who consider derived
categories in which K� and S act without degree shifts). This theorem implies
that knowledge of the element C�K�X � 2 D��S� determines the element
C��X � 2 D��K�� and hence determines the ordinary cohomology H ��X �
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together with all its higher cohomology operations. Similarly, knowledge of
C��X � 2 D��K�� determines C�K�X � and therefore also the equivariant co-
homology H �K�X �; even if X fails to be equivariantly formal.

However, equivariantly formal spaces have their most elegant and nat-
ural characterization in the language of derived categories. A chain complex
C� 2 D��K�� is called split if it is quasi-isomorphic to its cohomology,
considered as a chain complex all of whose di�erentials are zero. In Sects.
13.4 and 9.3 we show,

Theorem 1.5.2. A K-space X is equivariantly formal if and only if
C��X � 2 D��K�� is split and the K� action on C��X � � H ��X � is trivial. A
K-space X is equivariantly formal if and only if C�K�X � 2 D��S� is split and the
S action on C�K�X � � H�K�X � is free.

These two statements are Koszul dual to each other, in the sense that the
Koszul duality functor h takes split elements of D��S� with free S action to
split elements of D��K�� with trivial K� action.

(1.6) Equivariant derived category. We are often interested not only in the
(equivariant) cohomology of a K-space, but also in its (equivariant) inter-
section cohomology. These are both special cases of a much more general,
object, namely (equivariant) cohomology of an equivariant complex of
sheaves.

By an equivariant complex of sheaves, we mean an element of the
equivariant derived category D�K �X � (cf. [BB] [BL] [G] [J2]). The con-
struction of [BL] is recalled in Sect. 5 below. The equivariant derived
category enjoys a Grothendieck style formalism of push-forward and
pull-back for equivariant mappings X ! Y . Every equivariant complex
of sheaves A 2 D�K �X � has an associated equivariant cochain complex
C�K�X ; A� 2 D��S� (constructed in [BL] Sects. 12.3, 12.4) whose cohomol-
ogy is the equivariant cohomology H�K�X ; A�. In fact, Bernstein and Lunts
construct an equivalence of categories BL : D�K �pt� ! D��S�. The equi-
variant cochain complex is C�K�X ; A� � BL � c��A� where c : X ! pt is the
constant mapping.

But the equivariant complex of sheaves A 2 D�K �X � also has an associ-
ated ordinary chain complex C��X ; A� 2 D��K��, whose cohomology is the
ordinary cohomology H��X ; A�. In Sect. 11.2 we show,

Theorem 1.6.1. For any A 2 D�K �X � the Koszul duality functor h takes the
equivariant cochain complex C�K�X ; A� 2 D��S� to the ordinary cochain
complex C��X ; A� 2 D��K��.

Almost all of the theory about equivariantly formal spaces goes through
in the context of equivariant complexes of sheaves. (The only exception is
the cycle-theoretic result of Cor. 1.3.2). We call an equivariant complex of
sheaves equivariantly formal if the spectral sequence for its equivariantly
cohomology,
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Epq
2 � Hp

K�pt� 
 Hq�X ; A� �) H p�q
K �X ; A�

degenerates at E2.

Theorem 1.6.2. Suppose a compact torus K � �S1�n acts on a reasonable space
X . Let A 2 D�K �X � be an equivariant complex of sheaves. Then the following
statements are equivalent:

(1) A is equivariantly formal
(2) C��X ; A� 2 D��K�� is split and the K� action is trivial
(3) C�K�X ; A� 2 D��S� is split and the S action is free
(4) All the (primary and higher) cohomology operations ka vanish on

H ��X ; A�
(5) The edge morphism H �K�X ; A� ! H��X ; A� is surjective

In this case, we also have

(6) The ordinary cohomology is given by extension of scalars,

H ��X ; A� � H �K�X ; A� 
S R

(7) The restriction mapping H�K�X ; A� ! H �K�F ; A� is injective, and its
image is the kernel

H�K�X ; A� � ker�H�K�F ; A�!d H�K�X1; F ; A��

(Here F � X denotes the ®xed point set and X1 � X denotes the union of the 1-
dimensional orbits of K).

Part (7) is a re®nement of the localization theorem (cf Sect. 6.2) which
asserts that the mapping H �K�X ; A� ! H�K�F ; A� is an isomorphism after lo-
calizing at an appropriate multiplicative set. It is the key step in the proof of
(1.2.2). In theorem 14.1 we give additional su�cient conditions which
guarantee that A 2 D�K �X � is equivariantly formal.

(1.7). Localization theorems and implications among the above conditions
have been studied in various situations for the last 35 years. The following
list is not meant to represent a historically accurate account of the subject,
but it includes the references which we are most familiar with. In his fun-
damental paper [B3] (1960), Borel drew attention (Sect. XII Theorem 3.4) to
the possible degeneration of the spectral sequence for equivariant coho-
mology, and its consequences. He also showed that the equivariant coho-
mology H �K�X ÿ F � is a torsion module over S, although he did not use
precisely this language. Localization is explored systematically by Segal [Se]
(1968) and by Atiyah and Segal [AS2] (1968) in the context of ®xed point
theorems for equivariant K-theory. See also [AS1] (1965), Hsiang [H1a],
[H1b] (1970) and Quillen [Q] (Theorem 4.2) (1971). The idea to restrict
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attention to the 1-dimensional orbits appears in Chang and Skjelbred [CS]
(1974) (Lemma 2.3), whose results are also explained in [H2] (1975). Berline
and Vergne [BV] (1985) describe the localization theorem in the context of
the moment map, and this same point of view was taken by Atiyah and Bott
in [AB] (1984); cf. Duistermaat and Heckman [DH] (1982). Related results
occur tom Dieck [tD] Sect. III Proposition 1.18, and Littleman and Procesi
[LP] (1989). Some of the above implications for intersection homology are
considered by Joshua [J] (1987), Kirwan [Ki] (1988) and Brylinski [Br]
(1992). In a recent preprint Evens and MirkovicÂ [EM] show that the ``al-
gebraic form'' of the localization theorem may be extended to arbitrary
sheaves in the equivariant derived category. For rationally nonsingular toric
varieties X , Cappell and Shaneson [CP] consider the module (1.2.2) although
they do not explicitly identify it as the equivariant cohomology. An equiv-
alent formula appears in [Bri], cf. [BrV].

The construction of the equivariant derived category D�K �X � is neces-
sarily very delicate. It was achieved in the algebraic context by Beilinson and
Ginzburg [BB] [G] and by Joshua [J2], and in the topological context by
Bernstein and Lunts [BL]. The idea to relate equivariant cohomology to
ordinary cohomology using Koszul duality was apparently ®rst envisioned
in print by Ginzburg [G], who indicated that this case motivated much of his
beautiful later work on Koszul duality. The idea that the ordinary coho-
mology H��X � is determined by the equivariant cochains C�K�X � together
with its S-module structure is known in the literature on transformation
groups, especially in the case of an action by a ®nite torus �Z=�2��n (cf.
Allday and Puppe [AP2] Sect. 4 (1984), [AP1] Theorem 1.2.6; Proposition
1.3.14 (1993)). For K � S1, an element in D��K�� is known as a mixed
complex, its Koszul dual in D��S� is known as the associated Connes'
double complex, whose cohomology is then called the cyclic homology
(cf. Sect. 13.7).

We wish to thank A. Beilinson, T. Braden, P. Deligne, V. Lunts, and an
anonymous referee for useful discussions. The authors are grateful for
support from the University of Utrecht during the spring of 1994, where
much of this material was worked out. The ®rst author would also like to
thank the Institute for Advanced Study in Princeton for their support
during the writing of this paper.
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3. Subanalytic sets

References for this section are [Ha] and [Hi].

(3.1) Strati®cations. Let X � RN be a (closed) subanalytic set. If Z1 and Z2
are closed subanalytic subsets of X , then so is Z1 [ Z2 and Z1 \ Z2. If
f : X ! Y is a proper subanalytic mapping, and if Z1 � X and Z2 � Y are
subanalytic subsets, then so are f �Z1� and fÿ1�Z2�. Every subanalytic set X
admits a ``subanalytic'' Whitney strati®cation in which the closure of each
stratum is a subanalytic subset of X . If Y � X is a closed subanalytic subset
then a subanalytic Whitney strati®cation of X may be chosen so that Y is a
union of strata.

If a compact Lie group K acts subanalytically on a subanalytic set X then
X admits a subanalytic Whitney strati®cation by K-invariant strata. For any
closed invariant subanalytic subset Y � X , an invariant subanalytic Whitney
strati®cation of X exists such that Y is a union of strata.

A subanalytic set X is compacti®able if there is a compact subanalytic set
X and a closed subanalytic subset Y � X such that X � X ÿ Y . A subana-
lytic Whitney strati®cation of a compacti®able subanalytic set X is the
restriction of a subanalytic Whitney strati®cation of X such that Y � X is a
union of strata.

(3.2) Triangulations and chains. A subanalytic triangulation T of a subana-
lytic set X is a simplicial complex K (possibly in®nite) and a subanalytic
homeomorphism / : jKj ! X . Any two subanalytic triangulations of X
admit a common subanalytic re®nement.

If T is a subanalytic triangulation of a subanalytic set X , de®ne CT
� �X ; Z�

to be the chain complex of simplicial chains with respect to the triangulation
T . These chain complexes form a directed system. De®ne the complex of
subanalytic chains to be the inverse limit,
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C��X ; Z� � lim CT
� �X ; Z�:

taken over all subanalytic triangulations of X . The homology of this com-
plex is canonically isomorphic to the singular homology of X .

(3.3) Support. Any subanalytic chain n 2 Cn�X � is a simplicial chain with
respect to some subanalytic triangulation T of X and hence may be written
as a formal linear combination

n �
Xr

i�1
airi

of n-dimensional simplices ri 2 T . De®ne the support

jnj �
[
frijai 6� 0g

of n to be the union of all the n-dimensional simplices which occur with
nonzero multiplicity in n. Then jnj � X is a subanalytic subset which is
independent of the choice of triangulation T which was used in its de®nition.

(3.4) Intersection chains. For any perversity �p [GM1], [GM2] and any sub-
analytic Whitney strati®cation of a subanalytic set X , the complex of sub-
analytic intersection chains is the subcomplex of the complex of subanalytic
chains, consisting of ��p; i�-allowable chains,

I �pCi�X � � n 2 Ci�X ; Z� dim�jnj \ Sc� � iÿ c� p�c�
dim�j@nj \ Sc� � iÿ 1ÿ c� p�c�
���� ��

�3:4:1�

for each stratum Sc � X of codimension c. The intersection homology
I �pH��X ; Z� is the homology of the complex I �pC��X ; Z�:

4. Equivariant chains

Throughout this section we suppose that lX : K � X ! X denotes a
subanalytic action of a compact Lie group K on a subanalytic set X .
Let k � dim�K� denote the dimension of K as a smooth manifold.

(4.1) De®nition. An (abstract) subanalytic equivariant chain �n; f � of formal
dimension i on X is a subanalytic i� k dimensional chain n � RN (contained in
some Euclidean space), together with a free action of K on jnj and a suban-
alytic K-equivariant mapping f : n! X (modulo the obvious identi®cation
with respect to the standard inclusion RN � RN�1 � . . . of Euclidean spaces).

Denote by CK
i �X ; Z� the group of subanalytic equivariant chains with for-

mal dimension i:
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The boundary �@n; f jj@nj� of an equivariant subanalytic chain �n; f � is
again an equivariant subanalytic chain, so CK

� �X ; Z� forms a chain complex.
In this section we will show that the homology of this complex is canonically
isomorphic to the equivariant homology HK

� �X ;Z�:
Let �n; f � 2 CK

i �X ; Z� be a subanalytic equivariant chain on X . Since K is
compact and the action of K on jnj is free, a choice of orientation for K
determines an orientation on the chain jnj=K ! X=K: For each subanalytic
chain n the quotient mapping jnj ! jnj=K is a principal K-bundle, and is
hence classi®ed by a unique homotopy class of K-equivariant mappings,

jnj �!e EK??y ??y
jnj=K �! BK

(where EK ! BK is a smooth subanalytic model for the classifying space
of K; cf. Sects. 5.1, 10.7). Let w : jnj ! X � EK be the mapping w�y� �
� f �y�; e�y��: Then w is K-equivariant with respect to the diagonal action on
X � EK so it passes to a mapping / : jnj=K ! X �K EK: If @n � 0 then /
induces a homomorphism /� : Hi�jnj=K� ! Hi�X �K EK�.

(4.2) Theorem. The mapping /� induces an isomorphism

H��CK
� �X �; Z� � H��X �K EK; Z� � H K

� �X ; Z�

between the homology of the complex CK
� �X � of subanalytic equivariant

chains, and the equivariant homology of the space X .

(4.3) Proof. The principal K-bundle EK ! BK is a limit of smooth algebraic
principal bundles pn : EKn ! BKn of increasing dimension (cf. Sect. 5.1,
Sect. 10.7). In particular, X �K EKn has a subanalytic structure. Let
C��X �K EKn� denote the complex of subanalytic chains on this space. Then
we obtain a homomorphism

F : C��X �K EKn� ! CK
� �X �

as follows. Choose a subanalytic embedding X � EKn � RN into some
Euclidean space. For any subanalytic chain g 2 Ci�X �K EKn� let n � pÿ1n �g�
denote the subanalytic chain on X � EKn whose orientation is given by
following the orientation of g with the orientation of K. Then dim�jnj�
� i� k and K acts freely on jnj. De®ne F �g� to be the subanalytic chain n
together with the mapping to X which is given by the projection
jnj � X � EKn ! X . It is easy to see that the induced homomorphism
F� : H��X �K EK� ! H��CK

� �X �� is an inverse to /�. u
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(4.4) Equivariant intersection chains. Now ®x a subanalytic K-invariant
strati®cation of X . (Any subanalytic strati®cation of X admits a K-invariant
re®nement, which can even be chosen so that the ®xed point set is a union of
strata and so that the projection mapping X ! X=K is a weakly strati®ed
mapping.) Let �p denote a perversity function [GM1]. The equivariant
intersection homology I �pH K

� �X � was introduced in [Br], [J], [Ki1]. The
following geometric construction of equivariant intersection homology is
due to T. Braden and R. MacPherson:

(4.5) De®nition. The complex I �pCK
� �X � of subanalytic equivariant intersection

chains is the subcomplex of CK
� �X ; Z� consisting of ��p; i�-allowable subanalytic

equivariant chains,

I �pCK
i �X ; Z� �

(
�n; f � 2 CK

i �X ; Z�
���� codnfÿ1�Sc� � cÿ p�c�
cod@nfÿ1�Sc� � cÿ p�c�

)

where codnfÿ1�Sc� denotes the codimension in jnj of the pre-image of the
stratum Sc � X of codimension c.

