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ABSTRACT. We consider maps of the set of convex bodies in ¿-dimensional Euclidean
space into itself which are linear with respect to Minkowski addition, continuous with
respect to Hausdorff metric, and which commute with rigid motions. Examples constructed
by means of different methods show that there are various nontrivial maps of this type. The
main object of the paper is to find some reasonable additional assumptions which suffice
to single out certain special maps, namely suitable combinations of dilatations and
reflections, and of rotations if d = 2. For instance, we determine all maps which, besides
having the properties mentioned above, commute with affine maps, or are surjective, or
preserve the volume. The method of proof consists in an application of spherical
harmonics, together with some convexity arguments.

1. Introduction. Results. The set Srf of all convex bodies (nonempty, compact,
convex point sets) of ¿f-dimensional Euclidean vector space Ed(d > 2) is usually
equipped with two geometrically natural structures: with Minkowski addition,
defined by

Kx + K2 = {x, + x2 | x, £ 7v,,x2 £ K2),       Kx, K2 E Sf,

and with the topology which is induced by the Hausdorff metric p, where

p(7C,,7C2) = inf {A > 0 \ Kx C K2 + XB,K2 C Kx + XB],       Kx K2 E ®d;

here B — (x E Ed | ||x|| < 1} denotes the unit ball. We wish to study the
transformations of S$d which are compatible with these structures, i.e., the
continuous maps $: ®d -» $$* which satisfy ®(KX + K2) = OTC, + <¡?K2 for Kx,
K2 E ñd. However, from a geometrical point of view only those mappings seem
to be of interest which commute with rigid motions applied to the bodies. Thus
we are led to the following definition, where M(d) denotes the group of proper
rigid motions of Ed.

Definition. An endomorphism of the space Üd is a map $: ®d -» §£d which satisfies
(1.1) 3>(7C, + 7C2) = <¡>KX + K2 for Kx, K2 E Sf;
(1.2) $ is continuous;
(\.3)$g=g<!>forgEM(d).
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54 ROLF SCHNEIDER

Property (1.1) is also expressed by saying that $ is additive (in the sense of
Minkowski), and property (1.3) is called the M(d)-equivariance of <I>.

As an easy consequence of properties (1.1) and (1.2) we note that

<S>(XK) = X$K   for A" G Sf and A > 0,

where AA" = (Ax | x G A"}. Later we shall make use of this remark without
further mention.

A problem concerned with certain endomorphisms of ®d was apparently first
posed by Grünbaum [13, p. 239]: After noting that there does not exist an
additive map from ®2 into E2 which is affine-equivariant, i.e., commutes with
affine transformations of E2, he asks whether there is such a map from Ü2 into the
family of subsets of E2, which is not the identical map. One example is given by
the map A" h» A" + DK, where DK = K + (-K) denotes the difference set of K;
here -A" is the image of K under reflection in the origin of Ed, i.e. —K
= {-x | x G A"}. There are also more sophisticated examples: For K E ñ2 let
St, S2,... be the finite (possibly empty) or infinite sequence (in any order) of
the segments which are contained in the boundary of K. Let S'¡ be the translate
of Sj which has its centre at the origin of E2. Then it is easy to see that
SA" = S\ + S'2 + • • • (with the obvious definition of the sum if it is infinite) is a
well-defined convex body and that the map A h> K + SK from ñ2 into itself is
additive and affine-equivariant. Evidently this map is not continuous. It is easy
to see that the images under an additive, affine-equivariant map from ®d into the
subsets of Ed are necessarily convex (Valette [27]). Under the additional
assumption of continuity we have the following complete description of the maps
in question.

(1.4) Theorem.(') The affine-equivariant endomorphisms of iY are precisely the
maps

Kh*K + X[K+(-K)],       KE®1,

where X > 0 is a real constant.

We shall deduce Theorem (1.4) after having established some facts about the
endomorphisms of ^ in general. It would be nice to see a direct, more
elementary proof of (1.4). Recently Valette [27] has investigated the continuous
affine-equivariant maps F: ®d -* Sd which, in lieu of (1.1), satisfy F(K{ + A"2)
D F(A,) + F(K2).

The study of endomorphisms of sY is related to some questions and results of
a similar type in the theory of convex bodies, which we are going to explain.

Let u • v denote the inner product of the vectors u, v G Ed. The support
function HK of a convex body K G üd is defined by

(') See the note after §7.
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EQUIVARIANT ENDOMORPHISMS OF SPACE OF CONVEX BODIES 55

Hk{u) = max{x ■ u\x E K),       u £ Ed.

By the mean width ß(K) of a convex body K E Üd one understands the mean
value over the unit sphere Sd~l — {u E Ed \ \\u\\ = 1} of its width function
u i-* HK(u) + HK(-u), or

(1.5) ß(K) = 2^Ssd_xHKdw.

Here u denotes Lebesgue measure on Sd~l, and ud = w(Sd~]) is the total area.
The Steiner point s(K) of K E üd may be defined by means of the equation

(1.6) s(K) = du-dx fs„ HK(u)udœ(u).

Evidently, the mappings ß: ®d -* R and s: üd -» Ed are additive and contin-
uous; ß is invariant and 5 is equivariant with respect to rigid motions. Essentially,
these properties suffice to characterize ß and s, respectively: 7/<p: ®d -> R is an
additive, continuous, and motion-invariant map, then <p(K) = aß(K) for all K
E Ud, where a is a real constant. This theorem is due to Hadwiger [15, p. 213].
Similarly: If f: üd -* Ed is an additive, continuous, and motion-equivariant map,
then f = s. This has been proved, for d = 2, by Shephard [26], and for general d
by Schneider [22]. A bit earlier, Meyer [18] had obtained the result under the
stronger assumption of uniform continuity (with respect to the Hausdorff metric
on ®d). Berg [2] has given a proof for d = 2 and d = 3 which allows us to weaken
the continuity assumption. Sallee [20] has constructed a counterexample which
shows that it is not possible to drop the continuity assumption entirely (compare
also §7 below).

It should be mentioned that these uniqueness results for the mean width and
for the Steiner point are the key theorems for a series of further characterizations
of real-valued and vector-valued functionals defined on ÍK Such characterization
theorems have been proved for the quermassintegrals by Hadwiger [15, (6.1.10)],
and for certain closely related vector-valued functions (representing centroids of
mass distributions defined by curvature functions) by Hadwiger-Schneider [16]
and by Schneider [24].

After considering the map ß which associates with every convex body K a real
number with certain properties, and the map s which associates with K a certain
point with similar properties, it seems natural to go one step further and to
consider maps from ñd into ®d with formally the same properties, that is
endomorphisms of SH Examples (besides K h» {s(K)}) are near at hand: Let
Ba(K) be the ball whose centre is the Steiner point of the convex body K and
whose radius is the mean width of K, multiplied by the positive real constant a.
It follows from the properties of the maps ß and í that $7C = Ba(K) defines an
endomorphism $ 0f SH It has been asked in the book of Grünbaum [14, p. 135]
whether every endomorphism of ®d which in addition satisfies an Euler-type
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equation when restricted to polytopes, must be of this special kind. However, it
has turned out that the additional assumption is not a true restriction, since in
view of a result of Shephard [25, (18)] the validity of an Euler-type equation is
already implied by additivity, together with reflection equivariance, and each
endomorphism of Sd commutes also with reflections, as will be clear from later
considerations.

