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Abstract—Inertial Navigation Systems (INS) are a key tech-
nology for autonomous vehicles applications. Recent advances in
estimation and filter design for the INS problem have exploited
geometry and symmetry to overcome limitations of the classical
Extended Kalman Filter (EKF) approach that formed the main-
stay of INS systems since the mid-twentieth century. The industry
standard INS filter, the Multiplicative Extended Kalman Filter
(MEKF), uses a geometric construction for attitude estimation
coupled with classical Euclidean construction for position, veloc-
ity and bias estimation. The recent Invariant Extended Kalman
Filter (IEKF) provides a geometric framework for the full naviga-
tion states, integrating attitude, position and velocity, but still uses
the classical Euclidean construction to model the bias states. In
this paper, we use the recently proposed Equivariant Filter (EqF)
framework to derive a novel observer for biased inertial-based
navigation in a fully geometric framework. The introduction of
virtual velocity inputs with associated virtual bias leads to a full
equivariant symmetry on the augmented system. The resulting
filter performance is evaluated with both simulated and real-
world data, and demonstrates increased robustness to a wide
range of erroneous initial conditions, and improved accuracy
when compared with the industry standard Multiplicative EKF
(MEKF) approach.

I. INTRODUCTION

State observers for mobile systems are core components in
enabling autonomous robotic applications. Classical solutions
including Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF), and non-linear optimization methods demon-
strated their relevance in practical application. However, de-
spite their success, they are known to lack in robustness due to
their local coordinate representation and linearization issues. In
fact, the mathematical proof of their (guaranteed) convergence
has only been shown under several strong assumptions [1] [2].
This has motivated the study of geometric observers that ex-
ploit symmetry and geometric properties of systems on homo-
geneous spaces and Lie groups to deliver better robustness and
performance. Geometric nonlinear observers for navigation
problem and pose estimation on SE(3) have been derived in
deterministic form [3], and stochastic form [4] [5]. However,
most of these observers are designed for first order kinematic
systems where a velocity input is available. Motivated by the
widespread use of robotic systems carrying a low-cost Inertial
Measurement Unit (IMU), and with particular focus on the
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non-biased inertial navigation problem, nonlinear geometric
deterministic [6] [7] and stochastic [8] observers for second
order kinematic systems have been considered. Different from
these approaches, Barrau and Bonnabel [2] proposed the
Invariant Extended Kalman Filter (IEKF), a geometric EKF-
like observer for kinematic systems posed on a matrix Lie
group with invariance properties. Reduced linearisation error
and local convergence properties are key features that make
the IEKF an excellent choice for a broad class of (group affine)
systems on matrix Lie groups.

Asymptotically stable observers for kinematic systems on
homogeneous spaces or Lie groups require measurements of
the system input. In practice, such measurements are typically
corrupted by constant or slowly time-varying unknown biases.
The problem of observer design for concurrent estimation
of the system state and input measurement biases has been
tackled by different authors with different methodologies, in-
cluding; non-linear deterministic observers [9] [10], gradient-
based observers [11] and IEKF observers [12] [13]. Common
to all prior approaches, however, is that the inclusion of the
bias state in the estimation breaks the symmetry and leads to
complete or partial loss of the key properties such observers
are characterized by.

In this paper, we tackle the problem of designing an Equiv-
ariant Filter (EqF) for the biased inertial navigation system.
Such a system is neither invariant nor group affine, and thus
IEKF observers cannot be directly applied without loss of
the log-linear property [12] [13]. Motivated by the recent
research in the new field of equivarariant system theory [14]
and EqF design [15] we use velocity extension and equivariant
filter design methodologies to obtain a fully geometric EKF-
like filter for a navigation system including bias states. Key
contributions of the paper are: First, the exploitation of the
semi-direct product structure to define the symmetry group
SE2(3) ⋉ se2(3), and the subsequent modeling of the biased
inertial navigation system as equivariant system. Second, the
presentation of a novel equivariant lift for the system onto the
symmetry group leading to the proposed design of an Equivari-
ant Filter for the lifted system. To the best of our knowledge,
this is the first work presenting a geometric EKF-like observer
for the concurrent estimation of the navigation state and the
input measurement biases characterized by a tightly-coupled
geometric description of such states. The performance of the
proposed EqF is demonstrated on simulations and real-world
in-flight data of an Unmanned Aerial Vehicle (UAV) equipped
with an IMU and able to receive extended pose measurements
of position, attitude and velocity. A performance gain of 30%-
40% in terms of input measurement bias estimation, as well

ar
X

iv
:2

20
2.

