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Abstract. The basic properties of equivariant fibrations are described, including
an equivariant version of the Dold Theorem. The foundations of equivariant stable
homotopy theory are described, and the theory of equivariant transfer is developed.

0. Introduction. The purpose of this paper is to set forth an account of the basic
properties of equivariant fibrations, equivariant stable homotopy theory, and the
equivariant transfer homomorphism (à la Becker-Gottlieb [Bel]). This will provide
the necessary background for the classification of equivariant fibrations [Wa2] and
for further results in stable equivariant homotopy theory (JWa3], [MHW] and
[Wa4]).

The paper is divided as follows:

1. Equivariant fibrations
2. Equivariant quasifibrations
3. Equivariant duality and stable homotopy
4. Equivariant fiberwise duality
5. Equivariant transfer
6. Equivariant cellular theory and fibrations

In §§1 and 2, we establish an equivariant "Dold mod 1" Theorem (the mod k
version is discussed in [Wa4]) and the Dold-Thom Theorem for quasifibrations,
while the theory of the transfer is presented in §§3-5. Finally, §6 gives conditions
under which the total space of an equivariant fibration has the G-homotopy type of
a G-CW complex (as in [Stl] and [Mil]).

Our development of stable equivariant homotopy theory follows May [Mai], and
the correct indexing system of G-modules is described here and shown to be
equivalent to various other systems which appear in the literature.

G% will denote the category of (unbased) G-spaces and continuous maps. (We
require all spaces to be weak Hausdorff compactly generated [Mai, §111].)

Throughout, G will be assumed to be a compact Lie group. The relevant
G-homotopy theory is discussed in [Wal].
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370 STEFAN WANER

1. Equivariant fibrations.
Definition 1.1. By a G-spacep over B, we shall mean a map/?: E -» B in G%.

If p and q are G-spaces, then a morphism of G-spaces is a pair of G-maps / and /'
making the following diagram commute:

E      U      E'
PÍ il
B      ->     B'

f

When B = B', we shall understand that/is to be the identity map of 77.
By a based G-space p over B, we shall mean a G-space p over 7i together with a

G-section s of p which is a fiberwise G-cofibration. Morphisms of based G-spaces
are required to preserve the section.

Definition 1.2. An equivariant fibration over B is a G-space p over B which
satisfies the G-covering homotopy property (G-CHP). Here, all homotopies are
required to be through G-maps. (See [Wal] for an account of G-homotopy theory.)
A based fibration is defined analogously. (All homotopies are required to be
through section preserving maps.)

Most of the discussion to follow is restricted to unbased G-fibrations, with
remarks to indicate how to deal with the based variant where this is not straight-
forward. The following is a useful example of an equivariant fibration:

Definition 1.3. Let F be a space. We shall say that a (based) G-fibration p:
E —* B is a G-fibration with fiber F if for each b in B there is some action of Gb on
F such that/7 " x(b) is Gb-homotopy equivalent to F with respect to the given action.

In general, the fixed point sets of B may be disconnected, so that not all
G-fibrations satisfy the above requirement. However, the interesting examples of
G-fibrations are of such a nature.

Following is a necessary and sufficient condition for a G-fibration to be a
G-fibration with fiber F:

Proposition 1.4. A G-fibration p: E —» B is a fibration with fiber F if and only if
we can find a set {Qa} of orbits in B such that the inclusion IIa Qa —» B induces a
surjection of all zeroth equivariant homotopy groups (see [Wal]) and such that
P\P~X(Qa) 's a G-fibration with fiber F.

The proof is an immediate consequence of the G-CHP. (In [Wa2], these fibra-
tions are referred to as (CñF^W, F) fibrations.)

Of course, it follows that equivariant bundles are equivariant fibrations with
fiber F, once we accept the existence of the G-CHP for G-bundles.

The following result is an immediate consequence of the G-CHP and gives us the
expected long-exact fibration sequences (see [Wal] for a discussion of G-homotopy
groups).

Proposition 1.5. Let p: E —> B be a G-fibration, then

p,:vnH(E,Fb;Gb)^KH(B,b;Gb)
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EQUIVARIANT FIBRATIONS AND TRANSFER 371

is an isomorphism of Gb homotopy groups, for each H <Gb and for tr^(E, Fb; Gb)
nonempty. (Since Fb is not G-invariant in general, it is meaningless to take G-homo-
topy groups.)