As a slightly more general example of an endomorphism of ÇY we mention the
map O defined by

$K = a,[A - s(K)] + a2[-K + s(K)] + s(K) + aß(K)B,

where au a2, a are nonnegative real constants. For d = 2, the constants a, may
be replaced by a¡g¡, where g¡ E S0(2)(i = 1,2; SO(d) denotes the group of
proper rotations of Ed). These endomorphisms will be called trivial. §2 and part
of §4 is devoted to the construction of fairly large classes of nontrivial examples.
Especially in the case d = 2 we shall describe, for a given convex set A" G ®2, a
rather general family of convex bodies which can occur as images of K under
some endomorphism of ®2. The following result, however, restricts the variety of
conceivable endomorphisms considerably.

(1.7) Theorem. Every endomorphism of^ is uniquely determined by its value at
one suitably chosen convex body, e.g. at a triangle with at least one irrational angle.

Here by an irrational angle we understand one which is an irrational multiple
of tr.

The generality of the examples mentioned above calls for reasonable addition-
al assumptions under which an endomorphism of &Y must be trivial. In this sense
we have, besides (1.4), the following results. For their proof, Theorem (1.7) will
be a useful tool.

(1.8) Theorem. Let $ be an endomorphism of®*.
(a) If the image under $ of some at least one-dimensional convex body is zero-

dimensional, then

$A" = [s(K)}   for K E @d.

(b) If the image under $ of some convex body is a segment, then for each K E ®d

$A" = A[A - s(K)] + p[-K + s(K)] + s(K)

with real numbers X, p > 0 (A + p > 0) // d > 3, and

$K = Xg[K - s(K)] + pg[-K + s(K)] + s(K)

with X,p>0(X + p>0)andgE 50(2) if d = 2.
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EQUIVARIANT ENDOMORPHISMS OF SPACE OF CONVEX BODIES 57

As consequences we have (1.4) and the following results.

(1.9) Corollary. The only surjective endomorphisms o/®rf are given by

$# = Xg[K - s(K)] + s(K)  for K £ ®d,

with A > 0, where g is the identity or reflection in the origin if d > 3, and where
g£ S0(2)ifd=2.

(1.10) Corollary. If the endomorphism $ of ®? is periodic, i.e. satisfies $"K = K
for some positive integer n (which may depend on K) and for each K £ ®d, then

(1.11) $K = g[K - s(K)] + s(K)   for K E W,

where g E {± identity) if d > 3, and where g E 50(2) is a rotation by a rational
angle, if d = 2.

(1.12) Corollary. If the endomorphism $ of W maps d-poly topes, into poly topes,
then $ is the map described in (1.8)(b), provided that d > 3.

Let Wk(K) denote the kin quermassintegral of K (WQ is the volume).

(1.13) Corollary. Let $ be an endomorphism of^1, and let k E {0,\,.. .,d - 2).
If

Wk(<i>K) = Wk(K)   for K E Sd,

then $ is the map given by (1.11) with g £ {± identity}, respectively g £ 50(2).

The content of the subsequent sections is as follows. In §2 we construct a class
of nontrivial endomorphisms of ®d. Another way of constructing such examples
is described in §4. These different examples are treated with some detail since the
problem of characterizing explicitly all endomorphisms of W is unsolved, and a
knowledge of various examples might prove useful in further study of this
question. In §3 we collect some auxiliary results on spherical harmonics and
support functions which will be needed later. In §4 spherical harmonics are used
to give a certain description of endomorphisms of ñd, which will be the basis for
the rest of the paper. The proof of (1.7) follows in §5, and the other results are
proved in §6. Finally, §7 contains examples of maps $: üd -* Sd which satisfy
(1.1) and (1.3), but not (1.2).

As to the general nature of the following considerations, one might say that the
method of approach consists in a combination of elementary facts from
harmonic analysis with convexity arguments.

Notation. The following symbols are used in the paper. Part of them have
already been defined above; the remaining ones will be explained in later sections
(if necessary).
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R set of real numbers

Ed ¿/-dimensional Euclidean vector space

a • b scalar product of vectors a, b G Ed

||<z|| length of vector a E Ed

B = {x G Ed | ||x|| < 1}, unit ball of Ed

Sd~x = {x G Ed | ||x|| = 1}, unit sphere of Ed

w Lebesgue measure on Sd~l

Uj = u(Sd~l), total surface area of the unit sphere in Ed

SO(d) proper orthogonal group of Ed

M(d) group of proper rigid motions of Ed

®d set of all convex bodies in Ed

HK support function of A" G üd

ß(K) mean width of A" G i¥

s(K) Steiner point of A" G ^

Wk(K) kih quermassintegral of A" G i¥

C(Sd~l) real vector space of real continuous functions on Sd~x

<, ) usual inner product on C(Sd~l)

& cone of support functions (restricted to 5d_1) contained in C(Sd~1)

C'm ultraspherical polynomial of degree m and order v

§dm subspace of C(Sd~x ) consisting of spherical harmonics of degree m

üm orthogonal projection from C(Sd~x) to §¿,

§d subspace of C(Sd~l) consisting of all finite linear combinations
of spherical harmonics.

If A* G @d and x G Ed, we often write K + x instead of AT + {x}. It will
sometimes be convenient not to distinguish between a support function, which is
defined on Ed, and its restriction to Sd~l; we use the same notation HK, and the
domain will always be clear from the context.

2. Examples of endomorphisms of SH In this section we shall establish the
existence of many nontrivial endomorphisms of Hd. First we consider the case
d= 2.
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Let /x be a positive Borel measure on the group 50(2). If we define

(2.1) 77;(u) = fsm HKMK)(gu)d¡i(g) + s(K) -u,       uEE2,

for K E ®2, then it is easy to see that 77* satisfies the sufficient conditions for a
support function; hence there is a unique convex body <5>K £ Ü2 such that

(2.2) 77^ = 77¿.
The map $: ü2 -* Ü2 thus defined turns out to be an endomorphism of ®2.

This observation yields some insight into the freedom which one has in
prescribing the image of a given convex set under an endomorphism. For a
convex body K in Ed let [K]0 denote the set of all elements of ®d which can be
approximated by bodies of the form XxgxK + •• • + XrgrK, where gx, ..., gr
E S0(d) are rotations and A,, ..., Xr are positive real numbers; and let [K] be
the set of all translates of bodies of [K]0. Thus, for instance, if AT is a segment, [K]
is the class of all "zonoids", which for d = 2 coincides with the set of all centrally
symmetric convex bodies.

(2.3) Proposition. Let L E Ü2 be given, and choose L E [L] such that the Steiner
points of L and L coincide. Then there exists an endomorphism $ of ®2 which
satisfies $L = L.

Proof. Write L0 = L - s(L) and Zq = L - s(L). Then L0 E [L0], but since
the Steiner points of L0 and L0 both coincide with the origin of Tí2, we have in
fact L0 E [L0]0. Hence there exists a positive Borel measure ft on 50(2) such that

V") - L(2) HLo(8«)Mg\ u E E2.

(See, e.g., Edwards [11, Theorem 2J. Observe that convergence of convex bodies
is equivalent to the fact that the corresponding support functions converge
uniformly on Sd~l.) Now use this measure ¡i in definition (2.1). Then $ defined
by (2.2) is an endomorphism of ®2 which satisfies $L = L. We remark that in
general $ is not uniquely determined by the properties demanded in (2.3).

We do not know whether there exist endomorphisms of S2 other than those
defined by (2.1), (2.2). It is, however, not difficult to prove that every uniformly
continuous endomorphism of ®2 must be of this convolution type, with some
suitable measure ¡u. Perhaps we should point out here that a map i>: ®2 -> ®2
which satisfies only (1.1) and (1.2) need not be uniformly continuous, as can be
shown by counterexamples.