(4.6) Theorem. The mapping /� induces an isomorphism between the homol-
ogy of the complex I �pCK

� �X � and the equivariant intersection homology
H K
� �X �:

(4.7) Proof. The proof is essentially the same as that for ordinary homology.
It reduces to the fact that a K-invariant subanalytic strati®cation of X de-
termines a strati®cation of the product X � EKn with strata of the form
S � EKn; since the ®nite approximations EKn ! BKn may be chosen so as to
be compact smooth subanalytic (even algebraic) manifolds. This strati®ca-
tion passes to the quotient X �K EKn and the equivariant intersection
homology is given by the ordinary intersection homology [Ki1]

IHK
i �X � � lim

n!1 IHK
i �X �K EKn�: (

5. Equivariant sheaves

(5.1) Equivariant derived category. The relation between intersection coho-
mology and equivariant intersection cohomology is entirely analogous to
the relation between ordinary cohomology and equivariant cohomology.
Both equivariant cohomology and equivariant intersection cohomology are
objects in the equivariant derived category, which was developed in the
algebraic context by Beilinson and Ginzburg ([G] Sect. 7; see also [BB]) and
Joshua [J2], and in the topological context by Bernstein and Lunts [BL].
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Many of the properties of equivariant cohomology (e.g. the localization
theorems) apply to any element A 2 Db

K�X � and are best stated in terms of
the language of the equivariant derived category. In this section we recall the
construction [BL] and some of the basic properties of the equivariant de-
rived category of sheaves of vectorspaces over the real numbers R (although
these constructions work more generally for sheaves of modules over any
ring of ®nite cohomological dimension.)

Throughout this paper, K will denote a compact Lie group. Let us ®x
once and for all a smooth subanalytic model p : EK ! BK for the classifying
space of K (cf. [BL] Sect. 12.4.1) This means that EK � S1n�1 EKn and
BK � S1n�1 BKn where pn : EKn ! BKn is a smooth compact n-universal
principal K-bundle (on which K acts from the left), and that both of the
inclusions EKn � EKn�1 � . . . and BKn � BKn�1 � . . . are embeddings of
closed submanifolds of increasing dimension. The weak topology on EK and
BK is paracompact and the embeddings EKn � EK and BKn � BK are
closed.

If X is a locally compact Hausdor� space, denote by Db�X � the bounded
derived category of sheaves of R-vectorspaces on X ([Ve1], [Ve2], [GM3],
[B4], [Iv], [KS]). Suppose K acts (subanalytically) on X . Consider the
diagram of topological spaces,

X  p X � EK!q X �K EK �5:1:1�

De®nition. ([BL] Sect. 2.7.2, Sect. 2.1.3) An object A 2 Db
K�X � is a triple

�AX; �A; b� where AX 2 Db�X �, �A 2 Db�X �K EK�, and b : p��AX� ! q���A� is
an isomorphism in Db�X � EK�: A morphism a : �AX; �A; b� ! �BX; �B; c� is a
pair a � �aX ; �a� where aX : AX ! BX and �a : �A! �B such that the following
diagram commutes in Db�X � EK�;

p��AX� ��!b q���A�
p��a�

??y ??yp���a�

p��BX� c��! q���B�

�5:1:2�

(5.2) Constructible sheaves. A compacti®able K-space X is a locally closed
union of strata of an equivariant Whitney strati®cation of some smooth
compact manifold M on which K acts smoothly. In other words, X � X ÿ Y
where X � M is a compact Whitney strati®ed K-invariant subset, and Y � X
is a closed union of strata. A complex of sheaves AX on a compacti®able
K-space X is said to be (cohomologically) constructible with respect to the
given strati®cation, if its cohomology sheaves Hi�AX� are ®nite dimensional
and are locally constant on each stratum of X . (It follows that the coho-
mology H��X ;AX� is ®nite dimensional).
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De®nition. ([BL] Sect. 2.8) Let X be a compacti®able K-space. The con-
structible bounded equivariant derived category Db

K;c�X � is the full subcategory
of Db

K�X � consisting of triples A � �AX; �A; b� such that AX 2 Db
c�X � is

(cohomologically) constructible.

(5.3) Forgetful functor. The forgetful functor Db
K�X � ! Db�X � is given by

�AX; �A; b� 7!AX:

Such an element �AX; �A; b� is said to be an equivariant lift of the sheaf
AX 2 Db�X �: The constant sheaf RX has a canonical lift RK

X � �RX;
RX�

K
EK; I� to the equivariant derived category. For any perversity �p the

sheaf I�pCX of intersection cochains (with real coe�cients) has a canonical
lift I �pCK

X � �I�pCX; I
�pCX�KEK; b� to the equivariant derived category, which

is given by the construction of [Br] Sect. 2.1, [J], [Ki1] Sect. 2.11, or by
the sheaf-theoretic construction of [BL] Sect. 5.2 or by the equivariant
geometric intersection chains of Sect. 4.5.

The equivariant derived category Db
K�X � is triangulated and supports the

usual operations (Rf�;Rf!; f �; f !;
L ;RHom; and Verdier duality) in a way
which is compatible with the forgetful functor Db

K�X � ! Db�X �:

(5.4) Map to a point. Suppose a compact Lie group K acts on a locally
compact Hausdor� space X : The constant map c : X ! pt gives rise to a
functor cK

� : Db
K�X � ! Db

K�pt� which we now describe. Let c0 : X�K

EK ! BK and c00 : X � EK ! EK denote the projections. Both squares in
the following diagram are Cartesian.

X  ���p
X � EK ���!q X �K EK

c

???y ???yc00
???yc0

pt  ���
r

EK ���!
p

BK

�5:4:1�

Let A � �AX; �A; b� 2 Db
K�X �. Since p and q are ®ber bundles with smooth

compact ®ber K, the adjunction morphism h : p�Rc0���A� ! Rc00�q
���A� is a

quasi-isomorphism. (cf. [GM4] (2.5), [BL] Sect. A1, or [B] Sect. V, 10.7).

De®nition. The pushforward cK
� �A� is given by the triple

cK
� �A� � �Rc��AX�; Rc0���A�; Rc00��b��

where Rc00��b� is the composition
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r��Rc��AX�� p��Rc0���A��

�
?????y �

x?????hÿ1

Rc00�p
�AX ����!�

b
Rc00�q

���A�

�5:4:2�

If X is a compacti®able K-space then the pushforward functor cK
� also

restricts to a functor on the constructible derived category,

cK
� : Db

K;c�X � ! Db
K;c�pt�:

(5.5) Cohomology. There are two cohomological functors from Db
K�X � to

real vectorspaces: the equivariant cohomology of A � �AX; �A; b� 2 Db
K�X �

is

H �K�X ; A� � H��X �K EK; �A� � H��BK; Rc0���A�� �5:5:1�

and the ordinary cohomology of A is

H��X ; A� � H��X ;AX� � H ��pt; Rc��AX��: �5:5:2�

These functors factor through cK
� , i.e., H�K�X ; A� � H�K�pt; cK

� A�. (cf. [BL]
Sect. 13.1).

The equivariant cohomology H �K�X ; A� may be computed from the Leray
spectral sequence for the ®bration c0 : X �K EK ! BK, with

Epq
�2� � H p�BK; Rqc0���A�� ) H p�q�X �K EK; �A� �5:5:3�

The sheaves Rqc0���A� are constant and the isomorphism b may be used to
construct a (non-canonical) isomorphism with the constant sheaf,
Rqc0���A� � H q�X ;AX� 
RBK: This gives the spectral sequence for equivari-
ant cohomology,

H p�BK� 
 Hq�X ;AX� ) Hp�q
K �X ; A� �5:5:4�

(5.6) Free and trivial actions. Suppose a compact Lie group K acts freely on
X . Then the equivariant cohomology is given by H�K�X � � H��X=K�. Simi-
larly, if A � �AX; �A; b� 2 Db

K�X � is an element of the equivariant derived
category, then ([BL] Sect. 2.2.5) there exists B 2 Db�X=K� and a quasi-
isomorphism, �A � �p��B� (where �p : X �K EK ! X=K is the quotient map-
ping). Hence, the equivariant cohomology is given by H �K�X ; A� �
H ��X=K;B�.
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If K acts trivially on X then H�K�X ; R� � H�K�pt; R� 
 H ��X ; R�. How-
ever if A 2 Db

K�X � is an element of the equivariant derived category (and if
K acts trivially on X ), it does not necessarily follow that H�K�X ; A�
� H�K�pt; R� 
 H ��X ;AX�; and in fact, the spectral sequence (5.5.4) for
equivariant cohomology may fail to degenerate.

(5.7) Exact sequence of a pair. Let A � �AX; �A; b� 2 Db
K�X � be an element of

the equivariant derived category of X . For any invariant subspace j : Y � X
the equivariant cohomology groups H �K�Y ; A� and H �K�X ; Y ; A� are de®ned as
follows. The inclusion j induces an inclusion jK : Y �K EK ! X �K EK so
the triple �AXjY ; �Aj�Y �K EK�; bj�Y � EK�� de®nes an element j��A� 2
Db

K�Y � of the equivariant derived category of Y , whose equivariant coho-
mology we denote by H �K�Y ; A� � H ��Y �K EK; j�K��A��: If Y is closed and
invariant in X and if i : X ÿ Y ! X denotes the inclusion of the complement
of Y , then we have a similar inclusion iK : X ÿ Y ! �X ÿ Y � �K EK and we
de®ne H �K�X ; Y ; A� � H ��X �K EK; �iK�!i�K��A�� to be the cohomology with
compact supports of the restriction �Aj�X ÿ Y � �K EK. Standard results in
sheaf theory now give,

Proposition. If Y � X is a closed invariant subspace and if A 2 Db
K�X � then

there is a long exact sequence in equivariant cohomology,

� � �!d H i
K�X ; Y ; A� ! Hi

K�X ; A� ! H i
K�Y ; A�!d H i�1

K �X ; Y ; A� ! � � � �5:7:1�

If Y is a closed union of invariant strata in X then it admits a neighborhood
basis in X consisting of ``regular'' neighborhoods U for which the homo-
morphism induced by inclusion,

H �K�U ; A� ! H �K�Y ; A�

is an isomorphism. (

(5.8) Dualizing complex. The dualizing complex in Db
K�pt� is identi®ed with

the constant sheaf �Rpt;RBK; I� so the dualizing complex DX 2 Db
K�X � is

given by c!R � �DX; �c0�!�RBK��. Although this is the (usual) dualizing
complex on X , it is not the (usual) dualizing complex on X �K EK: In other
words, although the cohomology H��X ;DX� of the dualizing complex
coincides with the ordinary homology H��X �, the equivariant cohomology
H �K�X ;DX� of the dualizing complex does not necessarily agree with the
equivariant homology H K

� �X � � H��X �K EK�:

6. Localization theorems for torus actions

(6.1) Notation. Throughout Sects. 6 and 7 we assume that a compact torus
K � �S1�n acts on a compacti®able Kÿ space X . (This means that X is a
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locally closed union of strata of an equivariant Whitney strati®cation of
some smooth compact manifold M on which K acts smoothly. Any such
strati®cation admits an invariant re®nement so that the ®xed point set is a
union of strata.) The results in this section certainly apply to more general
situations, however this assumption guarantees various technical conve-
niences: the torus K acts smoothly on each stratum of X and, although X
may fail to be compact, only ®nitely many orbit types occur. (Recall that
two points are in the same orbit type if their stabilizers are conjugate.) Since
K is abelian, this means that only ®nitely many stabilizers occur.

Throughout this section we use complex coe�cients, and denote by

S � H �K�pt; C� � C�k�C�

the equivariant cohomology of a point which we have identi®ed (using
Chern Weil theory, cf. Sect. 17.2) with the polynomials on the complexi®ed
Lie algebra kC � k
R C.

For any point x 2 X let Kx denote the stabilizer of x, K0
x its identity

component, and kCx � Lie�K0
x � 
R C its (complexi®ed) Lie algebra. Denote

by F � X the ®xed point set of K: Let P denote the ®nite set, partially
ordered by inclusion, of Lie algebras of stabilizers of points x 2 X ÿ F . Each
l 2 P corresponds to a subtorus L � K with ®xed point set,

X l � fx 2 X jkx � lg: �6:1:1�
Denote by

PL � ker�C�k�C� ! C�l�C�� �6:1:2�

the prime ideal in S � C�k�C� � H�K�pt; C� consisting of polynomials which
vanish on lC: For any module M over the polynomial ring S let

spt�M� �
\
fV � f �j f �M � 0g � kC �6:1:3�

denote the support of M , where V � f � � fx 2 kCjf �x� � 0g:

(6.2) Localization theorem: algebraic part. Suppose X is a compacti®able
K-space, and Z � X is a closed invariant subspace containing the ®xed point
set F. For any element A 2 Db

K�X � in the equivariant derived category, we have
(1) The module H �K�X ; Z; A� is a torsion module over S, and its support

spt�H�K�X ;Z; A�� �
[

x 2 XÿZ

kCx �6:2:1�

is contained in the union of the Lie algebras of the ( ®nitely many) stabilizers of
points x 2 X ÿ Z.

(2) If f 2 C�k�C� is any function such that V � f � � Sx2 XÿZ kCx then the
localized restriction mapping
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H �K�X ; A�f ! H�K�Z; A�f

is an isomorphism.
(3) For any subtorus L � K, the restriction homomorphism of localized

modules

H�K�X ; A�PL ! H �K�X L; A�PL �6:2:2�

is an isomorphism.

Now suppose that X is a compacti®able K � �S1�n-space and let

X1 � fx 2 X jcorank�Kx� � 1g

denote the set of points consisting of 0 and 1 dimensional orbits of K. Let d
denote the connecting homomorphism in the long exact sequence for the
equivariant sheaf cohomology (5.7.1) of the pair �X1; F �: The following re-
sult is a sheaf theoretic version of the lemma of Chang and Skjelbred [CS]:

(6.3) Localization theorem: topological part. Suppose the equivariant coho-
mology H �K�X ; A� is a free module over S: Then the sequence

0! H�K�X ; A�!c H �K�F ; A�!d H �K�X1; F ; A� �6:3:1�

is exact, and in particular the equivariant cohomology of X may be identi®ed
as the submodule of the equivariant cohomology of the ®xed point set which is
given by ker�d�.