The requirement that it"(E, F; Gb) be nonempty proves restrictive when we wish
to appeal to the five-lemma when comparing the bases or total spaces of two
G-fibratons. It is not, however, restrictive when we wish to compare corresponding
fibers.

We have assumed, implicitly, the following consistency statement in deducing
Proposition 1.5.

Proposition 1.6. Let p: E —> B be a G-fibration, and let 77 < G be a closed
subgroup. Then p: E —» B is an H-fibration.

Proof. We may convert an //-lifting problem to a G-lifting problem by consider-
ing the following diagram:

where all the squares are in G<?L except for the left-hand one, which is in 77% and
m is obtained from the G-action, while ie is inclusion a h> (a, e).

(This can also be proved using the G-gamma construction as discussed in [Wa3].)
The following material relates local fiberwise homotopy equivalence to its global

counterpart.
Definition 1.7. Suppose that/? and q are G-spaces over B and that g: p -» q is a

morphism of G-spaces over 77. A G-homotopy section of g is a pair (g', 77) where g':
p —> q and 77 is a G-homotopy gg' s* 1 (the notion of a G-homotopy of morphisms
of G-spaces being the obvious one).

Lemma 1.8 (Section Extension Property). Suppose that <j>: B —» 7 is a G-map
and that g: p —> q is a morphism of G-spaces over B such that the part of g over
</>~'(0, 1] has a G-homotopy section (f,K). Then there is a G-homotopy section
(/, K) of g agreeing with (f, K) over <i>_1(l) whenever g is a G-homotopy equivalence
over B.

The proof in [Ma2, §1.4] goes over to the equivariant case verbatim; we merely
check that all the maps constructed are equivariant.

By a G-cover, we shall mean a cover by invariant sets.
Definition 1.9. A G-cover G of B is numerable if it is locally finite and if for

each U e. G there is a G-map Xv: B ^ I with U = X[}1(0, 1].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



372 STEFAN WANER

Proposition 1.10. Suppose that p: D -^ B and q: E —» B are G-spaces over B with
g: D —» E a G-map over B such that g\p~x(U) is a G-homotopy equivalence over U

for each U in some numerable cover G of B. Then g is a G-homotopy equivalence over
B.

This follows by the same Zorn's lemma argument as that of [Ma2, §1.5].
Recall that a tube in a G-space X is a G-subspace of the form U at V X H G

where V is some 77-invariant subspace of U, and 77 is the isotropy subgroup of
some point v in V. The orbit vG will be called the central orbit of U.

We have the following generalization of a theorem of Dold.

Theorem 1.11 (G-Dold). Suppose that B has a numerable G-cover G of open
tubes which deform equivariantly to specified central orbits and that g: p —> q is a map
of G-fibrations over B which restricts to an equivariant homotopy equivalence on each
fiber. Then g is a fiberwise G-homotopy equivalence.

Proof. For each U in G, choose a G-homotopy hv: U X I -^ U which contracts
the tube U to the specified orbit Qv. We then have the following commutative
diagram:

hl(p)
i

U X I t/a

-'(ry)
it

V X
for some u E. U

c

as well as a G-homotopy equivalence hf*,(p)\U X {0} at h^(p)\U X {1} over U;
(one checks that the results in [Ma2, §§2.2-2.5] go over to the equivariant case with
no change, the homotopies being patched by successive applications of the G-CHP
to pass from one to another).

Abbreviating h^(p)\U X {0} and h^(p)\U X {1} to D0 and Dx respectively, we
have D0 ~ p~x(U) and Dx at (V X Fu) X Gu G, where G„ acts diagonally on F X
Fu- V X p~x(u). We have the same situation in q: E -» 77, and we obtain spaces
E0 and Ex corresponding to D0 and Dx respectively.

We therefore have the following diagram in which all the triangles are G-com-
mutative:

Here 9p and 9q are the natural maps, and the unlabelled arrows are the obvious
maps. It thus suffices to show that the whole diagram G-homotopy commutes over
U, by Proposition 2.1.6. But both g\ U ° 9p and 9q ° (1 X g) X G I are final lifts for
the diagram:
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EQUIVARIANT FIBRATIONS AND TRANSFER 373

(VX Fu)xGuG= DXX I     -»"     F0

i il
U X I -►      U

i*,

where Hv(((v,f), s), 0) = ((u, g(f)), s) G ({u} X Fu) X G_ G c E0 and h^x, t) =
hv(x, 1 - /).