Now we consider the case d > 3. We cannot take just (2.1), with 50(2)
replaced by S0(d), since generally the map thus defined would not commute
with rotations. The proper extension to higher dimensions is as follows. Let/be
(for simplicity) a continuous real function, defined on the interval [-1,1], and for
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K E®d define ZZ¿(0) = 0 and

(2 4) H¿(-u) = "M" ¿" ^-WMiMr1« • ")^(")+^) • ».
u E Ed\{0).

Then we have H*K(ü) = H¿(gu) for w G £rf and g G SO(îZ), and H¿+I(u)
= H¿ + t • u for m, i G £''. Furthermore, H£ is continuous and positively
homogeneous of degree one. However, it is only for specially chosen nonnegative
functions / that we can prove convexity for the function H£. One obvious
possibility consists in choosing/in such a manner that u h> ||w||/(||t<||_1« ' v) is,
for fixed v, a convex function on ZTd\{0} (observe that HK_S^ > 0). More
interesting is the following procedure which goes back, essentially, to an idea of
Berg [1, pp. 10-12]. We take a function q: [0, oo) -> [0, oo), for simplicity
continuous and with compact support, and put

X(u,v) = ^°° q(\\u - rv\\)rddr   for u, v G Sd~l.

Since ||w - rv\\2 = 1 + r2 — 2ru • v, x(«, v) depends only on u • v, so that there is
a nonnegative continuous real function/on [—1,1] with xiu>v) ~ fiu ' ")• Using
this/in definition (2.4), and making the inessential assumption that s(A) = 0,
we get for u G Sd~l

Htiu)=fsd_lHK(v)fiu-v)dœ(v)

= £*., HKÍv){f™ qi\\u - rv\\)rddr}do>(v)

= L-> Jo" hk^M\u - rv\\)rd-xdrdu(v)

= fEJHK(z)q(\\u-z\\)dz

= fEdHK(u-z)q(M\)dz;

hence, for x G Ed,

m(x) = ¡EJHK(x - \\x\\z)qi\\z\\)dz

= \SEd{HK(x - \\x\\z) + HK(x + |M|z)}?(||2||)«fc.

(2.5) Proposition. Let H be a support function on Ed, and let z E Ed. Then the
function Hz defined by

H2(x) = H(x - \\x\\z) + H(x + \\x\\z),      x E Ed,

is a support function.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT ENDOMORPHISMS OF SPACE OF CONVEX BODIES 61

It is trivial that H2 is continuous and positively homogeneous of degree one.
The following proof of the convexity of Hz (as well as the idea of splitting the
integral giving H£(x) as above) is due to Wolfgang Weil. For x, y £ Ed and
arbitrary a £ [0,1] we may write

Hz(x +y) = H(x+y- ||x + y\\z) + H(x + y + \\x + y\\z)

(2.6) < 77(x - a||x + y\\z) + H(y - (1 - a) ||x + yWz)

+ 77(x + a||x + yWz) + H(y + (1 - a) ||x + y\\z).

Without loss of generality we may assume that x and y are linearly independent.
Put

,. _     ll^ll n    Wx + y\\      %._\\x + y\\.
p ll„ll     ' I II ..II      '11*11 +W      '        11*11

then we have 1 - aß > 0 and 1 - (1 - a)y > 0. From

2(x - a||x + y\\z) = (1 + aß)(x - ||x||z) + (1 - aß)(x + ||x||z),

2(x + a\\x+y\\z) = (1 - aß)(x - \\x\\z) + (1 + aß)(x + \\x\\z),

and the convexity of 77 it follows that

77(x - a||x + y\\z) + H(x + a||x + y\\z)

< H(x - IHIz) + 77(x + WAV) = 772(x).
Analogously we obtain

H(y - (1 - a)\\x+y\\z) + H(y + (1 - a)\\x + y\\z)

< H(y - \\y\\z) + H(y + \\y\\z) = H2(y).

Together with (2.6) this gives 77z(x + y) < H2(x) + Hz(y), which proves Propo-
sition (2.5).

Since q is nonnegative, we arrive at once at the conclusion that 77¿ is convex.
Hence there is a map ®: ®* -* ûd such that 77$A: = 77¿ for each K E ®d.
Clearly, $ is an endomorphism of ®d.

Of course, the whole construction could be generalized by introducing suitable
measures. Thus generalized, formula (2.4) would represent all the uniformly
continuous endomorphisms of Srf, as can be deduced from a result of Dunkl [10,
p. 259]. However, the complete characterization of the measures occurring is an
open question.

Let us briefly mention another possibility of constructing endomorphisms of
SH For K £ üd let u, (K; • ) denote the first surface area measure of K as defined,
e.g., by Fenchel-Jessen [12]. Let/: [-1,1] -* R be continuous, and for K E ®¿
define 77^(0) = 0 and
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(2.7)    HÍ(u) = \\u\\ ¡^fihVu ■ v)dH(K; v) + s(K) ■ u,       uE Ed\{0).

If /is suitably chosen, for instance such that u v-> ||t/||/(||H||-1t< • v) is convex on
Ed\{0}, the function 77^ will be a support function for each K E ®d. Define
$: ®d -* ñd by HqK = H£. Then it follows from well-known properties of the
measure p.x that $ is an endomorphism of W.

3. Spherical harmonics and support functions. In order to prove the theorems
formulated in the introduction we shall make use of spherical harmonics. In this
section we list the necessary notions and some auxiliary results. For an
introduction to the theory of spherical harmonics, where these facts can be
found, the reader is referred to Müller [19], Coifman-Weiss [7], and the literature
quoted there. Some special results pertaining to the representation of support
functions by means of spherical harmonics, which will be needed later, are also
proved in this section.

Let C(5¿_1) denote the real vector space of real continuous functions on the
sphere 5d_I, endowed with the maximum norm. On C(Sd~l) the group SO(d) of
(orientation preserving) orthogonal linear transformations of Ed operates by left
translation; here the left translate gF of an element F £ C(5¿-1) by the rotation
g £ SO(d) is defined by (gF)(u) — F(g~lu) for u E Sd~l. A linear subspace
V C C(Sd~]) is called invariant if it is closed and if F £ V implies gF £ V for
all g E SO(d). An invariant subspace V is called irreducible if it does not contain
an invariant subspace different from {0} and V. By definition, a spherical
harmonic on Sd~x is an element of an irreducible subspace of C(Sd~l). Explicitly,
a spherical harmonic of degree m is (either identically zero or) the restriction to
Sd~l of a real function on Ed which in Cartesian coordinates is expressed as a
homogeneous harmonic polynomial of degree m. For m = 0, 1,2, ... we denote
by §£ the space of all spherical harmonics on Sd~l of degree m. Each space ^dm
is irreducible. Its dimension is given by

/„ ,\ ,•    ~j      2m + d — 2(m + d— 2\
(3.1) dim ft- m + d_2{       m       }

In the case d = 2 it is often convenient to describe a vector u E 5<M by the
angle y E [0,2ir) determined by u = ex cos <p + e2 sin <p where ex, e2 is an ortho-
normal basis of E2. We have F E S32, if and only if the function / defined by
f(<p) = F(u) is of the form/(ip) = a cos mcp + b sin »i<p with real constants a, b.

