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Abstract. The classification of equivariant concordance classes of high-di-
mensional codimension two knots invariant under a cyclic action, T, of
order m has previously been reported on by Cappell and Shaneson [CS2].
They give an algebraic solution in terms of their algebraic Ä'-theoretic
r-groups. This work gives an alternative description by generalizing the
well-known Seifert linking forms of knot theory to the equivariant case. This
allows explicit algorithmic computations by means of the procedures and
invariants of algebraic number theory (see the subsequent work [St], particu-
larly Theorem 6.13). Following Levine [L3], we define bilinear forms on the
middle-dimensional homology of an equivariant Seifert surface B¡(x,y) =
L(x, i+(T'v)), for i = 1,. . ., m. Our first result (2.5) is that an invariant
knot is equivariantly concordant to an invariant trivial knot if and only if
there is a subspace of half the rank on which the B¡ vanish simultaneously.
We then introduce the concepts of equivariant isometric structure and
algebraic concordance which mirror the preceding geometric ideas. The
resulting equivalence classes form a group under direct sum which has
infinitely many elements of each of the possible orders (two, four and
infinite), at least for odd periods. The central computation (3.4) gives an
isomorphism of the equivariant concordance group with the subgroup of the
algebraic knot concordance group whose Alexander polynomial, A, satisfies
the classical relation ¡DTl^A')! = 1, where A is a primitive mth root of
unity. This condition assures that the m-fold cover of the knot complement
is also a homology circle, permitting the geometric realization of each
equivariant isometric structure. Finally, we make an explicit computation of
the Browder-Livesay desuspension invariant for knots invariant under an
involution and also elucidate the connection of our methods with the results
of [CS2] by explicitly describing a homomorphism from the group of
equivariant isometric structures to the appropriate T-group.

Introduction. The initial impetus and inspirational origins for this paper are
found in the work of Santiago Lopez de Medrano on codimension two knots
invariant under involutions [LdMl]-[LdM3] and in that of William Browder
on homotopy lens spaces, particularly in the philosophical directions indi-
cated in the last paragraphs of the introduction to his paper in the Proceed-
ings of the 1969 Georgia Conference on the Topology of Manifolds [Br3].
Also very influential in the development were the works of H. Seifert [Sei], R.
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2 N. W. STOLTZFUS

H. Fox [F1]-[F3], M. Kervaire [Kl], [K2], J. Levine [L1]-[L5] and J. W.
Milnor [M3], [M4] in their studies on codimension two knotting phenomena.
The problem of equivariant knot concordance also inspired the work of S.
Cappell and J. Shaneson on abstract surgery in codimension two [CS2]. Their
paper gave an algebraic computation of the equivariant knot concordance
group using their idea of T-group and proved many results on the existence
and enumeration of codimension two invariant subspheres. Our work gives an
alternative algebraic solution to this problem which is very amenable to
explicit algorithmic computation using known techniques of algebraic number
theory [St].

The setting for this paper is the category of triples (J2n + \ K; T) where
(J, K) is a codimension two (locally flat) knot and T is a free cyclic action of
order m leaving K invariant. We may make this definition in any of the three
topological categories of manifolds, DIFF, PL or TOP. Two triples with the
same ambient space are called equivariantly concordant if there is an h-
cobordism connecting them in J X / invariant under T X Id. A triple is said
to be a trivial invariant knot if the knot (/, K) is a trivial knot (with no
condition on the action). We extend ideas of Jerome Levine to classify these
triples up to equivariant concordance, the appropriate generalization of knot
concordance (often called "knot cobordism") to the equivariant setting.

In the first two chapters, we develop an a priori obstruction theory using
linking numbers to characterize those knots which are equivariantly concor-
dant to a trivial invariant knot. Let V2n be an equivariant Seifert manifold for
(J, K; T) and /"+ a small push in the positive normal direction. Define
bilinear forms on Hn(V2"; Z) by

B^y) = l(x, l+Jft?))       (i = 0, . . . , m - 1)
where L is the linking bilinear form.

Theorem 2.5. (n > 2) (J, K; T) is equivariantly concordant to a trivial
invariant knot iff there is a subspace H in Hn( V) of one-half the rank on which
the B¡ vanish simultaneously (t = 0, . . . , m — 1).

This theorem is proven using techniques of equivariant surgery on the
framed complement of K in /. It is interesting to note that no distinction is
made according to the parity of the order of the action.

In Chapter III the concept of equivariant isometric structure is introduced,
generalizing an idea of Kervaire [K2] applied to ordinary knot concordance
theory. Equivalence classes of these gadgets under the relation of algebraic
concordance are shown to form a group E'(m; Z) (e = (-1)") with respect
to the direct sum operation. Algebraic concordance faithfully mimics the
geometry according to
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EQUIVARIANT CONCORDANCE OF INVARIANT KNOTS 3

Theorem 3.4. Let (J, K; T) and B¡ be as in Theorem 2.5. There exists a
well-defined element a(J, K; T) in Ee(m; Z) depending only on the equivariant
concordance class of (J, K; T) such that a(J, K; T) = 0 iff there is a subspace
H in Hn{V) of one-half the rank on which the B¡ vanish simultaneously.

The study of the group E'(m; Z) is the focus of the remainder of Chapter
III.

Theorem 3.7. E\m; Z) (and also the groups T2n(Z —> Z/mZ) of Cappell
and Shaneson [CS2]) is contained in an infinite direct sum of infinitely many
copies each of Z, Z/2Z and Z/AZ.

An infinite number of elements of each order exists in E\m; Z) except
possibly for elements of order 4 if m is even.

An isometry is an endomorphism í of a free Z-module M with an
6-symmetric unimodular bilinear integer valued form Q satisfying

Q(t(x),y)+ Q(x,t(y))= Q(x,y).
The Alexander polynomial of an isometry, defined by ( — e)hX2hA(l — A'-1)
= f(X) where / is the characteristic polynomial of / of degree 2h, plays an
important role. In particular, we have the relation

n Mr)= 1 (.)

for f a primitive rath root of unity. This is a necessary and sufficient
condition on the isometry t to define an equivariant isometric structure and is
equivalent, in terms of the T-groups, to the unimodularity of the intersection
form over Z[Z/mZ]. Using this one may demonstrate, using an inclusion-
transfer sequence, that there are an infinite number of invariant knots not
equivariantly concordant to m times a knot and that ordinary knot concor-
dance is infinitely generated over equivariant knot concordance under the
transfer.

It is interesting to note that (*) reflects an "Adams oepration" \pm in
ordinary (nonequivariant) knot concordance theory induced by the usual
definition on bilinear forms. It is also curious that A in the relation A(A"") =
117= 1 A(f (Y) (used to prove (*)) is obtained by the same formal process, on the
roots of A, with symmetric functions as used in the definition of Adams
operations in .^-theory. Note that A is not always a knot polynomial (see
Chapter III) even if A is and, hence, \pm is not always defined within knot
concordance theory.

We now turn to the associated geometric operation in knot theory, that of
"Frobenius", or taking the w-fold cover of a knot complement. (This action is
also visible in Chapter III in the discussion preceding Theorem 3.7 where a
certain isometry is shown to be the rath power of another isometry. These
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4 N. W. STOLTZFUS

isometries correspond geometrically to the action of the translation on the
homology of the appropriate infinite cyclic cover.) (*) is the necessary and
sufficient condition for the ra-fold cover of a knot complement to be a
homology circle and is the crucial observation in the proof of the following
realization theorem for the algebraic construction of Chapter III.

Theorem 4.1(/j > 2). Given (K2"~\ T0) a free PL action of order m on a
homotopy sphere K and ß in Ee(m, Z), there exists an action (J, T) on a
homotopy sphere J and an equivariant (locally flat) embedding (K, T0) <^ (J, T)
such that a(J, K; T) = ß.

A complete discussion is also given in the smooth case. An attempt is made
to determine the invariants for the PL classification of (/, 7) according to
Browder, Pétrie and Wall [BPW] in terms of those of (K, T0) and invariants
of the knot and the normal bundle which succeeds for the torsion invariant,
but the multisignature is only computed theoretically (in Chapter V).

In Chapter V, we connect our results with those of Santiago Lopez de
Medrano [LdMl]-[LdM3] for the case w = 2 and the work on abstract
codimension two surgery of S. Cappell and J. Shaneson [CS1], [CS2] and M.
Kato and Y. Matsumoto [KaMa], [Ma]. First we make the interesting com-
putation:

Proposition 5.1. Let (J4k + 3, K; T) be a knot invariant under an involution.
Then the Browder-Livesay desuspension invariant = signature of Bx(x,y) ( =
L(x, T^y)) = signature of the orbit knot complement.

In the second section of Chapter V, we relate our group to the algebraic
K-theoretic group of Cappell and Shaneson in [CS2]:

Proposition 5.4.

Z[Z]     -> Z[Z]

I 4
Z[Z]     -*     Z[Z/mZ]

Then, using a generalization of a result of Wall [W3] and Trotter [T], we
compute the intersection form in T2„(Z —> Z/mZ) of the normal cobordism
associated to an invariant knot. Because of the nature of Z[Z] this de-
termines an element in T\n except for the Kervaire Arf invariant when n is
odd.

Finally we mention a further application of our methods to the problem of
doing surgery on the complement up to homotopy equivalence (instead of
homology equivalence) and obtain an algebraic obstruction monoid. The
latter may be easily generalized to other cases, although no nontrivial com-

(n>2)        E<(m;Z) = TÏ,
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EQUIVARIANT CONCORDANCE OF INVARIANT KNOTS 5

putations are known. Finally, we note that the methods in this paper also
apply to the setting of semifree actions on homotopy spheres with codimen-
sion sphere as fixed point set (see also [CS2]), as all considerations were made
on the complements where the action is free.

One of the most intriguing aspects of this investigation was the convergence
of many ideas current in topology: Galois theory, covering spaces, algebraic
number theory, the Froebenius automorphism and Adams operations all
impinging on the concordance theory of knots. The further understanding of
these concepts and their interrelationships in knot theory should be beneficial
in furthering our knowledge of codimension two phenomena.

The author gratefully acknowledges the support and inspiration of William
Browder while writing this paper and wishes to thank Sylvain Cappell, Wu
Chung Hsiang, William Pardon, Michael Freedman and Leonide Goldstein
for illuminating conversations. We also acknowledge the contribution of C. C.
Liang, Eva Bayer and friend. This work was partially supported by the
National Science Foundation and contains results of a Princeton University
thesis submitted in June, 1973.

CHAPTER I: LINKING NUMBERS REVISITED
In this chapter we will organize the necessary facts concerning "linking" in

odd dimensional manifolds. The results of this chapter are either of the
folklore genre or widely scattered in disjoint portions of the mathematical
literature. We will phrase the results in terms of the more geometrical
concepts of homology and intersection theory in manifolds rather than the
Poincaré dual setting of cohomology and cup products as the former is more
suited to our later constructions. We will assume the standard treatment of
intersection theory for cycles in manifolds as given oroginally by Lefschetz
[Lef] or in a modern form by Dold [D]. Finally, all coefficients for homology
will be the integers, denoted Z, unless otherwise explicitly stated.

Linking phenomena occur in the following special situations: two disjoint
cycles xp and yq (of dimension p and q, respectively) in a manifold M" of
dimension n = p + q + 1 may link if

(a) x is a torsion cycle so that the linking number L(x, y) is in Q/Z, or
(b) x is a boundary, Hp+l(M) = 0, then L(x,y) is an integer.

The second situation is the focus of this chapter.
We will henceforth assume the following specialized situation: xp and_y?

(of dimension p and q, respectively) are both null-homologous disjoint (i.e.
with disjoint carriers) singular cycles in an oriented manifold M" of dimen-
sion n = p + q + 1 with Hp+l(M) = 0.

Definition 1.1. The linking number of x and y, denoted L(x, y), is the
integer defined as follows: since x is a null-homologous cycle there exists a
chain z  with  3z = x. Now,  by the assumption of disjointness and the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 N. W. STOLTZFUS

dimension condition n = p + q + 1, the intersection z-y is a well-defined
zero-chain. Set L(x, y) = ij(z • y), where tj is the augmentation (or Kronecker
index). To see that L(x,y) is independent of the choice of z, suppose z' is
such that 3z' = x, then z — z' is a (p + l)-cycle and therefore bounds a
chain w since Hp+l(M) = 0. Now the intersection w-y is a one-chain and
3(w • _y) = dw • y + w ■ dy = z-y — z' ■ y, since y is null-homologous. Since
the augmentation vanishes on boundaries, L(x,y) is well defined. Note that
the above also demonstrates that if x' is homologous to x by a chain disjoint
from y, then L(x, y) = L(x', y). We briefly note the dual cohomology for-
mulation: if a and b are the Poincaré duals of x and y (say as simplicial
chains in a dual triangulation and not just as homology classes for x and.y are
zero in homology!) and a = 8c then we may define L(x,y) = L(a, i) = (c u
b, [M, dM]>, noting that c u ¿> is a cocycle by the disjointness condition.

