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EQUIVARIANT DYNAMICAL SYSTEMS
BY

M. J. FIELD

Abstract. The basic properties of vector fields and diffeomorphisms invariant
under the action of a compact Lie group are presented. A Kupka-Smale density
theorem for equivariant dynamical systems and an existence theorem for equi-
variant Morse-Smale systems on an arbitrary compact G-manifold are proved.

Introduction. In this work we develop the basic properties of vector fields and
diffeomorphisms invariant under the action of a compact Lie group. Earlier
versions of this theory were announced in [7], [8] though these results are weaker in
certain significant respects than those presented here.

We prove two fundamental theorems: A Kupka-Smale density theorem for
equivariant dynamical systems (Theorem B of §9) and an existence theorem for
equivariant Morse-Smale vector fields on a compact G-manifold (Theorem D of
§10). The latter theorem has interesting implications for the theories of equivariant
dynamical systems and equivariant differential topology, notably for a generalisa-
tion of the C° isotopy and approximation theorems of Shub and Smale [23], [27] to
equivariant maps and we intend to pursue these matters elsewhere. We hope also to
make applications of part of our theory to bifurcation problems involving a loss of
symmetry (cf. S. Schecter, Bifurcations with symmetry [17, pp. 224-249]). The
definition of Í2G in §10 is particularly relevant here as is the theory of equivariant
general position or G-transversality for the invariant manifolds of elementary
critical elements (see §9 and also below).

In §§1, 2 we outline the basic properties of smooth G-manifolds and equivariant
flows and diffeomorphisms that we need. In §3 we define elementary invariant
(7-orbits in terms of the normal hyperbolicity conditions of Hirsh, Pugh and Shub
[15] and then give a spectral characterisation of such orbits. In §4 we make a
similar discussion of periodic orbits followed in §§5, 6 by the basic local theory of
equivariant dynamical systems. In §7, we prove that Cr 1-generic (resp. 2-generic)
equivariant vector fields and diffeomorphisms form an open dense set (resp.
residual set), r > 1. Apart from the complications introduced by the presence of
the G-action, the proofs follow Peixoto [20]. Stable manifold theory is discussed in
§8. In §9, we prove a Kupka-Smale density theorem for C°° equivariant dynamical
systems. As there is yet no Cr-theory of equivariant general position, r < oo, we
have no C density theorem. It should be pointed out that the theory of equivariant
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186 M. J. FIELD

general position or G-transversality developed independently by E. Bierstone and
the author [4], [5], [10] only enters our theory at this point. We do not and cannot,
for example, formulate satisfactory nondegeneracy conditions on invariant G-orbits
in terms of G-transversality to the diagonal or zero section of the tangent bundle
(cf. Abraham and Robbin [1]). Finally, in §10, we define the equivariant ß-set [12]
and prove the existence of equivariant Morse-Smale vector fields. Added in proof.
An alternative definition of equivariant Morse-Smale vector field has been given by
G. L. dos Reis, Structural stability of equivariant vector fields, An. Acad. Brasil Ci.
50 (1978), 273-276.

In their paper on Axiom A actions (Invent. Math. 29 (1975), 7-38), Pugh and
Shub prove sufficient conditions for the ñ-stability of a class of actions which
includes diffeomorphisms and flows invariant by a compact Lie group. Their
results imply, for example, that a (strongly) equivariant Morse-Smale vector field or
diffeomorphism is ñ-stable. C. Camacho has also made a study of stability
properties of R* X Z' actions (for example: on R* X Z7 actions; Morse-Smale
Reactions on two-manifolds, Dynamical systems, Ed. M. M. Peixoto, Academic
Press, New York, 1973, pp. 23-70; 71-74). His definition of Morse-Smale for
Reactions may bear some relation to our concept of ßc and equivariant Morse-
Smale. I would like to thank the referee for drawing my attention to the afore-
mentioned works of Pugh, Shub and Camacho.

1. Generalities on G-actions. We start by recalling some facts about smooth (that
is C°°) actions of a compact Lie group on a connected differential manifold. We
refer to Bredon's text [6], especially Chapters 5 and 6, for further details and
proofs.

Given a connected differential manifold M and the action of a compact Lie
group G on M, we let G(x) denote the G orbit through x, Gx the isotropy subgroup
of G at x and N(GX) the normaliser of Gx in G. We say x,y G M are of the same
orbit type if Gx and Gy are conjugate subgroups of G or, equivalently, if G(x) and
G(y) are equivariantly diffeomorphic. Equality of orbit types partitions M into
points of the same orbit type. If M is compact this partition is finite. We write
M = U ,e/ Mi where the M¡ are the equivalence classes of points of the same orbit
type. We define orb: M -» / by orb(x) = i, x G M¡. There is defined a natural
partial order on / by / < j if there exists x G M¡, y G Mj such that Gx D G (strict
inclusion), x is of minimal orbit type if there does not exist y G M such that
orb(_y) < orb(x). There exists at least one minimal orbit type. We similarly define
maximal orbit type and it may be shown that there exists a unique maximal orbit
type, MN say, and that MN is open and dense in M and even connected if G is
connected [6, p. 179]. For convenience we label orbit types by positive integers and
write M = U i<,<^ M¡, where orb(x) < orb( v) implies that if x G M¡ andy G Mj
then /' < j. We say that the action is principal if there exists only one orbit type and
free if Gx = {e} for all x G M.

If M and N are G-manifolds, we let C¿(M, N) denote the space of C equi-
variant maps from M to N and T)iffrG(M) denote the group of C equivariant
diffeomorphisms of M. We remark that if M is compact and 0 < r < oo, then
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EQUIVARIANT DYNAMICAL SYSTEMS 187

Cq(M, N) may be given the structure of a Banach manifold [7]. The proof is an
equivariant version of that given in Palais [18] for Cr(M, N) and uses A. Wasser-
mann's approximation theorem [28, p. 132].

In the sequel, we shall only specify the differentiability class of a map, bundle,
submanifold, etc., when it is not Cx. Thus, reference to an "equivariant diffeomor-
phism of A/" will be to an element of Diff£? (A/).

The tangent bundle of M, TM, has the natural structure of a G-vector bundle [6,
p. 303] if we define g(v) = Tg(v), for v G TM, g G G.

Averaging a Riemannian metric for M over G, we may suppose that M has an
equivariant Riemannian metric and corresponding structure of a Riemannian
G-manifold. The normal bundle of an invariant (that is, G-invariant) closed C
submanifold X of M may therefore be given the structure of a C'~x G-vector
subbundle of TXM. Using the equivariance of the exponential map, we may
construct an invariant tubular neighbourhood of X [6, pp. 305-307]. In particular,
if A1 is a G-orbit a, we have the differentiable slice theorem: Given an open
neighbourhood W of a and x G a, there exists an equivariant embedding q of
G X H V onto an open invariant tubular neighbourhood U c W of a, where
H = Gx, V is the fibre of the normal bundle to a at x and q(e, 0) = x. If we set
Sx = q({e} X V), Sx is a slice for the action of G at x.

Continuing with the notation of the differentiable slice theorem, the G-vector
bundle G X H V has, by restriction, the structure of an //-vector bundle over a. We
say that (A X V, <¡>, q) is an equivariant chart for M at x if A is an open
neighbourhood of x in a, <f>: A X V —» G X H V is an //"-equivariant trivialisation
of G XH V over A, and q: G XH V —> M is the tubular map of the differentiable
slice theorem. We often denote equivariant charts in abbreviated form by (A X
V, y), where it is understood that y is the composite of the trivialisation <j> and
tubular map q. To construct an equivariant chart for M at x, it is sufficient to
choose an //-invariant open neighbourhood A of x in a and //-equivariant local
section p: A -» G satisfying p(x) = e. <b: A X K->G XÄ Kis then defined by
mapping (g[H], v) to ipig[H]), v).