If A � R is the constant sheaf then d is compatible with the cup product
so (6.3.1) determines the cup product structure on H �K�X ; R�. If A � IC�

is the intersection cohomology sheaf then d is a H�K�X ; R�-module homo-
morphism, so (6.3.1) also determines the action of (equivariant) cohomol-
ogy on the (equivariant) intersection cohomology. The proofs of Theorems
6.2 and 6.3 will appear in Sect. 15.

(6.4) Examples and counterexamples. In Theorem 14.1 we list nine situations
in which it is possible to guarantee that the equivariant cohomology
H �K�X ; A� is a free module over S: However, even for projective algebraic
varieties, it is not always the case that the equivariant cohomology is a free
S-module, and in fact the conclusion of Theorem 6.3 fails for the following
example: Let K � S1 act on CP1 � S2 by rotation with ®xed points at the
North and South poles. Let X be three copies of CP1 joined at these ®xed
points so as to form a ``ring''. Then X is a projective algebraic variety but the
equivariant cohomology H �K�X � is not a free module, and the restriction map
c (of (6.3.1)) fails to be an injection.
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7. Algebraic torus actions with ®nitely many 1-dimensional orbits

In many cases, Theorem 6.3 may be used to give an explicit formula for the
equivariant cohomology module, in terms of generators and relations which
in turn can often be indexed using data from a moment map. We carry this
out in the case of an algebraic torus action on a projective algebraic variety
having ®nitely 1-dimensional orbits and whose ®xed point set consists of
®nitely many isolated ®xed points.

Throughout this section we use complex coe�cients. Let T � �C��n be
a complex algebraic torus with maximal compact subgroup K � �S1�n:
The inclusion of Lie algebras k � t � kC induces an isomorphism
S � C�k�� � C�t�� between the symmetric algebra of complex valued poly-
nomials on k and the symmetric algebra of complex valued polynomials on t
We may also identify the equivariant cohomology functors with complex
coe�cients, H�K��� � H �T ���:

(7.1) Algebraic torus actions. Throughout Sect. 7 we assume that X is a
complex projective algebraic variety on which the complex torus T � �C��n
acts algebraically with ®nitely many ®xed points F � fx1; x2; . . . ; xrg (all
isolated) and with ®nitely many 1-dimensional orbits, fE1;E2; . . . ;E`g: For
each 1-dimensional orbit Ej there is a linear action of T on CP1 and a
T -equivariant isomorphism hj : Ej ! CP1. Hence the closure Ej is obtained
from Ej by adding two ®xed points,

@Ej � fhÿ1j �0�; hÿ1j �1�g � F

which we denote by xaj and xbj respectively. (These labels depend on the
choice of T -action on CP1 and on the isomorphism hj: The inverse action of
T on CP1 is compatible with a ``reverse'' isomorphism h0j for which the
labels aj and bj will be reversed.) Let Kj � K denote the stabilizer of any
point in Ej, and let kj � Lie�Kj� � k denote its (complex) Lie algebra. For
j � 1; 2; . . . ; ` de®ne

bj : a
r

i�1
C�k�� ! C�k�j �

to be the mapping given by

bj� f1; f2; . . . ; fr� � faj jkj ÿ fbj jkj �7:1:1�

where xaj [ xbj � @Ej are the two points in the boundary of the orbit Ej: (We
have arbitrarily chosen to denote one of these points xaj and the other xbj :
Reversing the labels will change the mapping bj by a sign but will not change
ker�bj�).
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(7.2) Theorem. Suppose the equivariant cohomology H �K�X ; C� is a free module
over S � C�k��: Then the restriction map

H �K�X � ! H�K�F � �a
r

i�1
C�k��

is an injection, and its image is the intersection of kernels,

H �K�X � �
\̀
j�1

ker�bj�:

(7.3) Proof. By the localization theorem 6.3 the equivariant cohomology
H �K�X � is given by the kernel of d : H�K�F � ! H �K�X1; F �; which we now id-
entify. The set X1 consists of the closure of the union of the 1-dimensional
T -orbits. Let Ej be a single such one dimensional orbit, with closure �Ej

containing ®xed points @Ej � x [ y. Let Tj � T denote the stabilizer of any
point in Ej. Then H �K�Ej� � C�k�j �: Consider the Mayer-Vietoris exact
sequence for the covering of �Ej by two open equivariant subsets,
U1 � �Ej ÿ fxg and U2 � �Ej ÿ fyg. This sequence agrees with the long exact
cohomology sequence for the pair � �Ej; @Ej�. Since H i

K� �Ej� � 0 for i odd, the
sequence splits into short exact sequences,

0 ! H i
K� �Ej� ! H i

K�x� � Hi
K�y� !d H i�1

K � �Ej; x [ y� ! 0
" � " � "

0 ! H i
K� �Ej� !a Hi

K�U2� � Hi
K�U1� !b H i

K�Ej� ! 0

where the map b : C�k�� �C�k�� ! C�k�j � is given by b� f ; g� � f jkj ÿ gjkj.
Applying this computation to each one-dimensional orbit gives the formula
in Theorem 7.2. (

(7.4) Moment map. Let X ! CPN be an equivariant projective embedding.
By averaging over the compact torus K, we may assume that the KaÈ hler
form on projective space is K-invariant. It follows that K acts by Hamil-
tonian vector®elds, and so it admits a moment mapping l : CPN ! k�: For
simplicity, let us assume that the moment map images vi � l�xi� of the ®xed
points are distinct. Fix j (for 1 � j � `) and consider the moment map image
ej � l�Ej� of the 1-dimensional T -orbit Ej: It is a straight line segment
connecting two of the vertices, say va and vb, which correspond to the two
®xed points xa; xb in the closure of Ej:

Let heji � k� denote the 1-dimensional subspace of k� which is parallel to
the segment ej: The symmetric algebra S � C�k�� may be identi®ed with the
algebra D�k�� of linear di�erential operators with constant (complex) coef-
®cients on k�. Let /j : D�k�� ! D�k�=heji� denote the push forward mapping
on di�erential operators. De®ne
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bj : a
r

i�1
D�k�� ! D�k�=heji� �7:4:1�

by bj�D1;D2; . . . ;Dr� � /a�Da� ÿ /b�Db�. (Reversing the labelling of the
endpoints va and vb will change bj by a sign but will not change its kernel.)

(7.5) Corollary. Suppose the equivariant cohomology H �K�X ; C� is a free
module over S: Then, in terms of moment map data it is given by

H�K�X ; C� � ker a
r

i�1
bj : a

r

i�1
D�k�� !a

`

j�1
D�k�=heji�

 !
: �7:5:1�

(7.6) Proof. Since there is an exact sequence

0! heji ! k� ! k�j ! 0

we may identify the symmetric algebra C � k�j � with the algebraD�k�=heji�: So
the mapping (7.4.1) agrees with the mapping (7.1.1). (

(7.7) Remarks. The module (7.5.1) appears in [CS] in the case that X is a
rationally nonsingular toric variety, although they do not identify it with the
equivariant cohomology. An equivalent formula appears in [Bri] cf. [BrV].

(7.8) Other groups and sheaves. If K is a maximal torus in a compact con-
nected Lie group G and if the K action extends to a G action on X then, by a
result of A. Borel, the G-equivariant cohomology is given by the invariants,
H �G�X � � �H�K�X ��W under the Weyl group W � NG�K�=K: The formula
(7.5.1) is compatible with the action of W : it permutes the ®xed points
x1; . . . ; xk and it permutes the 1-dimensional orbits E1; . . . ;E`: So (7.5.1) may
be used to determine the G-equivariant cohomology as well. There is a
formula, analogous to that of theorem (7.2) for the K-equivariant coho-
mology of any element A � �AX; �A; b� 2 Db

K�X � provided
(1) H �K�X ; A� is a free module over C�k��
(2) H �K�F ; A� � H ��F ;AXjF � 
C�k��
(3) H �K�Ej; A� � H��Ej;AXjEj� 
C�k��

Note that if A � ImC�X is the (equivariant) middle intersection cohomology
sheaf on X, then condition (1) holds whenever X is projective (cf. Theorem
14.1). Conditions (2) and (3) often hold (cf. Theorem 14.1, or [Br] Sect.
4.2.4, [BL] Sect. 15.14). For example, conditions (2) and (3) hold for
Schubert varieties and for toric varieties because the stalk of the (ordinary)
intersection cohomology vanishes in odd degrees (cf. Theorem 14.1).
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8. Koszul duality

In this section (and Sect. 16) we give a modi®ed version of the basic results
from [BGG] (and [BGS]; see also [B]), rewritten so as to agree with the
gradings on the complexes which occur in this paper. Let k be a ®eld.

(8.1) Exterior and symmetric algebra of a graded vectorspace Let P �aj2ZPj

denote a graded vectorspace over k, with homogeneous components of odd
positive degrees only, and let K� �

V
P denote the exterior algebra on P ;

together with its grading by degree: If k � k1 ^ . . . ^ kt; then deg�k� �P
deg�ki� for homogeneous elements ki 2 P : We also denote by jkj � t the

weight of k: Then �ÿ1�deg�k� � �ÿ1�jkj and �ÿ1�deg�k�deg�l� � �ÿ1�jkjjlj if l is
another (bi-) homogeneous element of K�: For any homogeneous element
k 2 K� set

�k � �ÿ1�jkj�jkjÿ1�=2k

The bar operation de®nes an isomorphism between K� and its opposite ring
Kop
� , which is the identity on P . In other words, for every x; y 2 K� we have

�x�y � yx.
Let ~P � denote the dual vectorspace P � � Homk�P ; k�, graded by homo-

geneous components of even degrees only, � ~P ��m � �P ��mÿ1. Let S � S� ~P ��
denote the symmetric algebra on ~P �, with grading deg�s1s2 . . . sr� �Pr

i�1 deg�si� for homogeneous elements si 2 ~P �.

(8.2) The derived category. We wish to consider the derived category of
graded modules over K� or S, which we regard as di�erential graded
algebras with zero di�erential. Let us recall the construction ([Il] Sect. VI.10;
cf. [BL] Sect. 10):

A bounded below di�erential graded K�-module �N ; dN � is a graded
module N �ai�i0

N i together with a di�erential dN : N i ! Ni�1 such that
d2N � 0 on which the algebra K� acts such that Kj � Ni � N iÿj and such that
kdN n � �ÿ1�deg�k�dNkn for all k 2 K� and for n 2 N . Let K��K�� denote the
category of bounded below, di�erential graded K� modules and chain ho-
motopy classes of maps. It is a triangulated category and is usually referred
to as the homotopy category of K� modules. The derived category D��K�� is
obtained by localizing the homotopy category K��K�� at the collection of
quasi-isomorphisms. (cf [Ve1], [Ve2], [W], [B], [Il]).

Let Kf
��K�� denote the homotopy category whose objects are di�eren-

tial graded K�-modules N which are bounded from below, such that the
cohomology H ��N� is a ®nitely generated K�-module; and homotopy
classes of maps. Let D f

��K�� denote the corresponding derived category
obtained by inverting quasi-isomorphisms. The canonical functor
D f
��K�� ! D��K�� is fully faithful. In other words, D f

��K�� is equivalent to
the full subcategory of D��K�� consisting of objects whose cohomology is
®nitely generated.
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A (bounded below) di�erential graded S-module �M ; dM � is a graded
module M �ai�i0

Mi together with a di�erential dM : Mi ! Mi�1 such that
d2M � 0 on which S acts with S j:Mi � Mj�i, such that sdM m � dM sm for all
s 2 S and for all m 2 M . Let K��S� denote the homotopy category whose
objects are (bounded below) di�erential graded S-modules, and whose
morphisms are homotopy classes of maps. The derived category D��S� is
obtained by localizing the homotopy category K��S� at the collection of
quasi-isomorphisms.

Let Kf
��S� denote the homotopy category whose objects are di�erential

graded S-modules M which are bounded from below, such that the coho-
mology H��M� is a ®nitely generated S-module; and homotopy classes of
maps. Let D f

��S� denote the corresponding derived category obtained
by inverting quasi-isomorphisms. The canonical functor D f

��S� ! D��S� is
fully faithful.

Fix homogeneous dual bases fxig and fnig of P and ~P �: This means that
hni; xji � dij and that deg�ni� � deg�xi� � 1:

(8.3) De®nition. [BGG] The ®rst Koszul duality functor h : K��S� ! K��K��
assigns to any complex �M ; dM � of S modules the following complex of
K�-modules:

h�M� � Homk�K�;M� �8:3:1�

with grading hp�M� �ai�j�pHomk�Ki;Mj�, with module structure
�x � F ��k� � F ��x ^ k� (for x 2 K� and F 2 h�M�), and with di�erential

dF �k� � ÿ
Xr

i�1
niF �xik� � �ÿ1�deg�k�dM�F �k��: �8:3:2�

for homogeneous elements k 2 K�. The second Koszul duality functor
t : K��K�� ! K��S� assigns to any complex �N ; dN � of K� modules the fol-
lowing complex of S-modules:

t�N� � S
k N �8:3:3�

with module structure n � �s
 n� � ns
 n (for n; s 2 S and n 2 N ), with
grading tp�N� �ai�j�pS

i 
 N j and with di�erential

d�s
 n� �
Xr

i�1
nis
 xin� s
 dN n: �8:3:4�

(8.4) Koszul duality theorem. [BGG] The Koszul duality functors h and t pass
to functors h : D��S� ! D��K�� and t : D��K�� ! D��S�; where they become
quasi-inverse equivalences of categories. The Koszul duality functors h and t
restrict to (quasi-inverse) equivalences of categories
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D f
��K��! D f

��S�: �8:4:1�

(8.5) Proof. The proof is delayed until Sect. 16. The key point is that both
ht�k� and th�k� are the Koszul complex.

(8.6) Remarks. The notions of Koszul duality were introduced in [BGG] and
developed in [BGS] for a slightly di�erent category (let us denote it by
Db;gr�S�): it is the derived category whose objects are bounded complexes of
graded S-modules. We would like to thank A. Beilinson for pointing out to
us that (even if P � P1 is trivially graded), the canonical functor
Db;gr�S� ! D�S� (which associates to each complex of graded modules the
associated single complex) is not an equivalence of categories.