Lemma 1.2 (Properties of linking numbers).
(1) Bilinearity: L(axxx + a2x2,y) = ¿^¿(x,,^) + a2L(x2,y).
(2) (Anti-)Commutativity Law: L(x,y) = (- iy9+1L(>', x).
(3) Naturality: If f: M ^> N is a homeomorphism then L(ftx, fty) =

nL(x, y) where n is the degree off.

Proof. Properties 1 and 3 follow easily from corresponding properties of
intersections observing that in (3) one needs / to be a homeomorphism (or
related assumption) to insure the disjointness of the image cycles. To demon-
strate (2), let x = 3z, and y = 3z2; then by the property of the boundary for
intersections,

3(z-z2) = 3z,-z2 + (-iy+1z,- (3z2).
Since the augmentation vanishes on boundaries,
L(x,^) = 7,(z1^) = r,((-ir+1(3z1)-z2)

= (-ir+1((-ir+^2-9^.)
(by the commutative law for intersections)

= (-\y+\-\r+"L{y,x)^{-\r+xL{y,x).    Q
Property two is particularly interesting when p = q for then L is a bilinear
pairing on the same vector space with a symmetry associated to a manifold of
dimension (n + 1).

The next proposition plays a crucial role in the proof that our conditions
for completing equivariant surgery are necessary.

Proposition 1.3. Let W2n+2 be an oriented manifold with boundary M
(oriented coherently) and suppose H +i(W) = 0. If x and y are relative cycles
of dimension p + 1 and q + 1, respectively, and dx and dy satisfy the conditions
for linking in M, then L(dx, dy) = I(x,y) where I is the intersection number in
W.
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Proof. First we note that the hypotheses and conclusion is unchanged if

we add a collar M X / to W along M and replace x by the relative cycle
xx = x + (dx) X /, and similarly for y. By assumption there exists a chain Wj
in M X 1 with wl = (dx) X 1 and L(dxx, dy{) = f\(wx • (dy¿)). Let vv0 be the
corresponding chain in M X 0 and form the (p + l)-cycle z = x — w0. By
assumption Hp+l(W) = 0 so there is a chain a with da = z. Since, by
construction, da and 3_y, are disjoint (in fact a and 9y, are) a -y¡ exists and is
a one-chain with boundary

d(a -y{) = 3a ■ yx ± a • 3y, = da -yt = (x — w0) -yx.
Now w0 ■ y{ (in W) = w0 ■ dy (in M X 0), since w0 is carried by M X 0 and
intersection commutes with restriction. So, taking augmentations, we have

0 = I(x,yi) - I(w0,yi) = I(x,y) - L(dx, dy).    □
Note that the hypothesis of Hp+l(W) = 0 was crucial to the proof and, in

general, some such condition is necessary when p = q, since otherwise there
may exist (p + l)-cycles with nonzero self-intersection number.

The final lemma of this section relates linking numbers to the normal
bundle when the cycle is represented by a framed embedded sphere.

Lemma 1.4 (Kervaire-Vasquez [KV]). Let v be a nonzero vector field
normal to a framed embedded sphere S" in a manifold M2n+l and let S" be the
embedded sphere obtained by pushing S" along v. If 9L is the complementary
bundle to v in the normal bundle of S" in M, then 91 = L(S", S")t„ in
7rn(5so(n)) where rn is the tangent bundle of S".

Proof. See above,   fj

CHAPTER II:
GEOMETRIC KNOT CONCORDANCE THEORY:

THE EQUIVARIANT CASE
1. Preliminaries. We will study the problem of classifying codimension two

embeddings of one homotopy lens space in another (which are to be locally
flat if one is in the PL or Topological category). As the general classification
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8 N. W. STOLTZFUS

is a very difficult problem, involving all the intricacies and beauty of knot
theory, and is unknown, in complete generality, even for codimension two
embeddings of spheres in spheres, we will simplify our problem by defining
an appropriate equivalence relation: equivariant knot concordance.

We will work in the category of smooth, oriented manifolds.
As in the previous chapter all homology groups will be understood to have

integral coefficients. We will perform many of our constructions equivariantly
on the covering space, so that it is convenient to consider triples
(J2n+1, K2n~x; T) where K2"~l is a codimension two homotopy sphere in a
homotopy sphere J (with chosen orientations) with K invariant under a
smooth fixed point free action of order ra. Note that these choices are
equivalent to defining a "polarization" on the orbit space Q2n+i =J/T
(Wall [W2]).

Definition 2.1. (J, K0; T) is equivariantly concordant to (J, JC,; T) iff there
exists an /¡-cobordism H in J X I, invariant under T X Id/, meeting the
boundary transversely and such that (J X I, H; T X Id7) n J X {/} is
diffeomorphic to (/, K¡; T) for i = 0, 1. This generalizes the usual notion of
knot concordance.

The concordance group of knots was first introduced by R. H. Fox and J.
Milnor [FM] for the case of Sl in S3 and eventually computed algebraically
in all higher dimensions by Kervaire [Kl], [K2], Levine [L4] and Milnor [M4].
We propose to make a similar calculation for equivariant knot concordance
theory. Our methods are in the same spirit, as evidenced by our use of linking
phenomena, even though the original techniques do not generalize to the
equivariant case (see [LdM2]).

Fix an invariant triple (J, K; T). We will now begin to define the invariants
necessary for the classification.

Definition 2.2. A codimension two lens space pair (Q2n+1, P2n~x) is
characteristic iff there exists a homotopy equivalence /: Q —» L, a standard
lens space, such that p2n~l js the transverse inverse image of the standard
codimension two lens space in L.

We first prove a preliminary result necessary in proving that an invariant
codimension two sphere is characteristic.

Lemma 2.3 (Compare [Br2]). Let (J, K; T) be an invariant triple with
associated orbit space pair (Q, P). The Euler class of the normal bundle of the
inclusion i: P -» Q is a unit in H2(P).

Proof. We will show this by identifying the Thorn isomorphism with the
cup product structure in H*(Q). The following diagram commutes by natu-
rality of cup products:
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EQUIVARIANT CONCORDANCE OF INVARIANT KNOTS 9

H\E, dE) X H2n-\E) ^ H2n(E, dE)
j* X z'*î ai y*

H2(Q,Q- Ê)x H2"-\Q)     $     H2n(Q, Q - È)
k* X Idj s s Ik*

H2(Q) X H2"~2(Q) $ H2"(Q)

where (E, dE) is the Thorn space of the normal bundle identified with the
tubular neighborhood pair, E = interior of E and j* is the excision isomor-
phism. Now A:* is an isomorphism, by the cohomology exact sequence, since
Q - E is a (co-)homology circle by Alexander duality. Finally /* is an
isomorphism since E retracts to P, which is the (2n — 1) skeleton of Q.

Now suppose that w in H2(Q, Q — E) is such that j*(w) = U, the Thom
class. Then w u is an isomorphism by the upper part of the diagram (the
Thom isomorphism). By commutativity of the diagram, k*(w) u is also an
isomorphism, so that k*(w) must be a unit. Finally,

the Euler class =j*(U) = i*k*(j*~lU) = i*k*(w). ||

Remark. By Spanier [Sp, Theorem 17, p. 354], one may show that the Euler
class is the Poincaré dual of the fundamental class of P.

Lemma 2.4. // (/, K; T) is an invariant codimension two triple, then K is
characteristic (or to be precise K is the cover of a characteristic lens space).

Proof. First note that the normal 2-plane bundle to P2"-1 in Q, the orbit
spaces, is oriented, hence characterized, by its Euler class. But, by the above
lemma, it corresponds to a generator of H2(P). By the homotopy classifica-
tion of lens spaces, there is a homotopy equivalence g: P—»L2"_1, L some
standard lens space. Now choose a suspension L2n+l of L2"-1 (corresponding
to the choice of a primitive rath root of unity) so that the Euler class of the
normal bundle of L2"~l corresponds, under g, to the above generator of
H2(P). We may now extend g to a tubular neighborhood U in Q and V in
L2n + \ Now, L2m+1 - V is homotopy equivalent to S1 = K(Z, 1) (since in
the cover the action on the complement S ' X D2n is the diagonal action) so
by obstruction theory we may extend g to the complement of the tubes iff
g*(i) in Hl(U) is in the image of Hl(Q — U). But, by Alexander duality, the
next term in the cohomology exact sequence is zero. Therefore g extends and
by construction g~l(L2n~l) = P.   \J

We now construct a codimension one submanifold in the complement of K
in / which plays a very important role. In the classical knot case, this
manifold is called the "Seifert surface," for it is two-dimensional oriented
manifold bounding a knot S1 in S3. By Lemma 2.4 we have the following
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10 N. W. STOLTZFUS

diagram:

J/T- Q
U

K/T = P
with/a homotopy equivalence, transverse regular at L2n_1. Since / preserves
normal bundles, we may restrict / to the complement of open disc bundles,
X* c Q2n+l and Sl X D2n c L2n+]. (The map /: X* ^> Sl X D2n may
easily be made into a degree one normal map [Br4] using trivial bundles.) Let
V2" be the transversal inverse image of D2" in X*. Let X be the inverse image
of X* in J under the covering projection, V2n, a fixed lift of V, and V, the
union of all the (disjoint) lifts. It is interesting to note that we can extend V
to a Z/mZ manifold V" with Bockstein K (i.e. A" is a singularity where m
"leaves" meet).

We may orient V so that 3 J V] = [K], the given orientation on K. Now V
has trivial normal bundle in X, which we can choose disjoint from translates
and parametrize as V X [—1, 1], so that the preferred orientation agrees with
the restriction of the orientation of J. We may now define a diffeomorphism
i+: V-*J, which pushes V off itself a distance e > 0; an "e-push" in the
positive normal direction.

We are now able to define our linking forms, which will give an a priori
definition of the surgery obstruction in our setting. We define integer valued
bilinear form B¡ (i = 0, . . . , m - 1) on Hn(V2n; Z) by

Bi(x,y) = L(x,i + if(T^)),

where we use the diffeomorphism to make the carriers of x and y disjoint. By
Lemma 1.2 and the preceding remark B¡(x,y) is well defined on the homol-
ogy classes of x and y and is bilinear. Note that the Bi vanish on the torsion
submodule of Hn(V2") so that we could just as well define B¡ on the free
module H„(V)/Torsion.

Theorem 2.5 (n > 2). (J2n+l, K; T) is equivariantly concordant to a trivial
invariant knot iff there exists a subspace H c Hn(V) of one-half the rank on
which B¡ is identically zero (i = 0, . . . , ra — 1).

Remarks. (1) This generalizes the theorem of Levine [L3] to the equivariant
case.

(2) The algebraic conditions on the forms B¡ may be weakened (see
Corollary 3.9) but this is the most convenient form to use in completing the
necessary surgery.

(3) One may prove Theorem 2.5 for « = 2 using ideas of Wall [Wl] and
Levine [L3], but the necessary techniques would complicate the presentation.
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EQUIVARIANT CONCORDANCE OF INVARIANT KNOTS 11

(4) While the conditions of the theorem seem to depend on the choice of V,
the conclusion does not, suggesting that one may intrinsically define the
forms B¡ (see Chapter V).

(5) S. Cappell and J. Shaneson [CS1], [CS2] have also developed techniques
for doing surgery in this case and in much greater generality. For the relation
between the two methods, see Chapter V. However, using Theorem 2.5, we
can compute their algebraic Ä"-theoretic obstruction groups in certain cases.

2. Necessity. In this section a strengthened form of necessity for Theorem
2.5 will be shown, by proving that our linking forms are an invariant of
equivariant concordance. First, note that reversing the orientation on the
ambient sphere J and on K simultaneously reverses the sign of the forms B¡
(by Lemma 1.2 and observing that the positive normal is unchanged). This
motivates

Definition 2.6. The direct sum of linking forms (M0 = H„(VQ); At) and
(A/,; B¡) is defined to be (M0 + A/,; (-A,) + B¡).

Since the associated is the empty form if and only if the knot is trivial by
the unknotting theorem of Levine [LI] (n > 2), necessity for Theorem 2.5
follows from

Proposition 2.7. If (J, KQ; T) is equivariantly concordant to (J, Kx; T) then
the direct sum of the associated linking forms is equivariantly null-concordant
(i.e. A/0 + A/, has a subspace of \ rank on which ( — A¡) + B¡ is identically zero
for i = 0, . . . , ra — 1).

Proof. Let H <z J X I bt the invariant A-cobordism given by assumption.
Then, if/: Q —> L2n+l is a homotopy equivalence to a standard lens space, we
may arrange that H/T =(f X \à,)~\L2n~x X I) by Lemma 2.4 since H/T
is also an /¡-cobordism. By relative transversality on / X Id,, we may then
pull back a cobordism Z' from V0 to V¡. We can lift Z' to a cobordism Z
between the lifts V0 and Vv disjoint from its translates under the free action
of T. By extending the positive normal to Z, one obtains an extension,,/, to Z
of i + .