If E is a Cr G-vector bundle over M, we let C¿(£) denote the space of Cs
equivariant sections of E, 0 < s < r. In case M is compact, we give C¿(£) the Cs
topology, í < oo [14, p. 34]. Averaging over G, it is clear that C¿(£) is a splitting
subspace of C\E).

We shall have occasion to use the following elementary lemmas whose proofs we
omit.

p
Lemma A. Let £—» M be a Cr G-vector bundle. Let x G M, U be an invariant

neighbourhood of x, Z G Ex and Gz = Gx. Then there exists s G C¿(£) such that
six) = Z and s is zero outside U.

Lemma B. For all x G M,
{ Y G TxiGix)): GY=GX}= TxiNiGx)ix)),

{ Y G TXM: GY = Gx} = TxiMG>),
where MG* denotes the fixed set of the action of Gx on M.
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188 M. J. FIELD

2. Elementary properties of equivariant flows. If X is a C ' vector field on compact
M, we denote the corresponding flow by Fx: M X R —> M. In the sequel we often
drop the superscript X when no confusion will result. We recall that if A1 is C then
F is C and even C+1 in the R variable. Given x E M, t G R, we let Fx: R -> M
and F, : Af -» M denote the corresponding restrictions of F. The proof of the first
part of the next proposition is a consequence of the uniqueness of integral curves of
a vector field.

Proposition A. Let M be a compact G-manifold and X G CGiTM), r > 1. 77ie«
1. Fx is equivariant: Fxigx, t) = gFxix, t), x G M, t G R, g G G.
2. The isotropy subgroups of G are constant on integral curves of Fx.

If X is an equivariant vector field on M and A"(x) = 0 then Xigx) = 0, g G G,
and so the G orbit through x is singular for X. Using 1 of Proposition A, we see
that if y is a periodic orbit of X then so is g(y), g G G, and g(y) and y have the
same period. We note that since Fx is Cr+X in the R-variable, y and G(y) are
embedded C+1 submanifolds of M.

Suppose that M is the homogeneous space G/H, where H is a closed subgroup
of G and G acts on G/H by left translation. Since G acts transitively, an
equivariant vector field on G/H is determined by its value on the identity coset
[H] and is necessarily C°°. Moreover, if n and i) denote the Lie algebras of #(//)
and H respectively, Lemma B of §1 implies C^iTiG/H)) s n/b. We set RiG/H)
= rank(A( H)/H).

Proposition Bl. Let X G C¿°(T(G///)). Then there exists an X-invariant folia-
tion ^x = {Tx- x e G/H} of G/H by s-dimensional tori such that

1.0 <s < RiG/H).
2. Tx is the closure of the X-orbit through x,x G G/H.
3. FX\TX is zero, a periodic orbit or an irrational torus flow depending on whether

s = 0, s = 1, or s > 1 respectively.

Proof. Let x = [//] and O(x) denote the orbit of X through x. Now O(x) c
NiH)/H and clearly G(x) has the structure of a compact connected abelian
subgroup of A(//)///. Hence, O(x) is an j-dimensional torus, s < RiG/H). The
statements of the proposition follow.

Remark. Given X G CGiTiG/H)), we can always find X', arbitrarily close to
X in the C00 topology such that the foliation corresponding to A" given by
Proposition Bl is by R(G///)-dimensional tori.

Suppose that G acts principally on M and the orbit space of M is diffeomorphic
to Sx. The fibres of the orbit map it: M —» Sx are equivariantly diffeomorphic to
the homogeneous space G/H, where H is any isotropy subgroup of the action of G
on M. it induces a surjection w+: CGiTM) -» CriTSx), r > 1, which is injective if
and only if RiG/H) = 0. Indeed, this is an immediate consequence of Lemma B
of §1 since Kerir, = {X G CGiTM): A"(x) G T_G(x), x G M}. Let CriTSx)*
denote the set of nowhere vanishing Cr vector fields on Sx. If X G C\TSX)*, the
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EQUIVARIANT DYNAMICAL SYSTEMS 189

flow of X consists of a single limit cycle. If A(//)/// is finite, the flow of 77-, '(A")
will consist of periodic orbits. More generally, we have

Proposition B2. Let X G tT~xiCriTSx)*). Then there exists a Cr+X foliation
?x = {T%: x G M} of M by p-dimensional X-invariant tori, where

\.0<p < RiG/H) + 1.
2. TP is the closure of the X-orbit through x, x G M.
3. FX\TP is a periodic orbit or irrational torus flow according to whether p = 0 or

p > 0 respectively.

Proof. Fix x G M and set Gx = H, Mx = tt~xíttx) and MH = {y G M: Gy =
H}. The orbit of x, O(x), is contained in the A(//)-space MH and MH n Mx =
N(H)/H, where the inclusion of N(H)/H in G/H = Mx is induced by that of
N(H) in G. We regard x = [H] as being the identity element of the group
N(H)/H c Mx. Let T be the smallest strictly positive real number such that
F(x, T) G Mx (T is the period of the orbit of irtX and is independent of x). There
exists a unique « G N(H)/H such that F(x, T) = h and clearly O(x) n Mx =
{«": « G Z} = T, say. We let F denote the closure of T in N(H)/H. F_is a
compact abelian subgroup of N(H)/H. h induces an equivariant map h: T —> T by
g h* gh. We now suspend « as in Smale [26, p. 797] and consider the manifold
i: = (rx R)/~ , where ~ is defined by (g, t + T) ~ (gh, t),gGT,t G R. The
product abelian Lie group structure on T X R drops down to an abelian Lie group
structure on K. But K is Cr+1 diffeomorphic to O(x) by the map induced from
ig, t)r-* Figx, t). In particular, K is connected and therefore a torus. The dimen-
sion of K is equal to 1 + dimension(T) < 1 + RiG/H). Translating O(x) in M
using G, we obtain the remaining statements of the proposition.

Remarks. As in Proposition Bl, given X G ir~xiCriTS1))*, we can always C
approximate A by A" so that the toral foliation corresponding to A"' is of maximal
dimension. Proposition B2 can clearly be generalised to principal G-manifolds,
orbit space a torus and equivariant flow covering an irrational torus flow.

3. Generic critical elements of equivariant vector fields and diffeomorphisms. We
start by giving a technical definition which guarantees the stability of flow
invariant G-orbits within points of fixed orbit type. Suppose that i is an orbit type
and let 7|(G) c TiM¡) denote the G-vector subbundle of tangents to G-orbits. That
is,

TAG)=   U    TxiGix)).
xeM,

Definition A1. If a is a G-orbit of type i which is invariant by the flow of
X G CGiTM), we shall say that a is nondegenerate for X on M¡ if X\M¡:
M¡ —» TiM¡) is transversal to 7|(G) along a. We say X is 0-generic on M¡ if every
A-invariant G-orbit in M¡ is nondegenerate for X on M¡.

We note that if a is nondegenerate for X on M¡ then a is certainly an isolated
A-invariant G-orbit in A/,. However, it need not be isolated in M. For example, if
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190 M. J. FIELD

we take X identically zero on C and the standard representation of Sx on C, then
the origin is nondegenerate for X on the fixed point set of 5 ' but it is certainly not
isolated in the singular set of X on C.