(8.7) Forgetful functor. Let D��k� denote the (bounded below) derived
category of the category of vectorspaces over k. The forgetful functor
FS : D��S� ! D��k� assigns to any di�erential graded S-module
�M ; dM � 2 D��S� the underlying complex of vectorspaces.

Recall from [Il], or [BL] Sect. 10 that the functor 
S passes to a derived
functor 
L S on D�S by

M1 

L
S M2 � M1 
S B�M2� �8:7:1�

for any di�erential graded S-modules M1 and M2, where B�M2� is the bar
resolution of M2: Extending scalars via the augmentation S! k therefore
de®nes another functor D��S� ! D��k� by

M 7! k 
L S M �8:7:2�

A similar construction de®nes the forgetful functor FK : D��K�� ! D��k�
and extension of scalars

k 
L K � : D��K�� ! D��k�: �8:7:3�

(8.8) Proposition. The Koszul duality functor, extension of scalars functor, and
the forgetful functors are related by natural isomorphisms in D��k�,

k
L S M � FKh�M� �8:8:1�

and

k
L S N � FSt�N� �8:8:2�
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for any M 2 D��S� and N 2 D��K��.
(8.9) Proof. By the Koszul duality theorem, any M 2 D��S� is isomorphic
to a complex of the form

M � t�N� � S
k N

with di�erential given by (8.3.4). Therefore

k 
L S M � k 
L S S
k N � FKN � FKh�M� �8:9:1�

It is straightforward to check that these isomorphisms are canonical,
and that the resulting di�erentials agree. A similar computation gives
(8.8.2). (

9. Split complexes

In this section, as in Sect. 8, k denotes a ®eld, P is a graded vectorspace over
k with odd grading, K� �

V�P� is its exterior algebra, and S � S� ~P �� is the
associated evenly graded symmetric algebra. We are primarily interested in
the case that k � R, K� � H��K; R� and S � H ��BK; R� where K is a
compact connected Lie group.

(9.1) Spectral sequences for Koszul duality. Let N 2 D f
��K�� be a complex of

K�-modules and let t�N� � S
k N denote its Koszul dual (8.3.3). This is the
single complex associated to the double complex

T pq � S2p 
k N qÿp �9:1:1�

with di�erential d � d 0 � d 00 where d 0d 00 � ÿd 00d 0 and

d 0�s
 n� � s
 dN n 2 T p;q�1 �9:1:2�

and

d 00�s
 n� �
X

i

nis
 xin 2 T p�1;q �9:1:3�

for any s
 n 2 T pq. The double complex looks like this:
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S0 
 N3 �!d 00 S2 
 N 2 �!d 00 S4 
 N1 �!d 00 S6 
 N0x???d 0
x???d 0

x???d 0

S0 
 N2 �!d 00 S2 
 N 1 �!d 00 S4 
 N0x???d 0
x???d 0

S0 
 N1 �!d 00 S2 
 N 0x???d 0

S0 
 N0

The spectral sequence which is obtained by ®rst taking cohomology with
respect to the di�erential d 0 and then with respect to d 00 has (cf. 5.5.4)

Epq
�1��N� � S2p 
k H qÿp�N��)H p�q�t�N�� �9:1:4�

Now let M 2 D f
��S� denote a complex of S-modules, with Koszul dual

h�M� � Hom�K�;M� (cf. 8.3.1). This is the single complex associated to the
double complex Hom�Kp;Mq� which gives rise to a spectral sequence

Epq
�1��M� � Homk�Kp;Hq�M���)Hp�q�h�M��: �9:1:5�

(9.2) Split complexes. Let N 2 D f
��K�� be a complex of K�-modules. Let us

say that N is split and trivial if it is isomorphic (in D f
��K��) to its own

cohomology, N � �nH n�N��ÿn� together with the trivial action of K�. If
M 2 D f

��S� is a complex of modules over S, we will say that M is split
and free if it is isomorphic (in D f

��S�) to its own cohomology,
M � �nH n�M��ÿn� and if this cohomology is a free module over S.

(9.3) Proposition. Let N 2 D f
��K�� be a complex of K�-modules. Then the

following are equivalent:
(1) N is split and trivial
(2) The Koszul dual M � t�N� 2 D f

��S� is split and free
(3) The spectral sequence (9.1.4) collapses at E�1�.
(4) For all p � 0 the edge morphism H p�M� ! E0p

�1� � S0 
 H p�N� is
surjective.

(cf. Proposition (13.4) and (13.8).) In this case, the edge morphism induces an
isomorphism of k-vectorspaces

H��M�=S>0H ��M� � H��N�

and any lift H ��N� ! H��M� of the edge morphism induces an isomorphism of
graded S modules,
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S
 H��N� � H ��M�:

(9.4) Proof. Parts (1) and (2) are equivalent because explicit formulas (8.3.2)
and (8.3.4) for the di�erentials are given. It is easy to see that (2) implies (3).
Let us show that (3) implies (2). Suppose that N � E�A�� for some
A� 2 Db

K�pt� which we consider to be a complex of sheaves whose coho-
mology sheaves are constant. Then t�N� � G�A�� and the spectral sequence
(9.1.4) is isomorphic to the spectral sequence

Epq
�2� � H p�BK;Hq�A���)H p�q�BK;A�� � Hp�q�G�A��� �9:4:1�

for the cohomology of the complex of sheaves A�: Now apply Deligne's
degeneracy criterion [D1] for the functors

Ti�K� � HomDb�BK��Hi�A�;K� � H 0�RHom�Hi�A�;K��

and take K � A� as in [D1]. Since the cohomology sheaves Hi�A� are
constant on BK, the spectral sequence [D1] Sect.�1:3�i collapses if and only if
the spectral sequence (9.1.4) collapses.

The edge morphism factors

H p�M� !! E0p
�1� ,! E0p

�1� � S0 
 Hp�N�:

If the spectral sequence collapses then the second arrow is an isomorphism,
so the edge morphism is surjective: thus part (3) implies part (4). On the
other hand, the edge morphism is a surjection i� E0p

�1� � E0p
�1� for all p, i.e., if

all di�erentials leaving from the ®rst column vanish. It follows by induction
on r that E�r� is a free S-module, generated by the ®rst column, H ��N�, and
all the di�erentials dpq

�r� vanish (since they are S-module homomorphisms.)
Thus, the spectral sequence collapses.

The conclusion of the theorem is essentially the Leray-Hirsch theorem. It
follows from parts (3) and (4): Choose any splitting of the edge morphism.
This determines a homomorphism S
 H ��N� ! H��M� of graded ®ltered S
modules, which induces isomorphisms on the graded ®ltered pieces (since
the spectral sequence collapses). Therefore it is an isomorphism. (

(9.5) Remark. The dual statement is also true: an object M 2 D f
��S� is split

and trivial i� its Koszul dual N � h�M� 2 D f
��K�� is split and free.

10. Universal sheaves on BK

Throughout the rest of this paper, K denotes a compact connected Lie
group, K� � H��K:R� denotes its homology, and S � H��BK; R� denotes
the cohomology of its classifying space (cf. Sect. 10.6).
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(10.1) The goal. Suppose K acts subanalytically on a subanalytic space X :
For any A � �AX; �A; b� 2 Db

K�X � we would like to de®ne an S-module
structure on the equivariant global sections C�X �K EK; �A� and to de®ne a
K�-module structure on the (ordinary) global sections C�X ;AX�: Unfortu-
nately it is not so clear how to do this. Instead, in Sect. 11 we replace these
complexes of global sections by certain quasi-isomorphic complexes which
admit the appropriate module structures. Our de®nition of these module
structures involves some di�erential geometry which we review in this
section.

In certain cases (for example, if AX is the sheaf of subanalytic chains, or
the sheaf of subanalytic intersection chains) there is a natural K�-module
structure on the global sections C�X ;AX�, as described in Sect. 12. In The-
orems 12.3 and 12.5 we will show that these two module structures agree.

We use R coe�cients throughout Sects. 10±12.

(10.2) Lie algebra homology. Let k � Lie�K� denote the (real) Lie algebra of
K and denote by

@k�x0 ^ x1 ^ . . . ^ xn� �
X
i<j

�ÿ1�i�j�xi; xj� ^ x0 . . . ^ x̂i . . . ^ x̂j . . . ^ xn

the Lie algebra di�erential on the exterior algebra
V

k. Let P � V k denote
the graded subspace of primitive elements in the exterior algebra of k;

P � x 2
^

kjD��x� � x
 1� 1
 x
n o

�10:2:1�

where D� :
V

k! V
k
V k is the map induced by the diagonal embedding

D : k! k� k.
De®ne K� to be the exterior algebra K� �

V
P on the primitive elements.

The elements x 2 P are cycles (i.e., @kx � 0), they are K-invariant, they have
odd degrees, and the inclusion P ! �V k�K induces an isomorphism

K� �
^

P �
�^

k
�K
� H��k;R� �10:2:2�

between K�, the invariants in the exterior algebra of k and the Lie algebra
homology of k.

(10.3) Lie algebra cohomology. Let
V

k� be the exterior algebra of
k� � Hom�k;R�, with its Lie algebra di�erential

dkx�v0; v1; . . . ; vp� �
X
i<j

�ÿ1�i�jx��vi; vj�; v0; . . . ; v̂i; . . . ; v̂j; . . . ; vp�: �10:3:1�

Let P � � V k� denote the graded subspace of primitive elements,
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P � � fn 2
^
�k��jl�k �n� � 1
 n� n
 1g �10:3:2�

where l�k :
V

k� ! V
k� 
V k� is the map induced by the bracket

lk : k� k! k: The elements x 2 P � are invariant under K, they have odd
degrees, and they are cocyles, i.e. dkx � 0.

De®ne the algebra K� to be the exterior algebra K� � V P � on the
primitive elements. The inclusion P � ! �V k��K induces an algebra isomorp-
hism

K� ! �
^

k��K � H��k;R� �10:3:3�

between the exterior algebra K�, the invariants in the exterior algebra of k�;
and the Lie algebra cohomology of k:

(10.4) Kronecker pairing. For any multivector a 2 Vm k; the interior product
i�a� :

Vn k� ! Vnÿm k� is given by �i�a��x���b� � x�a ^ b�: The interior
product restricts to a nondegenerate pairing

P � P � �!h;i R �10:4:1�

which identi®es P and P � as dual (graded) vectorspaces. (In other words, if
a 2 P and l 2 P � then ha; ui � i�a��l� � 0 unless deg�a� � deg�l�. cf.
[GHV] III Sect. 5.2.1)

The algebra K� has the structure of a (left) module over K� by interior
product, k � x � i��k�x; while Hom�K�;R� has the structure of a (left)
module by �k � F ��v� � F ��kv�: These module structures are compatible with
the canonical isomorphism K� � Hom�K�;R� which is induced by the
pairing (10.4.1), in other words, hk � x; ai � hx; k � ai.

(10.5) Fundamental vector®elds and interior products. Suppose K acts (from
the left) on a smooth manifold Y . To each u 2 k we associate the fundamental
vector®eld Vu � V Y

u on Y by

V Y
u � y� �

d
dt
exp�tu� � yjt�0: �10:5:1�

Then V�u;v� � ÿ�Vu; Vv�. If lg : Y ! Y denotes the action by g 2 K then
�lg���Vu� � VAdg�u� and in particular the fundamental vector®eld Vu may fail
to be invariant. Each multivector u 2 Vr k determines a fundamental
multivector®eld V Y

u on Y : if u � u1 ^ . . . ^ ur then V Y
u � V Y

u1 ^ . . . ^ V Y
ur
: If

u 2 �V k�K � K� is an invariant multivector then the multivector®eld V Y
u is

left invariant.
Each multivector®eld V on Y de®nes an interior product

i�V � : Xn�Y � ! Xnÿdeg�V ��Y � by i�V ��x��W � � x�V ^ W � for any multivec-
tor®eld W of degree nÿ deg�V �: Then i�V ^ W � � i�W � � i�V �: The ring K�
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acts on the smooth di�erential forms X��Y � by interior product with fun-
damental vector®elds: If u 2 K� � �

V
k�K , let V Y

�u denote the fundamental
multivector®eld on Y associated to �u � �ÿ1�juju and set u � x � i�V Y

�u ��x�:
Then u � v � x � �u ^ v� � x:

(10.6) Homology of K. Associating to each Lie algebra cochain k 2 Vq k� the
corresponding left-invariant di�erential form L�k� 2 Xq�K;R� determines a
canonical isomorphism

L : K� � H ��K;R� �10:6:1�

between the ring K� and the (de Rham or the singular) cohomology of K,
together with its cup product structure. Using the pairing (10.4.1), the ad-
joint of (10.6.1) is a canonical isomorphism of algebras,

K� � H��K; R� �10:6:2�

between K� and the (singular) homology of the topological group K, to-
gether with the Pontrjagin product (i.e. the homomorphism which is induced
on homology from the multiplication K � K ! K).

(10.7) Di�erential forms on the classifying space. As in Sect. 5.1, ®x a smooth
model p : EK ! BK for the classifying space of K (cf. [BL] Sect. 12.4.1). Let
X�EKn

denote the sheaf of smooth real valued di�erential forms on EKn

extended by 0 on EK. De®ne ([BL] Sect. 12.2.2) the de Rham complex

X�EK � lim X�EKn

on EK. Then X�EK is a soft resolution of the constant sheaf REK. In a similar
manner, de®ne the de Rham complex of sheaves

X�BK � lim X�BKn

on BK. For each n let p�X�KEKn
denote the complex of sheaves on BKn whose

sections over an open set U � BKn consist of all K-invariant di�erential
forms in pÿ1�U�. By the usual averaging argument, the inclusion
p�X�KEKn

! p�X�EKn
is a quasi-isomorphism, and the same is true of the cor-

responding inverse limits on BK,

p�X�KEK � p�X�EK:

(10.8) The universal K� sheaf on BK. For each u 2 k (resp. u 2 V k) let Vu

denote the fundamental vector®eld on (resp. the fundamental multivector-
®eld) on EKn which is obtained by di�erentiating the action of exp�tu�. For
any invariant di�erential form x 2 X��EKn�, the interior product i�Vu��x� is
also invariant.
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For each n, de®ne a K� module structure on p�X�KEKn
as follows: For any

open set U � BKn, for any invariant di�erential form x 2 X��pÿ1n �U��, and
for any k 2 K�, set

k � x � i�V�k��x� �10:8:1�

Then d�k � x� � �ÿ1�deg�k�k � dx.