Define H = ker(//„(3Z) -» Hn(Z)), noting that Hn(dZ) = Hn(V0) +
Hn(Vx) since the remainder of Z is an A-cobordism of a sphere. By the
definition of H we can find relative (n + l)-cycles x und y so that dx and dy
are any given elements of H. By Lemma 1.3,

B,(dx, dy) = L(dx, i+t(T,(y))) = l(x,j.(Tiy)) = 0

since the cycles are disjoint under j and T'. So the forms ¿?, vanish simulta-
neously on H. It remains to show that H is of j rank in Hn(dZ) This is the
usual argument for computing the index of a boundary for which we use a
clever argument due to Kervaire [K2]. By the definition of H we have a long
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12 N. W. STOLTZFUS

exact sequence:
0^//2n+1(Z,Z)^//2„(3Z)^//2n(Z)^->HK+i(Z,dZ)-»H-*0.
Using Lefschetz duality for (Z, 3Z) and the fact that the rank of the
cohomology group is the same as the homology group, we have

rank// = (-1)"X(Z) + 1 rank//„(3Z) + (-If^^dZ)
where x is the Euler characteristic. But Z is odd dimensional, hence its double
has Euler characteristic 0 = 2\(Z) + x(9Z) by the additivity of x- Therefore
rank H = \ rank Hn(dZ).     O

The following lemma is needed to show that the null-concordance property
is preserved after performing low-dimensional surgery.

Definition 2.8. An integral bilinear form A on a. Z-module M is an
e = (± \)-form iff A(x,y) + eA(y, x) is unimodular.

Now the form B0 on H„(V) associated to (J, K; T) is an e (= (— l)")-form
since B0 + eB* is the intersection form on V2" whose boundary is a sphere.
To see this, define i_ in a manner analogous to i+ using the negative normal
direction. Then

B0(x,y) + eB0(y, x) = l(x, i + *(y)) + eL(y, r+„f»)

= L(x, i+m(y)) + eL(/_*( v), x)   by the obvious homotopy

= L(x, i+m(y)) — L(x, i_^(y))   by commutativity.

Now the difference i+t(y) — /_*(v) bounds the obvious homotopy whose
intersection with x is just the intersection of x and y on V, by naturality
under restriction. The following lemma will be demonstrated in Chapter HI
(Lemma 3.3) as its proof is purely algebraic.

Lemma 2.9 (Transitivity). Let A0 and B0 be e-forms. Then, if (M0; A¡) +
(A/,; B¡) and (A/0; A¡) are null-concordant so is (A/,; B¡).

3. Sufficiency: Surgery below the middle dimension. We will construct the
concordance necessary to complete the proof of Theorem 2.5 by doing
framed surgery (in the style of Kervaire and Milnor [KM]) equivariantly on
the complement X. Note that X is framed since it is the transverse inverse
image of Sl X D2n. The following proposition gives necessary conditions on
the cobordism W of X. Recall that X is /-simple if X —> S ' is /-connected.

Proposition 2.10. (n > 2) If there exists a cobordism W of X to Y, an
i-simple homology circle, with an action T extending T on X which is a product
on the part of the boundary between X and Sx X S2"~l (with the product
action) and satisfying:

(i)H.(W)-HJSl).
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EQUIVARIANT CONCORDANCE OF INVARIANT KNOTS 13

(ii)*,(IF)-Z.
Then (J2n+l, K; T) is equivariantly concordant to an i-simple invariant knot.

Note that an (n + l)-simple complement X is a trivial knot by Levine [LI].
Proof. By the assumption that W is a product along the appropriate part

of 3 W, we may "glue" W equivariantly to D2 X K2n~x X I by the identity on
the boundary. This yields a corbordism Z of J together with an action T1 of
period ra, so that one end is (J, K; T), by construction and the assumption
that T on W extends T on X. The other end is also a homotopy sphere with
an invariant codimension two sphere (/,, Kx', 71,) since it is the union of
K X D2 and a homology circle and, by construction, is an /-simple invariant
knot. Next we use the conditions on W to show that Z is an A-cobordism. By
van Kampen's Theorem,

w,(Z) = tt,(Z)2 X K X I) * ir1(W) = i
7rt(S'xKXI)

by condition (ii). By assumption (i) and the Mayer-Vietoris sequence for the
excisive triple (Z; W, D2 X K X I), Z is a homology (2n + l)-sphere hence
Z is an A-cobordism.

By the definition of equivariant concordance, we must produce an h-
cobordism L c J X I invariant under T X Id,. Let t be the torsion of the
orbit A-cobordism of (Z, J). Since n > 2, one can realize — t by an /¡-cobor-
dism H of K/ T. Now the boundary of a tubular neighborhood v of K/ T has
ir, = Z so that the /¡-cobordism induced on the boundary of r*v is trivial
(where r is the retraction of H to K/ T). By the sum theorem for Whitehead
torsion, Z, = W/T u 3„x/ r*v, has torsion zero so, by the s-cobordism
theorem, is a product. The desired L is H, the cover of H in Z,.   □

The first step in the construction of W is to find a framed coborsism Wl of
X (with an action extending T on X) to an "(n — l)-connected" knot
complement (i.e. ^¡(X) = 77,(5 ') for / < n or, in words, A' is a homotopy circle
through dimension (n — 1)). Such knots are often referred to as "simple"
knots (not to be confused with the concept of simple homotopy type, etc.).
That such a cobordism exists has been shown by Kervaire and Ungoed-
Thomas (unpublished) and its relevance to the problem of invariant knots
was first recognized by Lopez de Medrano [LdM2], whose work was a
starting point for this investigation.

As surgery below the middle dimension is now such a standard procedure,
I will only sketch two approaches.

(1) Follow W. Browder's procedure for surgery with it1 = Z [Brl] by doing
framed surgery first on the codimension one submanifold V and then on the
complement of V, in an equivariant manner. This method has the advantage
of increasing the connectivity of V along with that of X.
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14 N. W. STOLTZFUS

(2) Use the normal map of the orbit space of X to S ' X D 2" as constructed
in §1 (with trivial bundles.) Following C. T. C. Wall [W2, Chapter 1], we can
make f (n - l)-connected modulo boundary via a normal cobordism W.
Then using Theorem 2 of Levine [LI], we can find a codimension one
submanifold V in the result of surgery, X', which is (n — l)-connected.

The resulting normal cobordisms If of (1) and (2) satisfy conditions (i) and
(ii) of Proposition 2.10, for i = n. Finally, by Lemmas 2.7 and 2.9 the new
(J, K; T) is still null-concordant.

4. Sufficiency: Completion of surgery. By §3, we need only prove Theorem
2.5 for triples (J, K; T) whose invariant complement X is a homotopy circle
in dimensions less than n and with the codimension one submanifold V
(n — l)-connected. Under the assumptions of Theorem 2.5 we will construct a
cobordism W with the properties required by Proposition 2.10 in two stages.
First, we calculate the (simply-connected) surgery obstruction of V, find it is
zero and perform equivariant framed surgery on X, by means of a cobordism
W to S' X D2n containing a codimension one cobordism Z of V to D2". (In
terms of the theory of C. T. C. Wall, we show that r(f) in L2n + l(Z) is zero,
which is identified with the (simply-connected) obstruction of the codimen-
sion one submanifold [Sh2], [Brl].) Then, we equivariantly correct the homol-
ogy of W to that of a circle. Since surgery on X was performed equivariantly
relative to the boundary of X, W now satisfies the conditions of Proposition
2.10.

Step one. Constructing the initial cobordism. As seen in §2, the intersection
form on V is given by Q(x, y) = BQ + eB* (where B* denotes the transpose)
where B0 is one of the linking forms defined in §1. By the assumption of
Theorem 2.5, B0 vanishes on H c Hn(V) (which we may assume pure by
bilinearity and hence a submodule) which is of | rank.

Since B0 vanishes on H, the intersection pairing does also and therefore in
the index case the surgery obstruction on V is zero (see formulation in [Br4,
p. 53]). In the Kervaire Arf invariant case one may identify the quadratic
form as q(x) = B0(x), mod 2, by Lemma 1.4. So by majority vote since q = 0
on H, c(q) = 0.

We will find it convenient to have the following explicit description of the
surgery: Represent a basis x¡ of H by disjoint framed embedded spheres in V,
thicken trivially in the normal direction to V to obtain framed embeddings of
S" X D"+1 in X. Use these to perform equivariant framed surgery on X to
X' with trace W. Note that since V is disjoint from its translates we can
make the translates of the embeddings disjoint also. Inside W we have a
codimension one cobordism Z2n + l of V to a disc D2" in X', disjoint from its
translates. Let N(D) be an open tubular neighborhood of D and its translates
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EQUIVARIANT CONCORDANCE OF INVARIANT KNOTS 15

in X'. Then A" — N(D) has ra components permuted by the action (since D
separates X'). Let F0 be a fundamental domain containing the positive
normal to D2". Since X was a homology circle, the standard Mayer-Vietoris
computation of the result of surgery discloses that Hn(X'; Z) is free on the
transverse spheres to the added handles and are permuted freely by the
action. By excision

Hk(X',X' - N(D)) = Hk(D X /, d(D X /)) = 0       (k > 1)
and, therefore, in the homology exact sequence

//„_,(*', X' - N(D )) - Hn(X' - N(D ))U Hn(X')

^H„(X',X'-N(D))
/„ is an isomorphism. Hence Hn(F0) c Hn(X' — N(D)) is free. Since F0 is
simply connected, framed and odd dimensional, by Kervaire Milnor [KM,
Lemma 5.7] we can complete surgery on a basis of Hn(F0) relative to the
boundary (= D2n u K2"~l X / u D2n). By duality, the result of surgery on
F0 has no homology and is therefore a disc. Transferring the completion of
surgery (and framing) equivariantly on A" — N(D), we achieve our desired
cobordism W of X to S ' X D2" with an action extending T on X and such
that W is framed and w, W = -nxX = Z (by the assumption on the connectiv-
ity of X and n > 1).

Step two. Localizing the surgery problem. Let F be a fundamental domain
for W — N(Z) (where N(Z) is an open tubular neighborhood of the trans-
lates of Z) containing the positive normal to Z. The following observations,
together with the hypotheses of Thoerem 2.5, will enable us to localize the
surgery problem to F. Let M be the submodule of Hn+i(W) described as
follows: View the cobordism W in the standard manner as X X I u Handles
on A" X 1. Let S," be embedded spheres in V2" c X X 0 representing the
homology classes in H on which we performed surgery, with D"+ ' the core of
the handle attached to S" X 1. Since A is a homology circle, there exists an
(n + l)-chain c, in A" X 0 which bounds the cycle {S?}. Finally lety¡ be the
homology class of the cycle {S," X / u D"+x) — c, (where { } denotes
associated chain).

Lemma 2.11. 77¡e module M c Hn + x(W; Z) spanned by the y¡ and their
translates is a free Z-summand of j rank.

Proof. Let W be the cobordism resulting from the first stage of surgery in
Step 1, W' = XXI\jAB where A is the disjoint union of thickened
embedded spheres and B, the handles added along A. (W; X X I, B) is an
excisive triad, so by the Mayer-Vietoris theorem, the following sequence is
exact:
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16 N. W. STOLTZFUS

Hn+i(X X I) + Hn+i(B)^Hn+l(W')^H„(A)^Hn(X X I) + Hn(B)
with the first and last terms zero (n > 1) since A" is a homology circle and B
has contractible components. Hence Hn+x(W) is a free module over the
group ring Z[Z/mZ] since A is and, by definition of the Mayer-Vietoris
boundary, generated (over Z[Z/mZ]) by the_y,. Since surgery on A" in stage
two of Step 1 was done on free «-dimensional classes, which are the
boundaries of the Lefschetz duals of the_y„ M is free in Hn+1(W; Z) and of \
rank.    □

Lemma 2.12. The ordinary homology intersection form is identically zero on
M.

Proof. Let dv be the deformation of W which sends AxOtoA"Xein
A X / c W and let d+ be the deformation of W associated to the positive
normal field of the union of the translates of Z. By bilinearity of the
intersection pairing we need only show that it vanishes on the generators of
M and by naturality and (anti-)commutativity we may reduce the lemma to
computing^, • (TJ)t(yk). By homotopy invariance this equals

dvM ■ d^((T)^yk) = (c,. X e) • i+,(PUxk) = ¿(x,, i+¿P)¿xkj)

since the other components are disjoint under the deformations. But x¡ and xk
(which are the homology classes of the S,") are in H c H2„(V), hence the
linking form is zero by the assumption of the theorem.

d.cri (2))      tí (2)

w

-'-'-   Ix{o]

Figure 2

Lemma 2.13. There exists a basis for M as a Z[Z/mZ] module with support
in a fundamental domain F.
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EQUIVARIANT CONCORDANCE OF INVARIANT KNOTS 17

Proof. Define the map d¡: H„( V) -* Hn(T( V)) by

zh+/+(A)U'c    inCn+i(X)r->c-[T-(V)]

where [T'(V)\ is the fundamental class, • is the intersection of chains in a
manifold X [Lef], and x is a cycle representing z. The map defines a cycle
(and therefore a homology class) since c and T'( V) have disjoint carriers (by
i+ if / = 0 and the choice of V disjoint from its translates otherwise). If we
made a different choice, x', for x, then x' is homologous to x by a chain d in
K. If c and c' bound x and jc', respectively, then c + i + (d) — c' is a cycle in
A" and bounds a chain / since X is an homology circle. /• [^(K)] is tnen a
homology from c • [T'(V)} to c' • [7"(K)] since i + (d) is disjoint from T(V).
Similarly d¡ is independent of the choice of c. Note that dj(x¡) is the
homological intersection of y¡ with Tj( V) c T-'(Z) (for j = 0 the part of .y,
lying on Z can be trivially made disjoint by the deformation d+). In Lemma
2.14, we will show d¡(H) c (T')m(H) where H is the given subspace. Assum-
ing this fact, we complete the proof of 2.13. Since surgery was performed
equivariantly,

(T%(H) = ker(//„(r(K))^//„(r(Z))).