Up £ Sd~l, the space §dm contains functions which are rotationally symmetric
with respect to/?, i.e. functions F of the form F(u) = f(u • p) for u E Sd~l. Every
such spherical harmonic F is given by F(u) = aC^,(u • p), where a is a real
constant and

(3 2) eft) = 221 (-lY<r + --J-W(2irv
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denotes the ultraspherical (or Gegenbauer) polynomial of degree m and order
v = \(d — 2). It can also be represented by means of Rodrigues' formula

(3.3) Cm(i) = ai(l - 'T^JpO - i2)"—'/2,

where a"m ¥= 0 is a certain constant. The linear hull of the set of functions
{« i-» c;(« • /») | /> G S*-«} is all of $J.

By $rf C C(5d_1) we denote the subspace of all finite linear combinations of
spherical harmonics on Sd'x. It is dense in C(Sd~x ). The elements of ÍQd are called
generalized trigonometric polynomials on Sd~'.

If the vector space C(Sd~x) is endowed with the inner product <,) defined by

<F, G> = fg„ FGdu,       F,GE C(Sd~x ),

then any two spherical harmonics of different degrees are orthogonal, i.e.
<F,G> = 0 for F G $£, G E ¡çd„, m * n. By

nB: c(s*-')-* $¿
we denote the orthogonal projection from C(Sd~x) onto the subspace §dm
(m = 0,1,2,... ); thus if Yml, ..., YmN (where N = dim §£) is an orthonormal
basis of £*,

nmf = s <f, î^>rm,,     f g c(sd~x).
>=i

The "Addition Theorem"

(3.4) Jj ^(«O^OO - äc;(« • »x    «, v e s*"1,
where /3^, ¥= 0 is a suitable constant, leads to a representation of the projection
which does not depend on the choice of a basis, namely

(3.5) (UmF)(u) = ß>mfs^ C'm(u ■ v)F(v)dU(v),       u G S".

It is obvious that ITm is linear and continuous with respect to the maximum norm.
In view of (3.5) it is evident that the projection Un commutes with rotations, i.e.

(3.6) Um(gF) - g(UmF),       g E SO(d), F G C(Sd~x).

For later applications we compute IImF for a function F E C(Sd~x) with
rotational symmetry, i.e. which is of the form F(u) = f(u • p) with some fixed
vector/; G Sd~x. Formula (3.5) and the Funk-Hecke formula, that is

¿h/(« • v)Ym(v)Mv) = v'mK[f]Ym(ul       u G S"'1,
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where Ym E Qi, yfm ¥= 0 is a suitable constant, and

(3-7) X'm[f] - /_' f(t)C'm(t)(\ - t2)'-"2dt,

lead to

(3.8) (umF)(u) = ß'mrfmx'm[f]cm(u • />),    u e 5'-'.

We are now going to collect some auxiliary results which will be needed in
applying spherical harmonics to the study of support functions of convex bodies.
If K E ñd is a convex body, then the restriction of its support function to 5''-1
is an element of C(Sd~l). Accordingly, a function F £ C(Sd~l) will be called a
support function if its homogeneous extension defined by F(x) = HxIlT^dlxl^'x)
for x E Ed\{0] is convex. The set of all support functions on Sd~l is a closed
convex cone & in C(Sd~l). If K £ Sd, the support function of K and its
restriction to Sd~l will be denoted by the same symbol 77^. In passing, we notice
the following identities, which are immediate consequences of the definitions
(1.4) and (1.5):

(3.9) (U0HK)(u) = \ß(K)
(3.10) (n, HK)(u) = s(K) -u for u E Sd~x, K E ®d.

Whether a twice continuously differentiable function F E C(Sd~1) is a support
function can be decided by means of a well-known criterion: Extend F to Ed \(0}
as above, and let Fik — d2F/dx¡dxk, where x,, ..., xdare Cartesian coordinates.
By homogeneity, the matrix with elements Fik(x) has 0 as an eigenvalue. Let
t](F, x) denote the smallest of the remaining d — 1 eigenvalues (with tj(F, x) = 0
if and only if the eigenvalue 0 has multiplicity greater than one); and let r](F) be
the minimum of r¡(F,x) for ||x|| = 1. As convexity of F is equivalent to the
condition that the quadratic form 2 Fik(x)a¡ak be positive semidefinite for each
x E Ed\{0], we have the following criterion:

(3.11) The twice continuously differentiable function F E C(Sd~l) is a support
function if and only ifr¡(F) > 0.

The following two corollaries are easily deduced from (3.11).

(3.12) Every twice continuously differentiable function in C(Sd~l) is the difference
of two support functions.

In fact, if F E C(Sd~l) is twice continuously differentiable, then tj(F+ 77pB)
= r¡(F) + p which is positive for sufficiently large p.

(3.13) 7/7^, ..., Fk £ C(Sd~i) are twice continuously differentiable functions,
then there exists a positive constant o such that 1 + *£ a¡F¡ is a support function for
all choices of real numbers a,, ..., ak satisfying 2 a2 < a.
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This follows at once from the fact that the eigenvalues of a matrix depend
continuously on its entries.

Since every support function is continuous, it can be approximated, uniformly
on Sd~x, by generalized trigonometric polynomials. We shall need the fact that
these approximating functions can also be chosen as support functions; in other
words:

(3.14) $d n & is dense in &.
A proof has been given in [22]; however, we prefer the following one which

does not make use of analyticity assumptions and series expansions. Let us first
assume that H E Erf is twice continuously differentiable and satisfies tj(ZZ) > 0.
By an extended version of the Weierstrass approximation theorem (see, e.g.,
Courant-Hilbert [9, p. 68]) there exists a sequence Pu P2, ... of polynomials on
Ed such that the (extended) function H and its derivatives up to the second order
are approximated uniformly on, say, {x G Ed | j < ||x|| < 2} by the polynomi-
als and their corresponding derivatives. Write P*(x) = ||x||ZJ(||x|r'x) for x
G Ed\{0]; then H and its first and second derivatives are also approximated,
uniformly for \ < ||x|| < 2, by the functions P* and their derivatives. It follows
that 7}(P„*) -* tj(ZZ) for n -» oo, hence t/(ZJ*) > 0 for sufficiently large n. Thus,
by (3.11), almost all functions P* are support functions. Now Pn is a sum of
homogeneous polynomials, and every homogeneous polynomial P can be written
in the form

P(x) = Qoix) + l|x||2Ö,(x) + ||x||4Ô2(x) + • - • + ||xf Ô*(x),

where Q0, Qu ..., Qk are harmonic homogeneous polynomials (Coifman-Weiss
[7, p. 138]). Thus the restriction to Sd~x of the function Pn*, which coincides with
the restriction of P„, is an element of !gd. The proof of (3.14) is completed by the
familiar remark that the set of twice continuously differentiable support functions
H satisfying r\(H) > 0 is dense in <ld.

4. Description of endomorphisms. In this secion we start an investigation of the
endomorphisms of H.d. The procedure will be similar to that in [22]. We make use
of spherical harmonics, which seem to be the natural tool in exploiting the
rotation equivariance expressed by (1.3). The results obtained here form the basis
for the proofs of the theorems stated in the introduction.