Proposition. The operation (10.8.1) determines on p�X�KEK the structure of a
soft sheaf of di�erential graded K� modules on BK. (

(10.9) The universal S sheaf on BK. Let ~P � denote the vectorspace P � with the
modi®ed grading, � ~P ��m � �P ��mÿ1: Then ~P � is graded by even degrees.
De®ne S � S� ~P �� to be the (graded) symmetric algebra (over R� on the
graded vectorspace ~P �; with grading deg�x1; x2; . . . ; xr� �

P
i deg�xi�: (cf

Sect. 8.1)
A choice of compatible K-invariant connections in the smooth ®ber

bundles pn : EKn ! BKn together with a choice of transgression determines a
collection of compatible Chern-Weil homomorphisms

hn : S! X�BKn
�10:9:1�

which induces an isomorphism S � H ��BK; R� on cohomology. De®ne a S-
module structure on each sheaf X�BKn

as follows: for any open set U � BKn

and any di�erential form x 2 C�U ;X�BKn
� set

s�x � �hn�s�jU� ^ x: �10:9:2�

Proposition. The operation (10.9.2) determines on X�BK the structure of a
complex of soft sheaves of S-modules on BK. (

11. Koszul duality and equivariant cohomology

As in Sect. 10, K denotes a compact connected Lie group acting subana-
lytically on a subanalytic space X : We use R coe�cients. In this section we
show that the equivariant cohomology and the ordinary cohomology of an
equivariant sheaf A 2 Db

K�X � are related by Koszul duality.

(11.1) The category Db
K�pt�. The canonical functor Db

K�pt� ! Db�BK� (which
is given by �Apt; �A; b� 7! �A) de®nes an equivalence of categories between
Db

K�pt� and the full subcategory of Db�BK� consisting of complexes of
sheaves whose cohomology sheaves are constant ([BL] Sect. 2.7.2). We will
often abuse notation by writing A� 2 Db

K�pt� to represent a complex of
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sheaves on BK whose cohomology sheaves are constant. De®ne the functor
of ``equivariant'' global sections, G : Db

K�pt� ! D��S� by

G�A�� � C�BK; X�BK 
R A��: �11:1:1�

where A� is a complex of sheaves on BK with constant cohomology sheaves,
and where s 2 S acts on x
 a to give h�s� ^ x
 a (cf. equation (10.9.2),
where h � lim hn). De®ne the functor of ``ordinary'' global sections
E : Db

K�pt� ! D��K�� by

E�A�� � C�BK; p�X�KEK 
R A�� �11:1:2�

where k 2 K� acts on e
 a to give k � e
 a as in (10.8.1).

(11.2) Theorem. The functors G and E are equivalences of categories, and are
related by Koszul duality: there are natural isomorphism of functors

hG � E �11:2:1�

and

G � tE �11:2:2�

where h denotes the ®rst Koszul duality functor and t denotes the second
Koszul duality functor. These functors restrict to equivalences of the full
subcategories,

Db
K;c� pt�

G
%

&
E

D f
��S��

h

???yx???t

D f
��K��

If X is a compacti®able K-space, if c : X ! pt is the map to a point, and if
A � �AX; �A; b� 2 Db

K�X �, then in the following diagram,

Db
K;c�X � �!

cK�
Db

K;c�pt�

G
%

&
E

D f
��S�� !H SÿMod

h

???yx???t

D f
��K�� !

H
K� ÿMod

the composition across the top is the equivariant cohomology,

HGcK
� �A� � H �K�X ; A� � H��X �K EK; �A�
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while the composition across the bottom is the ordinary cohomology,

HEcK
� �A� � H ��X ; A� � H ��X ;AX�:

The proof will appear in Sect. 17.

(11.3) Note. The Koszul duality functor h does not commute with coho-
mology: even though K� may act trivially on the cohomology H ��X ;A��; it
does not necessarily follow that the equivariant cohomology H �K�X ;A�� is a
free module over S: For example, take A� to be the constant sheaf and X to
be the total space of the Hopf bundle, S2n�1 ! CPn: This is a principal
K � S1 bundle, and K� �

V
R acts trivially on the ordinary coho-

mology H��S2n�1; R�: However, for n <1, the equivariant cohomology
H �K�S2n�1; R� � H��CPn; R� is not a free module over S � R�x�:

If we are willing to forget the S-module structure on the equivariant
cohomology, or to forget the K�-module structure on the ordinary coho-
mology, then proposition (8.8) may be applied to give another description of
the relationship between cohomology and equivariant cohomology.

(11.4) Corollary. There are natural isomorphisms of complex vectorspaces,

H ��X ; A� � H ��GcK
� �A�


L
SR� �11:4:1�

and

H�K�X ; A� � H��EcK
� �A�


L
KR�: �11:4:2�

In other words, the ordinary cohomology may be recovered from the
equivariant cochains by tensoring over S with R then taking cohomology,
and the equivariant cohomology may be recovered from the ordinary co-
chains by tensoring over K� with R then taking cohomology. (Equation
11.4.1 appears in [BL] Corollary 13.12.2, however in a di�erent language, in
the case of the constant sheaf, it is fairly well known among the experts in
transformation groups: see [AP1]).

12. The sweep action of K� on chains

Suppose that l : K � X ! X denotes a subanalytic action of a compact Lie
group K on a subanalytic set X . Let RK

X � �RX ;RX�K EK ; I� 2 Db
K�X � denote

the canonical lift of the constant sheaf to an element of the equivariant
derived category. By theorem 11.2, the (ordinary) cohomology of X is the
cohomology of the complex E�cK

�R
K
X � 2 D��K�� and it carries the structure

of a module over K� � H��K�: On the other hand, the cohomology of X may
also be realized as the cohomology of the complex of subanalytic chains
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C��X �, and on this complex there is another action of K�, the sweep action,
which is given by sweeping cycles in X around by cycles in K. The purpose of
this section is to show that the resulting complex C��X � 2 D��K�� is natu-
rally isomorphic to the complex E�cK

�R
K
X �: Similar remarks apply to the

intersection cohomology of X .

(12.1) Sweeping chains. Denote the subanalytic chains on X with complex
coe�cients by C��X � (cf. Sect. 3.2). If S 2 Ci�K� and n 2 Cj�X � are suban-
alytic chains, denote by S � C 2 Ci�j�K � X � the product chain whose ori-
entation is given by the orientation of S followed by the orientation of n. Let
l� : C��K � X � ! C��X � denote the homomorphism induced on chains by
the action lX and de®ne the sweep Sn � l��S � n� 2 Ci�j�X � to be image
chain. (If dim�lX �S � n�� < i� j then Sn � 0:)

The sweep may be used to de®ne an action of K� on the subanalytic
chains C��X ; R� as follows. Fix a basis x1; x2; . . . ; xr 2 H��K� for the prim-
itive homology P � H��K; R�: (Sect. 10.1) Let S1; S2; . . . ; Sr 2 C��K� be
conjugation-invariant subanalytic cycle representatives of the homology
classes x1; x2; . . . ; xr 2 H��K�. (This means that kSikÿ1 � Si for all k 2 K:)
For any decomposable element u � xi1xi2 . . . xit 2 K� and for any chain
n 2 C��X �, de®ne the chain u � n to be the iterated sweep,

u � n � Si1Si2 . . . Sitn � l0�Si1 � Si2 � . . .� Sit � n� �12:1:1�

where l0 : K � K � . . .� K � X ! X denotes the iterated multiplication.
Then @u � n � �ÿ1�juju � @n � �ÿ1�deg�u�u � @n:

The sweep action of K� on C��X � dualizes to a (left) action of K� on the
complex

C��X ; R� � HomR�C��X ; R�;R� �12:1:2�

of subanalytic cochains by �u � h��n� � h��u � n� for u 2 K�, n 2 C��X �, and
h 2 C��X �: Then d�u � h� � �ÿ1�deg�u�u � dh where dh�n� � h�@n� denotes the
di�erential in C��X �: In summary, the subanalytic cochains may be realized
as an element C��X � 2 D��K�� in the derived category of K�-modules by
choosing cycle representatives for the primitive homology classes of K and
allowing K� to act by the sweep. (

(12.2) Remarks. Changing the representative cycles Si will change the
module structure on C��X �, but only up to homotopy, so the isomorphism
class C��X � 2 D��K�� is independent of this choice. Particular conjugation-
invariant subanalytic cycles Si are described in [P], [Dyn], [S1], [S2]. The
subanalytic assumption is only made for technical convenience. The sweep
action of K� may be de®ned on the complex of singular chains, using
standard techniques.
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Let c : X ! pt and cK
� �RK

X � 2 Db
K�pt� denote the pushforward (Sect. 5.4)

of the constant sheaf RK
X 2 Db

K�X �: Let E�cK
�R

K
X � 2 D��K�� be the complex

of (11.1.2).

(12.3) Theorem. Integration of di�erential forms over subanalytic chains
determines an isomorphism in D��K��,

I : E�cK
�R

K
X �!
�

C��X �: �12:3:1�

The proof will appear in Sect. 18.

(12.4) Intersection chains. Choose an equivariant subanalytic strati®cation of
X . Fix a perversity function �p ([GM1], [GM2]) and let I �pCi�X � denote the
subcomplex of � �p; i�-allowable subanalytic chains with real coe�cients,

I �pCi�X � �
(

n 2 Ci�X ; R� dim�jnj \ Sc� � iÿ c� p�c�
dim�j@nj \ Sc� � iÿ 1ÿ c� p�c�

)����� �12:4:1�

for each stratum Sc � X of codimension c. The sweep action of K� preserves
the perversity restriction, so it acts on the chain complex I �pC��X � and hence
also on the complex of intersection cochains,

I �pCi�X � � HomR�I �pCi�X �;R�:

Thus the subanalytic intersection cochains may also be realized as an ele-
ment, I �pC��X � 2 D��K�� of the derived category of K�-modules. Let
I �pCK

X 2 Db
K�X � denote the equivariant intersection complex on X . (cf Sect.

4.5)

(12.5) Theorem. The isomorphism (12.3.1) induces an isomorphism in D��K��,

I : E�cK
� I �pCK

X �!
�

I �pC��X �: �12:5:1�

The proof will appear in Sect. 18.

13. Secondary cohomology operations

(13.1) The 1-dimensional case. Let K � S1 denote a 1-dimensional compact
torus, and K� � H��K; R� its homology ring. Let �N ; dN � 2 D��K�� be a
di�erential graded complex of K� modules. Then the cohomology H��N�
of N is a graded K� module. In this section we will describe a sequence
of higher cohomology operations on H ��N� with the property that the
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original complex N is split and trivial i� (a) the cohomology H��N� is a
trivial K� module, and (b) all the higher cohomology operations on
H ��N� vanish.

Denote by k 2 K1 the fundamental class k � �K� 2 K1 � H1�K; R�: We
may think of the induced action of k on H ��N� as a cohomology operation
of degree ±1, and denote it by

k�1� : H i�N� ! Hiÿ1�N�: �13:1:1�

(13.2) Proposition. For each integer n � 1 there is a higher cohomology
operation k�n� of degree ÿ2n� 1 such that

(1) the operation k�1� is given by (13.1.1)
(2) the operation k�n� is de®ned on the kernel of k�nÿ1� and is well de®ned

modulo the image of k�nÿ1�,
(3) If a0; a2; . . . ; anÿ1 are homogeneous elements of N with deg�aj� �

deg�a0� � 2j, and if da0 � 0 and daj � kajÿ1 for 1 � j � nÿ 1 then k�n��a0� �
�kanÿ1�.

Here, �a0� denotes the homology class represented by a0. The chain kanÿ1
is a cycle because dkanÿ1 � ÿkdanÿ1 � kkanÿ2 � 0: By writing bj � daj �
kajÿ1, condition (3) may be interpreted as the existence of a string of
homogeneous elements in N , starting at a0 and ending at bn � k�n��a0�,
which for n � 3 looks like this:

b3 k a2!d b2 k a1!d b1 k a0 �13:2:1�

(13.3) Proof. Since K is 1-dimensional, the polynomial algebra S � R�n�may
be additively identi®ed with the complex an�0R�2n� (with zero di�erential).
Thus the Koszul dual t�N� � N 
R S (with di�erential d�a
 s� �
da
 s� ka
 ns) may be identi®ed as the single complex associated to the
double complex (9.1.1),

Mpq � Nqÿp if a � p
0 if q < p

�
�13:3:1�

with di�erential d � d 0 � d 00 where d 00�a� � ka 2 Mp�1;q, and d 0�a� � dN a 2
Mp;q�1 for any a 2 Mpq. The spectral sequence associated to this double
complex has Epq

1 � Hqÿp�N� and di�erential d�1���a�� � k�1���a�� for any
�a� 2 H��N�. It follows by induction that the secondary cohomology oper-
ation k�n� acting on elements of degree q may be identi®ed with the di�er-
ential d�n� : E0q

�n� ! En;qÿn�1
�n� : In particular, it is de®ned on the kernel of d�nÿ1�

and is well de®ned modulo the image of d�nÿ1�: In fact, the operation
k�n� � d�n� is well de®ned on the homology of the previous operation,
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k�n� :
ker�k�nÿ1��
Im�k�nÿ1�� !

ker�k�nÿ1��
Im�k�nÿ1�� � E�n� �13:3:2�

(13.4) Proposition. A di�erential graded K�-module N 2 D��K�� is split and
trivial i� k 2 K1 acts trivially on its cohomology H ��N� and all the higher
cohomology operations k�n� vanish.

(13.5) Proof. The primary operation by k and the higher operations by k�n�
(for n � 2) were identi®ed with the di�erentials in the spectral sequence
(9.1.4). These operations vanish i� the spectral sequence collapses, in which
case N is split, by (9.3). (

(13.6) Remarks. The example in Sect. 11.4 describes a space X with a
nonvanishing higher cohomology operation kn on its cohomology H��X �;
together with the consequential failure of the equivariant cohomology
H �K�X � to be a free module over S:

Assuming the hypotheses of Proposition (13.4), it is possible to construct
explicit quasi-isomorphisms of di�erential graded K� modules,

a
n�0

H n�N��ÿn� b a
n�0

Hn�N��ÿn� 
R K� !a N

where K� � K� 
 S denotes the Koszul complex. The quasi-isomorphism b
is given by the augmentation � : K� ! K0 � R while the map a is de®ned as
follows: choose a collection of cycle representatives for the elements in a
homogeneous basis of H ��N�. For each such cycle a 2 N de®ne
aa : K��deg�a�� ! N by induction, mapping the Koszul complex to an
arbitrarily long string of elements of the sort described in (13.2.1).