Therefore since the x¡ are in //, by the claim we can lift the basis y¡ for M to z,
in Hn+i(rV — N(Z)), since y¡ intersects Z and its translates in zero classes.
Clearly T, commutes with the inclusion so we can lift T^yt to Tnz¡. Let N¡ be
the projection of M (lifted) as a Z-module to the homology of the /th
translate of the fundamental domain F. Since M is stable under T (i.e.
T(M) c A/), TJ(N,) C Ni+J. Therefore A/,. = Ti(Tm-i(Ni)) c HAy, so N0
generates M as a Z[Z/raZ] module,    fj

Lemma 2.14. 4(^) C (T')^(H) where H is the given summand of \ rank in
Hn(V)(i = 0,...,m- 1).

Proof. Suppose for some x in H, d¡(x) has a nonzero component z, in the
complementary summand to (T')t(H). Since the intersection pairing on
T'(V) is unimodular (3V is a sphere), there is a class zf dual to z,. Since
T't(H) is j rank and self-annihilating, we may choose z* so z* = (T')m(y) for
some y in //. Now, by the definition of d¡ and the naturality of intersection
under inclusion,

d,(x) ■ z* = c ■ zf = c • (7*).(>0 = L(x, (T'Uy)) = 0

by the hypothesis of Theorem 2.5, since x and y are in H.
But

d¡(x) ■ z* = (z0 + z,) • z* = z, • zf = 1
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18 N. W. STOLTZFUS

since (T')m(H) is self-annihilating under the intersection pairing in Hn(T'(V))
(see Step 1).   □

Now M is a free summand of \ rank in Hn+l(W) on which the ordinary
intersection form vanishes and has a basis over Z[Z/wZ] with support in a
fundamental domain F by the preceding lemmas. If we can complete surgery
equivariantly on M then the resulting W" will be a homology circle and
satisfy all the conditions of Proposition 2.10 completing the proof of Theorem
2.5. If n is odd, so 2n + 2 is divisible by 4, then since F2n+2 is simply
connected and framed we can complete surgery on the basis of M whose
support lies in F by standard techniques of framed surgery [KM] since the
intersection form is zero on M. If n is even then we can perform surgery to a
single generator y (over Z[Z/mZ]) with a single self-intersection (the
Kervaire invariant case).

Hence, on the quotient space level, we have a normal cobordism relative to
the boundary of our original complement A to A" with Kervaire invariant
one. By the realization theorem for surgery obstructions, there is a normal
cobordism W of A" relative to the boundary to a homotopy equivalent space
X" with Kervaire invariant one. Forming the union of the two normal
cobordisms along A', we obtain a normal cobordism with surgery obstruction
zero, by the additivity property of surgery obstructions. Completing the
surgery, we obtain our desired equivariant cobordism to X" which is a
homotopy circle since X' is. This completes the proof.

CHAPTER III:
ALGEBRAIC CONCORDANCE THEORY:

EQUIVARIANT ISOMETRIC STRUCTURES
Although the linking forms of Chapter II were the most convenient

structure for incorporating the data necessary to complete surgery, they
would be very cumbersome in algebraic computations. For this reason we
now translate them into an algebraically equivalent but simple setting which
was pioneered in the case of ordinary knot concordance by Milnor [M4],
Levine [L4] and Kervaire [Kl], [K2] (the latter contains an excellent exposi-
tion of the algebra).

The basic idea is to change our considerations from a collection of bilinear
forms to certain isometries of fixed unimodular forms. Geometrically, the
idea originated with the work of John Milnor [M3] (see also Hirzebruch [Hi])
in his discussion of infinite cyclic coverings and their duality properties,
However, similar ideas may be found much earlier in the work of
Reidemeister [Rei], Burger [Bu] and Blanchfield [Bla]. Algebraically, the idea
of isometry is much older and is the basic element of interest in the classical
orthogonal groups.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT CONCORDANCE OF INVARIANT KNOTS 19

We model our first definition on the setting used by Kervaire [K2] to study
ordinary knot concordance. Fix a positive integer ra, the order of the free
cyclic action, for the remainder of this chapter. Let R be a commutative ring
with unit (in this chapter R will either be the integers or the field of rational
numbers).

Definition 3.1. An equivariant isometric structure of order m with e ( =
± l)-symmetry  over  R  will  consist  of  the  following (and  be  denoted

(ß; Jo» Ji»:
(i) A free /î-module M of finite rank together with an e-symmetric even

unimodular bilinear form Q on M (i.e. the adjoint Ad Q: M -» HomR(M, R)
is an isomoprhism and Q(x, x) is even for all x in M).

(ii) A pair of isometries i0 and i, of Q: that is s0 and s, are in HomÄ(Af, M)
and satisfy Q(s¡(x),y) + Q(x, s¡(y)) = Q(x,y) for all x and y in M and
/ = 1, 2.

(iii) {i,m - (i, - Id)m}50 = 5,m in UomR(M, M).

(iv) The minimal polynomial <¡> of s0 satisfies <f>(A") = (-e)kX2hA(l - X~l)
where A is an even degree (= 2A) reciprocal polynomial over R satisfying
A(l) = (—e)A and A( — e) is an odd square. (A polynomial A is reciprocal
provided A(A) = A"rA(A "'),/• = deg A.)

One may easily define isomorphism classes of equivariant isometric struc-
tures (of the same order ra) in the obvious manner by requiring the R-isomor-
phism of ra to preserve the corresponding triples (Q; s0, sx). These classes
form a monoid under direct sum which we denote EISe(ra; R). We now form
a group by the following construction.

Definition 3.2. We say (Q; s0, j,) is (equivariantly) concordant to zero (or
null concordant) if there is a subspace of | the rank of M, invariant under s0
and sx, on which Q vanishes. Furthermore, (Q; j0, s,) is (equivariantly)
concordant to (P; t0, /,) if (Q H-P; s0 + t0, s, + r,) is concordant to zero.

By the next lemma, transitivity of this relation is verified, reflexiveness and
symmetry being trivially satisfied, so that concordance of equivariant isomet-
ric structures is an equivalence relation. We denote by Ee(m; R) the set of
equivalence classes with the group structure induced by direct sum.

Lemma 3.3. Let <!>, and 4>2 be equivariant isometric structures with í>, + í>2
and <ï>, null-concordant then $2 is null concordant.

Proof. This follows immediately from Kervaire [K2, pp. 87, 94, Remark]
and observing that the proof uses only the definition of isometry and the
nonsingularity of Q.    fj

The proof of Lemma 2.9 is completed by the same appeal, using the
bilinearity of each form B¡.

We now prove the following theorem which provides the translation from
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the geometry of Chapter II to the above algebraic setting.

Theorem 3.4. Let (J2n+l, K; T) be an invariant knot with associated linking
forms B¡ on H„(V2"), V and associated equivariant Seifert manifold. There
exists an element a(J, K; T) in E'(m; Z) with e = (—1)" depending only on the
geometric equivariant concordance class of (J, K; T) such that a(J, K; T) = 0
iff the forms B¡ vanish simultaneously on a subspace of j rank of Hn(V).

Proof. First we define the equivariant isometric structure a(J, K; T). Let
M be the free Z-module, Hn(V; Z)/Torsion, and let Q(x,y) be the intersec-
tion form on M. Q is obviously (— 1)" = e symmetric and unimodular (3V is
a sphere). Also Q is even since V is framed, being the transverse inverse
image of a point. Now we define the endomorphisms s0 and sx of A/ by the
following formulae:

m-l
B0(x,y) = Q(s0(x),y),      2   B,(x,y) = Q(sx(x),y)

1 = 0

which defines s0 and sx since Q is unimodular.
We have previously noted that the intersection form on Hn(V) is given in

terms of B0 by
Q(x,y) = B0(x,y) + eB0(y, x) = Q(s0x,y) + eQ(s0y, x)

= Q(s0x,y) + Q(x,s0y)

since Q is e-symmetric. Therefore s0 is an isometry of Q. Similarly,

Q(sxx,y) + Q(x, sxy) = Q(sxx,y) + eQ(sxy, x)
m — \ m — \

= B0(x,y) +   2   Bt(x,y) + eB0(y, x) +   2   eB¡(y, x).
i=i /-l

We will show that
m—\ m—\

2   Bt(x,y)= -e 2   B,{y,x) (t)<=i i=i
and conclude that *, is also an isometry. Now

Bt(x,y) = L(x,(T)j) = (-\f+] L((T)j, x)

by the commutative law for linking (Lemma 1.2(2))

= — eLyy, (Tm~')„x)    by naturality under the homeomorphism Tm~'

= -eBm_i(y,x)

and (f) follows.
Define A(A) = det(Aß0 + B¿) where B0 is (abusing notation) an

associated matrix for the form BQ(x,y) and ' denotes the transpose matrix.
The polynomial A is commonly called the Alexander polynomial of the knot
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(J, K). It is well known that A is an even degree ( = 2A) reciprocal polynomial
satisfying A(l) = (—e)A and A( — e) is an odd square (Levine [L3]). We relate
A(A") to the characteristic polynomial p of s0 by

(-e)Ay2AA(l - y"1) = (-e)Ay2Adet{(l - Y~l)B0+ eB¿)

= (-e)Ay2Adet{(l - y-1 - 1)B0 + (B0 + eB¿)}

= (-e)Ay2Adet{(- Y~l)B0Q-1 + Id} det(ß)

= (-e)Adet(y(Id) - B0Q-l)(-e)h = p(Y).

Since the minimal polynomial has the same irreducible factors as the char-
acteristic polynomial [La, p. 402], condition (iv) for an equivariant isometric
structure is satisfied.

We now prove the central condition (iii). First we note that

Q(siX>y) = 2 Bt(x,y) = 2 L(x, f+,(7>))
-L(x,i+(Id+ T+ ■ ■ ■ +Tm~1)(y))

= (-l)"+,L(/+(Id+-- +7--')(v),x)
by the additivity and commutativity of linking numbers. But this corresponds
to linking L(J+m(y), x) on Hn(V2n) in the orbit space Y=X/T since
(Id + T + • • • + Tm~x)m(y) is invariant under Tn and the projection is a
local homeomorphism on a neighborhood of V.

Let y be the universal abelian cover of Y corresponding to the subgroup
Z c w, y generated by the normal circle and let / be the generator of the
group of covering translations (in the positive normal direction to V). Since
the action of T on A (the ra-fold cover of Y corresponding to the map from Z
to Z/mZ) is free, it acts by a primitive rath root of unity on the normal circle
to K. Therefore there is a least positive integer r whose reduction modulo ra is
a unit and Tr = / on A where / is induced on A from / on Y.

Claim. B,((sx — Id)*, y) = Bi+r(sxx, y), provided i + r ^ 0 (modulo ra).
The subscripts on the forms are to be read modulo ra.

Proof. By the naturality of linking numbers under the homeomorphism T,
we have

/?,.((*, - ld)x,y) = L((sx - Id)(x), /+,(/>))

= l(t>, - ld)(x), i+(T'm+y)).

To complete the proof of the claim, we will show that Tr^(sx — ld)(x) = tm(sx
— Id)(x) is homologous to sx(x) in the complement of i+(T'+r(V)). In fact
we will show that the homology lies in the closure P of the component of
A - T(V) lying between V and Tr(V) = t(V). The claim will follow be-
cause i+(Ti+r(V)) does not meet this component unless / + r = 0 (mod ra)
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and the linking number depends only on the homology class in the comple-
ment of i+(T' + r(V)) (see remark in the paragraph preceding Lemma 1.2).

In y, the orbit space of X, let W be the complement of an open tubular
neighborhood N( V) of the Seifert manifold V. Since y is a homology circle
one may choose bases {x¡} for Hn(V) and {y¡} for Hn(W) dually paired by
linking (see Levine [L2]), or rather, since Q is unimodular such that L(x¡, yf)
= etw>

Now, as noted above,

L{uJ+*(»)) = Q{s\u, v) = ö(", (Id - sx)v)

by the isometry condition where u and v are in Hn( V) and J+ is the "e-push"
of V in the positive normal direction in Y. Therefore the map (J+)m:
Hn(V) —> Hn(W) is given by (Id — s,) in terms of the above bases. Likewise,
we compute

£(«>./'-*(f)) = L{uJ+*{v)) - Q{u, v)

= Q((sx - Id)«, v) = Q(u, -sx(v));

hence (/_)• = — sv where v"_ is the push in the negative normal direction.
The boundary of W has two copies of V, V+ and V_, and in the universal

abelian cover (viewed as the union of translates t'(W)), t(V+) is identified
with V_. Therefore in W, (TJ(sx - Id)(x) = t\(sx - Id)(x) in V_ is homol-
ogous to (j-)*(si — Id)(x) = — sx(sx — Id)(x) in Hn(W). Similarly, sx(x) in
V+ is homologous to (j+)*(sx(x)) = (Id — í,)5,(jc) in //„( W).