2. Quasifibrations and gammafication. We now discuss G-quasifibrations. Recall
the definition of equivariant homotopy groups and of G-«-equivalence from [Wal].

Definition 2.1. A map/»: E —> B in G% is said to be a G-quasifibration if

/V m»(E, Fb; <b; Gb) -> irnH(b, b,p<t>; Gb)

is an isomorphism for each b in B, for each closed subgroup 77 of Gb and for each
Gb map <i>: Gb/H -h> Fb. (This is equivalent to the result of 1.3.) Here, and
henceforth, Gb denotes the isotropy subgroup of b.

Observe that this is equivalent to the requirement that p pn: tr"(E, FbG, <b) —>
tr"(B, bG,p<j>) be an isomorphism, since G X G Gb/H =¿ G/77 where FbG is the
"saturation," {/• g\f G Fb, g G G} of Fb and bG is the orbit of b.

Definition 2.2. Suppose that p: E -h> 77 is in G%, and that U c 77 is an
equivariant subspace such thatp|: p~x(U) -> U is a G-quasifibration. We then say
that U is a distinguished subset of 77.

We now develop the excisive theory of G-quasifibrations according to the
nonequivariant example.

Lemma 2.3. Suppose that p: £—» 77 is distinguished on A c 77, and that there are
G-homotopies h,: B —» B and 77,: E -+ E such that:

(a) rt0 = 1, h,(A) c A andhx(B) c A,
(b) 770 = 1, H,(p~x(A))<zp~X(A), and Hx covers «„
(c) 77,: p~l(b) —>p~\hx(b)) is a weak Gb-equivalence.

Then p is a G-quasifibration.

Proof. The following diagram commutes in AT%, where K = Gb:

(E,Fb)      ->      (p-\A), Fh¡{b))"i

íp pí

(B, b)       H-X (A,hx(b))
Passing to homotopy groups then gives the diagram:

»/*(£, Fb, <i>; K)      ->      „f'(p-\A), F„|(6), 77,<>; A")

ÍP, Pti

TTn*'(B,b,p<b;K)      i TT?(A,hx(b),hx$;K)

for ÄT-maps </>: AT/K' —> Fb and subgroups K' of Ä".
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374 STEFAN WANER

By the hypothesis, the right-hand vertical map is an isomorphism. It thus suffices
to show that «, and 77, are isomorphisms. Inverses for these two maps are
obtained as follows: regard the « + 1-cube 7"+1 as I" (J , (7" X 7) (the union
being taken with respect to i: I" X {0} —» 7"), and suppose being a map 9:
K/K' X I" -+p~l(A) which maps AT/A" X 7" into Fh¡(b). Hypothesis (c) permits
an extension of 9 to K/K' X (7" u , (7" X [0, \])) such that 9\K/K' X (I" X
{¿}) factors through 77,. Further extend 9 to K/K' X (In u, (/" X 7)) -^ E using
homotopy 77. This, then, is the required inverse for 77, • «f1 is constructed by the
same argument.

Definition 2.4. A G-triad (X; A, B) is said to be excisive if X is the union of the
interiors of A and 77. (All spaces here are assumed G-invariant.)

We have the following analogue of [Mai, III.5.4].

Theorem 2.5. Let e: (X; Xx, X2) -> (Y; Yx, Y2) be a map of excisive G-triads such
that

e:(Xi;XxnX2)^(Yi; Yx n Y2)

is a G — « equivalence for i = 1,2.
77ie« e: (X, X¡) —* (Y, Y¡) is also a G — « equivalence.

Proof. One applies the adjunction °ll(X, YH) = G%(A" X G/77, Y) described
in [Wal] and observes that these functors preserve weak equivalence and excisive-
ness of triads, thus reducing the problem to the nonequivariant case, proved in
[Mai].

As a consequence, one obtains:

Lemma 2.6. Suppose that (77; 77,, 772) is an excisive G-triad such that p: E —» 77 is
distinguished over 77,, 772 and 77, n 772. Then p is a G-quasifibration.

Proof. This follows immediately from the long exact sequences of the G-triples
(77,, 77, n 772, bG) (for / = 1, 2 and b G 77, n 77^ and their preimage triples, as
well as those of (77, 77,, bG) once 2.5 has been applied to the first set of G-triples.
Compare [Mai, III, §5].