Let us first see how the well-known fact (3.6) leads to another way of
constructing endomorphisms of ®d. Choose a natural number r and r real
numbers y0, y2, y3, ..., yn and define a map <E>* : C(Sd~x) -» C(Sd~x) by

(4.1) «D*F=  2 ymUmF,       F E C(Sd~x),
m=0

with Vi = 1. Clearly, $* is linear and continuous, and it satisfies

(4.2) $*g = g$*   for g G SO(d).
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Let us assume for the moment that $* maps the cone 6d of support functions
into itself. Then we can define a map $: W -» ®d by letting <&K be the convex
body with support function <&*HK. Evidently, $ has properties (1.1) and (1.2).
Since HgK = gHK for g £ SO(d) and K £ üd, (4.2) implies ®gK = g$K for
g £ S0(d) and Tí E ®d. Since, for / £ Ed, the support function of the convex
body {/} is given by H^(u) = / • u for u E 5d_1 and hence is an element of §f,
we have ${/} = {/} because of y, = 1. This shows that <b(K + /) = $7C + ${/}
= $7i + /. Thus $ has property (1.3).

It remains to show that the constants y0, y2, y3, ..., yr can in fact be chosen
in many nontrivial ways such that the map $* defined by (4.1) maps the cone &
into itself. Let us denote by <&d the set of those functions F E <Ed which satisfy
U0F = 1 and n, F = 0 (thus, by (3.9) and (3.10), ©¡J contains exactly the support
functions of the convex bodies of mean width 2 whose Steiner point coincides
with the origin). Now choose an orthonormal basis YmX, ..., YmNm in each of the
spaces §*, m = 2, 3, .... Put N = N2 + • • • + Nr, and let RN be the space of
real N-tuples. Define two subsets A, C C RN in the following way: A is the set
of all W-tuples (a2X,..., a2Nl, a31,..., a3N},..., arl,..., arNr) £ RN with the
property that there exists a support function F E &d such that

(4.3) <F, 7m,.> = am,-   for/= 1, ..., Nm, m = 2,3, ...,r,

or, in other words,

Nm
nmF = 2 amJYmJ   form — 2, 3,..., r.

C is the set of all A^-tuples (c2X,... ,c2Ni,c3l,... ,c3N},... ,crl,...,crNr) E RN
with the property that the function

(4.4) 1+ 2  N±cmjYmj
m—¿j—\

belongs to 6$. We observe that A is bounded: If (4.3) holds with F £ 6$, then
by Bessel's inequality,

2  2 \amJ\2 < f     \F\2du>.
m=7j=\ •'■>

Now F is the support function of some convex body K of mean width 2 and with
its Steiner point in the origin. Since every convex body of this kind is contained
in some sufficiently large ball independent of K, there is some bound for |F|
independent of F. The assertion follows. Next we remark that C contains a
neighborhood of the origin in R*. Since the functions YmJ are twice continuously
differentiable, it follows from (3.13) that the function defined by (4.4) belongs to
©o7 if c2.! + • • • + c2Nr is smaller than some fixed positive constant.
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It is now clear that we can choose balls B%, B% in RN centered at the origin
and with (positive) radii p, a, respectively, such that i*CC and A C B?. Let
A G R be a number with 0 < Xo < p, and choose the real numbers y2, y3.
y, such that \ym\ < A (m = 2,...,r). Now define 0* by (4.1) with y0 = Yi = 1.
Then if F G ©# and amJ is defined by (4.3), we have (a2!,... ,arNr) G A C B%,
and

$*F=1 + 2 Y.!fl^V
m=2       y=l

From 2L=2 2£i (Ymflm,)2 < A2o2 < p2 it follows that (y2a2U.. .,y,arNf) E B?
C C, which means that $*F£ E#. Thus $*F is a support function whenever F
is the support function of a convex body with mean width 2 and Steiner point in
the origin. But then it follows that $* maps Erf into Ëd. Hence the map
$: $rf -> ®d defined by Z/4jr = $*#*• is an endomorphism of SH

The examples just constructed exhibit, to a certain extent, the general character
of endomorphisms. Let <ï> be an endomorphism of i¥. The map $ gives rise to
an equivariant linear operator on a suitable vector space: If F is an element of
$Qd, the space of generalized trigonometric polynomials on Sd~x, then the function
F is twice continuously differentiable; hence by (3.12) there are convex bodies
K,LE®d such that F = HK- HL. We can define 0*F = H^ - H^, since
this function depends only on F and not on the special representation of F as a
difference of support functions. It follows from the properties of $ that the map
$* thus defined is a linear operator from §d into CiSd~x) which commutes with
the action of the rotation group. We remark that for a continuous linear operator
from C(Sd~x) into itself which commutes with rotations, there exists an explicit
representation as a kind of convolution operator closely related to formula (2.4);
see Dunkl [10, §8]. However, this does not help us in our case since the operator
<3>* is only defined on a proper subspace of C(Sd~x) and is not known to be
continuous there. It is known, however, that a linear operator, defined on
generalized trigonometric polynomials (with values in a suitable function space)
which commutes with the translation operators induced by the group action,
must be of a special nature (which in our case is expressed by (4.5) and (4.6)
below), whence such an operator is usually called a "multiplier operator" (see,
e.g., Coifman-Weiss [8, pp. 55-56]). We include an elementary proof for the sake
of completeness.

Let m E (0,1,2,...}, and let $* be the restriction of $* to the space §£ of
spherical harmonics of degree m. For k E (0,1,2,...} the map IT* $* is a linear
operator from §dm to §( which commutes with rotations. Since §¡£ and §{ are
irreducible, it follows from the lemma of Schur (see, e.g., Boerner [4, p. 21]) that
rL¿<í>* is either zero or an isomorphism. The assumption 11^$* # 0 implies
k = m, since dim §£ =t dim §( if k ¥= m and d > 3; for d = 2 the equality
k = m is an elementary consequence of the rotation equivariance of nA4>*.
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Equally easy to see is the fact that, for d = 2,

Tlm^*F=ymgmF   for FES?2,

where ym is a real number and gm E 50(2) is a rotation. Now let d > 3. For an
arbitrary point p E Sd~l let Gp denote the subgroup of SO(d) which leaves p
fixed. The function Zp defined by Zp(u) = C,(m ■ p) for u E Sd~l is invariant
under Gp, and up to a constant factor it is the only element of S$i, with this
property. For g E Gp we have

pn„$*z„ = nm$*ez„ = nm$*z„,

hence Um$*Zp = ym(p)Zp with a real constant ym(p). Replacingp by hp with
A E SO(d) and observing Z^, = hZp, we see that ym(Ap) = ym(p); hence, by the
transitivity of SO(d) on S*"1, ym(p) does not depend on p. Since the functions
Zp (p E Sd~l) linearly span §£, we conclude that IIm$£F = ymF for F £ 6?£.
We have proved that

nmO*F=ymF,       iiFESèi,

= 0, if F £ Sèdk and fc # w;

hence, by linearity,

(4.5) nm$*F=ymnmF

for F E Qd, provided that d > 3. For d = 2 it is clear that (4.5) has to be
replaced by

(4.6) nm<K*F=YmgmnmF

for F E §2, where gm E 50(2).
It remains to show that equation (4.5), respectively (4.6), carries over to an

arbitrary support function F. This follows from the continuity of <i>, which implies
the continuity of $* on the cone & of support functions, and from Lemma
(3.14).

We resume the result, together with some supplements, as a lemma.

(4.7) Lemma. Let $ be an endomorphism of &*. Then there is a sequence
(Vo>Yi>Y2> • • •) °f rea-l numbers, and an additional sequence (gt>,gx,g2, • • •) of
rotations g¡ E S0(2) if d = 2, such that

(4.8) nm H*K = ym ilm 77*  for each K E ®«

ifd> 3, and

(4.9) YlmH*K = ymgmnm77*   for each K E Ü2

if d = 2(m = 0,1,2,...); here y, = 1, and g0, g, are equal to the identity. The
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endomorphism $ is uniquely determined by the sequence (yo>Yi>Y2> • • •)> together
with(g0,gl,g2,...)ifd= 2.