In case / + r = 0 (mod ra) we obtain the following formula:

B_r((sx - \d)x,y) = B0(sxx,y) - Q(sxx,y)

for

L((sx - Id)x, i+,{T-r(y))) = L(T't(sx - ld)x, i_¿y))

because i+*(y) is homologous to /_*(>0 in the complement of the support of
the first variable. Furthermore, by the above argument, noting that z'_(K)
does not meet P, we have:

= L(s¡x, i-,(y)) = L(sxx, i + *(y)) - Q(sxx,y) = B0(sxx,y) - Q(sxx,y)

as desired. I wish to thank Chao Chu Liang for alerting me to the distinction
of this case.

Next, we need the following polynomial identity for an indeterminate z :

(ra > 0)       zm - (z - l)m = zm-' + zm~2(z - 1) + • • •

+ z(z- l)m~2 + (z- 1)"_I.
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Proof   (Induction). This is trivial for ra = 1  and, by the induction
hypothesis,

zm + z«-l(z _!)+...   + (z -  If-1

= z{zm~x + zm~2(z - 1) + • • •  + (z - l)"1-1} + (z - l)m

= z{zm - (z - l)m} + (z - l)m = zm+1 - (z -I- l)m+1.

Finally,
m-\

Q(s?(x),y)=   2   £,(*,"-'(*), 7)    (by der of j,)
i=0

m-\

=   2   5o((5i - Id)'i,m-'-1(x),^)    (by C/a/ra and primitivity of r)
;=0

= *o(V i*,-id^r-'-'w^j(i, - Id)*"-'-'(*),;' I    (bilinearity of S0)

= 50({i,m - (j, - Id)m}(x),^)    (by the above identity)

= Q({s? - (sx - Id)m}i0(x),>')    (by the definition of i0).

Since Q is unimodular and is arbitrary (iii) follows,   fj
So we have defined an equivariant isometric structure a(J, K; T). a is well

defined in E'(m; Z) by the necessary conditions of Theorem 2.5, which also
implies the necessity of the last conclusion.

Now suppose N is a subspace of H„(V) = M given by the null-concor-
dance of a(J, K; T), i.e. N is of \ the rank of M, self-annihilating under Q
and invariant under s0 and sx. Then, for x and y in N, B0(x,y) = Q(sQX,y) =
0 since N is invariant under s0 and Q vanishes on N. Now by the Claim and
the primitivity of r, as defined in the proof of condition (iii), there is an
integer / so that B¡(sx'x,y) = B0((sx — ld)'x,y) = 0 since N is a subspace
invariant under sx (so also under (sx — Id)'). So, in particular, B¡ vanishes on
the lattice L = s'x(N) since y is arbitrary. By bilinearity, we may assume that
B¡ vanishes on a direct summand A/, in M. If sx were injective then B¡ must
vanish on N by rank considerations (L has the same rank). Lemma 3.5 states
that every equivariant isometric structure is concordant to one with sx
injective and since algebraic concordance is an equivalence relation we may
assume this to complete the proof of the theorem.   □

The next step in our generalization of Levine's program for computing knot
concordance groups is the following lemma asserting the existence of a
representative within each concordance class for which the isometries are
injective. This is actually a "destabilization" lemma and could be proven
purely geometrically for it corresponds to equivariant ambient surgery on
trivially linked handles in the Seifert manifold V2".
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Lemma 3.5. Given an equivariant isometric structure <ï> there is a concordant
structure <&, = (Qx; t0, tx) with the associated isometry tx injective.

Remarks (1) Í», could be the empty structure.
(2) By condition (iii) in Definition 3.1, sx injective implies that s0 is also

injective.
Proof. By the isometry condition Q(x,y) = Q(sxx,y) + Q(x, sxy), Q

vanishes on L = kernel(s,). By the unimoduality of Q there exists a subspace
L* dually paired to L under Q. Let N be the orthogonal complement of
L + L* in M under Q.

Define $, = (Qx; t0, tx) on N by
<2, = restriction of Q to N (it is unimodular by the definiton of N),
Q\(,tQX,y) = Q(soX,y), and
Qx(txx, y) = Q(sxx,y), for x and y in N.

One easily checks that this is an equivariant isometric structure on N.
Finally we show that H = L + D = {(/, 0, n, n) in L + L* + N + N} in

M + N gives a null-concordism of 4» + ( — $,). By construction Q + (— Qx)
vanishes on H X H so we need only show invariance under the isometries,
s0 + t0 and sx + tx, and it clearly suffices to demonstrate s0(N) c L + N and
sx(N) c L + N. But by the definition of isometry,

Q(sx(n), I) = Q(n, I) - Q(n, sx(l)) =0-0 = 0

for n in N and / in L, since L is the kernel of sx (and by the definition of N).
Since / was arbitrary in L, sx(n) has no component in L* for all n in N.
Similarly, since by condition (iii) kernel s0 = L also, s0(N) ci+JV.    □

We are now in a position to reduce the calculation of the group of
equivariant isometric structures, E'(m; Z), to the theorem of Levine and
Milnor on isometries of bilinear forms. First we observe:

Lemma 3.6. 0-* Ee(m; Z) —» E'(m; Q) is exact where the second map is
given by tensoring with the rational numbers.

Proof. If Q is null concordant, intersect the lattice M in M ®z Q with the
hypothesized subspace to obtain L in M. Trivially L satisfies the conditions
for null-concordance in E'(m; Z).   □

Now we observe the following in Ec(m; Q): since we may assume s0 and sx
are injective by Lemma 3.5, hence invertible over a field, we may define
S0 = Id — 50_1 and Sx = Id — *,*"*. Then, we have

Q(S0x, S0y) = ß((id - f¿l)x, (Id - *„-»

= Q(x,y) - Q(x,sôy) - Q(s¿lx,y) + Q(s¿hc,s¿y).

But the isometry condition for the vectors Sq lx and Sq ly and the isometry s0
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implies

Q(sö]x,söy) = ô(x,50"V) + Q(sôlx,y)

yielding Q(S0x, S0y) = Q(x, y). (This is the reason for the term isometric
structure.) Likewise Q(Sxx, Sxy) = Q(x,y). Condition (iii) translates to

s0 = id- {(*r-(*i-M)-)*r")
= Id - Id + (sx - ld)msx-m = S,m.

Finally we observe that the null-concordance condition translates verbatim
for the new automorphisms S0 and Sx. But, since S0 = S,"1, if a subspace is
invariant under Sx, it is trivially so under S0, hence the null-concordance class
in Ee(m; Q) depends only on the isometric structure given by Q and Sx. We
now apply the following theorem of Milnor [M4] and Levine [L4]. (See also
the exposition of Kevaire [K2].)

Theorem 3.7 (Levine-Milnor). Concordance classes of isometric structures
over a global field are an infinite sum each of Z, Z/2Z and Z/4Z.

Hence E'(m; Z) is contained in such an abelian group.

Corollary 3.8. Theorem 2.5 remains valid assuming the stated conditions on
B0and Bx only.

Proof. By Theorem 3.4 and Lemma 3.5 we may assume the forms B0 and
Bx are injective. Let (Q; s0, sx) be the associated isometric structure (by
Theorem 3.4). We will show that the condition on B0 and Bx implies that
(Q; s0, sx) is null-concordant, proving the corollary since the condition is
logically weaker and therefore necessary (by Theorem 2.5). By Lemma 3.6, we
need only show that the rational form is null concordant. Now let B0 and Bx
vanish on a subspace N in Hn(V) of one half the rank. As before the
condition on B0 implies that N is invariant under s0, hence also under the
rational automorphism S0 = S™. By the claim in Theorem 3.4,

Bx(srxx,y) = B0((sx -Id)'*,j'))

so

Bx(x,y) = (Id - if')'*<>(*.>0 = MS[x,y)
and, therefore, Sx must leave N invariant (since S™ does and ra is greater
than r), by the assumption on Bx. But r is a unit modulo ra and S, is an
isomorphism over the rational field giving SX(N) c. N.   □

Geometrically, S0 corresponds to the action of the generator of the group
of translations on the rational homology of the infinite cyclic covering of A,
the invariant complement of K in J for the geometric triple (/, K; T). Now
the existence of an action implies the existence of an rath root of 50, so that,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



26 N. W. STOLTZFUS

in some sense, this chapter can be constructed as the appropriate setting for
lifting the "Galois theory" over the rational field to the integers.

As an immediate consequence of the above results, all elements of the
abelian group Ee(m; Z) have infinite order or order two or four. By the
results of Chapter V relating our approach to that of S. Cappell and J.
Shaneson, the same is true of the homological surgery group r2„(Z->
Z/mZ). As the image of the concordance classes of integral equivariant
isometric structures in the rational group is unknown (i.e. the cokernel of
Lemma 3.6), one must explicitly construct elements to obtain further informa-
tion on Ee(m; Z). This is the focus of the remainder of Chapter III. We note
that any element of E\m; Z) occurs for some triple (J2n + \ K; T) (n > 1) by
the results of Chapter IV.

We now proceed to prove a relation which is crucial to subsequent
investigation. First discovered by R. H. Fox in a slightly different setting in
his papers on the Free Differential Calculus [Fl], where it proved useful in
the study of branched cyclic coverings of knots. (Note also the similar
equation of Milnor, (*) in Bass [Bl], concerning cyclomatic units.)

Let (Q; s0, sx) be in Ee(m; Z) with sx injective and S0 and Sx the associated
rational isometries defined previously. Since S0 = S™, their characteristic
polynomials, Xq and X,, respectively, are related by

X0(Xm) = det(A-m(Id) - S0) = det(A"m(Id) - S¡")
m m

= Il det(A(Id) - f'S,) = Il \i(S'X)
/■=1 ; = 1

where X is an indeterminate and f is a primitive rath root of unity.

Proposition 3.9. Let (Q; t) be an isometry over the integers, with t injective
and let X be the characteristic polynomial (over the rational field) of Id — t~l.
There is a unique rational constant c so that cX is an integral polynomial
satisfying c\(l) = ( — e)n, deg X = 2«.

Proof. The constant is unique, provided it exists, by the normalization
condition. Define L(x, y) = Q(tx,y) and let L be an associated matrix. By
the isometry condition, L + zL' = Q. Let A(A") = det(AX + eL') which is
an integral reciprocal polynomial satisfying A(l) = ( — e)". 2« = rank L. Now
S = Id - t~l = Id - QL'1 = (L - Q)L~] = - L'L~l, so that the char-
acteristic polynomial of S, X(X) = det(L ~')A(A).

Let c0 and cx be the constants furnished by (3.9) for \0 and Xx, respectively.
Then:

Proposition 3.10. c0 = c,m.
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Proof. We will demonstrate that/(A"m) = UT~oCxXx(^'X) satisfies the con-
clusion of Proposition 3.9 for Aq and the conclusion follows by uniqueness.
Let E = Q(Ç) be the cyclotomic extension of Q by a primitive rath root of
one. Now/(Am), by construction, is a polynomial with coefficients in Z[$].
However, / is invariant under the action of the Galois group, hence all its
coefficients must lie in Z. Furthermore, / is reciprocal since X, is. Now
consider the augmentation Z[f ] -*A Z which is a ring homomorphism.

(m \ m

n cms')) - n A(cMn)
-{(-«)■}"-<-«)".

by the choice of c,.   fj
Remark. In Ee(m; Z), c0 = det(i0), c, = det(j,), so by condition (iii) and

Proposition 3.10, det{ii" - (sx - Id)"1} = 1, i.e. is invertible.
We now begin a series of variations on the theme of

m

Â(À"")= Il  A(rA).
1 = 1

Since A(A") is the Alexander polynomial of a knot, i.e. condition (iv), it
satisfies A(l) = (—¿f, some n, hence

n A(r)
/=1

= 1, (•)

i.e. A(f') is a unit in the cyclotomic integers Z[f] c (?(£)• It satisfies the
further condition that there exists an automorphism of Z/mZ taking u =
A(f ) tOM"1 (See comment of Milnor [M2] that this is true for the generator of
(Z[f])*, f5 = 1.) It would be interesting to know if this is true for all
cyclotomic units.

Recall the following theorem of Seifert (for the classical knots) and Levine
characterizing knot polynomials.

Theorem 3.11 (Seifert [Sei], Levine [L3]). There exists an isometry (Q; t)
over the integers with Alexander polynomial A(A) (= (-e)\f>(l — A"-1), where
4> is the characteristic polynomial of t, 2A = deg <f>) iff

(i)A(l) = (-e)A,
(ii) A(A) is reciprocal,
(iii) A(— e) is a square (redundant if e = — 1).