Suppose a is an A"-invariant G-orbit and iA X V, y) is an equivariant chart for
Mj at x G a (see §l-note Gx acts trivially on V). Let q: V^*A X V denote the
inclusion of V as {x} X V and p denote the projection of A X V on V. Set
Ay' = Tpiqy)*X G CxiTV). The following trivial lemma gives a local description
of nondegenerate G-orbits.

Lemma Bl. Let X G CGiTM) and a c Af, be an X-invariant G-orbit. a is
nondegenerate for X on Af, if and only if given x G a and any equivariant chart
iA X V, y) for M¡ at x, X' is transverse to the zero section of TV at x. Furthermore,
if X^ is transverse to the zero section of TV on V, then every X-invariant G-orbit in
GiyiA X V)) c M¡ is nondegenerate.

Turning now to G-orbits invariant by an equivariant diffeomorphism, we let
A,(G) = {(x, gix)): x G M¡, g G G}. A,(G) is an invariant submanifold of M¡ X
M,

Definition A2. If a is a G-orbit of type / which is /-invariant, / G Diffg(A/), we
say a is nondegenerate for/ on M¡ if graph(/)|A/,: M¡ -» M¡ X M¡ is transverse to
A,(G) along a. We say / is 0-generic on M¡ if every /-invariant G-orbit in M¡ is
nondegenerate for X on M¡.

As in the case of flows we may give a simple characterisation of nondegenerate
orbits for / on M¡. Thus, if a is /-invariant and x G a there exists g G NiGx) such
that gfix) = x. Let iA X V, y) be an equivariant chart for A/, at x and q and p be
as defined prior to Lemma Bl. We let f^: V-* V be the map py~xgfy, which is
certainly defined for small values of v G V.

Lemma B2. Let f G Diffè(Af) and a c A/, be an f-invariant G-orbit. a is
nondegenerate for f on M¡ if and only if given x G a, g G NiGx) such that gfix) = x,
any equivariant chart iA X V, y) for Af, at x, then 1 does not belong to the spectrum
ofDf'iO).

Proof. Similar to that of Lemma Bl. Both results follow from more general
theory given below.

Our intention now is to frame a definition of hyperbolicity suitable for the study
of invariant G-orbits of an equivariant flow or diffeomorphism. We shall formulate
our definitions in terms of the normal hyperbolicity conditions of Hirsch, Pugh and
Shub [15]. Suppose V is a closed C1 submanifold of M. For our purposes the
following definition of normal hyperbolicity at V ("Immediately, absolutely 1-nor-
mally hyperbolic" in [15]) will suffice.

V is normally hyperbolic for / G Diff'(Af ) if V is /-invariant and there exists a
7/-invariant splitting TV ® N" ® Ns of TVM into continuous subbundles such
that, relative to some Riemannian metric on M,
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EQUIVARIANT DYNAMICAL SYSTEMS 191

sup IITf\N>x\\ <  inf m(Tf\TxV),
xev xev

™\>\\Tf\TxV\\<  inf mi7/1 Ax"),
xev xev

(W(^) = inf{||^AT||: ||^r||= 1} =jj^-«||-1).
We shall always assume that V is G-invariant and/ G DiffJ^A/). It is then easy

to show that the Riemannian metric of the definition may be taken to be
equivariant and that the bundles N" and Ns are C° G-vector bundles over V.

If Fx is a C' equivariant flow on M leaving V invariant, Fx is said to be
normally hyperbolic at V if, for some s ¥= 0, Ff is normally hyperbolic at V. By
Theorem 2.4 of [15], Fx is then normally hyperbolic at V for all t =£ 0 and the
corresponding splittings of T^Af are independent of t.

Definition Cl. Let a be a G-orbit which is invariant by the flow of A G
CGiTM). We say that a is an elementary or generic G-orbit for X if Fx is normally
hyperbolic at a.

Definition C2. If a is a G-orbit which is /-invariant, / G Dif fGiM), we say a is
an elementary or generic G-orbit for/if/is normally hyperbolic at a.

Remark. Since G acts transitively on a G-orbit a, the splittings 7a © N" © N'
corresponding to normal hyperbolicity at a are always C°°.

Examples. Let X G CGiTM) and suppose that a is an A-invariant G-orbit and
X is zero on a. Let dimension(a) = p, dimension(AZ) = m. At every point x G a,
we may define the Hessian of X, Ä(x) G LiTxM, TXM) [1, p. 59]. A/x) has at least
p zero eigenvalues corresponding to the A(x)-invariant subspace Txa of TXM. We
claim that a is an elementary G-orbit for X if and only if A(x) has m-p eigenvalues
with nonzero real part. Indeed, suppose A(x) has m-p eigenvalues with nonzero
real part, then TXM has an Á(x)-invariant splitting Txa © N" © Nx, where A_* and
Nx are the subspaces of Tx M corresponding to eigenvalues of A(x) with positive
and negative real part respectively. Since Xigx) = gA(x)g_1, we have a C°°
splitting Ta © N" © Ns of TaM into G vector subbundles and this splitting is
obviously //^-invariant. Observing that for all x G a, ||:r_F,|7_a|| = 1, the nor-
mal hyperbolicity of Fx at a follows. The converse is similarly proved.

Let / G Diffè(Af) and a be an /-invariant G-orbit such that / restricts to the
identity on a. Then a is an elementary G-orbit for / if and only if given x G a,
TJ G LiTxM, TXM) has m-p eigenvalues of modulus not equal to one. The proof
is similar to that given above for flows.

Motivated by the above examples our aim is now to give spectral conditions that
will guarantee that an invariant G-orbit is elementary. We first recall some
elementary representation theory of compact Lie groups. (Our terminology follows
that of Adams [3].)

If the vector space V is a (real) //-representation, we let LH( V, V) denote the set
of //-equivariant linear endomorphisms of V. We recall Frobenius' theorem [21, p.
160].

Lemma D. Let V be a real irreducible representation of H. Then
LHi V, V) » F    ios algebras),

where F = R, C or H.
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(For our applications we shall only be interested in the case where H is compact
abelian and then F = R or C.)

Definition. Let F be a real vector space and A G L(F, V). We define the
reduced spectrum of A, specL4), to be spectrumL^/S1 c C/Sx. We similarly
define spec(Af), for M a square matrix (coefficients in R, C or H).

Remarks. In the definition, S ' acts on C multiplicatively and C/ S ' =s R ( > 0).
In the sequel we often regard spec(yl) c R ( > 0).

Given a real //-representation V, V = 0 f_ x Vp, where the V¡ are mutually
nonisomorphic R-irreducible representations of H and the superscript r¡ denotes
/-,-fold direct sum. Let F, = LHi V¡, V¡) and A/(r,, F,) denote the ring of r, X r,
matrices with coefficients in F,. By Schur's lemma and Lemma D, there exists a
real isomorphism

X:L„iV, V)^®  M(r„F,.)

and from Lemma D it follows that specixiA)) = spec(yl), A G LHiV, V).
Remark. If all the F, = R then, of course, spectrum(x(^4)) = spectrumL4). If

F,. = R or C, then spectrumL4)/(± 1) = spectrum(xL4))/(± 1).

Lemma E. Let H be a compact abelian Lie group and V be a real representation of
H. Then

specihA) = speciA),       A G LHiV, V), « G H.

Proof. Since H is abelian, any « G H is an //-equivariant endomorphism of V.
The lemma follows easily using the above structure theory for LHiV, V) together
with the fact that the action of H on an irreducible representation is just scalar
multiplication by real or complex numbers of absolute value one.