(13.7) Cyclic homology. The double complex (13.3.1) (or (9.1.1) is sometimes
referred to as Connes' double complex ([W] Sect. 9.8.2, [Hu]) which is as-
sociated to the mixed complex [Ka1] N 2 D��K��: In particular, we see that
the cyclic homology of a mixed complex N coincides with the cohomology of
the Koszul dual complex t�N�.

(13.8) The general case. If K denotes a compact connected Lie group with
K� � H��K; R� and S � H��BK; R� and if N 2 D f

��K�� then the di�erentials
in the spectral sequence for Koszul duality (9.1.4) may be interpreted as a
collection of higher cohomology operations, the vanishing of which is
equivalent to the statement that N is split and trivial, or that M � t�N� is
split and free. Choose homogeneous generators x1; x2; . . . ; xr 2 P for the
primitive homology classes P � K�:
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Proposition. For each monomial a � xn1
1 xn2

2 . . . xnr
r there is a higher cohomology

operation ka on the cohomology H ��N�; of degree

deg�ka� � ÿ
Xr

i�1
�ni�deg�xi� � 1� ÿ 1�

which is de®ned on the subgroup\ �
ker�kb� j deg�b� > 0 and bja	

and takes well de®ned values in the quotient group

H ��N�P �
Im�kb� j deg�b� > 0 and bja	 :

The complex N 2 D��K�� is split and trivial i� the action of K� on the
cohomology H ��N� is trivial and all the higher operations ka vanish. (

(13.9) Conjecture. The triangulated category D��K�� is equivalent to
the category of graded K�-modules together with the collection fkag of
secondary cohomology operations.

14. Su�cient conditions for a complex to split

Throughout this section we assume that a compact connected Lie group K
acts subanalytically on a subanalytic space X , and we ®x an element
A � �AX; �A; b� 2 Db

K�X �. We give a number of conditions, any one of which
su�ces to guarantee that the equivariant cohomology H �K�X ; A� �
H ��X �K EK; �A� is a free module over S � H �K�pt; R�. This veri®es the key
technical assumption in the topological part of the localization theorem 6.3.

(14.1) Theorem. Let A � �AX; �A; b� 2 Db
K�X �. Suppose that any one of the

following conditions holds:
(1) The (ordinary) sheaf cohomology, H ��X ; A� � H ��X ;AX� vanishes in

odd degrees.
(2) The action of K� on the (ordinary) cohomology H ��X ; A� � H ��X ;AX�

is trivial, and all the higher K� operations vanish.
(3) A � RK

X � �RX ;RX�K EK ; I� is the constant sheaf, and for all i, the
(ordinary) homology groups Hi�X ; R� are generated by K-invariant subana-
lytic cycles n 2 Ci�X ; R�.

(4) A � I �pCK
X is the (equivariant) intersection complex with respect to some

perversity �p, and for all i, the (ordinary) intersection homology groups
I �pHi�X ; R� are generated by K-invariant subanalytic � �p; i�-allowable cycles.
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(5) A � RK
X � �RX ;RX�K EK ; I� is the constant sheaf, and the space X has a

cell decomposition by K-invariant subanalytic cells.
(6) The space X is a nonsingular complex projective algebraic variety, the

group K � �S1�r is the compact subtorus of an algebraic torus T � �C��r; the
action of K is the restriction of an algebraic action of T on X, and the sheaf
A � RK

X � �RX ;RX�K EK ; I� is the constant sheaf.
(7) The space X is a complex projective algebraic variety, the group

K � �S1�r is the compact subtorus of an algebraic torus T � �C��r; the action
of K is the restriction of an algebraic action of T on X, and the sheaf A � I �mCK

X
is the middle intersection complex.

(8) The space X � X �C� is the complex points of a (possibly singular)
complex algebraic variety, the group K � �S1�r is the compact subtorus of an
algebraic torus T � �C��r, the action of K on X is the restriction of an alge-
braic action of T on X, the sheaf A � �RK

X ;RX�K EK ; I� is the constant sheaf,
and moreover for every non-negative integer q, the cohomology group
H q�X ;Q� is pure of weight q.

(9) The space X is a compact symplectic manifold, K acts on X by
Hamiltonian vector®elds, and A � RK

X is the constant sheaf.
Then the global ``ordinary'' sections E�cK

� �A�� 2 D��K�� is split and trivial,
the equivariant global sections G�cK

� �A�� 2 D��S� is split and free, and the
equivariant cohomology

H�K�X ; A� � H ��X �K EK; �A� � H ��X ;AX� 
R S �14:1:1�

is a free module over S.

(14.2) Proof. In case (1) the spectral sequence (9.4.1) collapses because the
cohomology of BK also vanishes in odd degrees. So proposition (9.3)
applies, and the equivariant cohomology is given by

H �K�X ; A� � S
 H��X ;AX�:

In case (2) the spectral sequence (9.4.1) collapses by proposition (13.8) so the
same argument applies.

In case (3), choose a basis for the (ordinary) homology of X consisting of
invariant subanalytic cycles. Consider the chain complex B� with 0 di�er-
ential and trivial K� action which consists of the vectorspace (over R)
generated by these subanalytic cycles. The inclusion B� ! C��X ; R� of B�
into the complex of subanalytic chains on X is a quasi-isomorphism, and it
is a K�-equivariant mapping. Therefore the (dual) morphism of cochain
complexes B� � HomR�B�;R�  C��X � is an isomorphism in D��K��:
Combining this with theorem (12.3), we obtain isomorphisms

B� � C��X � � E�cK
�R

K
X �

in Db
K�X �: By theorem 11.2 the Koszul dual is given by
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t�B�� � tE�cK
�R

K
X � � Gc�RK

X

But the complex B� is split and trivial, so by proposition (9.3), its Koszul
dual is split and free. This means the spectral sequence (9.1.4) or (9.4.1)
degenerates, and the equivariant cohomology of X is given by

H �K�X ; R� � H ��X ; R� 
R S

which is a free module over S: This completes the proof in case (3). The
proof in case (4) is similar.

In case (5), let B� denote the complex of cellular chains on X , with respect
to an equivariant cell decomposition of X : The inclusion B� � C��X � of B�
into the complex of subanalytic chains, is a quasi-isomorphism, and it is K�-
equivariant since the cells are K-invariant. But K� acts trivially on B�; so the
dual cochain complex B� is a split and trivial element of the derived category
D��K��: The same argument as in the preceding paragraph applies.

In case (7), (cf [Br], [Ki1], [G]) the space X �T ET may be realized as a
limit of projective algebraic varieties X �T ETn as follows: Take ETn �
�Cn ÿ 0�r with algebraic T action given by �t1; t2; . . . ; tr� � �x1;x2; . . . ;xr� �
�t1x1; t2x2; . . . ; trxr� as in [Ki1]. Since T acts algebraically on X , the quotient
X �T ETn is algebraic and projective and the mapping p : X �T ETn !
BTn � �CPn�r is an algebraic ®ber bundle. The hyperplane class for
X �T ETn induces a hard Lefschetz isomorphism for the middle intersection
cohomology of each ®ber pÿ1� y� � X ([D2], Theorem 6.2.13 or [BBD] Cor.
5.3.4). By the theorem of Blanchard and Deligne [Bla], [D1], this implies that
the spectral sequence (9.4.1) collapses, so proposition (9.3) applies, and the
equivariant intersection cohomology is given by

I �mH�K�X ; R� � I �mH ��X � 
R S:

This completes the proof of case (7).
The same proof also works whenever K is a maximal compact subgroup

of a complex algebraic grup KC; which admits a model BK � limBKn for its
classifying space such that each BKn is a complex projective nonsingular
algebraic variety, provided the action of K on X is the restriction of an
algebraic action of KC on X :More generally, if the sheaf AX is ``pure'' then it
is isomorphic to a direct sum of (shifts of) intersection cohomology sheaves,
and the same argument implies that the spectral sequence (9.4.1) collapses.
(cf. [Br] Theorem 4.2.3 or [BBD] Theorem 5.3.8).

Case (6) is a particular version of case (7).
In case (8) we use the same algebraic model ETn � �Cn ÿ f0g�r,

BTn � �CPn�r as in case (7). By hypothesis, Hq�X � is pure of weight q, and
moreover, the cohomology H p�BTn� is pure of weight p. Therefore the E2

term of the spectral sequence for the ®bration X �T ETn ! BTn is
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Epq
�2� � Hp�BTn� 
 Hq�X �

which is pure of weight p � q. It follows from mixed Hodge theory ([D3],
[D4], [D5]) that the di�erentials in this spectral sequence are strictly com-
patible with the weight, and hence they all vanish, so proposition (9.3)
applies. (

In case (9) it follows from [Ki2] Sects. 5.8 that the spectral sequence
(9.4.1) for equivariant cohomology collapses so Proposition (9.3) applies.

(

15. Proof of Theorem 6.2

The proof of the localization theorem consists of combining the equivariant
derived category techniques of Bernstein and Lunts [BL] with the localiza-
tion arguments of Borel [B3], Quillen [Q], Hsiang [H2], and Chang and
Skjelbred [CS] (cf [H2] Sects. III.1, IV.2). We have simpli®ed the argument
in [CS] by focusing (as in [AB]) on the support of various S-modules rather
than on the primary decomposition of their annihilators. As in Sect. 6, we
use complex coe�cients in this section.

(15.1) Lemma. Let Y � Kx � X denote the orbit of a single point x 2 X ÿ F
(where F denotes the ®xed point set). Let L � K0

x denote the connected
component of the stabilizer. For any equivariant sheaf A 2 Db

K�X �, the
equivariant cohomology H�K�Y ; A� is a torsion module over S � H �K�pt; C�
with

spt�H �K�Y ; A�� � lC � Lie�L� 
R C: �15:1:1�

(15.2) Proof. Choose a splitting K � L� L0 of the torus, which gives rise to
splittings EK � EL� EL0, BK � BL� BL0, and H�K�pt� � H �L �pt� 
 H �L0 �pt�.
Then K � L� L0 acts (almost) freely on the space EL� Y by
�`; `0�:�e; y� � �`:e; `0:y� with quotient EL�K Y � BL. So the projection
EL� Y ! Y is (in the language of [BL]) an in®nite acyclic resolution, and we
have a diagram

Y  � EK � Y �! EK �K Y???y ???yf
???y �f

Y  �
p

EL� Y �!
q

BL
�15:2:1�

Following [BL] Sects. 2.1.3, 2.7.2, we consider the category Db
K�Y ;EL� Y �

of triples �AY; b; �A� where AY 2 Db�Y �, �A 2 Db�BL�, and b : p��AY� ! q���A�
is an isomorphism in Db�EL� Y �. The association �AY; b; �A�7!�AY; f �b;
�f ���A�� de®nes an equivalence of categories Db�Y ;EL� Y � ! Db

K�Y � as in
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[BL] Sect. 2.9.3. Thus, we may assume that AjY � �AY; b; �A� 2 Db
K�Y ;EL

�Y �: Consider the e�ect of the isomorphism b on the stalk cohomology at
a point �e; y� 2 EL� Y ,

H�y�AY� � H��e;y��p�AY�!b H��e;y��q� �A� � H�q�e���A�: �15:2:2�

This shows that the cohomology sheaf H���A� on BL is constant. Therefore
the equivariant cohomology is given by H �K�Y ; A� � H��BL; �A�: There is a
spectral sequence of S-modules for this group, with

E�2� � H��BL� 
 H�q�e���A�:

The support of this module is lC: It follows that spt�H �K�Y ;A�� � lC. (

(15.3) Lemma. Let Y � X be an invariant, compact subset on which K acts
without ®xed points. Then for any A 2 Db

K�X � the support of the equivariant
cohomology

spt�H �K�Y ; A�� �
[
y2Y

kCy �15:3:1�

is contained in the union of the Lie algebras of the stabilizers of points
y 2 Y .

(15.4) Proof. Cover Y by ®nitely many regular neighborhoods of orbits.
Apply Lemma (15.1) to each orbit and patch using Mayer-Vietoris.

(15.5) Proof of theorem 6.2 (1) and (2). Let U � X be an invariant
regular neighborhood of Z, with invariant boundary @U . Then
H �K�X ; Z; A� � H �K�X ÿ U ; @U ; A�. Apply Lemma 15.3 to H �K�X ÿ U ; A� and
to H �K�@U ; A�. This proves part (1), and part (2) follows immediately. (

(15.6) Proof of theorem 6.2 (3). By the long exact cohomology sequence, it
su�ces to show that H �K�X ;X L; A�PL � 0. By Theorem 6.2 (1), spt�H�K�X ;X L;
A�� 6� lC since it is contained in a union of linear subspaces kCy , none of which
contains lC. Hence the localized module vanishes, H�K�X ;X L; A�PL � 0. (

(15.7) Let n 2 H �K�F � and let I�n� � Ann�d0�n�� be the ideal in S which
annihilates d0�n� where d0 is the connecting homomorphism in the long exact
sequence,

H �K�X ; A�!c H�K�F ; A�!d
0

H�K�X ; F ; A� �15:7:1�
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For each m 2 P let dm denote the connecting homomorphism in the exact
sequence,

H �K�X m; A�!c H�K�F ; A�!d
m

H�K�X m; F ; A� �15:7:2�

(15.8) Lemma. [CS] If d0�n� 6� 0 then the variety de®ned by I�n� satis®es

V �I�n�� �
[

m2P
dm�n�6�0

mC: �15:8:1�

(15.9) Proof. Since d0�n� 2 H �K�X ; F ; A� we have

V �Ann�d0�n��� � spt�H�K�X ; F ; A�� �
[
l2P

lC �15:9:1�

by Theorem 6.2(1). Suppose m 2 P and dm�n� � 0: We have an exact
sequence

H �K�X ;X m; A�!j H�K�X ; F ; A�!m H �K�X m; F ; A� �15:9:2�

Then dm�n� � md0�n� � 0 so there exists y 2 H �K�X ;X m; A� with d0�n� � j� y�:
Hence, Ann� y� � Ann�d0�n�� so

V �Ann�d0�n��� � V �Ann�y�� � sptH�K�X ;X m; A� �
[
l2P
l 6�m

lC

by 6.2(1). Since this holds for any such m, we conclude that

V �I�n�� �
\

m2P
dm�n��0

[
l2P
l 6�m

lC

0B@
1CA:

The (®nite) partially ordered set P is the union of the two disjoint subsets,

P� � fm 2 Pjdm�n� � 0g
Pÿ � fm 2 Pjdm�n� 6� 0g

Then P� is upward saturated (and Pÿ is downward saturated): If m 2 P�
then P�m � fl 2 Pjl � mg � P�: It follows that

spt�I�n�� �
\

m2P�

[
l2PÿP�m

lC

0@ 1A � [
m2Pÿ

mC: (
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(15.10) Proof of Theorem 6.3. By Theorem 6.2(1), the kernel and cokernel of
c are torsion modules, however H �K�X ; A� is a free module, by assumption.
Therefore ker�c� � 0. It is also clear that d � c � 0. Now suppose d�n� � 0.
We must show that d0�n� � 0, where d0 is the connecting homomorphism in
the long exact sequence (15.7.1). Assume d0�n� 6� 0. Let I�n� � Ann�d0�n�� as
in (15.7), so V �I�n�� � SflC j l 2 P and dl�n� 6� 0g by (15.8). On the other
hand, I�n� is principal since H�K�X ; A� is free (see [CS] Sect. 2.2 or [H2] Sect.
IV.2 Proposition 6). Therefore at least one of the tori L appearing in (15.8.1)
has codimension 1; for this torus X L � X1: Then dl factors through d,

H�K�F ; A�!d H �K�X1; F ; A� ! H�K�X L; F ; A�

which contradicts the assumption that d�x� � 0: (

16. Proof of Koszul duality theorem (8.4)

In this section we show how the proof of Koszul duality, as outlined in
[BGS] may be modi®ed so as to agree with the gradings and sign conven-
tions used in Sect. 8.