Proposition 2.7. Let p: E —» 77 be a G-map, and assume that B has a G-filtration
{FjB} such that

(a) F0B and each G-open subspace of FjB — Fj_ ,77 are distinguished;
(b) For eachj > 0 there is an invariant open subset Uof Fj(B), containing Fj_x(B),

together with G-homotopies «,: U —> Uand77,:p~l(U)—>p~l(U), satisfying
(i) «0 = 1, «,/<;_,(77) C Fj_x(B) andhx(U) c F,_,(77).
(ii) H0 = 1, and H covers h.
(iii) 77, restricts to a weak K-equivalence on fibers, where K is the appropriate

isotropy subgroup (as in Lemma 2.3).
Then p is a G-quasifibration.

Proposition 2.7 follows by an easy induction argument using Lemmas 2.6 and
2.3.
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EQUIVARIANT FIBRATIONS AND TRANSFER 375

Finally, we describe the theory of gammaficaton in the equivariant context.
Notations 2.8. If p: E -> 77 is a G-space over 77, we may form a new G-space,

r^: TE -> B by "gammafying" as in [Ma2, §3.2]. (Briefly, we let TE c itB X E be
the set of pairs (X, e), where À is a Moore path in 77 starting at p(e). Tp is the
end-point projection Tp(X, e) = X(l(X)), where X(l) is the length of X, so that X:
R+ —> B is constant for parameters > l(X).) There is also a based analogue T' of T
discussed there, and all of the following applies formally to based fibrations if we
replace T by I". Observe that TE inherits a natural G-action such that T is a
G-map; in fact, a G-fibration with TE G-homotopy equivalent to E. (Similarly for
r.)

We shall be needing the following lemma when constructing the transfer. It also
serves as a useful illustration of the use of gammafication.

Lemma 2.9. Suppose that p: E —» 77 is an equivariant fibration with fiber F such
that, if A is the set of actions of closed subgroups of G on F relevant to p, then F has
the Ha homotopy type of a finite Ha-CW complex.

Suppose that we form a new space

p': E> « E U ¥ ((F X „a G) X D") -* 77 u , (G/Ha X D") = B'

by attaching a G-cell to 77, covering the attachment by a G-map <b' which is a
fiberwise equivariant homotopy equivalence (equivariant with respect to the relevant
isotropy subgroups). Then T'p: TE' —> 77' is also a fibration whose fibers are equiv-
ariantly equivalent to F.

Proof. One observes that/»': E' -» B' is a G-quasifibration, and concludes that
the fibers of TE' have the specified weak (equivariant) homotopy type, the passage
from weak (equivariant) homotopy to strong equivariant homotopy being facili-
tated by Milnor's Theorem and its consequences (see [Wal], as well as §5 of this
paper). A more detailed proof of a more general result appears in [Wa2].

Remark 2.10. One may replace F X H G by F' X H G for some other compact
space F' provided one is content to do without the comparison with a fixed fiber F.
This point is discussed in relation to the classification theorem in [Wa2].

3. Equivariant duality and stable homotopy theory. The construction of equiv-
ariant Spanier-Whitehead duals for finite G-CW complexes is due to Wirthmüller
[Wil] and is reintroduced here in the setting of an ambient G-space GR°°. Let Cö
denote the category of based G-spaces and based maps.

Definition 3.1. A G-spectrum is a set of based G-spaces {E(V) G Cö} indexed
by the G-subspaces of GR °° together with structure maps

o: 2VE( W) -» E( V + W)    for V± W

such that:
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(i) a = 1 when V = (0);
(u)

ZZZWE(V)-> *LZE(V + W)

•£W + ZE(V)->E(V +W + Z)

commutes when V, W, and Z are pairwise orthogonal;
(iii) ö: E(W)^> Q,VE(V + W) is a G-homeomorphism, where a is the adjoint of

o.
Maps of spectra are required to commute with the structure maps a. Let G S

denote the category of G-spectra and maps of G-spectra.
Basis-free spectra were originally constructed by May (see, for example, [Mai,

§8]), and much of the theory easily goes over to the equivariant case by using GR°°
as the ambient space.

Definition 3.2. Define functors Qx: G5" -> GS and ( )0: GS -+ Cö by

QX(X)(V) = colim QWS.V+WX

and
(E)0 = £(0).