That $ is uniquely determined by its associated sequence (respectively
sequences, if d = 2), follows from the completeness of the system of spherical
harmonics. That g0 may be chosen as the identity is trivial, since ¿g>o contains only
constant functions. The translation equivariance of the endomorphism $ implies
${/>} = {p} forp G Ed; since H^^ E !gd, this leads to Yi = 1 andg, = identity.
We remark that (3.9) and (3.10) now exhibit the following behaviour of the mean
width and the Steiner point under an endomorphism $:

(4.10) ß($K) = y0ß(K), for K G SC.
(4.11) s(^K) = s(K),

Of course, the fact that $*Fis a support function whenever Fis imposes severe
restrictions upon the sequences (yo> Yi> Y2> • • • )tnus obtainable. It seems difficult
to find necessary and sufficient conditions for a sequence (y¡) to come from a
map <E>* which maps the cone ©d of support functions into itself; however, the
information already available suffices to prove Theorem (1.7). We note one
obvious restriction for the sequence (y¡), which will be needed later in the proof
of the other theoems.

(4.12) Lemma. If $ is an endomorphism of S¿ and if (y¡) denotes the sequence of
real numbers associated with $ according to Lemma (4.7), then \ym\ < Yo for
m = 2, 3, 4,_

Proof. Let us first assume that Yo — 0. By (4.10) this implies ßi$K) = 0 for
A" G Çf; hence $A' contains only one point. But then H9K E §f, so that
HmH9K =0 for m ¥= 1. From Lemma (4.7) we deduce that ym = 0, since
nm HK ¥= 0 for suitable A, if m + 1 is given.

Now assume Yo ̂  0; hence Yo > 0 by (4.10). Let m E {2,3,...}, and put

(4.13)        7B = {« £ R | a h 1 + olC^(u • e) is a support function}»

where e G Sd'x is a fixed vector. It follows from (3.13) that Jm contains a
neighborhood of 0, and it is clear that Jm is a compact subset of R (if
HK(u) = 1 + aC'm(u ■ e) for some A" G $¥, then s(K) = 0 and hence HK > 0; as
C„(u • e) attains values of either sign, Jm must be bounded). Choose a E Jm, and
let K E ñd be the convex body which satisfies HK(u) = 1 + aC^(u ■ e) for
m G Sd~x. By Lemma (4.7) we have

#•*(«) = Yo + «YmC'm(\gm «] -e),       uE Sd~x

(with gm = identity if d > 3). Since the function yô"1 H$k is a support function,
we have ay^x ym G Jm. As this must be true for arbitrary a G Jm, the assertion
Iyo'Y/J < 1 follows.
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As an important consequence of (4.12) we have the following result. By Wk(K)
we denote the kin quermassintegral of K (k = 0,1,... ,d — 1).

(4.14) Lemma. If $ is an endomorphism of ^ and if (y¡) denotes the associated
sequence, then

Wd_2(®K) > y20 Wd^2(K)   for K £ ®d.

The equality sign holds for all K E S$d if and only if \ym\ = y0 for m = 2, 3,
4, • • •

Proof. The functional Wd_2 can be expressed by

(4.15)    Wd_2(K) = \[al(K) - j^j j| (m - \)(m + d- \)a2m(K)j,

with a2m(K) = fs+., \UmHK\2du, m = 0, 1, 2,.... for K S SH For d = 3 this
formula may be read off from Blaschke [3, pp. 108-110]; for the general case it
was proved by Kubota [17, p. 92]. From (4.15), Lemma (4.7), and Lemma (4.12)
the inequality of Lemma (4.14) follows. The equality sign holds if |yj = y0 for
m = 2, 3, 4, ..., and only in this case, since for each m E {2,3,4,...} there
exists a convex body K £ & for which am(K) ¥= 0.

Lemma (4.14) will mainly be utilized in connection with the following lemma,
which expresses a special case of well-known properties of mixed volumes
(Bonnesen-Fenchel [5, p. 41]).

(4.16) Lemma. Let K E W and k E {0,1,... ,d - 1}. Then Wk(K) = 0 if and
only if the dimension of K is at most d — k — 1.

5. Proof of Theorem (1.7). Let us first suppose that L £ ®d is a convex body
whose support function 77L has the property that

(5.1) n,^ # 0   form = 2, 3,....

For the moment we shall say that such a body is universal in Ed. We remark that
the inequality n077L ̂  0 is necessarily satisfied, since L contains more than one
point if (5.1) holds and hence has positive mean width.

Let $ be an endomorphism of SH For d > 3 it follows from Lemma (4.7) that
ymnm77L = nm77,j,L; hence ym is known for m = 0, 1, 2, ... if $L is known
(observe that y, = 1). Thus, by Lemma (4.7), <í> is uniquely determined by its
value at L. In case d = 2 it follows from Lemma (4.7) that ymgmIlmHL
= nnH9L. Again ym is uniquely determined for m = 0, 1, 2, ..., and gm is
determined up to a rotation by an angle which is an integer multiple of 2-n/m;
hence $ is uniquely determined.

According to these observations, Theorem (1.7) will be proved when we have
shown that a triangle with at least one irrational angle is universal in Ed. Perhaps
the reader may wonder why we have picked out just a triangle in the formulation
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of the theorem. The reason is, firstly, that a triangle is a convex body which is
easy to describe, and secondly, that we do not know of any other definite convex
body for which the property of being universal could be verified without
cumbersome computations. Furthermore, the existence of a triangle which is
universal in Ed can be utilized in the proof of (1.8).

Let T be a triangle with an irrational angle. First we consider T as a subset of
E2. Suppose that T were not universal in E2. Then there exists a number
m E {2,3,...} such that nmZZr = 0. Let A" C E2 be the convex body with
support function HK = 1 + aYm, where Ym ¥¡ 0 is a spherical harmonic on Sx
(that is, a certain trigonometric function) of degree m, and where a ¥= 0 is chosen
appropriately (according to (3.13)). Let A(K¡, K2) denote the mixed surface area
of the convex bodies Kx, K2 G ®2. From the assumptions on Tand Kit follows
that A(T,gK) is constant for all g E S0(2) (Bonnesen-Fenchel [5, p. 139]). If
ux,u2,u3 G Sx denote the exterior unit normal vectors of the triangle T and
ax,o2, a3 are the lengths of the corresponding sides, we have (Bonnesen-Fenchel
[5, (3), p. 41])

A(T,gK) - \ 2 HgK(ufa = \ 2 o,HK(g-\).
¿* i=\ *• 1 = 1

As A(T,gK) is constant, this gives

2 *,-[#*(*«,) - R] = 0   for all g E SO(2),¡=i

where R > 0 is a suitable constant. In view of the relation 2?=i o¡u¡ = 0 this
means that A" is a rotor of a triangle similar to T and with incircle radius R (see,
e.g., Schneider [23, Hilfssatz 2.2]). But it is well known that the only triangles
which admit noncircular rotors are those with only rational angles (see Schaal
[21] for a short proof as well as for further references). This proves that T is
universal in E2.

Now we show that a convex body which is universal in Ed~x is also universal
in Ed(d > 3). An inductive argument then shows that T is universal in Ed.