Proposition F. Let H be a compact subgroup of the compact abelian Lie group K.
Suppose E is a K-vector bundle over K/H and that A: E —» E is a K-vector bundle
map covering the K-equivariant diffeomorphism a: K/H —» K/H. For x G K/H,
choose k G K such that kaix) = x and set spec(/l ; x, k) = specikA : Ex —» Ex).
Then specL4 ; x, A:) is independent of the choice of x and k and depends only on A.

Proof. Since K is abelian, Kx = H for all x G K/H and so we have a real
representation of H on Ex for all x G K/H. Also, if kaix) = x for some x G
K/H, then kaiy) = y for all y G K/H and it follows easily that it is enough to
prove the independence of spec(/4 ; x, k) from k. But if kaix) = k'aix), k'A =
ik'k~x)kA and so the result follows from Lemma E, since k'A, kA G LHiEx, Ex).

Theorem G. Let H be a compact subgroup of G and E be a G-vector bundle over
G/H. Suppose A: E —> E is a G-vector bundle map covering the equivariant
diffeomorphism a: G/H —* G/H. Given x G G/H, choose g G G such that ga(x) =
x and set spec(v4 ; x, g) = spec( gA : Ex^> Ex). Then spec(^ ; x, g) is independent of
the choice of x and g and depends only on A.
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Proof. As in the proof of Proposition F, the problem is to show that specL4:
x, g) does not depend on g. Suppose first that G is finite and that ga(x) = g'aix) =
x, g, g' G G. Then g"A " = g'"A ", n > 0 and choosing « such that g" = g'n = e, we
see that spec(gA)n = specig'A)" = spec A" and therefore spec(gA) = specig'A).
To prove the general case, let x = [//] G G/H and suppose that NiH) is con-
nected. We can assume that g belongs to a maximal torus T of NiH). Suppose
g' G T also satisfies g'aix) = x. Then g~xg' G H n T = S which is compact
abelian. But Ex is an S-representation and so we can apply Proposition F to deduce
that specigA) = specig'A). But any g' G NiH) satisfying g'aix) = x is a con-
jugate of some g G T satisfying ga(x) = x. That is, g' = p~xgp,p G NiH). Since
p~xgpA = p~xigA)p, we again see that specig'A) = specigA). If NiH) is not
connected, we can always find m > 1 such that am(x) lies in the orbit of the
identity component of NiH). The previous argument then applies together with
that given for finite groups.

Definition. Let E be a G-vector bundle over G/H and A be a G-vector bundle
map covering an equivariant diffeomorphism of G/H. We define the reduced
spectrum of A, spec(/l), to be spec(/l; x, g) where x and g are chosen as in the
statement of Theorem G.

Lemma H. Let a be an elementary G-orbit for f G Diff^Af), and Ta® N" © Ns
denote the corresponding splitting of TaM. Then there exists an equivariant Rieman-
nian metric on M such that

\.\\TJiV)\\ = \\V\\,forV G Txa,xGa.
2-supxea \\TJ\N"X\\ > l,mf_¿. \\TJ\N¿\\ < 1.
3. The splitting Ta © Nu © Ns is an orthogonal direct sum.

Proof. Fix x G a and let Gx = H. Then a ss G/H with x = [//]. We define an
action of G X NiH) on a by

ig,n)ik[H]) = gkn-x[H],       g G G, n G NiH), k[H] G a.

Since / is a diffeomorphism, G^x) = Gx = H. Hence fix) = «x, for some « G
NiH). Consequently, fiy) = (e, n)y for ail y G a. Averaging a Riemannian metric
for Ta over G X NiH), we see that Tf\ Ta will be isometric in the averaged metric.
Since a G X A(///-equivariant metric on Ta is necessarily G-equivariant, we have
therefore found an equivariant metric on Ta satisfying 1. Pick g G NiH) so that
gfix) = x and choose an inner product (not necessarily //-equivariant) on N" so
that \\gTf\N"\\ < 1. Averaging the inner product over H this condition still holds
and so, extending the metric equivariantly over A^" and noting that g~x will be an
isometry, we obtain 2 for N". Similarly for Ns. Extend the inner products on Ta,
Nu © Ns equivariantly to TaM by requiring that the splitting Ta © N" © Ns is
orthogonal. Finally, extend the Riemannian metric on TaM to TM and average
over G.

Corollary to Lemma H. // a is an f-invariant G-orbit, f G DiffGiM ), then
speciTf\Ta)= 1.
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If a is an/-invariant G-orbit, Tf: TaM —> T^Af. Hence 7/induces a G-vector
bundle isomorphism NJ of the normal bundle Na = TaM/Ta of a.

Theorem I. Let a be an f-invariant G-orbit, f G Diffg(Af). 77ie« a is an
elementary G-orbit for f if and only if 1 G speciNJ").

Proof. Spec(7/|7;A/) = spec(7/|7a) u speciTf\Na) = 1 u spec(7/|Aa),
Corollary to Lemma H. The result is now immediate from Lemma H.

Remark. If f\a is the identity or M is a principal G-manifold then spec(A/c/) and
spec(7/| raA/) can be defined as subsets of C rather than just C/Sx.

We turn now to the problem of finding a spectral characterisation for elementary
G-orbits of equivariant vector fields.

Fix x G M and let g, Í) and n(i>) denote the Lie algebras of G, H = Gx and
NiH) respectively. We have a natural map 9: g -» TXM defined by f?(f ) =
(rf/rff)(exp(r_)(x))|/_0 (see, for example, [16, p. 42]). Since Kernel(ö) = î) and
f?(n(b)) = rx(A(//)(x)), f? induces the isomorphism between n(b)/i) and
CrfiTiG/H)) referred to in §2. Let 0: n(b) -»• C°°(TA/) denote the map defined by
kS)(y) = (¿/</0(exp(tf)(>0)l,=o-

Proposition J. Let a be an X-invariant G-orbit, X G CGiTM). Let x G a,
H = Gx and choose £ G n(b) such that A(x) = 0(f ). Ser Hess(A", a; x, f) =
spectrum of Hessian (A-f?(f ))(x)//R. 77ie« Hess(A", a; x, f ) /'j independent of the
choices of x and f and depends only on X and a.

Proof. We omit the proof which is similar to that of Theorem G. The quotient
C/ z'R is, of course, relative to the additive structure on C.

Definition. Let a be an A"-invariant G-orbit, X G CGTTM). We define the
reduced Hessian of X on a, Hess(A, a), to be Hess(A", a; x, Ç), where x and f are
chosen as in the statement of Proposition J.

Remark. If either X is zero on a or M is a principal G-manifold, Hess(A", a) may
be defined as a subset of C. If M = a then, as in the proof of Lemma H, it may be
shown that Hess(A, a) = 0 for all X G C¿°(7a).

As a corollary of Proposition J and the above remark we have

Theorem K. An X-invariant G-orbit a of X G CGiTM) is elementary if and only
if the multiplicity of 0 in Hess(A", a) equals the dimension of a.

4. Periodic orbits.
Definition A. Let/ G DiffJj(Af) and a be a G-orbit. a is said to be a G-orbit of

period/> for/if a is invariant by/p and/» is the smallest strictly positive integer for
which this is true. The set {a, fia), . . . ,fp~xia)} is referred to as an /-orbit of
period p.

Definition B. Let A be an/-orbit of period/»,/ G DiffJ;(A/). A is said to be an
elementary or generic periodic orbit of/if/is normally hyperbolic at A.

Remarks. A is an elementary /-orbit of period p if and only if A consists of p
elementary orbits for f. Since the splitting of TAM forf is the same as for/, we
may assume that the splitting is C°°, orthogonal and Tf\TA acts as isometries.
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For the remainder of this section, X will always denote an equivariant vector
field on M of class at least C'.