It is then formal [Mai, §9] that the pair (Qx, ( )0) is an adjoint pair, and we have
an adjunction

GS(QXX, E)*G$(X, (E)o).
Hence, by compactness, we have

GHQXX, Q^Y) » colim C$ÇZVX, 2Ky) (1)
whenever X is compact, and it is easily verified that the colimit on the right-hand
side is equivalent to the colimit colim Cö(2.yX, 2K7), where Franges through the
category (made small) of all orthogonal G-modules, and direction is obtained from
linear G-embeddings i: V—> W. (Note that (1) would not be possible if we were
working in this cumbersome category instead of GR°°.)

With the appropriate notion of homotopy, we obtain

hG%(QxX, E) s hC5(X, (E)0)
and, for compact X,

hGS(QxX, QXY) a colim hCÏÏ(2yX, 2Ky)
by passage to homotopy categories, where the second equivalence displays the
equivariant Spanier-Whitehead suspension category as the image subcategory un-
der Qx of the category of compact spaces. A genuine stable G-homotopy category
would be obtained from «G S by formally inverting its weak equivalences, but we
shall not enter into the requisite technicalities. Instead, we restrict attention to the
suspension category of compact G-CW complexes but retain the formal language
of spectra where convenient.
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Definition 3.3. As in [Wil, §1], we define a G-duality to be a G-map u:
QxSy —> Qao(2fV(X A X)) such that u induces isomorphisms

u/: hKS(QxS*, X) ^ hKS(X, QXS*)
and

u*/: hK§(QxS*, X) ^ hK§>(X, QMS*).
u is then called an a-G duality, where a = V — W G RO(G). Note that this
defines X uniquely up to G-homotopy [Wil].

Observe that by 3.2, we may represent such duality maps by elements of
colim hGr(Sv+L, '2,W+L(X A X)) = -n*(X A X) where it/ denotes the ath equi-
variant stable homotopy group. The results in [Wil] easily imply that:

Proposition 3.4. Let u: Sa* —> X A X* represent an a-G duality. The asterisks
indicate that the map is in some suspension 1.v. Then X AX is self-dual via

,      «A« *• *   (1.3) -. *u: S2a* -> X A X /\X A X* -> X A X AX A X*
where (1, 3) permutes the first and third coordinates.

Definition 3.5. Let /: X -» X be a G-map and let X have an a-G dual X for
some o G RO(G). Then define the equivariant reduced Lefshetz number by A(f) =
His) e A(G)> the Burnside ring of G, where/s is the composite:

sa*-*x ax* ^ x/\X*^>sa*
» /Al û

in ttq(S°), û being dual to « via a duality p, and where 0 is the isomorphism
constricted by torn Dieck [Dil], from w^(5°) to A(G).

Observe that, if 77 c G is a closed subgroup, then A(fH) is the usual reduced
Lefshetz number (see [Dil]). (The fact that pH is a duality for any H < G and
G-duality p stems from the fact that G-duals of orbits are their Thorn spaces in
orthogonal representations.)

4. Equivariant fiberwise duality. The construction of fiberwise duality is due to
Becker and Gottlieb [Bel], and is generalized here to (C$,F) fibrations for
suitable categories (C5, F). Recall the notion of a based G-space E over 77 (see
§4.1).

Lemma 4.1. Let E and E' be based G-spaces over 77, and let f.E-^E'bea
section-preserving G-map over 77. Let C$E, C9f and ^¡¡¡E denote, respectively, the
fiberwise reduced cone of E, the fiberwise cofiber, C$E u ¡ E', of f, and the fiberwise
suspension of E. Then the natural maps induce for any E", an exact sequence

■■ ■ ̂ <sE,E"}9^{C9f,E"}%^{E',E"}9^{E,E"}^^- ■ ■
of abelian groups, where {X, Y}9 denotes the set colim [S^Y, 2$Y]9 of fiberwise
homotopy classes of maps over 77 (taken over V c GR°°). Here, H^X = Sy A $X,
where As's fiberwise smash product.

Proof. For each fixed V, exactness is a formal consequence of the definitions,
and the passage to colimits is automatic since 2^ commutes with CF and 2^
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Lemma 4.2. Let p: E —> B be a based G-space, and suppose that (B, A) is a
G-N.D.R.pair in G% such that there is a G-retraction r: B X 7-> 77 X {0} u A X
I which is covered by a G-retraction

r: E X I -> E X {0} u P~X(A) X I,
the target being the fiberwise reduced mapping cylinder. Let p': E' ^* B be a based
G-fibration. Then the natural map C%i —> E/p~x(A) induces an isomorphism

[cJ,E%^[E/p-\A),E%,
where E/p~l(A) is the G-space over 77 obtained by collapsing each fiber over A to its
basepoint, and i: p~x(A) u „ 77 —* E is the inclusion, a: A -*p~x(A) being the
restriction of the section of p.