Let K c Ed(d > 3) be a convex body which is at most (d — l)-dimensional
and which, when considered as a subset of Ed~x, is universal in that space. We
may assume that A" C Ed~x C Ed. Let e G Ed be one of the two unit vectors
orthogonal to Frf~', and let Sd~2 = Sd~x n Ed~x be the unit sphere in Ed~x. Each
unit vector u E Sd~x can uniquely be written in the form

(5.2) u = te + (1 - í2)'/2M,   where û G Sd~2,

so that t = u ■ e. If hK: Sd~2 -* R denotes the support function of K, the latter
being considered as a body in Ed~x, the support function HK of A with respect to
Ed is given by
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HK(u) = (l-t2)V2hK(ü),        UES"-K

where / and S are defined by (5.2).
Let m E (2,3,...}. We have to show that HmHK ¥= 0 or, equivalently, that

(77*, F) ¥= 0 for at least one spherical harmonic F E S¿dm. Since K is universal in
Ed~x, there exists a spherical harmonic / E S¡d~x such that {hK,f} ¥= 0, where
now <, > denotes the usual inner product for functions on Sd~2. Now the function
F defined by

F(u) = (1 - t2)m/2f(u),       uES"-\

is a spherical harmonic of degree m on Sd~\ since the function / n> (l - f2)m/2
is an associated Legendre function of degree m, order m, and dimension d
(compare Müller [19, pp. 22-25]). If w denotes (d — 2)-dimensional Lebesgue
measure on Sd~2, we get (using Müller [19, p. 1])

<77*,F>=/^177*(M)F(M)i/W(M)

= £«/_', 0 - '2)'/2M«)(l - i2r/2/(«)(l - t2)'-"2dtdü

= £{(l-t2y+™'2dt(hK,f}¥=0.

The proof of Theorem (1.7) is now complete.

6. Proof of Theorem (1.8) and its corollaries. Let d> be an endomorphism of ®d.
First we assume that for some convex body L E W, which is at least one-
dimensional, the image <3>L contains only one point. Then ß(L) > 0 and
ß($L) = 0, which implies y0 = 0 and hence ß(<!>K) = 0 for each K E Sf by
(4.10). Thus $K contains only one point, so that Í>AT = {$(<!>7C)} = {s(K)} by
(4.11). This proves part (a) of Theorem (1.8).

Now let us assume that, for some L E ^, the image $L is a (nondegenerate)
segment. Then Wd_2(<S>L) = 0 by (4.16), and y0 7t 0 by (4.10); hence (4.14)
implies Wd_2(L) = 0 which, again by (4.16), shows that L is a segment. Without
loss of generality (compare (4.11)) we may assume that both L and $L have its
centre at the origin of Ed. Thus there exists a nonnegative number A and a
rotation g E SO(d) such that

(6.1) $L = AgL.
For d > 3, g may be chosen as the identity, since $ commutes with rotations and
since there exist rotations under which exactly those segments (with centre at the
origin) remain fixed which are multiples of L. By (6.1), Lemma (4.7), and (3.6)
we have

(6.2) AgITm 77t = nm 77AgL = UmH<tL = ym gm Um HL
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for m = 0, 1, 2, ..., where (y¡) and (g,) are the sequences associated with $
according to (4.7). Here we have to put gm = identity if d > 3. Now (3.8) and
(3.7) show that

(nmZZL)(M) = \L\ß'mr,'mX'mC'm(u -p),       u E Sd~x,

where 2|Z,| is the length of L and p is a unit vector parallel to L; furthermore,
M^Oand

A^=/_'j/|cm(0(i-i2r1/2</i.

With the aid of (3.3) one computes that X'm ¥= 0 for even m. Hence from (6.2) we
deduce, for even m, that ym = A and that, in the case d = 2, g~xgm is a rotation
by an angle which is an integer multiple of 2ir/m. Thus we have

(6.3) ymgmF=XgF   for F G §m, m = 0, 2, 4, ....

Now let us define an endomorphism ^ of ®d by

(6.4) *A" - A,g[A" - s(K)] + A2g[- A" + s(K)] + s(K)   for A G Jf,

where 0 < A, < A and A, + A2 = A. A definite choice for A, will be made later.
Let K G ûd be a convex body which is centrally symmetric with respect to the
origin (so that s(K) = 0). Then UmHK = 0 for odd m, since HK is an even
function and each element of $m is an odd function; thus TlmHitK = 0 by (4.8)
or (4.9). As ^A" is centrally symmetric with respect to the origin, we have
nmZZ4,A: = 0;thus

nmHç,K = ïlmH*K   for m = 1, 3, 5, ....

Let m be even. Directly from (6.4) and A, + A2 = A we get nm H^K
= Agnm HK. From (4.7) and (6.3) we deduce

n^ZZ^ = ymgmUmHK = XgUmHK.

Thus we have shown that

nmZZ,j,K = nmH*K   for m = 0, 1, 2, ....

Now the completeness of the system of spherical harmonics implies H$K — H^K.
As 4» and ^ both commute with translations, it follows that

(6.5) 4>A" = -tyK   for each centrally symmetric A" G fïd.

To see what $ does with a not centrally symmetric convex body, let T G f¥
be a triangle with at least one irrational angle. Then T + (-T) is centrally
symmetric with respect to the origin; hence (6.5) yields
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$f + 4>(-r) = $(f + (-T)) = *(f + (-t)) = Ag(F + (-f)).

From Lemma (4.7) and the fact that (3.6) holds also for improper rotations g, it
is clear that 4>(-K) = — 4>A for K G Hd, even if reflection in the origin does not
belong to SO(d) (i.e. for odd d). Hence $T + (-&T) = AgF + (-AgF). An
elementary discussion of the possible decompositions of the centrally symmetric
hexagon AgF + (-AgF) into a sum of two convex bodies shows that the above
equality is possible only if $Fis a translate of the body A^F + (-A2gF), where
A!, A2 are real numbers, 0 < A¡ < A, and A, + A2 = A. Then (4.11) implies that

<DF = A, g[T - s(T)] + X2g[-T + s(T)] + s(T).

Using these numbers A,, A2 in definition (6.4) of the endomorphism ¥, we arrive
at $F = tyT. Theorem (1.7) now shows that $ = ^, which proves part (b) of
Theorem (1.8).

Theorem (1.4) is an easy corollary of (1.8). In fact, let $ be an endomorphism
of Hd which satisfies <fraK = a$K for each affine map a: Ed -> Ed. Let 5 be a
segment with centre at the origin of Ed, and let L be the line which carries S.
Since there are affine transformations of Ed which leave 5 fixed but do not leave
fixed any element of Sd which is not a subset of L, we see that $5 must be
contained in L and hence is either one-pointed or a segment. In the first case,
(1.8) (a) implies $A = {s(K)} for K G ñd, a contradiction since the Steiner point
is not affine-equivariant. Hence OS is a segment, and now (1.8)(b) shows that

$A" = Ag[A~ - i(A)] + pg[-K + s(K)] + s(K)   for K G ®d

with suitable A, p, g. If g is not the identity or reflection in the origin, there exists
an affine transformation a of Ed and a centrally symmetric convex body K G S*
such that gaA" ¥= agK, which contradicts <&aK = a$K. Hence we may assume
that g is the identity. Since s(aK) ^ as(K) for suitable K E Hd and some affine
transformation a, it follows that A = 1 + p. Thus (1.4) is proved.

Corollary (1.9) follows immediately from (1.8)(b) and the observation that
either A or p must be equal to zero, since otherwise a triangle, which is
indecomposable, cannot be attained as an image. Corollary (1.9) trivially implies
Corollary (1.10). Corollary (1.12) follows at once from (1.8)(b): If d > 3 and if
the image of a segment is not a segment, it cannot be a polytope, since it must
have rotational symmetry. Hence the image of a ¿-dimensional zonotope (sum of
segments) cannot be a polytope, which contradicts the assumption.