Let A be a compact G- and A"-invariant subset of M and suppose A/G = Sx.
The flow on A is then described by Proposition B2 of §2. Let T denote the period
of the induced flow onS1. T is characterised as being the smallest positive number
such that Fix, T) G G(x) for all x G A. In the sequel, we shall refer to A as a
periodic A-orbit (of period T). Fix a G-orbit a c A. Let N denote the restriction of
the normal bundle of A to a and q: N -h> M denote the corresponding restriction of
a tubular map to N. q is then aC* equivariant embedding (see §1 and note that
although A is only assumed Cx the restriction of any G-subbundle of TAM to a
G-orbit is always C°°). Set D = qiN). D is a G-invariant submanifold of M
containing a and transverse to A. Since X is tangent to A, we may suppose that q is
chosen so that X is transverse to D. Suppose 0 < a < T. Let N' he an open
invariant disc bundle of A' and set D' = qiN') c D. By the continuity of F, we
may choose N' of sufficiently small radius such that for each y G D' there exists a
unique piy) G [T-a, T + a] satisfying F(>>, piy)) G D. We now define P: D' —»
D; p: D' —* R by Piy) = Fxiy, piy)). We remark that piy) is the smallest strictly
positive number t such that Fxiy, t) G D and that p(x) = T, x G a. We call
(Z>, D', P, p) a Poincaré system for A. As for the Poincaré map of a periodic orbit,
we may show, using the implicit function theorem and a flow box, that if X is C
then so are P and p [2]. P and p are also G-invariant, where we take the trivial
G-action on R.

Definition C. We say that A is a generic or elementary periodic A-orbit if, for
some choice (/),/)', P, p) of Poincaré system for A, a = D n A is an elementary
G-orbit for P.

Remarks. As in [2], we may easily show that the above definition does not
depend on the choice of Poincaré system for A.

Proposition D. A is an elementary periodic orbit of X if and only if X is normally
hyperbolic at A.

Proof. The splitting of TAM\a, a a G-orbit in A, coming from the normal
hyperbolicity of P, extends to a splitting of TAM.

Remarks. If X is of class C, then the bundles TA, N" and N' are Cr G-vector
bundles since A is of class C+1. We cannot, however, require the splitting
T'A © Nu © Ns to be orthogonal (unless X is C°°) nor can we assume that 7/acts
as isometries on TA.

5. Local theory of elementary orbits. Most of the results of this section are
straightforward applications of the theory presented in [15]. Assertions about
equivariance follow by carefully checking that the constructions in the proofs from
[15] that we use can all be made equivariant.

Theorem A. Let f G Diffg(M) and suppose that A is an elementary periodic orbit
forf. Then

(a) There exist C, G-invariant, locally f-invariant submanifolds WXociA) and
W^iA) of M tangent at AtoTA® N" and TA © N' respectively.
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(b) Any locally f-invariant set near A lies in W^A) U  rVXociA).
(c) There exists an invariant neighbourhood U of A such that

I*7oc(A) = {z G U:f(z) G U, n < 0, and difiz), A) -^Oas n -+ -oo}.
WL(A) = {z G U: fiz) G U, n > 0, and difiz), A) -* 0 as n -+ + oo}.

(d) IPj^A) and WxsociA) have the structure of Cr equivariant locally trivial
fibrations over A. The fibre lVx™iA,p) at p G A is characterised by W^.iA,p) = {z
G »^(A): d(f(z),f(p)) -+0asn^ -oo}. Similarly for Wx^(A,p).

(e) There exist an open neighbourhood Q off in DiffG(M), an invariant neighbour-
hood V of A and continuous maps T, T", Ts: Q -» Diffg(A/) such that

(Ï) T(f) = Tu(f) = F(/) = identity map of M.
(ii) For f G Q, T(/')(A) = A' is contained in V and is an elementary periodic orbit

off of the same period as A.
(iii) T"(f)(WZ(A,p)) = WXZ(A', T(f)(p)), pGA,f'GQ. Similarly for W",

Wss and Ws.

(f) (a)-(e) similarly hold for flows and A an elementary (periodic) orbit.

Proof. Theorem A is essentially a special case of Theorem 4.1 of [15]. We note
that we can obtain a C locally trivial fibration rather than just lamination in (d)
because A/G is finite (for flows, this follows from the transitivity of the induced
flow on A/G = Sx). (e) is a consequence of part (f) of Theorem 4.1 of [15] together
with the equivariant isotopy theorem ([6, Theorem 3.1, Chapter 6]).

Although (e)(ii) is a consequence of Theorem 4.1 of [15], we prefer to indicate an
elementary proof avoiding stable manifold theory. Suppose A c A/,. If A is
elementary it consists of p nondegenerate orbits for f on A/,, p = period of A
(Definition A2, §3). Since nondegeneracy is framed in terms of a transversality
condition we can then use the openness and stability of transversal intersections to
deduce the persistence of the invariant set A under perturbation. The continuity of
spec will guarantee that the new invariant set is still elementary and Thorn's
isotopy theorem [1, p. 51] together with the equivariant isotopy theorem will give us
the isotopy statements in (e)(ii).

We have the following equivariant versions of Hartman's theorem for elementary
invariant and periodic orbits. We recall that / and g are said to be conjugate if
there exists a homeomorphism « such that fg = «g.

Theorem Bl. Let A be an elementary periodic orbit for f G TiilfxG(M), TA ® N"
® Ns denote the corresponding splitting of TAM and Nf = Tf\Nu ® Ns. Then f is
conjugate to Nf near A by an equivariant homeomorphism.

Theorem B2. Let X G CG(TM) and suppose A is either an elementary G-orbit or
an elementary periodic orbit for X. Then {NFX} is conjugate to {Fx} near A by an
equivariant homeomorphism which is independent of t.

Proofs of Bl and B2. Theorem 4.1 of [15], [22].

Proposition C. If X G CG(TM), A is an elementary periodic orbit of X of period
T and p > T, there exists an open neighbourhood Q of X in CG(TM) and an invariant
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neighbourhood U of A in M such that if Y G Q, Y has a unique periodic orbit AY
wholly contained in U. Furthermore, AY is elementary, of period < p and any periodic
orbit of Y meeting U is of period > p.

A similar result holds for diffeomorphisms.
Proof. We prove this proposition for flows; the proof is similar for diffeomor-

phisms. By Theorem B2, we may find an invariant neighbourhood If of A such
that {Fx} is conjugate to {NFX} in W. Choosing W smaller if necessary, we may
therefore assume that A is the unique orbit of period < p meeting W. Working
inside W, we choose C1 equivariant fundamental domains Du and Ss for {Fx}
contained in WXoc(A) and WXoc(A) respectively [22, p. 192]. Choose r > 0 such that
the closed disc bundle of radius r of the normal bundle of WXoc(A) restricted to Du
embeds as a closed G-invariant submanifold AJ of W transverse to If^A). We
similarly define A/ as an embedded submanifold of W transverse to WXoc(A) along
Ds. We shall suppose r and t are chosen sufficiently small so that X is transverse to
A„r and XJ. Taking t smaller if necessary, Fx induces a C1 map 9X: aXj —» XrJ2.
Thus, ^(x) = F(x, y(x)), where y: 3A"/ -» R (> 0) is C1 and gives the first time of
intersection of the forward orbit through x with X'u. By Theorem B2, we may
suppose t is chosen so that if x G Xj then the forward orbit through x is either
asymptotic to A or meets Aur/2 after time at least p + 1. By the A-lemma [19], the
collection of orbits through X's, together with WXoc(A), fill out a neighbourhood of
A. Let V(X) denote that part of the neighbourhood bounded by X's, Xru and the
orbits Ft(x), x G dXj, t G [0, y(x)]. Fix an invariant open neighbourhood U of A
such that U c V(X) and U n dV(X) = 0. By Theorem A, we may find an open
neighbourhood Q of X such that if Y G Q, then Y has a periodic orbit AY c U of
period < p and AY and the local stable and unstable manifolds of Y depend
continuously on Y in the C ' topology. For possible smaller Q we may by the above
and the parametrised flow theorem (Theorem 21.4 of [1]) require that if Y G Q
then