Proof. Suppose given /: C<$i -» E' over 77. We have the following diagram of
G-maps:

'i ;
E     -»      E X I     -»      M4     ->      C4
\ \ V 4-

77-*      77 X 7     -►       Mi      ->       77

in which ix(x) = (x, 1), r and r are as in the hypothesis, and M9 and M are,
respectively, the fiberwise and ordinary reduced mapping cylinder functors. (/:
A —» 77 is the inclusion.)

This diagram factors to give:

fe/p~x(a)-► c9r-► É

B-^77
y

where y = tr0rix. But y is G-homotopic to the identity, and the G-CHP gives a map
E/p~~x(A) —» E' as required. The verification that this defines the required inverse
is straightforward.

Definition 4.3. Let/?: E -» 77 be a based G-fibration. A fiberwise G-duality is a
map

u: Sv X B^>E A9Ê

of based G-fibrations over 77 such that for each x G 77, u restricts to a Gx duality
S y -> Fx A Fx over x, where Fx = p~ x(x).

Lemma 4.4. Let u: SKX77—>isA^£ be a fiberwise G-dualtiy. Then for all
based G-fibrations X and Y over 77, we have

Du: {X, YA$E}9^ {X A 9Ê, Y}9
whenever B is a finite dimensional G-CW complex.

Proof. This is proved by induction over the skeleta of 77.
If 77 is an orbit, 77 = G/H, the result is an immediate consequence of the theory
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of equivariant duality [Wil] since any map over G/77 is entirely specified by its
restriction to the fiber over the identity coset. Similarly for disjoint unions of
G-orbits.

Suppose then that the lemma is valid for all « - 1 dimensional G-CW com-
plexes, and let 77 be an «-dimensional G-CW complex. Then, considering parts over
B"~x, u\Sy X B"~x sets up an isomorphism

Du\: {X\B'~\ Y\B"~X A9E\B"-X}9 « {X\Bn~x A<sÊ\B"-x, Y\B"-X}9
overJ?""1.

Now apply the 5-lemma to the sequence:

Í   X\B" Y\B" AyE\Bn     \
UI77"-1'   Y\B"'XA9E\B'-X ¡^

|| <— (since maps are fiberwise)

{^,Y\B"A*E\B*

i
{X\B"-X, Y\Bn A9E\Bn}9

i
{X\B"-X,Y\B"-X A9E\B"-X}9

of spaces over 77", where spaces over 77 "-1 are regarded as being over B" by using
the section to attach a copy of 77". Here,

A-|77" Y\B"A9E\B"—:-r   and   -;-;-r
X\B"~X Y\B"-X AçfE\Bn-x

are G-fiberwise homotopy equivalent to trivial G-fibrations of the form

HFX„ G X TÍ" -► II G/77„ X D".

This proves the inductive step.

Corollary 4.5. E A<$E is self-dual via the map

p:B X S2yU^XU E A9È A9E A9Ê(X^ E A9Ê A^E AsÈ
whenever 77 is finite dimensional.

Theorem 4.6. Let p: E -> 77 be a based G-fibration with fiber F such that B is a
finite dimensional G-CW complex, and such that F has the Ha homotopy type of a
finite 77a-CW complex for each action of each subgroup Ha on F appearing (up to
Ha-homotopy) in E. Then p has a fiberwise G-dual p: E —* B.

Proof. We proceed by induction on the skeleta of 77, and we let E¡ = p~x(B')
and/», = p\E¡. By consideration of disjoint unions, the result will hold for 77° if it
does so when 77° = G/77 for some closed subgroup 77 of G. Then/»0: E0 -» B° is of
the form p: F X H G-> G/77. Choose a duality Sy ^> F A F of 77-spaces for
V c 77R00. By the Frobenius Property, there exists an 77-isometry W + F-> GR°°
with W±V and 77-invariant.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



380 STEFAN WANER

Now Sy+W ^f F A^-WF is also a duality of 77-spaces, where Sy+W may be
regarded as the compactification of a subspace of GR°°.