In order to prove Corollary (1.13) let A; G {0,1,... ,d - 2], and let 5> be an
endomorphism of üd which satisfies

(6.6) Wk($K) = Wk(K)   for K E üd.

Let S E Ed be a segment with centre at the origin. We want to show that $5,
too, is a segment. Clearly 3>S contains more than one point, since otherwise
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(1.8)(a) and (6.6) would lead to a contradiction. By (4.16), Wk(S) = 0; hence
(6.6) implies lVk(<bS) = 0. If d = 2, (4.16) shows that $5 is a segment. Now let
d > 3. If G denotes the subgroup of SO(d) which leaves 5 fixed, we have
(gx | g £ G) C $5 for x E $5; hence $5 either is a segment or has dimension
at least d—\. The latter case is only possible if k = 0 (since otherwise
rVk($S) i- 0 = Wk(S)). In this case, let g E 50(d) be a rotation such that the
segments 5 and g5 are not parallel. Then rV0(S + gS) = 0; hence W0(<b(S
+ gS)) = 0, whereas the body $(5 + gS) = $5 + g$5 has dimension </, a
contradiction. Hence <£>5 is a segment. Now it follows from (1.8)(b) that

$K = Xg[K - s(K)] + p.g[-K + s(K)] + s(K)   for K E Ud

with suitable real numbers A, jti > 0 and a rotation g £ 5O(¿0 (which is the
identity if d > 3). Choosing K = B (unit ball), we see that A + p. = 1. Let
K E ñd be a convex body with s(K) — 0 which is not centrally symmetric. An
application of the generalized Brunn-Minkowski theorem (see, e.g., Busemann [6,
p. 49]) gives

Wkw-k)($K) = WkU(d-k\XgK + (1 - A)g(-AT))

> XWkw~k)(gK) + (1 - X)WkxKd-k)(-gK)

By (6.6) the equality sign must hold, which implies that either gK and -gK are
homothetic, or A(l — A) = 0. As K is not centrally symmetric, A = 0 or A = 1
are the only possible cases. Thus i> is of the form asserted in (1.13).

7. Counterexamples. Concluding we wish to emphasize the role that the
continuity of the endomorphisms considered plays in the foregoing investigation.
Already the example, described in §1, of a map í>: ñ2 -* ñ2 which is additive in
the sense of Minkowski, equivariant with respect to affine transformations, but
not continuous, shows that the essential results proved above, i.e. (4.7), (1.7),
(1.8), are not true without the assumption of continuity. We can also give various
examples of additive, motion-equivariant maps <ï>: ñd -> üd which are not
continuous; here d > 2 is arbitrary. For instance,

$: K h^ K - s(K) + s'(K),       K £ ñd,

is such a map, if s': ®d -* Ed is a noncontinuous "Steiner point", as constructed
by Sallee [20]. However, this example is perhaps not very instructive, since <PK is
always a translate of K, and only the translation vector s' — s is responsible for
the noncontinuity. Examples of a different nature are obtained as follows.

The first surface area measure jn, (K; •) of the convex body K (Fenchel-Jessen
[12]) is a nonnegative Borel measure on Sd~l, which depends linearly on K, i.e.
satisfies
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px(XxKx + X2K2; •) = Xxpx(Kx; •) + X2px(K2; •)

for A",, A"2 G ®d and nonnegative A], A2. If /if(A; •) denotes the singular part
(with respect to Borel-Lebesgue measure on Sd~x) of px(K; •), then it follows from
the uniqueness of the Lebesgue decomposition of a measure into its singular and
its absolutely continuous part that px(K; ■), too, depends linearly on A". By the
way, this yields another example of a noncontinuous "Steiner point", namely

s'iK) = ¿_, udpî(K; u) + s(K),       K E ®d.

It is easy to see that s'(K) ¥= s(K) for suitable A" G W. On the other hand, we
remark that s'(K) = j(A") if A" is either a smooth body or a polytope.

Now define, for instance,

Hk (") = fsd_, I" • v| dp{(K; v) + s(K)-u,       uE Ed,

for K E üd. Then ZZ¿ is a support function, since u h> \u • v | is a support
function, and pxs > 0. If we define $: SY -* $¥ by HiK = H¿, it is clear that $
is additive and equivariant with respect to similarities. On a dense subset of f¥,
for instance on the set of smooth bodies, we have $ZC = {s(K)}; however, if A*
is a ¿-dimensional polytope, then 3>A~ is ¿-dimensional, which shows that $ is not
continuous.

Note added in proof. Theorem(1.4), as it stands, admits a direct, elementary
proof. In fact, let F: Sid -» ®d be a map which commutes with all affine maps
(including singular ones) of Ed into itself. Then there exists a number /t s 0 such
that TS = p[S - s(S)] + s(S) for each segment S G SH Now let A" G ®d.
Considering orthogonal projections of A" on to lines and using the fact that F
commutes with these projections, one gets

HtkÍu) = HM + \(p- \)[HK(u) + HK(-u)],       u E Sd~x.

Clearly p — 1 ^ 0 (otherwise the equality would lead to a contradiction if A" is a
triangle), hence

TK = K + X[K + (-K)],      K E Kd,

with A > 0.
It remains to remark that a map F: ®d -» Sid which is equivariant with respect

to nonsingular affine transformations, necessarily also commutes with singular
affine maps, if it is continuous. This shows that in (1.4) the assumption that the
map in question be additive, is even superfluous. Theorem (1.4) should, therefore,
be replaced by the following less trivial version. Here %$$ C Se denotes the set of
convex bodies with interior points.
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(1.4') Theorem. Every additive, continuous, ajfine-equivariant map $: Sq —* ®d iJ
of the form

<S>K = K+X[K+(-K)],       KE®d,

where X ^ 0 is a real constant.

Contrasting the situation where $ is defined and continuous on all of Ç£d, the
assumption of additivity is now essential. This is shown by the examples
<bK = {centroid of K), or $K = Loewner ellipsoid of K. It also appears that
for geometrically interesting affine-equivariant maps of convex bodies the natural
domain of definition is Std, not ñd.

Proof of (1.4'). In view of the remarks made above, it suffices to show that a
continuous, additive map 3>: &d —> &d which commutes with rotations, can be
continuously extended to all of Srf (by continuity, the additivity and equivariance
properties carry over to the extension).

It is easy to see that the proof of Lemma (4.7) goes through if $ is merely
defined on S'o'.We deduce that

(*) nmH*K = ymgm nm 77*   for each K E ®dQ

for m = 0, 1, 2, ..., where y0, y,, ... are suitable real numbers and g0, gx, ...
are rotations. Let L E S<,\$0', and choose a sequence (K¡)¡eN in &d such that
lim K¡ = L. By (4.10) and (4.11) we have s(pK,) = s(K¡) -» s(L) and ß(pK,)
= y0/j(7í,) -» y0ß(L) for z -> oo, hence the sequence (<¡>K¡)iels is bounded and
contains, therefore, a convergent subsequence. We may assume $Kt,-* M E $$d
for / -* oo. By (*) we have

n„77w = lim nmHQKl = lim ymgmU„HK. = Ymgmnm77¿

for m = 0, 1, 2.This shows that the convex body M is uniquely determined
by L. We may now define 4>L = M, which gives the desired extension.
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