(16.1) Step 1. The functor h : K��K�� ! K��S� passes to a functor
t : D��K�� ! D��S� on the derived category: a morphism f : N1 ! N2 of
complexes of K�-modules induces a map of spectral sequences (Sect. 9.1.4)
with E�1� given by

Epq
�1��N1� � S2p 
k H qÿp�N1� ! Epq

�1��N2� � S2p 
k Hqÿp�N2� �16:1:1�

If f : N1 ! N2 induces an isomorphism on cohomology then the map
(16.1.1) determines an isomorphism of spectral sequences and hence
determines an isomorphism H ��t�N1�� ! H ��t�N2�� on cohomology. So
t� f � : t�N1� ! t�N2� is a quasi-isomorphism. A similar argument applies to
the functor h : K��S� ! K��K�� by substituting the spectral sequence (9.1.5)
for the spectral sequence (9.1.4).

(16.2) Step 2. Construct an isomorphism of functors I ! ht on D��K�� as
follows: For any N 2 D��K�� de®ne an injection

U : N ! ht�N� � Homk�K�;S
k N� �16:2:1�

by

Un�k� � 1
 �kn �16:2:2�
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We claim that U is an isomorphism in the category D��K��, i.e.,

(a) U is a morphism of K�-modules
(b) U is a morphism of complexes
(c) U induces isomorphisms on cohomology.

(16.3) Proof of (a). Note that the K�-module structure on ht�N� is given as
follows: if x 2 K� and F 2 Hom�K�;S
k N� then x:F 2 Hom�K�;S
k N� is
the homomorphism

�x:F ��k� � F ��xk� �16:3:1�

So for all k 2 K� we have

�x:Un��k� � Un��xk� � 1
 �xkn � 1
 �kxn � Uxn�k� �16:3:2�

(16.4) Proof of (b). For all n 2 N and for all k 2 K�, we have, by (8.3.2) and
(8.3.4),

�dUn��k� � ÿ
X

i

niUn�xik� � �ÿ1�deg�k�dS
N �Un�k��

� ÿ
X

i

ni 
 xikn� �ÿ1�deg�k�dS
N �1
 �kn�

� ÿ
X

i

ni 
 �k�xin� �ÿ1�deg�k�
X

i

ni 
 xi
�kn

� �ÿ1�deg�k��1
 dN ��kn��
� ÿ

X
i

ni 
 �kxin�
X

i

ni 
 �kxin� 1
 �kdN n

� Udn�k� �16:4:1�

(16.5) Proof of (c). The augmentation � : S! k extends to a map of com-
plexes � : S
k N ! N . Following [BGS], de®ne W : Homk�K�;S
 N� ! N
by assigning to any F 2 Hom�Ka;S
 N� the element

W�F � � ��F �1�� if a � 0
0 if a > 0

�
�16:5:1�

Although W is not a morphism of K�-modules, one easily checks that it is
nevertheless a morphism of complexes (i.e. dNW � Wdht�N�) and that it is a
splitting for the injection U : N ! ht�N�. Thus, it su�ces to verify that W
induces an isomorphism on cohomology.

The module ht�N� � Hom�K�;S
 N� is actually a triple complex,
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ht�N�abc � Homk�Ka;S
b 
k Nc� � Homk�Ka;S

b� 
k N c �16:5:2�

with total degree a� b� c and di�erential d � d 0 � d 00 � d 000 which (by
(8.3.2) and (8.3.4)) is given by

d 0� f 
 n��k� � ÿ
X

i

nif �xik� 
 n

d 00� f 
 n��k� � �ÿ1�deg�k�
X

i

nif �k� 
 xin �16:5:3�

d 000� f 
 n��k� � �ÿ1�deg�k�f �k� 
 dN n

for any f 2 Hom�K�;S� and n 2 N . Then ht�N� may be regarded as the
single complex which is associated to the double complex

T pq�N� � a
q�2a�b�c

p�ÿa

Hom�Ka;S
b� 
 Nc �16:5:4�

with di�erentials d0T � d 0 : T pq ! T p�1;q and d00T � d 00 � d 000 : T pq ! T p;q�1.
We may also regard N as the single complex associated to the double
complex

N pq � Nq if q � 0
0 if q 6� 0

�
�16:5:5�

and with di�erential d00N : N 0;q ! N0;q�1 given by dN (and all other di�er-
entials vanishing). With these choices, the morphism W : Hom�K�;S
 N�
! N is actually a morphism of double complexes, T pq ! N pq.

The horizontal di�erential d0 � d 0 is the tensor product d 0 � @ 
 IN

where @ is the Koszul di�erential on the Koszul complex Homk�K�;S�,
which in turn is a resolution of the constants k � Hom�K0;S

0� in degree 0
(cf. [C2], or [Ka2] XVIII eq. (7.13) for an explicit trivializing homotopy).
Therefore the E�1� term of the spectral sequence for T pq becomes

Epq
�1��T � � N q if p � 0

0 otherwise

n
�16:5:6�

Furthermore the di�erential d 00 maps Hom�K0;S
0 
 N q� to Hom�K0;

S2 
Nq�1� and hence it vanishes when we pass to E�1��T �, in other words,
d0T � d 000 � dN on E�1��T �. Therefore, W induces an isomorphism

�Epq
�1��T �; d00T � ! �N ; dN � �16:5:7�

of spectral sequences, and hence also an isomorphism on cohomology.

(16.6) Step 3 Construct an isomorphism of functors th! I on D��S� as
follows: For all M 2 D��S� de®ne the surjection
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H : S
k Homk�K�;M� ! M �16:6:1�

by

H�s
 F � � s:F �1� 2 M �16:6:2�

Then, as in (16.3) and (16.4), H is a morphism of complexes of S-modules.
In fact it is a quasi-isomorphism, as may be seen by applying the preceding
spectral sequence argument (16.5) to the splitting M ! S
k Homk�K�;M�
which is given by m7!1
 fm where

fm�k� � km if k 2 K0 � k
0 otherwise.

n
�16:6:3�

(16.7) Step 4. Now let us check the ®niteness properties which are described
in theorem 8.4. Let DF

��S� denote the derived category of complexes of
S-modules which are ®nitely generated. We have canonical functors

DF
��S�!

a
D f
��S�!

b
D��S�: �16:7:1�

Bernstein and Lunts show (Sect. 11.1.3) that the composition ba is fully
faithful, and the same argument applies to b.

We claim that the functor a is an equivalence of categories. This may
be seen from the following argument, for which we thank V. Lunts [L]: It
su�ces to show that every object M 2 D f �S� is quasi-isomorphic (within
D��S�) to a complex of ®nitely generated S-modules. This follows by
induction on the cohomological dimension of the S-module H ��M�: if
H ��M� is a free S-module, then H ��M� � M and we are done. Otherwise,
there is a ®nitely generated, bounded below S-module P , with 0 di�eren-
tials, and a morphism u : P ! M which induces a surjection on coho-
mology. Let C�u� 2 D��S� denote the cone of this morphism. Then the
cohomological dimension of H ��C�u�� is less than that of H��M�, and
H ��C�u�� is ®nitely generated. By induction, C�u� is isomorphic to a
complex C0�u� of ®nitely generated S-modules. Since the functor
DF
��S� ! D��S� is fully faithful, the third morphism C0�u� ! P of the

above distinguished triangle is also in DF
��S�. But M is isomorphic to

the cone of this morphism C0�u� ! P ; i.e. M is isomorphic to a complex
of ®nitely generated S-modules. Similar remarks apply to the derived
categories of K�-modules.

The functors h and t take complexes with ®nitely generated cohomology
to complexes with ®nitely generated cohomology, because h�S� is the Koszul
complex whose cohomology is k, and t even takes ®nitely generated
K�-complexes to ®nitely generated S-complexes. (
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17. Proof of Theorem 11.2

We must display an isomorphism of functors hG � E. First let us lift the
Koszul duality functor h to a functor on sheaves. As in Sect. 10.1, let P
denote the r-dimensional vectorspace of primitive elements in

V
k, let

K� �
V

P and K� � V P � where P � � HomR�P ;R� denotes the dual space
for P : The Kronecker pairing (Sect. 10.4) h ; i : K� � K� ! R identi®es
K� � HomR�K�;R�: Let ~P � denote the dual space with modi®ed grading,
and S � S� ~P ��: If l 2 P � write ~mu 2 ~P � for the corresponding element. Fix
dual bases fxig and fnig (with 1 � i � r) for P and ~P �.

(17.1) De®nition. Let B� be a soft complex of sheaves of S-modules on the
classifying space BK. De®ne

h�B�� � Hom�K�;B�� �17:1:1�

to be the complex of sheaves of K�-modules on BK whose sections over an open
set U are C�U ; h�B��� � HomR�K�;C�U ;B��� with di�erential

dF �k� � ÿ
Xr

i�1
niF �xik� � �ÿ1�deg�k�dB�F �k�� �17:1:2�

(for homogeneous elements k 2 K�), and with K�-module structure �x:f ��k� �
F ��xk� for x 2 K� and F 2 HomR�K�C�U ;B���. It follows that h�C�BK;B��� �
C�BK; h�B���:
In the next few sections we will use Chern-Weil theory to show that h
transforms the universal S-sheaf into the universal K�-sheaf: in Lemma 17.6
we will describe a quasi-isomorphism of sheaves of K�-modules on BK;

h�X�BK� ! p�X�KEK: �17:1:3�

(17.2) Chern-Weil construction. Fix a transgression s : P � ! S�~k��K . Then s is
homogeneous of degree 1. The composition ~P � ! P � !s S�~k��K is homo-
geneous of degree 0 and extends in a unique way to a homomorphism of
graded algebras,

T : S � S� ~P �� ! S�~k��K : �17:2:1�

A fundamental result of Chevalley, Koszul and Cartan ([C2] Theorem 2)
states that the homomorphism T is an isomorphism of graded algebras.

In Sect. 10.9 a (left invariant) connection was chosen in the principal K-
bundle EK ! BK: Let f : k� ! X1�EK� be the associated connection 1-form,
where X��EK� denotes the complex of smooth complex-valued di�erential
forms on EK: The mapping f has a unique extension to a homomorphism of
graded algebras, f :

V�k�� ! X��EK� however it does not commute with
the di�erentials. The curvature 2-form, H : ~k� ! X2�EK;R� is given by
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H�~n� � df �n� ÿ f �dkn�: It extends to a homomorphism of graded algebras,
H : S�~k�� ! X��EK�: If n 2 S�~k��K is an invariant polynomial on k then H�n�
lies in the subalgebra p��X��BK�� of ``basic'' elements, consisting of di�er-
ential forms which are both invariant and are also annihilated by
every invariant vertical vector®eld. This gives the Weil homomorphism
H : S�~k��K ! X��BK�: Composing with the mapping T gives the injective
Chern-Weil homomorphism of graded algebras (cf. (10.9.1)),

h � H � T : S! X��BK� �17:2:2�

which induces an isomorphism on cohomology, S � H��BK;R�: Set
/ � Hs : P � ! X��BK�. In summary, we have a commutative diagram,
(where �1� denotes a degree 1 mapping),

P � ��!
�1�

S � S� ~P �� ???yT

P � ��!s
�1�

S�~k��K ,! S�~k��  ��
�1�

k� ???yH

???yH �1�
???ydf ÿ fd

P � ��!/
�1�

X��BK� ,!p
�

X��EK�  �� X2�EK�

(17.3). De®ne E�BK � K� 
X�BK to be the complex of sheaves of K�-modules
on BK whose sections over an open set U � BK are given by

C�U ;Ek
BK� � a

p�q�k
Kp 
 Xq�U ;R� �17:3:1�

with di�erential,

dE�l0 ^ l1 ^ . . . ^ lpÿ1 
 x�

� ÿ
Xpÿ1
j�0
�ÿ1�jl0 ^ . . . ^ l̂j ^ . . . ^ lpÿ1 
 /�lj� ^ x

� �ÿ1�pl0 ^ l1 ^ . . . ^ lpÿ1 
 dx �17:3:2�

for any l0; l1; . . . ; lpÿ1 2 P �; and with module structure given by the interior
multiplication, k � l
 x � i��k��l� 
 x for k 2 K�; l 2 K�; and x 2 X��U�.

(17.4) Lemma. Let

a : E�BK � K� 
X�BK ! h�X�BK�
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be the isomorphism of sheaves, given by a�l
 x� � Fl
x where
Fl
x�k� � hk; lix: Then a is an isomorphism of sheaves of K�-modules.