Twisting both sides with G, we obtain a map

<v+w x G/H=SV+W xH G —► (F A S^F) x„ G

(F * ff G) Ac (?WF xHG)

where the first isomorphism is the map (s, [g]) i-> [sg~l, g], and all the components
are fiber-preserving maps. Clearly, this map is a fiberwise G-duality for G/77 =
B°.

Suppose then that we have constructed a fiberwise G-duality for En, and that 77
is « + 1-dimensional. We may as well assume that 77 = 77" u ,,, G/77 X D"~x, as
the argument will show.

We have the following pullback diagrams in some fiberwise suspension by a
G-module.

E(S")
Sn x (F xH G):

S" x (F xH G)

■ S" x G/H

B^E(Sn)

■Sn x G/H-

-*E„

-*  77"

^F„

-* B"

Here, E(Sn) = E(S"), where E(S") = <*>*(/>„), 9 is a fiberwise G-equivalence, and 9
is dual to 9 relative to a fixed duality p' for F and the pullback p of a duality p for
E. The situation is now displayed as follows (in some fiberwise suspension):

E(Sn)  A9 E(Sn)-► E„ Af E„

OAi

(Sn xFxHG) Aç (Sn xF xHG) Sv xS" xG/H->SV x Bv ;, Dn

Sn xG/H — -+B"

Here, the top face of one tetrahedron on the left G-homotopy commutes over
S" X G/77, and the rest of the diagram strictly commutes. \p is a fiberwise
G-homotopy inverse to 9 (9 being a fiberwise equivalence).

The construction of the required duality is then explained by the following
diagram, again in some suspension by a G-module.
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S"x(FA XF) x„ G

S" x (F A E0F) x„ C • F„ Ac 2„E„

£AîE0(£„U7fl»+1 xFx„G)

ß"+1  x C/ff.•••«■/*, r'£0(F„ UTfl"+1 x F xHG)

Sn x G/ff

ßn + 1  x G//Í-

Here, 20 denotes unreduced (based) suspension,

y = tt ° *: 5" X (20F x„ G) -> 20£(S") -» S^B,,,
4> retracts one outer rim of D"+' to 5", and the diagram commutes, except possibly
for the upper face of the tetrahedron on the left, which homotopy commutes over
S" X G/H.T' is the functor discussed in [Ma2, 3.2]. Existence of the map/follows
from the fact that a ° it ° (9 A 4>) is null-homotopic, and from the homotopy
9 A 4> ° p' ~ P- Let E = r'20(£„ u y D" X F X H G). Then/and the duality p fit
together to give a map

p:Sy+x X B^E AçE

such that the diagram

Sy+X X B

i
B

E Ac-
I
77

commutes, where r deforms the outer rim of the « + 1 cell into the boundary. Also,
p restricts to a duality over each point b G 77.

Since r ~ 1, we may find a map p: Sy+l X 77 -» E A$E over 77 by the G-CHP.
Since the property of being a fiberwise duality is preserved by such homotopies, it
follows that p is a fiberwise duality, as required.

5. Equivariant transfer. Once equivariant fiberwise duality is known to exist, the
definition and properties of equivariant transfer generalize fairly easily from the
nonequivariant case.

Definition 5.1. Let/?: E -» 77 be an unbased fibration with fiber compact F over
a finite dimensional G-CW complex.

By the equivariant transfer associated with a G-map f.E^E over 77, we mean
the map t¡: QXB+ -* QXE + defined by the following commutative diagram:

Bx* sV ~JT E ^ E TTT E A^ E ^ E iA fAi' E A;T E A"E
1 A'p

B+ A  Sv.-.-> E+ A Sv E A Sv
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where p and p are a G-dual pair of G-duality maps, E = E II 77, Ê is fiberwise
G-dual to E, and A is the diagonal.