1. XJ, XI are transversal to Y and meet the local stable and unstable manifolds
of A j, in fundamental domains.

2. 9Y: dXj -» AJ.
3. V(Y) D Uand dV(Y) ni/ = 0.
4. If x G Xj, then either x is asymptotic to A Y or the forward .Fy-orbit through x

meets A_ after time > p.
It now follows that if x G Xj lies on a periodic orbit of Y then the orbit must

have period > p. But every point in U C V( Y) is either on an orbit through Xj or
on the local unstable manifold of AY (A-lemma).

6. Perturbation lemmas.

Lemma A. Let a be an X-invariant G-orbit, X G CG(TM), and U be an invariant
open neighbourhood of a. Then there exists Y G CG(TM) arbitrarily C close to X
such that a is an elementary G-orbit for Y and Y = X on A/\i/.

Similarly for diffeomorphisms.
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Proof. We prove for vector fields; the proof for diffeomorphisms is similar. As
in §1, we let q: N —» M denote an embedding of the normal bundle of a as a
tubular neighbourhood of a contained in U. We may suppose that q equals the
exponential map on some neighbourhood of the zero section of N. For X G R, we
define an equivariant vector field 9X on N by 9x(v) = Xv (multiplication in fibres).
Set Zx = q^(9x). Using an equivariant bump function supported in q(N), we
construct Yx G CG(TM) such that Yx = Zx on some invariant neighbourhood of
a, equals zero outside U and depends linearly on X. Clearly as X —» 0, Yx —* 0, C.
Now Hess(X + Yx) = Hess(A) + Hess(7x). Since Hess^) = X (the derivative of
exp = q on the zero section is the identity), we may choose X arbitrarily close to
zero so that 0 G Hess(A + Yx). But then Y = X + Yx will satisfy the conditions of
the lemma.

Lemma B. Let X and Y be compact G-manifolds with boundary, f: X ^> Y be a Cr
equivariant embedding such that fidX) c y\9T and 0 < a < b. Then there exists an
open neighbourhood Q of f in CG(X, Y) such that if g G Q then g is an embedding
and there exists a C equivariant isotopy H: X X [a, b] —» Y between f and g
satisfying

1. Ht(x) = fix), t G [a, b], whenever fix) = g(x).
2. Ht = f for t close to a; H, = g for t close to b.
3. H depends continuously on g in C topology.
4. The t-derivative of H is C in the (x, t)-variable.

Proof. The result is an equivariant version of a standard isotopy lemma and we
only sketch the proof. Fix an equivariant Riemannian metric on Y. For g close to/,
there exists a unique geodesic yx(g): [0, 1] -» Tjoining/(x) andg(x) and y depends
C on x and continuously on g, C topology. Define H(x, t) = yx(g)(k(t)), where
k: [0, 1] -> [a, b] is C°° and equal to a (resp. b) on a neighbourhood of 0 (resp. 1).

Let A be a periodic orbit of X and suppose (D, D', P, p) is a Poincaré system for
A. We say that an open invariant neighbourhood U of A is subordinate to
(D, D', P, p) if U C U ,_/>' Fix, [0, p(x)]).

Lemma C. Let A be a periodic orbit of X G CG(TM), (D, D', P, p) be a Poincaré
system for A and U be an open invariant neighbourhood of A subordinate to
(D, D', P, p). We may find a tubular neighbourhood V of A, an open neighbourhood
Q of P in the subset of CG(D', D) consisting of maps equal to P outside V n D' and
a continuous map x: Q —» CG(TM) such that

1. x(R') has Poincaré map P', P' G Q.
2. x(R') = A on A/\ U, P' G Q.
3. x(R) = A.
Proof. Choose V so that Fix, [0, p(x)]) c U for all x G D' n V. Fix positive

numbers a and b satisfying 0 < a < b < infxei), p(x). Suppose P' G CGiD', D)
equals P outside V n D'. For P' sufficiently Cr close to P we can, by Lemma B,
find a C equivariant isotopy H: D' X [a, Z>] -> D between the inclusion /': D' -» D
and P~XP' (here we take P~XP' = i on aD ' which is permissible since P = P' on a
neighbourhood  of  aD'  in  £>')•  Set  Fy(t) = F(H,(y), t), y G D',  t G [0, p(y)].
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Fy(p(y)) = FiP-\P'iy)), piy)) = P'(y), by definition of P and p, Fy(t) = Fy(t)
for y in some neighbourhood of aD' in />'. By condition 3 of Lemma B, if
y G V n D', none of the curves Fy(t) will meet A/\£/ provided P' is sufficiently
C close to R. By the openness of embeddings, it follows that if P' is sufficiently Cr
close to P, then F|Z)' X [a, b] is an embedding and hence the curves Fy are
mutually disjoint. We define a vector field A" on the image of F by setting
X'(Fy(t)) = F;(i). A' is Cr and well defined. Since A' = A outside U, A" extends
C to A/ if we set A" = A" on A/\ Í/. The integral curves of X' are given, as sets, by
Fy. Thus the Poincaré map for X' equals P'. The correspondence P' —» A" gives the
map x iQ the statement of the lemma. The continuity of x follows from condition 3
of Lemma B.

Remark. Lemma C has the following converse (proved by using the
parametrised flow theorem). Let (D, D', P, p) he a Poincaré system for the periodic
orbit A of A G CG(TM). Suppose P(D')c D. Then we may find an open
neighbourhood Q of X in CG(TM) such that if Y G Q then the Poincaré map PY:
D' -» D for y is defined and PY depends continuously on Y, Cr topology (see also
Proposition C of §5).

7. Density theorems. I.
Definition A. A vector field A G CG(TM) is said to be 1-generic if every

A-invariant G-orbit is elementary.
Similarly for diffeomorphisms.
Definition B. A vector field A G CG(TM) is said to be 2-generic if it is

1-generic and every A-invariant periodic orbit is elementary.
Similarly for diffeomorphisms.
Recall that a subset of a topological space is said to be residual if it is the

intersection of a countable family of open and dense sets. A residual subset of a
complete metric space is, by the Baire category theorem, dense.

The aim of this section is to prove

Theorem C. Let M be a compact G-manifold. Then
1. The set of 1-generic C vector fields is an open and dense subset of CG(TM),

1 < r < oo. Similarly for diffeomorphisms.
2. The set of 2-generic vector fields is a residual subset of CG(TM), 1 < r < oo.

Similarly for diffeomorphisms.

We shall present a proof of Theorem C for vector fields. Our approach is similar
to Peixoto's proof of the Kupka-Smale theorem [20]. The proof for diffeomor-
phisms follows that given for (nonequivariant) diffeomorphisms by Smale in [25].

Lemma D. Let K be a compact invariant subset of M. Then T(K, T) = [X G
CG(TM): K does not contain any X-invariant G-orbit and does not meet any periodic
orbit of X of period < T} is an open subset of CG(TM).