(17.5) Proof. It is easy to check that the actions of K� are compatible, i.e.
a�k � l
 x� � k � a�l
 x�: The main issue is to check that the di�erentials
agree. For each lj 2 P � we have ~lj �

Pn
i�1hxi; ljini 2 ~P �. Since /�lj� �

Hs�lj� � HT �~lj�; the di�erential (17.3.2) may be rewritten as

dE�l
 x� � ÿ
Xn

j�1
xj � l
HT �nj� ^ x� �ÿ1�jljl
 dx �17:5:1�

where l0;l1; . . . ; lpÿ1 2 P �, with l � l0 ^ l1 ^ . . . ^ lpÿ1 2 K� and �xj � l� �k�
� i��xj��l��k�: Now apply a and evaluate on any homogeneous element
k 2 K� to get

�adE�l
 x���k� � ÿ
Xn

j�1
hk; xj � liHT �nj� ^ x� �ÿ1�jljhk; lidx

� ÿ
Xn

j�1
h�nj� ^ hxjk; lix� �ÿ1�jljhk; lidx

� ÿ
Xn

j�1
nj:Fl
x�xjk� � �ÿ1�jljd�Fl
x�k��

� dh�X�a�l
 x���k� �17:5:2�

by Sect. 10.4. (

(17.6) Lemma. Let w : E�BK ! p�X�KEK be the mapping

w�l
 x� � f �l� ^ p��x� ;

where f : K� ! X��EK�K denotes the restriction of the connection form f
(Sect. 3.2) to the invariant elements. Then w is a quasi-isomorphism of com-
plexes of sheaves of K� modules. Composing with a gives an isomorphism
(17.1.3) in D��K��;

h�X�BK� 
a
E�BK!

w
p�X�KBK:

(17.7) Proof. If k 2 K� then

k � w�l
 x� � i�V�k�f �l� ^ p��x� � f �i��k�u� ^ p��x� � w�k � l
 x�

so w is a mapping of K�-modules. By direct computation from (17.3.2)
we have dw�l
 x� � �ÿ1�deg�l�wdE�l
 x�: The mapping w induces an
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isomorphism on hypercohomology by [C2] Sect. 4, p. 61 as described in
[GHV] III Sect. 9.3. However the sheaf theoretic statement consists of
identifying the stalk of E�BK at x 2 BK with the ®ber projection as in [GHV]
III theorem X p. 390. The induced map on stalk cohomology,
w� : H �x �E�BK� ! H ��pÿ1�x�� is the isomorphism (10.6.1) K� � H ��K�: (

(17.8) Proof of Theorem 11.2. For any A� 2 Db
K�pt� the quasi-isomorphisms

of sheaves of K�-modules

h�X�BK 
R A�� � h�X�BK� 
R A�  ��a
I
E�BK 
R A� ��!w
I

p�X�KEK 
R A�

induces an isomorphism on global sections,

C�BK; h�X�BK 
 A���  C�BK;E�BK 
 A�� ! C�BK; p�X�KEK 
 A��

and hence induces an isomorphism in D��K�� between

hG�A�� � h�C�BK; X�BK 
 A��� � C�BK; h�X�BK 
 A���

and

E�A�� � C�BK; p�X�KEK 
 A��

as claimed. This completes the proof of the ®rst part of Theorem 11.2.
By [BL] Sects. 12.3.5 and 12.7.2, the functor G is an equivalence of

categories. In fact, a quasi-inverse for the functor G is given in [BL] Sects.
12.3.1 and 12.4.5 by the ``localization functor'' L : D��S� ! D��X �

M 7!M
L SX
�
BK: �17:8:1�

The Koszul duality functor h is also an equivalence of categories by [BGG].
This proves that the functor E is an equivalence of categories.

By Theorem 8.4 the functors h and t are quasi-inverses. Therefore the
second isomorphism (11.2.2) of functors G � tE follows from the ®rst
isomorphism (11.2.1) hG � E:

Now consider the two cohomological statements. If A � �AX; �A; b�
2 Db

K�X �, its equivariant cohomology is (5.5.1)

H�K�X ; A� � H ��BK; Rc0���A�� � H ��BK; Rc0� �A
X�BK� � HGcK
� �A�:

The interesting part is the computation of the ordinary cohomology of A;
which is given by the following sequence of functorial isomorphisms.
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H ��X ; A� � H ��pt; Rc��AX�� �by 5:5:2�
� H ��EK; r�Rc��AX �� �!

Rc00��b�
H ��EK; p�Rc0� �A� �cf: 5:4:2�

� H ��BK; Rp�p�Rc0���A��
� H ��BK; Rp�p��RBK� 
 Rc0���A�� �!wÿ1 H ��BK; p�X�KEK 
 Rc0���A��
� HEcK

� �A�

where we have used the contratibility of EK in the second isomorphism, and
where, by wÿ1; we mean the quasi-isomorphism

Rp�p��RBK� ! Rp��REK� ! p��X�KEK� �!wÿ1 E�:
of Lemma 17.6. This completes the proof. (

18. Proof of theorems 12.3 and 12.5

Suppose a compact connected Lie group K acts on a subanalytic space X .
In this section we will construct a quasi-isomorphism of complexes of
K�-modules

E�cK
�R

K
X � ! C��X ; R� �18:1:1�

between the K�-module of (ordinary) global sections, and the K�-module of
subanalytic cochains together with the sweep action.

(18.1) First reduction. By replacing X with an equivariant subanalytic
tubular neighborhood of X in some Euclidean space, we may assume that X
is a smooth subanalytic manifold. The ®rst step in constructing the quasi-
isomorphism (18.1.1) is to replace the complex E�cK

�R
K
X � by the complex

X��X ; R� of smooth di�erential forms on X , together with the action of K�
which is given by interior multiplication with fundamental vector®elds (Sect.
10.5). Fix a smooth model EKn ! BKn for the classifying space of K (Sect.
10.7). Throughout this section we refer to the notation of diagram (5.4.1).

By (11.1.2) the complex E�cK
�R

K
X � may be realized as the global sections

of the following sheaf on BK,

E�cK
�R

K
X � � p�X�KEK 
 c0�X

�
X�KEK

which in turn is a limit of sheaves on BKn,

E�cK
�R

K
X �n � p�X�KEKn


 c0�X
�
X�KEKn
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(18.2) Proposition. There is a quasi-isomorphism of sheaves of K�-modules on
BKn,

E�cK
�R

K
X �n � p�X�KEKn


 c0�X
�
X�KEKn

� �p�c�X�X�EKn
�K

between the complex E�cK
�R

K
X �n and the sheaf (on BKn) of invariant di�erential

forms on X � EKn, where K� acts on �p�c�X�X�EKn
�K by interior product with

fundamental vector®elds which are obtained from the diagonal action of K on
X � EKn.

In fact, such a quasi-isomorphism may be obtained by taking the sheaf
of invariants under the following composition of quasi-isomorphisms,

p�X�EKn

 c0�X

�
X�KEKn

� p��X�EKn

 p�c0�X

�
X�KEKn

�
� p��X�EK 
 c�q�X�X�KEKn

�
� p�c��c�X�EKn


 q�X�X�KEKn
�

� p�c�X�X�EKn

(this last isomorphism re¯ects the fact that both sheaves are (quasi-) isom-
orphic to the constant sheaf on EKn:� (

By taking global sections, we see that the complex E�cK
�R

K
X � 2 D��K�� is

quasi-isomorphic to the complex of smooth invariant di�erential forms on
X � EK (relative to the diagonal action of K) together with the action of K�
which is given by the interior product with fundamental vector®elds.

(18.3) Integration. Integration induces a mapping from the complex of
di�erential forms to the complex of subanalytic cochains,

X��X � EKn�!
R

C��X � EKn�

by x 7!�n 7! Rn x�: The theorem of de Rham says that this mapping
induces isomorphisms on cohomology. We claim that in fact it is a
quasi-isomorphism of complexes of K�-modules, where K� acts on the
di�erential forms X��X � EKn� by contraction with fundamental vector-
®elds, and K� acts on subanalytic cochains by the sweep. It su�ces to
show:

(18.4) Proposition. Suppose the compact Lie group K acts on a subanalytic
manifold Y. Let S 2 Ci�K; R� be a conjugation-invariant subanalytic cycle,
and u 2 K� �

V
k� �K� H��K� be an invariant multivector, such that both S and

u represent the same homology class in K. Let V Y
u be the resulting fundamental

vector®eld on Y. Then, for any subanalytic chain n 2 C��Y � and for any
smooth di�erential form x 2 X��Y � we have
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Z
n

i�V Y
u �x �

Z
Sn

x:

The proof will occupy the next few sections.

(18.5) Currents. For a smooth manifold Y let D0i�Y � denote the vectorspace
of i dimensional currents, i.e. continuous linear homomorphisms
T : Xi

c�Y � ! R. As in [deR], denote the value of a current T on a test-form
x 2 Xi

c�Y � by T �/�: For each multivector u 2 Vi k let V K
u denote the left

invariant multivector®eld on K whose value at the identity is u. Fix an
orientation on K and let dvolK 2

Vn k � Xn�K�K denote the unique left
invariant di�erential form so that

R
K dvolK � �1: (where n � dim�K�) Let

F :
Vi k! D0i�K� be the mapping which assigns to any multivector u 2 Vi k

the current

F �u��/� �
Z
K

/�V K
u �dvolK :

We claim the mapping F induces an isomorphism between
Vi k and the left

invariant currents D0i�K�K . In fact, F is the composition of isomorphisms,

î

k!a
n̂ÿi

k

 !�
!b Xnÿi�K�K!c D0i�K�K

where a�u��a� � ha ^ u; dvolKi, b�s� is the left invariant di�erential form
corresponding to s 2 V k�, and c�x� is the current

c�x��/� �
Z
K

x ^ /:

The mapping c is an isomorphism since Xnÿi�K� is dense in D0i�K� and the
invariants form a ®nite dimensional subspace.

Using the volume form dvolK it is possible to average a current
T 2 D0i�K� to obtain a left invariant current hT i 2 D0i�K�K whose value on a
test form / 2 Xi

c�K� is de®ned by

hT i�/� � 1

vol�K�
Z
K

T �L�g/�dvolK�g�:

(Here, Lg : K ! K is the left multiplication, Lg�x� � gx.) Then h@T i � @hT i:
If / is a left invariant form, then hT i�/� � T �/�: It follows that: if @T � 0
then also @hT i � 0 and the homology classes represented by T and hT i coin-
cide.

78 M. Goresky et al.



(18.6) Lemma. Suppose S 2 Ci�K; R� is an i-dimensional subanalytic cycle,
which is invariant under conjugation. Let u 2 �Vi k�K � Hi�K� be the
invariant multivector®eld whose homology class coincides with that of S.
Then, as currents,

hSi � F �u� 2 D0i�K�

(18.7) Proof. The mapping F restricts to an isomorphism between the
bi-invariant currents on K and the invariant multivectors �Vi k�K � Hi�K�:
The current hSi is bi-invariant and the homology classes represented by hSi
and by F �u� coincide. (

(18.8) Integration over the ®ber. Let p1 and p2 denote the projections of
K � Y to the ®rst and second factors respectively. Recall (e.g. [GHV] II
Sect. 7.14), that integration over the ®bers of p2 is a mappingZ

p2

: Xi�K � Y � ! Xiÿdim�K��Y � �18:8:1�

such that Z
p2

p�2�x� ^ g � x ^
Z
p2

g �18:8:2�

for every x 2 X��Y � and g 2 X��K � Y �, and

i�V Y �
Z
p2

x �
Z
p2

i�V K�Y �x �18:8:3�

whenever V K�Y and V Y are p2-related vector®elds on K � Y and Y respec-
tively.

(18.9) Proof of Theorem 12.3. Let V K�Y
u denote the fundamental multi-

vector®eld (cf. Sect. 10.5) on K � Y which arises from the following K
action on K � Y : k � �g; x� � �gkÿ1; kx�: Then for any a; b 2 X��Y � and any
c 2 X��K� we have:

i�V K�Y
u �l�Y �a� � 0

i�V K�Y
u �p�2�b� � p�2�i�V Y

u �b�
i�V K�Y

u �p�1�c� � p�1�i�V K
u �c�

�18:9:1�

where V X
u is the corresponding fundamental multivector®eld on X , and

where V K
u is the fundamental multi-vector®eld on K which is determined by

the action k � g � gkÿ1. (It follows that V K
u � Wÿu is the left invariant multi-
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vector®eld on K whose value at the identity is ÿu.) For any invariant
di�erential form x 2 X��Y � we have (c.f. [GHV] II Sect. 4.3),

x �
Z
p2

l�Y �x� ^ p�1�dvolK� �18:9:2�

ThereforeZ
n

i�V X
u �x �

Z
n

i�V X
u �
Z
p2

l��x� ^ p�1dvolK

� �ÿ1�n deg�x�
Z
n

Z
p2

i�V K�X
u ��p�1�dvolk� ^ l��x��

� �ÿ1�n deg�x�
Z
n

Z
p2

p�1�i�V K
u �dvolK� ^ l��x�

where n � dim�K�: Thus

Z
n

i�V X
u �x � �ÿ1�n deg�x��deg�u�

Z
n

Z
p2

p�1�i�Wu�dvolK� ^ l��x�

� �ÿ1�deg�u��n deg�u�
Z

K�n

p�1�i�Wu�dvolK� ^ l��x�

� �ÿ1�deg�u��n deg�u�
Z
K

i�Wu�dvolK ^
Z
p1

�l�x�jn

� ��1�
Z
K

Z
p1

�l�x�jn
� �

^ i�Wu�dvolK

�
Z

S�n

l��x� �by 18:6�

�
Z
Sn

x

as desired. (

(18.10) Proof of Theorem 12.3. Theorem 12.3 states that E�c�RK
X � and

C��X � are isomorphic in D��K��: This follows by applying global sections to
the isomorphism of Proposition 18.2 and composing this with the is-
omorphism of Proposition 18.4, then taking the limit as n!1 to obtain

80 M. Goresky et al.



E�cK
�R

K
X � � C�BK; p�X�KEK 
 c0�X

�
X�KEK

�
� X��X � EK�K �by 18:2�
� C��X � EK� �by 18:4�
� C��X �

since EK is contractible. The proof of Theorem 12.5 is similar. By choosing a
system of control data on X , the intersection cohomology may be realized as
the cohomology of a certain complex of strati®ed di�erential forms on X :
(See, for example, [Br].) This allows one to mimic the arguments in
the preceding section, for intersection cohomology in place of ordinary
cohomology.
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