Observe that this composite defines a unique class in hGS(QxB + , QXE+)
(independently of choice of dualities), and that the formal arguments in [Bel] go
over to the equivariant case to give us the following naturality properties:

Proposition 5.2. (i) Let f¡: E¡^> E¡ (/ = 1, 2) be G-maps over 77 and let h:
Ex —» E2 be a fiberwise  G-homotopy equivalence such  that h ° /, = f2 ° h.  Then

(ii) (Naturally over pullbacks). If g: B' ^* B is a G-map, then the following diagram
G-homotopy commutes:

QXE'+ - QXE +
'A î'/

QXB'+ -* QnB*

wherep': E' —»• 77' is the inducedfibration g*(p) and f = g*(f).
(iii) If p: E —> 77 and p': E' -* 77' are suitable (G]<S', F) fibrations; then the

composite

22K(77 X 77')+       a      SK77+ A 2K77' +

l'/A t),
22y(E X E')+      s     2K£+A2F£' +

represents tj/^f.
(iv) Passing to generalized G-cohomology theories, transfer defines a morphism of

graded modules over the cohomology of B (itself an algebra over A(G)).

Part (iv) requires a little explanation: Recall that an additive G-cohomology
theory defined on based G-CW complexes is an AO(G)-graded contravariant
group-valued functor A* which converts G-cofibration sequences into long exact
sequences and which are equipped with natural suspension isomorphisms of the
form

oy:Ka+yÇZyX)^Ka(X)

for a G RO(G). It is a formal consequence of Brown's Theorem (see, for example,
[Mai, §2]) that such theories may be represented by "fiG-prespectra" indexed on
RO(G) for which the structural maps a exist (in the category Cö) but for which
the ö need only be weak G-equivalences (and hence G-equivalences by G-Milnor's
Theorem in the [Wal]). The algebra structure over A(G) is then given by

WVB + 8^ 2uZyB + ̂ 2UT\ W)^T(U+ W)
where g: Su -^ Su represents a typical element of A(G) and /: I.yB+ -► T(W)
represents a typical element of the cohomology of 77. Associativity of this structure
follows from associativity of the suspension functors, and all the usual coherence is
formal.

The basic result about equivariant transfer is given by the following theorem,
and, in a more accessible form, in its successor.
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Theorem 5.3. Let p: E -» 77 and f: E -> E be as above, with 77 G-connected, and
suppose that H* is an equivariant cohomology theory with a weak dimension axiom
(i.e., such that H°(i): H°(X) -* 77°(*) = A(G) is an isomorphism for G-connected
X). Then H*(p ° tf)(x) = A(f)x, where A(f) is defined to be A(f+).

Proof. The definition of A(/+) and of tf shows this to be true when X = *
(whether or not we insist that 77°(/) be an isomorphism in the hypothesis), and the
result follows by Proposition 5.2 and the remarks following it.

Clearly, the G-connectivity requirement on 77 is unreasonably strong in general,
as we are asking that all the fixed point sets of 77 be connected. However, we may
specialize to fixed point sets quite easily as follows:

Theorem 5.4. Let p: E —» 77 and f: E —» E be as above, with BH connected for
some closed subgroup 77 of G. Then, if 77* denotes any cohomology theory with
dimension axiom (as in 5.3, but with Z replacing A(G) and equivariance dropped),
then H*(pH ° tf)(x) = A(f")x.

Proof. This is obvious from the definitions and 5.3, or by direct verification that
t" is the nonequivariant transfer for p H and fH.

6. Equivariant cellular theory and fibrations. Here, we obtain the equivariant
version of a theorem due to Stasheff [Stl].

Theorem 6.1. Let p: E —» B be a G-fibration with fiber F, and assume that 77 has
the G-homotopy type of a countable G-CW complex. (That is, B G C%0 in the
notation o/[Wal].) Then E G G<¥0 if and only if F G Ha%0for each action a on F
appearing (up to Ha homotopy) in E.

Proof. Half of this theorem (the "only if" part) is proved in [Wal] by replacing/»
by Tp. The converse is a generalization of a result by Stasheff [Stl] as proved by
Schön [Sel] (his proof being simpler than the original proof of Stasheff).

Recall from [Wal] that we may replace E by a G-CW approximation WE.
Let y: WE -» E be a G-CW approximation where WE may be assumed count-

able by countability of the G-homotopy groups, the number of subgroup types, and
the long exact fibration sequences. We may replace y by an equivariant fibration
Ty: TWE->E. Let p': TWE^B be the G-map p ° Ty. Then the following
diagram commutes:

r7
TWE->E

B

Further,/»' and/» are both equivariant fibrations where the fibers of p' are in 77^
for the appropriate subgroups 77, by [Wal].

Now Ty is a weak-G-equivalence, and the result follows by the long exact
fibration sequences for p and p', the five lemma, the Equivariant Whitehead
Theorem [Wal], and G-Dold's Theorem.
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