Proof. This lemma is an equivariant version of Lemma 3 in [20]. The proof
depends on a compactness argument similar to that given by Peixoto and we omit
details.
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As a corollary of the proof of Lemma D we have

Lemma E. Let K be a compact invariant subset of M, T > 0 and X G T(K, T).
Then there exist an open invariant neighbourhood W of K and neighbourhood Q of X
such that Q <zT(W, T).

Lemma F. The set of l-generic vector fields in CG(TM) is open.

Proof. Let X he l-generic and have invariant elementary G-orbits ax, . . . , ak.
By Proposition C of §5, we may find an open neighbourhood Q of A and invariant
open neighbourhoods U¡ of a, such that if Y G Q then Y has precisely one
invariant G-orbit a,( Y) in U¡ which is elementary, 1 < /' < k. We now apply
Lemma D with T = 0 and K = A/\ U f_i Utto find open neighbourhood Q n
r(A", 0) of X consisting of l-generic vector fields.

Lemma G. The set of l-generic vector fields in CG(TM) is dense.

Proof. Let MJ = U|.j M¡, where the M¡ are as in §1. MJ is a compact
invariant subset of M and Mx = Mx, MN = M. Let F denote the subset of
CG(TM) consisting of vector fields all of whose invariant G-orbits in MJ are
elementary. We shall show that F is open and dense in CG(TM), 1 < j < N.
Openness follows as in Lemma F, using Lemma D. For density we proceed by
induction on/. We let A7 denote the subset of CG(TM) consisting of vector fields
all of whose invariant G-orbits in MJ are nondegenerate (§3). Suppose / = 1. Then
A1 is certainly open and using Lemma Bl of §3 and Thorn's transversality density
theorem [1, p. 48] it is easy to verify that A1 is dense in CG(TM). The transversality
conditions together with the compactness of Mx guarantees that if A" G A', then X
has only finitely many invariant G-orbits in Mx which depend continuously on X.
We now apply Lemma A of §6, to find X' G F arbitrarily C close to A" G A1.
Hence F is dense in CG(TM). Now suppose N >j > 1 and that X G F. It
follows from Lemma E and Theorem A of §5 that there exist an open neighbour-
hood Q of X in F and an open invariant neighbourhood W of MJ such that if
y G Q every invariant G-orbit of Y in W lies in MJ and is elementary. Let V be a
closed invariant neighbourhood of MJ contained in W. As for y = 1, we may find
X' G AJ+X n Q arbitrarily Cr close to A and equal to X on V. Since MJ+X\\V is
compact, there are only finitely many A'-invariant G-orbits in MJ+X and so, using
Lemma A of §6, we may C approximate X' by X" G F+1. This argument
completes the inductive step.

Lemmas F and G imply part 1 of Theorem C.
For T > 0, we let R(Af, T) denote the subset of CG(TM) consisting of l-generic

vector fields all of whose orbits of period < T are elementary.

Lemma H. For T > 0, B(M, T) is an open and dense subset of CG(TM).

Proof. The proof of this lemma is very similar to that of Proposition 1 in [20]
and we only indicate the main points. Openness of B(M, T) follows from Lemma
D and Proposition C of §5. For density, we first show that if A is l-generic then
there exists t > 0 such that every periodic orbit of X has period > t. Let BJ(M, T)
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denote the subset of CGiTM) consisting of l-generic vector fields all of whose
orbits in MJ of period < T are elementary. From Proposition C of §5 we see that if
X G BJiM, T) then X has only finitely many periodic orbits in MJ of period < T.
The proof is completed by showing that B\M, T) is open and dense, 1 < j < N.
This is accomplished by induction onj, as in the proof of Lemma F, together with
Peixoto's inductive argument based on Proposition C of §5, Lemmas A and C of §6
and Lemma E of the present section.

Since the set of 2-generic vector fields on M equals H ~_0 R(A/, «), the proof of
Theorem C is complete.

8. Stable manifold theory. In this section we construct the global stable and
unstable manifolds of elementary critical elements of equivariant vector fields and
diffeomorphisms. As the theory is similar for vector fields and diffeomorphisms we
present details only for the former.

Suppose that T is an (elementary) critical element of A" G CGiTM) (that is, an
A-invariant G-orbit or periodic orbit). We set

W"iA;X) = {z G M:Fxiz)^A, t-*-oo),

WsiA; X) = {z G M: Fxiz) -» A, t — + oo).

We often abbreviate the stable and unstable manifolds of A to W'iA) and W"(A)
respectively when it is not necessary to exhibit the explicit dependence on X. For
p G A, we set

W"\A,p; X) = {z G M: rf(F,(z), F,ip))^0, t -»-oo},

similarly for WssiA,p; X).
If A is elementary, we have a C splitting TA® Nu ® Ns of TAM as C

G-vector bundles over A.

Theorem A. If "(A, X) is the image of a Cr injective equivariant immersion
/"(A"): Nu -> M. /"(A) maps the zero section of N" onto A and /"(A")(Ay) =
WuuiA,p;X),pGA.

Similarly for W\A, A).
Proof. It follows from the proof of Theorem 4.1 in [15], that WXociA) (see §5)

may be represented as the image of a C equivariant embedding IX(K(X): N"(r) —>
M, where Nu(r) is the open disc bundle of radius r > 0, and that /,^.(A")(Ay(r)) =
»toc(A,/>), P G A. Now clearly, If "(A) = U <<0 FAw?ociA)) and we construct
/"(A) using the standard "continuation" argument as detailed, for example, in [1,
pp. 87-89]. A corollary of this construction is that we may require /u(Ar)(Ar/>u) =
WuuiA,p:X),PGA.

If E is the total space of a C vector bundle isomorphic to N" (not necessarily
the same base) and p": E —» M is a C injective equivariant immersion onto If "(A)
satisfying the conditions of Theorem A, we say that p" is a C parametrisation of
W"iA). Similarly for C parametrisations of W\A).
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Theorem B. Let A be an elementary critical element of X G C¿(TA/) and
TA ® N" © Ns denote the corresponding splitting of TAM. Then there exist an open
neighbourhood Q of X in CGCTM), open invariant neighbourhood V of A, continuous
map T: Q -h> T>iffGiM) and continuous maps pu: Q -> C¿(AU, M), ps: Q -»
CGiN', M) such that

1. T(y)(A) = AY is the unique ielementary) critical element of Y contained in V.
2. T(A)(A) = A.
3. puiY): Nu-+M is a Cr parametrisation of Ifu(Ay, Y). Similarly for p\Y).

(We take the compact Cr topology on CG(NS, M) [14, p. 34].)
Proof. The result follows straightforwardly from part (e) of Theorem A, §5,

using the continuation argument of the proof of Theorem A of the present section
and we omit details (see also [1, Theorem 27.4]).

9. Density theorems. II. All maps in this section will be C °° unless the contrary is
specifically indicated.

In [4], [5], [9], [10] a theory of general position for equivariant maps is described.
We shall follow the terminology of [9], [10] except that by "G-transversal" we shall
mean "in equivariant general position" [5, p. 149] and not "zeroth approximation
to equivariant general position". Given /: M —> N and an invariant submanifold If
of N, the notation/ (\)G W will signify that/is G-transversal to W. If a: X —» M, ß:
y —» Af are injective equivariant immersions, a(X) it)G ß(Y) signifies that
a (\)G ß(Y) or, equivalently, that ß rîiG a(X). It is in this sense that we shall talk
about the G-transversality of (immersed) submanifolds.

Definition A. A vector field X G CG(TM) is said to be 3-generic if it is
2-generic and the stable and unstable manifolds of the elementary critical elements
of X are G-transversal.