Let Pe be the set of all integral polynomials satisfying (i), (ii) and (iii) with
symmetry e (= ± 1).

There are two special cases of knot polynomials satisfying (*) which we
shall consider:

(1) A(A") = A,(A"1) for some knot polynomial A,. Note that this equation
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gives a well-defined endomorphism of Pe (except when ra is even, deg A, = 2
(4) and e = + 1, in which case we use A(A) = (-e)A(m-1)A,(A"m), 2A =
deg A,).

(b) A(A) = ri(<i>rf(A))"'' where <j>d is the dth cyclotomic polynomial (<í> is of
this form for knots occurring in algebraic varieties, e.g. Brieskorn varieties).
Note that <¡>d is in Pc (using facts in [La, p. 206], particularly the consequences
<i>,(l) = 0, <i>rf(l) = d, da prime and $d(\) = \, d composite) if dis composite,
and if e = + 1 and d is even, then d/2 must be composite also to satisfy
condition (iii). In case (a) A(A") satisfies (*) trivially and in case (b) A(A")
satisfies (*) according to the following criterion:

Lemma 3.12. <t>d(X) satisfies (*) with respect to m iff k = d/(m, d) has two
distinct prime factors so that ($d)(Xm) = LT7L i <t>d(^x) = {<¡>k(Xm)}'Kd)/^k}
(here <i> is the Euler ^-function).

Proof. (Compare Fox [F2] and Gordon [G].)

m m     <t>(d)

n *„(£'*)- n n (s'x-aj)i=i /-i j-\
where co, are the primitive dth roots of unity,

W)     m
= n n {v)*id\x - r'oj)

y=l     ,=1

*(d)

= n (xm - (Ujry

Now (aß1" is a primitive k = d/(m, d) root of unity so ^>d(Xm) must be some
power of <¡>k(Xm) and, by comparing degrees, it must be <¡>(d)/<j>(k).    fj

It is curious to note that if (w, d) = 1, then <¡>d = </>¿.
In case (a) the associated unit in Z[f ] is ±1, while in case (b) it is easy to

give examples where it is highly nontrivial (e.g. ra = 5, then case (b) for d = 6
generates (Z[f ])*).

Finally we note that cases (a) and (b) do not exhaust the possibilities for
knot polynomials satisfying (*), for example the following polynomials listed
by Gordon [G] for ra = 2,

1 - A2 + A3 - A4 + A6   and    1 - A2 - A3 - A4 + AT6.

Our second variation occurs in the consideration of the following sequence
of groups which is the analog of the inclusion-transfer sequence on the
second ring in terms of the Cappell-Shaneson T-groups.

CC(Z)^ E*(m,Z)^> C'(Z) (3.13)
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where Tr(Q; s0, sx) = (Q; s0) and

e     „
6    ■ „)•'"■'''

To show sx is an isometry, we may assume, by bilinearity, that x and y have
only one nonzero component, say x¡ and .y,. Then

Qx(sxx,y) + Qx(x,sxy)

= Qx(tX¡, ..., tX¡, (t - Id)*,.,. . ., (0 . . . 0,yp 0 ... 0))

+ ß,((0 . . . 0, x„ 0 . . . 0), (tyj, ..., tyj, (t - Id)v,, . . . ))

Q(tx,y) + Q(x, (t - ld)y) = 0 = Qx(x,y), i >j,
Q{tXi,yj) + Q(x„ tyj) = Q(xi,yj) = Qx(x,y), i = j,
Q((t - Id)Xi, yj) + Q(Xi, tyj) = 0 = Qx(x, y),     i <j.

We now determine s0, hence the composition Tr(/), and also show that i is
well defined. Let T be the matrix

then
Claim, si" = r{i,m - (sx - Id)"1}.
Proof (Induction). Let s[ = (Ajj) and (sx - Id)r = (B[j) in terms of the

same blocks as sx. From the symmetry of sx, Ay and B[j depend only on
/ = j — i, so for convenience, we sometimes denote AL by Af, etc. The
induction hypotheses are the following symmetry claims:

(i)(t - ld)Af+m_r = tBf, - m < l< r,
(ii) (/ - ld)A[+m = tAf, -m < I < 0,
(iii) (t - ld)Bf+m = tBf, - m < I < 0.

For r = 1 these claims are obvious. We first demonstrate (iii).
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œrl = tB[+_l
m

- 2 (< - Id)'*¿i + (t - ld)tB¡_ltl +   2    t2B[<x
(=1 ¡ = 2-/

- 2 (/ - id)//?,'+m+,/+m+, + (/ - id)2/?,;/+m+,

m

+    2    ¡(t - ld)B[+u+m + x
i = 2-/

by the symmetry on / and induction on (iii)
m

=     2      (< - \d)tBl¡+m+x + (t- id)2/?o+m+,
i' = /+m+l

l+m

+ 2   '(< " Id)^+m + 1
i-2

= (/ - Id)J/¿¿.
Condition (ii) follows similarly. By (ii) and (iii) it suffices to prove (i) for
/<0.

1-/ m
tBf+l = tB¡iix -20- idW + 2   '2*,:,-

(=1 i=2-/

/ + ra + /• > 0
i-/

= 2   (t -\d)2Arm_r_i+x+    2    'X^-,-, + 1    by induction on (i)
/=1 i=2-/
1-/

\2.= 2 (t - ldftA'_,_l+i +    2   t(* - Id)^_r_/+,    by (ii)
i=l i = 2-/

=       2      t(t - ld)Af<m_r_x + ! + t(t - ld)A^m_r_x + l
i = l+m-\

m + l-2

+ 2 /(i-idH:m-,-1+/i=i
= (/ - iá)A¡zi,_l+t - (t - idM-:(r+,)+/.

/lííwrae
/ + ra - r < 0

m-r 1-/

=  2 C - Id)2AU-,+, +      2      (t - IdfA¿_r_i+x
1 = 1 i = m — r +1

+    2   'O - Id)A^_r_i+x    by induction on (i)
i = 2-/
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=  2   (t-ld)tA'_r_i+x + " + "       by(ii)
1 = 1

m r—m — l+ 1

= 2   (t-id)tAftX+   2    C-idrX,
i-r+l i=l

+        2 t(t- \d)A[A
i = r-m-l + 2

= (/ - IdK^J,_/+2;, = (/ - Id)yl^(r+,)+/.
Condition (i) for r = ra is the desired conclusion.    □

Hence Â(A") = (A,(A"))m which implies A^(A) = (-e)"(m-,)Al(Xm). Thus
the composition is ra times a knot up to isomorphism (and not just concor-
dance class). This is analogous to the corresponding sequence in algebraic
AT-theory (see Milnor [M5] and Bass [B2]).

Theorem 3.14. E"(m; Z) is infinitely generated over Ce(Z) with the module
structure defined by i and C'(Z) is infinitely generated over Ee(m; Z).

Proof. The last conclusion follows easily from Proposition 3.10, which
implies A(0) = (A(0))m, hence As (0) must be the rath power of an integer. A
further necessary condition for i> in Ce(Z) to be in the image of Tr is that
A,(X) = IIA(rA") for some A in Pe.

By the previous discussion <ï> in Image of / implies that As (X) =
A,(A"m)(± 1) for some polynomial A, in Pe. Now, given any ordinary isometric
structure (Q; sx) satisfying |n7L,A(f')l = '» we may associate (Q; [s™ — (sx
— ld)m}~lsxm, sx) in E'(m; Z) since the condition implies that the expression
in brackets is invertible (comment following Proposition 3.10), so we need
only find an infinite number of polynomials satisfying (*) not of the form
A(A"m). By Lemma 3.12 the dth cyclotomic polynomial satisfies (*) with
respect to ra iff k = d/(m, d) has two distinct prime factors and ij>d is never
an rath power so that §d ^ A(Xm) for any A in Pe.    □

Such is the power of the Alexander polynomial.

CHAPTER IV: REALIZATION AND KNOTTED SUSPENSION
Returning to the geometric situation, we will realize the group Ee(m; Z) by

geometric triples (as in Chapter II). For convenience we will prove the
theorem in the PL (or TOP) category and then discuss the further considera-
tions in the smooth case.

Theorem 4.1 (Realization) (n > 2). Given a PL fixed point free action T0
of period m on a sphere K2n~x and an element ß in Ec (ra; Z), there exists a
free action (J2n+\ T) on a PL sphere J and an equivariant (locally flat)
embedding (K, T0) «^ (J, T) such that a(J, K; T) = ß.
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Remarks. (1) Theorem 4.1 actually realizes an element in the monoid of
isomorphism classes of equivariant isometric structures.

(2) For n = 2, in the PL case, one may prove a similar theorem if one
restricts ß to E¿(m; Z) = {(Q; s0, sx)\ signature Q = 0 (16)}.

Proof. Let L be the orbit space of K and £ an oriented two-plane bundle
on L with Euler class x> a unit m H2(L; Z) = Z/ raZ. Denote by
(Z>(£), S(£)) the associated (D2, S ') bundle pair. Now in the Gysin sequence
for the S ' bundle S(£) over L,

^Hr(L;Z)PX Hr(S(0)^Hr-\L)^ Hr+l(L)^,

the last map is an isomorphism, since x 1S a UIUt» for r < 2n — I. For
r = 2« - 1 and r = 2«, we obtain Hr(S(£)) = Z. Hence £■(£) is a homology
S1' X A2"-1 and by the homotopy exact sequence, a homotopy product,
hence standard in the PL category.

Let ß in Ee(m; Z) be given by (Q; s0, sx). In our setting we have the
following translation of a theorem of Kervaire [Kl]:

Theorem 4.2 (Kervaire). There exists a simple knot complement (n > 2)
(A"2"+1, 3A") (i.e. X is a homology circle with boundary a homotopy Sl X S2n~l
and ir¡(X) = m¡(Sx)for i < ri) with associated isometry (Q; sx) in Ce(Z).

Proof (Sketch). Q determines the intersection form on the Seifert mani-
fold V2", which may be chosen to be an (n — l)-connected handlebody. By
Smale-Hirsch immersion theory we may immerse V in S2n + l. By general
position we obtain an embedding on the «-skeleton of V and hence can
embed V2" in a small tube about the «-skeleton. Using the Seifert linking
matrix A associated to (Q; sx) by A(x,y) = Q(sxx, y), one corrects the
linking on //„( V) to that given by A. Assuming « > 2 and Q unimodular
implies that dV is a sphere, so removing a tubular neighborhood of dV we
obtain our desired knot complement X.   □

So there exists (A", 3A") realizing (Q; sx). Note that sx determines s0 by
condition (iii) in Definition 3.1.

Define M = (D(Ç), S(£)) Us'xs2"-1 (X, dX) by identifying the boundaries.
Since A is simple and « > 1, mxX = Z and, by van Kampen, mx/M =
Z/wZ. Let J = M, the universal cover of M which we may decompose as
K X D2 U51x52" i X, where X is the w-fold cover of X corresponding to
mxX = Z —> Z/mZ.

Let A be the universal cover of A. Since A is simple, Hn(X; Z) is the only
nonzero group (Milnor [M3]). Now X is also the universal cover of X with the
generator of the group of covering translations corresponding to tm, t being
the generator for X-*X. By the proof of Propositions 3.9 and 3.10, the
Alexander polynomial A(A) associated to the isometry for X-> X satisfies
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K(Xm) = nTLiA(f'A'), where f is a primitive rath root of unity and A is the
Alexander polynomial for X —> X (and sx). By assumption, ß is in E'(m; Z)
so that Â(l) = ± 1 (condition (iv) of Definition 3.1). By Levine [L2], the
Alexander polynomial is the determinant for a presentation of Hn(X; Z) over
Z[tm, t~m], and since H„(X; Z) is the cokernel of the presentation under the
augmentation (tm -» 1), the polynomial condition implies that X is also a
homology circle.

Therefore, by the Mayer-Vietoris sequence, J = M is a homotopy sphere,
hence PL standard. This defines (J2n+ ', T) so that a(J, K; T) = ß.    □

The construction of the theorem will be referred to as knotted suspension
(by the knot and the Euler class). Note that in the PL case Theorem 2.5 is
equivalent to

Theorem 2.5 (PL, « > 2). (/2"+1, K; T) is equivalently concordant to a
standard suspension S1 * K iff a(J, K; T) = 0, since PL homotopy Sl X S2"~l
are standard.

We now wish to investigate how "knotted suspension" affects the action.
By the work of Browder, Pétrie and Wall [BPW] (if « is odd or two) (/, T) is
classified by two invariants S, a torsion invariant and p, the multisignature. In
the following lemma we compute S for (/, T) from 5 for (K, T0) and
invariants of the knot and normal bundle. For p, so far, we have only the
theoretical computation given in Chapter V.

Lemma 4.3. S(J, T) = [(f * - l)/A(Çx)]8(K, T0) in ß(0 where A is the
Alexander polynomial of sx for ß = (Q; s0, sx) and \ is viewed as an element in
Z/mZ (= H2(K/Tq, Z) with generator T0) determined by the normal bundle
toK/T0.

Proof. Use the equivariant (cellular) decomposition of J given by K X D2
Us'xs2"-' X. The torsion S is as defined for "special" complexes by Milnor in
[M2]. First, as in Wall [W2, 14E.8], one notes there is an exact sequence of
equivariant chain complexes:

0-» C,(X) + C,(D(0) -► C,(J ) ^ C,(S 1XK)-+0.
Now C^S1 X K) is the tensor product of equivariant chain complexes with
the diagonal action, so by naturality has torsion zero, since the product
complex with the product action does by the product theorem, as the Euler
characteristic of Sx is zero. Also £>(£) collapses to K and so has torsion
S(K, T0).

Next, we find the torsion for the homology circle X. Viewing X as the
ra-fold cover of X, with X^X its universal cover, T\¿ corresponds to /
where / is the generator of the group of covering translations of A (uniquely
determined if one considers orientations). Now Milnor [Ml], [M3, Remark, p.
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121] has computed the Reidemeister torsion of X over ß(z), the field of
rational functions, to be (z - 1)/A(z) with A = Alexander polynomial for X,
a simple knot complement (in fact, [M3] extends this to any knot comple-
ment). Now, watching identifications, C„(A") as a Q(Ç) module is just C^A")
under the map z —> f x and the result follows,    fj

In the smooth category, one encounters the usual problem of smoothness
structure. If (/, K; T) is a smooth invariant triple, then in J/ T, the boundary
of a tubular neighborhood of K/ T is a homotopy S x X S2"~ ', as in Theorem
4.1, and so has a smoothing given by

Y ={SX X So2""1) # 22n

by [Sch] where S0 is a smoothing of S2n~x and 2f of S2n. Now, Y = X, a
knot complement, which can be framed (as it is the transverse pullback of the
trivial knot complement since any codimension two lens space is characteris-
tic), so Sq"~1 is the boundary of the framed Seifert manifold, and 22" must
also bound a framed manifold (since 22" is the boundary of the framed
manifold obtained by doing framed surgery on the generator of HX(Y); see
Schultz [Sch, Theorem 1.2]). So 22n is standard since ö2"(3tt) = 0 by [KM].
Now the structure on Sq"~x is determined by ot(J, K; T) = (Q; sQ,sx) as
follows in terms of the bounding Seifert manifold V2":

(i) « = 0 (4), signature V = signature Q.
(ii) « = 2 (4), Kervaire Arf V = °x according as A(1)A(- 1) = *J (8) by

Levine [L2] and Robertello [Ro].
So, given a smooth action (K, T0), if the smoothness structure on 5(1), £ a

2-plane bundle over K/T0, is of the form S1 X S02""' for 502m_1 in 02n_1(37r)
and a satisfies the above condition with respect to S0, then the smooth
knotted suspension may be formed. Note, however, that it is not unique,
because of the choice of the gluing diffeomorphism.

One may define a group operation in the geometric theory of equivariant
concordance of invariant knots which reflects the algebraic group structure.
The definition is confined to the PL or TOP category for reasons which will
become apparent. We further restrict our universe to the set of equivariant
concordance classes of (PL or TOP, locally flat) invariant triples (J2n+X,
K2" ~~ ' ; T), with the action (K, T) equivalent to a fixed action t of order m
and with the Euler class of the normal 2-plane bundle of K/ T given by x{T),
where {T} is the generator of H2(K/T; Z) corresponding to the action and
X is a residue modulo w. This set will be denoted EC2"+x(t; x).

Definition 4.4. The composition, [J, of two elements in EC(r; x) is defined
as follows:

Let (/,, K; Tx) and (J2, K; T2) be triples representing the given classes and
let A", and X2 be the respective invariant closed complements of K, with orbit
space y„ / = 1,2. Let Y = Yx #z Y2 be the connected sum over the normal
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circle constructed in the following manner: In the PL category, dYi » Sx X
sin-i = R choose a fixed identification of R with Sx X E2^~x u Sx X
E2"~x (with boundaries identified and E± two hemispheres whose union is
S2"'1). Then Y = Yx U5.x£_ Y2 and dY ^ R. Let D(Q be the normal
Z)2-bundle to K/T. Define a PL manifold M = Y UR D(Ç) by identifying
the boundaries. Finally let (/„ K; Tx) Q (J2, K; T2) = (M, K; t) where t is
the generator of the group of covering translations of the universal cover, M,
of M corresponding to T¡\K. This is an invariant triple by the now standard
Mayer-Vietoris argument since the ra-fold cover of Y is a homology circle as
the y, satisfy this condition. The assumption that the Euler classes were
equivalent was implicitly used to coherently identify the actions on A", and A"2
in M. A relative version of the construction shows that the operation is well
defined on equivariant concordance classes. This operation is easily seen to
give a commutative semigroup structure to EC(t, x) with identity given by
the suspension, Sx * K, of K determined by x- The existence of an inverse
follows from Theorem 2.5 since (/, K; T)\^\( — J, — K; T) has linking in-
variant (M © M; A¡ ffi ( — A¡)) and the diagonal H = {(x, x): x in A/} is the
required subspace of one-half rank. Note that the Seifert manifold for the
composition is the connected sum along the boundary of the individual
Seifert manifolds. From this observation it follows that the map a of Theorem
3.4 is a group homomorphism. It also clarifies the necessity of the restriction
to the PL category unless K has the standard differentiable structure.

Theorem 4.5 (PL, « > 3). EC2n+x(r; x)-^ E'(m; Z) is an isomorphism of
groups.

Proof. The above discussion implies that a is a well-defined group homo-
morphism. By Theorem 4.1, a is a surjection and by Theorem 2.5 (see also the
discussion following Theorem 4.1), the kernel is the identity,    fj

In other words, if two invariant triples with corresponding Euler classes
and PL equivalent actions on the invariant spheres, have the same a in-
variant, they are PL equivariantly concordant. These conditions are also
necessary (since equivariant concordance implicitly assumes the same am-
bient action). In the smooth category, the same proof demonstrates that a is
an injection, if K is the standard sphere.

CHAPTER V: CONNECTIONS
A primary source of inspiration for this paper was the intriguing results of

Santiago Lopez de Medrano [LdM3] concerning codimension two spheres
invariant under free involutions on homotopy spheres. In this first section we
will highlight the relationships between our methods and those used by Lopez
de Medrano.

Returning to the setting of Chapter II, the objects of interest will be triples
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(J2n+X, K; T) where T is a fixed point free involution (T2 = Id). First we
observe that the linking form Bx(x,y) defined on Hn(V2n), V an equivariant
Seifert manifold, is (— 1)"+ '-symmetric, since

Bx(y,x) = L(y, T.x) = l(tj, (tJx) = (-l)"+xL(x, Tj)

= (-l)" + xBx(x,y)

by the symmetry law for linking numbers, noting that Tm preserves orienta-
tions. Even though the integer valued form Bx is not unimodular, we can
relate the desuspension invariant a(J4l+3, T) of Browder and Livesay [BL] to
the signature of B when « is odd. In fact,

Proposition 5.1. a(J4l+3, T) = signature(B,) and is the index of the orbit
knot complement.

Proof. Since o(J, T) is independent of the choice of the characteristic
codimension one submanifold W, we will choose W = V u (— T(V)) where
V is an (oriented) equivariant Seifert manifold associated to (/, K; T). Note
that T(V) is given the opposite orientation so that W has a coherent
orientation. In order to compute the desuspension invariant we will produce a
map

$: H„(W) = Hn(V) + Hn(T(V))

-» Kernel^«: Hn(W) -» Hn(A) + T^Ker),

where A is the component of / — W "containing" the positive normal of W.
First we compute the linking form L(x, / + *(y)) on K + TtK where K =

Kernel(/^) and /+ is as usual (see also [LdM2]). We can find a basis for K and
r„ K so that the intersection form I(x, y) is given by

le/    0/
since the intersection form is unimodular and it must vanish on K. Now for x
in Hn(W), k in K, we have L(x, i+*(k)) = ± L(i + t(k), x) = 0 since / + *(&)
bounds a chain in A disjoint from W (which carries x). Even more trivially,
LÍP> ' + *(*)) = 0 for^ in T^K. So we need only find L(k, i + if(p)) = I(k,p)
± L(p, i++(k)) = I(k,p), by the standard relation between linking numbers
on W and the intersection form (see 2.3). So, with respect to the chosen bases,
L(x, /+ „(y)) is given by (£ '0) on K + T^K. With respect to the decomposition
of Hn(W) = Hn(V) + H„(T(V)), L(x, i+¿y)) is given by

B0        Bx

Bx      -eB¿
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where B0 is the associated matrix for B0(x,y) and Hn(T(V)) is given the
corresponding basis under Tm.

We now produce the desired transformation of linking forms noting first
that another choice would give us an automorphism of ($ ¿) which must be of
the form

lo   p-'l
This automorphism simply conjugates the Browder-Livesay form x • T^
leaving the signature invariant.

Claim.

• -(

*--('

y - id - y        \
eQ~lS~lY    eQ-xS~x(Y- Id)/

is   one   choice,   where   Q = intersection   matrix   on  Hn( V),   Y = matrix
associated to sx of the equivariant isometric structure, S = Y2 — (Y — Id)2
which is invertible by the remark following Proposition 3.10.

Proof. First, one checks that

(Id-y)S-1 -eYQ     \
-YS~X e(Id- Y)q)

so that

9-i(0    IdW-,_/(Id- Y)S-\ld- Y)Q    (Id- Y)S~xYQ\
lo    0/ \      y5_1(id-y)e YS~XYQ     )

which by condition (iii) of 3.1 and the claim in Thoerem 3.4 is L(x, i+t(y)) as
computed above. (Note that the isometry condition implies Y' = Q~x(ld —
Y)Q.)

Noting that the intersection matrix on the basis for K + TmK is (£, ¿d) we
need only compute T^ with respect to this basis to determine x ■ T^. But

T =W°   IdW-'
•     lid   or

since Tm simply interchanges the Seifert manifolds. Hence

/       0 eSQ\
*    \-(sqY    o /•

But y = CQ ~x where C is a Seifert matrix for the orbit knot complement, so

eSQ = e(Id - 2y)ß = e(Q - 2C) - -e(C - eC),
which is just the index of the orbit knot. Finally Bx = yS~'(Id - Y)Q =
C(eSQ)~xC' has the same signature since signature is a conjugacy invariant.
D

In case « is even, one may also obtain the following, first demonstrated by
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Lopez de Medrano [LdMl] is his thesis using Browder-Livesay desuspension
invariants:

Proposition 5.2. (JAI+X, T) admits an invariant knot iff c(J, T) = 0, i.e. it
desuspends.

The following is a most intriguing question of Lopez de Medrano [LdMl]:
Does there exist a null-concordant invariant knot with desuspension invariant
= 8 (mod 16)?

This may be reduced to the following realization problem in algebraic knot
concordance theory:

Problem 1. Does there exist an isometry (Q, s) with A^A") = A,(A"2) (for
some polynomial A,) and with signiture = 8 (16)?

One can show that knotted suspension with such a knot for ra = 2 is
algebraically concordant to 2a, for some a in Ce(Q):

Problem 2. Is a realized by an integral isometry?
An affirmative solution to Problems 1 and 2 has been found and will

appear in a paper by the author entitled Non-injectivity of the transfer of
skew-Hermitian forms with applications to topology.

We now commence discussion of the relation between the viewpoint taken
in this work and the algebraic ^-theoretic obstruction group defined and used
by Sylvain Cappell and Julius Shaneson in their magnum opus [CS2] on
abstract codimension two surgery.

In the rest of this section, we will use freely the notation of [CS2]. It will be
necessary to consider the following diagram of rings:

Z[Z]     % Z[Z]
3>:    |Id jF

Z[Z]     4.     Z[Z/mZ]
where Fis the natural projection. We now restate Proposition 10.2 of [CS2]:

Proposition 5.3. The action ofT2k+2(®) on the homological surgery structure
set Sf{D2k X Sx) is transitive and free for k > 2.

Note that all "structures" are normally cobordant since w,(G/0) =
w(G/PL) = 0. By Theorems 2.5, 3.4 and 4.1 (see also Proposition 2.10) we
may identify ST(D2k X Sx) with Ee(m; Z), e = (-1)*. So we obtain an
isomorphism of pointed sets:

Proposition 5.4. T^+2($) = E\m; Z), e = (- if.

Similarly, using Proposition 10.1 of [CS2], one can relate Ee(m; Z) geomet-
rically with C( —, t) = U pC(p, t) = equivariant concordance classes of (PL
locally flat) invariant codimension two spheres with the action on the in-
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variant sphere equivalent to t. (We do not restrict the action p on the ambient
sphere.) Finally, using the long exact sequence of Proposition 3.2 of [CS2], we
may relate T„($) and T„(F):

^L„(Z)^r„(F)^r„($)^Ln_,(Z)^
placing the relation between two well-known Wall surgery obstruction groups
[Brl], [Sh2]. For a more extensive discussion see [CS2, 10.7f]. We also note
that the inclusion-transfer sequence of Chapter III (3.13) can be interpreted
as

r2„(z -» e) - r2„(z -> Z/mZ ) -* r2n(z -* e).