Similarly for diffeomorphisms.
We have the following generalisation of the Kupka-Smale density theorem.

Theorem B. Let M be a compact G-manifold. The 3-generic vector fields form a
residual subset of CG( TM).

Similarly for diffeomorphisms.
Proof. Our proof is essentially that given by Peixoto in [20] and we only sketch

the main details (the proof for diffeomorphisms follows Smale [25]). If A is an,
elementary critical element of A G CG(TM), we let R*(A) denote the image of the
closed unit disc bundle of Ns by a C°° parametrisation of W'(A, X) (see §8) and
set R*((A); /) = FxiB\A)). Similarly for R"(A) and R"(A; t).

Fix A G R(A/, T) (see §8) and let A„ . . ., Aq denote the critical elements of X
of period < T. By Proposition C, §5, we may find open neighbourhoods U¡ of A,
and Q¡ of A in R(Af, 7") such that for Y G Q¡, Y has a unique elementary critical
element A,(y) c U¡. Set Qu = Q¡ n Q¡. As shown in [20], to prove the theorem it
is sufficient to show that the set of vector fields Y G Q¡j for which
R'(A,.(y), -T)ftG BuiAjiY); T) is open and dense in QtJ. Openness is a con-
sequence of the openness of G-transversal intersections [5, p. 151] and Theorem B,
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§8. For density, fix Y G Qu. Construct fences 2", 2s for the stable and unstable
manifolds of Y as in [20] (see also [22] and the proof of Proposition C, §5). By
Theorem B of §8, we may find v » 0, a neighbourhood Q' of Y and choose 2" so
small that RU(A,(Z), -v) n R*(Ay(Z), -T) = 0 and F?_(2") n B\Aj(Z), -7) =
0, Z G Q'. Choosing 2" smaller if necessary, we may require that the map X:
2" X [-v, T] -h» M;   (x, i) m> F/(x)   is   an   embedding.   Let

C = F_V(2" n B'iAjiY); -T)).
Then R"(A,(y); T) (\\G R^A/y), -7") if and only if C ^c (8Ru(A,(y))). By the
transversality density theorem for equivariant maps [5, p. 151] and the equivariant
isotopy theorem [6], [14, p. 180] we may find an equivariant isotopy \p: 2" X [0, 1]
-» 2" which is arbitrarily C °° close to the trivial isotopy and satisfies

1. i|/0 = identity,
2. \ps = identity on a collar of 32 in 2.
3.^(3R"(A,.(y)))^GC,
4. \¡/s = \p0 for j close to 0 and ips = \px for s close to 1.

Let 9: 2" X [-v, T] -» 2" X [-i», T] he the equivariant diffeomorphism defined by
0(x, t) = (x, t),       -v < t < 0,

= (^(x, t/T),t),       0<t<T.
Set L = A(2" X [0, 1]) and let E = (0, 1) be the unit horizontal field on 2 X
[-v, T]. We define

F(x) = y(x),       x G M\L,
= T(X9)Ei(X9)~x(x)),       xGL.

By the properties of ^, we may require that Y is an equivariant vector field on M
which is C°° close to Y and, in particular, Y G Q'. It follows easily from our
construction of F that RJ(A,.(y), -T) (t\G Bu(Aj(Y), T) (full details are given in

[20]).
Remarks. 1. The local finiteness of G-orbit types together with Peixoto's argu-

ment in [20] show that Theorem B also holds on noncompact G-manifolds if we
give C¿°(TM) the C°° Whitney topology [13, p. 42].

2. At this time, there is no theory of general position for C equivariant maps,
r < oo, and so we do not know whether a Cr version of Theorem B holds.
However, the openness statements in the proof of Theorem B are valid in the
C ''-topology, where d is finite and computed locally in terms of degrees of
polynomial maps (see [10, pp. 434 and 446]).

10. Equivariant Morse-Smale systems. The ñ-set of a diffeomorphism or flow is
defined in [26]. From Pugh's closing lemma it follows that the set of diffeomor-
phisms/which have periodic points dense in fi(/) is residual in Diff'(A/) [26]. Easy
examples show that this result is false for equivariant diffeomorphisms [12]. For
this reason, we make a new definition of the fl-set of an equivariant diffeomor-
phism or flow. It was shown in [11] that given a compact G-manifold M, there
exists a compact principal G-manifold M and equivariant map it: A/—» M such

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



204 M. J. FIELD

that we have a continuous extension homomorphism DiffG+JV_1(A/)-» DiffG(A/);
<í> r-> <j>, where k > 0 and N is the number of orbit types of M. M is called a
resolution of Ai and has the structure of a G X (Z/2)A'~ ' manifold.

Definition A. Let / G DiffG(A/), r > N. The (equivariant) ñ-set of /, ßG(/), is
defined to be w(£2(/)), where /: M -> M is as described above.

We similarly define ñG for flows.
ß(/) is a compact G-invariant subset of M and so ßG(/) is a compact G- and

/-invariant subset of M. ñG(/) C ß(/) and in general we do not have equality [12].
However, fiG(/) does contain the a- and w-limit sets of every point x G M [12].

Definition B. Let / G DiffG(A/). We say / is an equivariant Morse-Smale
diffeomorphism if

1. ßG(/) consists of a finite set of elementary critical elements.
2. / is 3-generic.
We similarly define equivariant Morse-Smale vector fields.
Remark. We say an equivariant diffeomorphism or vector field is strongly

equivariantly Morse-Smale if it satisfies the conditions of Definition B with ñ
replacing ñG.

Definition C. Let/ G DiffG(A/). We say/is G-structurally stable if we can find
a neighbourhood U of f such that for all g G u there exist an equivariant
homeomorphism h of M and continuous map Q: M —> G such that

(a) Qifix))hifix)) = ghix), for all x G M.
(b) ô ' h: M -» M is an equivariant homeomorphism.
Remarks. 1. We have to introduce Q because we cannot control perturbations

along invariant G-orbits.
2. We can strengthen Definition C by requiring openness in the Cd-topology,

d < oo. See §9.
3. We may similarly define G-structural stability for equivariant vector fields.
We conjecture that equivariant Morse-Smale diffeomorphisms and vector fields

are G-structurally stable.
We conclude this section by proving the following fundamental existence theo-

rem.

Theorem D. Every compact G-manifold admits a strongly equivariant Morse-
Smale vector field.

Proof. By a theorem of A. Wassermann [28, p. 150], there exists an equivariant
Morse map / on M, with critical locus a finite union of nondegenerate critical
G-orbits. Fixing an equivariant Riemannian metric on M, we see that grad(/) is a
2-generic vector field A on M with no periodic orbits. (Notice that X is zero
restricted to its invariant G-orbits.) It remains to be proved that we may perturb A
to A"' so that the stable and unstable manifolds of X' are G-transversal and no new
invariant sets are introduced. Our proof now follows that of Smale in [24].

Pick mutually disjoint invariant open neighbourhoods Ux, . . ., Uq of the in-
variant G-orbits a„ . . . , aq of X. Let

Qx = { Y- C¿°iTM): Y = X on Ux u • • • UÍ/,}.
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Using the method of proof of Theorem B of §9, we approximate A by A' G Qx
so that If "(A', af) (tiG W \X', a¡), 1 < /, j < q. We may assume that no new
critical elements are introduced since X is transversal to the level surfaces of /
outside [/, u • • • U U . Hence X' is strongly equivariantly Morse-Smale.

Remark. We may choose an equivariant metric on M such that A" = grad(/)
with respect to the new metric. See [24].
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