We now proceed to give an algebraic interpretation of Proposition 5.4, by
relating T2k+2(F) and Ee(m; Z). First recall the algebraic definition of
^2n(A\ —» A2), where F is a ring homomorphism of rings with involution.
r2n(F) consists of triples (A/, X, ¡i), where M is a finitely generated A,
module, X is a bilinear form on M with values in A, and ju is the associated
"self-intersection" form satisfying (i)-(v) of Wall [W2, Chapter V], and such
that, after tensoring with A2, the triple is free and unimodular over A2, i.e. in
L2n(A2). Null forms are defined to be those for which there exists a submod-
ule N of M on which X and ju vanish and which, upon tensoring with A2,
yield a subkernel in L2„(A2); see [CS2] for details. Now, in our particular
case, r2„(Z —> Z/mZ), it is easily shown that X determines the form ¡u. except
for the coefficient of the identity when « is odd (the Kervaire Arf invariant
case). Therefore we need only determine X and the Kervaire Arf invariant to
identify an element in T2n(F).

First, we show how to generalize the results of Wall [W3] to forms of both
symmetry over A = Z[t, t~\ the ring of Laurent polynomials. Let F be a
free A-module and <(>: V X F—> A be an e-symmetric bilinear form which is
nondegenerate, i.e. Ad <¡>: K—»HomA(F, A) is injective. Let S c A be the
e-symmetric elements under the standard involution " on A (i.e. x = ex) and
E in S, the even elements (i.e. 2\a0, where a0 is the coefficient of the identity).
Note that E = S if e = — 1, and that E is an ideal in S (for s in S can be
written as í = 2a,(/' + t~') so that

se = («0 + 2 M*1 + '~'))k + 2 hit' + '"'))
\ !>0 /\ i>0 /

has coefficient of t° = a0b0 + 2i>0 2eai6/, which is even since e is in E, hence
s • e is in E). Assume also that <}> is an even form, i.e. <¡>(x, x) is in E for all x
in V. Since A is an integral domain, we may define F = quotient field of S in
Q(t). Consider V* = {y in V ® Q(t): <f>*(x,y) is in A for all x in V), where
<f>* is the obvious extension of $ in V ® Q(t). On K= V#/V, there is a
quotient bilinear form </>: V X V-+ Q(t)/A and q: V-> F/E, an associated
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quadratic form. In this situation we now prove the following theorem (gener-
alizing Wall [W3] to the ring A and the skew symmetric case) which states
that ( V, 4>) determines ( V, <i>) up to stable equivalence under direct sum with
a unimodular even form.

Proposition 5.5 (Compare Wall [W2]). Let (V, <j>) and (W, X) be nondegen-
erate even e-symmetric bilinear forms over A = Z[t, t~x] and let f: (V, <p, qx)
—» ( W, X, q2) be an isometric isomorphism over quadratic forms. Then there
exist homomorphisms A: V* —> V andg: V* -^ W* such that:

(i) i = (A, Id, g): V* -> V + V* + W* = H(V) + W* is an isometric
embedding (with H (V) given the standard hyperbolic form derived from <j>).

(ii) H(V) + W* = M + i(V#), where M is the orthogonal complement of
i(V*).

(iii) The induced form on M is even and unimodular.

Proof (Adapted from Wall [W3]). Since V, hence V*, is free over A we
may define g on a free basis x¡ for V * and extend A-linearly. Set g(x¡) = z, in
W* where z, satisfies f(px(x¡)) = p2(z¡), where/?, is the projection px: V* -»
V*/V and p2: W* -*W*/W. Now the equation y(x,y) = <Hx,y) -
X(g(x), g(y)) defines an e-symmetric bilinear form on V*, since g induces/,
which is an isomorphism of the associated quadratic forms, y is even and
takes values in A. Again making choices, we can find a bilinear form ju:
V* X V* -» A satisfying y(x,y) = n(x,y) + n(y, x). Finally we define A:
V* -> V by <$>(x, h(y)) = n(x,y) using the duality of V and V* under <i>.
/ = (A, Id, g) is an isometry since

<¡>(x,y) - X(g(x), g(y)) = y(x,y) = <*>(*, h(y)) + <f>(y, h(x)).

Now <i> is nondegenerate so M n i(V*) = 0. For v in V, define V* -^ V
by uh><¡>( — v, h(u)) + X(g(—v), g(u)) which maps into A so, by duality, is
given by u h» - <j>(d(v), u) for some element d(v) in V. Now

<¡>(h(v) + d(v), u) = <p(h(v), u) -<¡>(-v, h(u)) - X(g(-v), g(u))
= i(v) ■ i(u) = <¡>(v, u)    since i is an isometry.

Since this is true for all u in V*, h(v) + d(v) = v. By definition of d(v),
(d(v), —v,g(— v)) is in M and (h(v), v, g(v)) is in the image of /, so
d(v) + h(v) = v is in the sum, i.e. V cz M + i(V#). Now the projection of M
onto the last two factors in (i) is onto V * + W (and, in fact, injective) since,
for c in F* and w in W, u h> </>(d, h(u)) + X(w, g(u)) is a linear map
V * -* A, so given by u h» — <¡>(x, u) for some (unique) x in V, but then
(x, v, w) is in M. So V + V* + W c M + i(V#), and since g induces/we
easily obtain (ii).

Let (u¡, v¡, w¡) be in M (i = 1, 2). Under the induced form their inner
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product is

<f>(ux, v2) + <¡>(u2, vx) + X(wx, w2)

= -<t>(4>x,h(v2))-X(wx,g(v2))
-<¡>(v2, A(t>,)) - X(w2, g(vx)) + X(w„ w2)   by the definition of M,

= - y(vx, v2) - X(wx, g(v2)) - X(w2, g(vx)) + X(wx, w2)

= X(g(vx), g(v2)) - <p(vx, v2) - X(wx, g(v2))

-X(w2,g(vx)) + X(wx, w2)

= X(wx - g(vx), w2 - g(v2)) - <¡>(vx, v2), (*)

which is independent of the u¡.
Now, for (u, v, w) in M, <j>(u, x) + <¡>(v, h(x)) + X(w, g(x)) = 0 for all x in

V*. Now the first two terms are in A so the projection of w in W*/ W is
orthogonal topx(g(x)) for all x in V*. But the form on W, hence W# / W, is
nondegenerate so w must be in W, hence wx and w2 in (*) must be in W. So
reducing (*) modulo V and W, we see that the induced form on M is even
and takes values in A, since g induces / which is an isomorphism of
associated quadratic forms.

Let í: A/—»A be a homomorphism. By the previous analysis of M (the
projection M-» V* + W is an isomorphism), we may define t,: V + W—>
M -^s A. Now, (q0 ,jG), where G is a matrix representative for g, defines an
automorphism of V + W (and also of V# + W#). So, by duality, there is a
t?0 in V#, w0 in W* so that

t(v, w + g(v)) = -<i>(u0, v) + X(w0 - g(v0), w).

Furthermore, this equation holds also for v in V# and w in W, hence, on M
we have

s(u, v, w' + g(v)) = -<t>(v0, v) + X(w0 - g(v0), w')

or

s(u, v, w) = -<Hu0, v) + X(w0 - g(v0), w - g(v)).

Now, if we can demonstrate that w0 is in W, then there is a u0 so that
(u0, v0, w0) is in M, and by (*) s is given by pairing with (u0, v0, w0), proving
unimoduality.

Now s(u, v, w) takes values in A on M, so projecting:

0 = - v0 • v + (w0 - g(v0)) ■ (w - g(v))

= — v0 • v + (w0 — g(v0)) ■ ( — g(v))    since (u, v, w) in M implies winW

— wo'8(~v)    since g projects to an isometry,

but this holds for all v in V* so >v0 is in W.   □
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Let (W,f) be an element of SF(D2k X Sx), i.e. f: (W, dW)->(D2k X S1,
S2*-1 X Sx) is a homology equivalence restricting to a homotopy equiva-
lence on the boundary. By the fact -7Tx(G/0) = 0, there is a normal cobordism
(M2k+2, 3 A/) from W to D2k X Sx. Since/is a homology equivalence, there
is a surjective map trxM —> Z. Let M be the associated cover. By standard
techniques, one can do surgery, first in low dimensions, then in dimension
(k + 1), on the interior of M, to make the intersection form X on W =
Hk+X(M; Z) nondegenerate over A (or rank two with a nonstandard hyper-
bolic plane, i.e. the Kervaire Arf invariant case which we are neglecting). We
then have the following computation:

Theorem 5.6. Let (J2k + X, K; T) be an invariant knot. The Xform associated
as above to 9(K/T) (see [CS2, 10.3]) (the structure obtained from the comple-
ment of K/T in the orbit space) is, up to stable equivalence, given by the
e-symmetric (e = (— 1)*+1) A-bilinear form associated to

[(A(t)-l)/(t-l)]{(t-l)D + ld}Q,
where A(t) is the normalized (A = A) Alexander polynomial of sx, D is a matrix
associated to the isometry sx, and Q is the associated intersection matrix on a
free A-module of the appropriate rank.

Remarks. (1) The above form (on W* / W) is due to H. F. Trotter [T] for
the ordinary knot concordance case.

(2) Equivalence classes of elements of r2n(A, —» A2) under stable equiva-
lence by forms unimodular over A, are in 1-1 correspondence with r2„(A, -»
A^/image L2„(A,). Note also that, up to stable equivalence, the form X
(together with an associated ¡u, form) determines an element in T2n(F) depend-
ing only on the equivariant algebraic concordance class of (Q; s0, j,).

(3) One may easily verify that A(£) is a unit in Z[f ], f a primitive rath root
of unity iff W*/ W ® Z[Z/wZ] = 0, i.e. X ® Z\Z/mZ\ is unimodular.

(4) Theorem 5.6 gives the theoretical possibility of calculating the multi-
signature and, hence, determining the structure on // T from that of K/ T
and invariants of X/ T and the normal bundle (see Chapter IV).

(5) This theorem is the desired algebraic interpretation of Proposition 5.4.
Proof. Let M be a normal cobordism to D2k X Sx for 9(K/T). Without

loss of generality we may assume M is ^-connected (except for mxK = Z). By
the (singular) homology exact sequence for (A/, 3M), M = universal cover of
M, we have the following exact sequence of A-modules:

0— Hk+ ,(3A/ ) -> Hk+,(M; Z ) -> Hk+ ,(A/, 3A/ ) _ Hk(dM ) -, 0.
But, by the theorem of Milnor [M3, in particular, Remark 1, p. 126] on the
duality properties of infinite cyclic coverings, //k + 1(3A?) = 0. So we are
reduced to the situation
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0-» W-h» W*-^ W*/W^>0. (*)

where W = Hk+X(M; Z) and the form on W* is the usual cup product
pairing on the Lefschetz dual module Hk + X(M; Z) with values in A.

We now identify the induced form on W*/W = Hk(dM) = Hk(X/T),
where X is the complement of an invariant tube about K in J. In fact, it will
be more convenient to consider the Poincaré dual module Hk+X(Y) with
y = X/ T. Since this module is A-torsion, the Bockstein associated to 0 —* A
-» F - 0(0 -» F/A -+ 0 is an isomorphism, 8*: Hk(Y; F/A) -»
Hk+X(Y; A). The coefficient pairing F/A -> A —»• F/A induces

Hk(Y; F/A) X Hk+X(Y; A)^H2k+x(Y; F/A) = F/A.

So we obtain an F/A-valued form on Hk+X(Y; A) by u ■ v = u u (S*)-1(t>),
which is easily shown to be the induced form on W* /Win (*) above.

H. F. Trotter [T, p. 4 and 1.7], who studied the induced form on W*/ W in
this context, has shown that the e-symmetric matrix as in the statement of the
theorem induces the correct form on the boundary. As the form on the
boundary is natural (hence isomorphic forms are induced by different choices
on M), any choice for M must induce a stably equivalent form by Proposition
5.5.   □

The methods of this paper can be extended to give some information on
the problem of doing surgery on the complement up to homotopy equivalence
using the work of Levine [L5] and Trotter [T]. We will only state the results
without proof.

Definition 5.7. Let Mm, N" be smooth compact manifolds and i: M —> N
a fixed proper embedding (i.e. i~x(dN) = dM). An h-concordance of / is a
proper embedding F: M X I —> N X I such that F0 = /, F, is proper on
N X 1, F\dMxJ = i\dM X Idj and N X I - F(M X /) is a relative A-cobor-
dism.

Let F: A, —* A2 be a ring homomorphism of rings with involution and
(Af, X, p.) as in the definition of the T-groups [CS2]. Let ^„(F) be the monoid
of equivalence classes of isomorphism classes of forms (Af, X, ju,) under stable
equivalence by direct sum with forms unimodular over A,.

Theorem 5.8 (k > 2). Let (J2k+X, K; T) be a simple invariant knot. The
induced embedding on the orbit space is h-concordant to an embedding with a
trivial knot complement iff an obstruction ß(J, K; T) in ^„(Z —» Z/mZ) is
zero and all obstructions are realizable.

For the relationship between A-concordance and isotopy in codimension 2
see Hatcher [H].
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