02
05

8v
1 

 [
cs

.R
O

] 
 4

 F
eb

 2
02

2



as, enhanced stability and robustness compared to the industry
standard MEKF, make the proposed EqF a suitable choice
to replace other EKF-like observer for robotic navigation
problem. Practical use cases of the proposed EqF could include
an aircraft equipped with multiple GNSS receivers able to
obtain direct position and velocity measurements, and indirect
attitude measurements given a sufficient baseline among the
different receivers [16], or an aircraft equipped with a single
GNSS receiver that provides position and velocity measure-
ments and a magnetometer to provide attitude information.

II. PRELIMINARIES

Let ξ ∈M be an element of a smooth manifold M, TM
denotes the tangent bundle, TξM denotes the tangent space ofM at ξ and X (M) denotes the set of all smooth vector fields
on M. A Lie group G is a smooth manifold endowed with
a smooth group multiplication that satisfies the group axioms.
For any X,Y ∈ G, the group multiplication is denoted XY ,
the group inverse X−1 and the identity element I . In this work
we will focus our attention on a special case of Lie groups,
called matrix Lie groups, which are those whose elements are
invertible square matrices and where the group operation is the
matrix multiplication. For a given Lie group G, the Lie algebra
g is a vector space corresponding to TIG, together with a
bilinear non-associative map [⋅, ⋅] ∶ g → g called Lie bracket.
The Lie algebra g is isomorphic with a vector space Rn of
the same dimension n = dim (g). We define the wedge map(⋅)∧ ∶ Rn → g and its inverse, the vee map (⋅)∨ ∶ g → Rn,
as mappings between the vector space and the Lie algebra.

For any X,Y ∈ G, the left and right translation by X write

LX ∶ G → G, LX (Y ) =XY,
RX ∶ G → G, RX (Y ) = Y X,

follows that for ηY ∈ TY G, their differential are defined by

dLX ∶ TY G → TXY G, dLX [ηY ] =XηY ,
dRX ∶ TY G → TY XG, dRX [ηY ] = ηYX.

Proofs are provided in the supplementary material [17].
The Adjoint map for G, AdX ∶ g → g is defined by

AdX [u∧] = dLXdRX−1 [u∧] ,
for every X ∈ G and u∧ ∈ g. In the context of matrix Lie
group, we can define the Adjoint matrix to be the map
Ad∨X ∶ Rn → Rn defined by

Ad∨Xu = (AdX [u∧])∨ .
In addition to the Adjoint map for the group G, the adjoint

map for the Lie algebra g can be defined as the differential at
the identity of the Adjoint map for the group G, therefore the
adjoint map for the Lie algebra adu∧ ∶ g → g is written

adu∧ [v∧] = u∧v∧ − v∧u∧ = [u∧,v∧] ,
that is equivalent to the Lie bracket. Again, in the context of
matrix Lie group we can define the adjoint matrix ad∨u∧ ∶
Rn → Rn as

ad∨u∧v = (u∧v∧ − v∧u∧)∨ = [u∧,v∧]∨ .

The Adjoint operator is a Lie-algebra automorphism

AdX [adu∧ [v∧]] = ad(AdX[u∧]) [AdX [v∧]] .
A right group action of a Lie group G on a differentiable

manifoldM is a smooth map φ ∶ G ×M → M that satisfies
φ (I, ξ) = ξ and φ (X,φ (Y, ξ)) = φ (Y X, ξ) for any X,Y ∈ G
and ξ ∈M. A right group action φ induces a family of diffeo-
morphisms φX ∶ M → M and smooth nonlinear projections
φξ ∶ G → M. The group action φ is said to be transitive if
the induced projection φξ is surjective, and, in such case, M
is termed homogeneous space. A right group action φ induces
a right group action on X (M), Φ ∶ G ×X (M) → X (M)
defined by the push forward [18] such that

Φ (X,f) = dφXf ○ φX−1 ,
for each f ∈ X (M), φ-invariant vector field and X ∈ G.

III. BIASED INERTIAL NAVIGATION SYSTEM

This work considers the problem of estimating the extended
pose [12] of a rigid body, together with the accelerometer
and gyroscope biases that affect the IMU measurements.
Therefore estimating the state of what we called biased inertial
navigation system. Let {G} denote the global inertial frame of
reference and {I} denote the IMU frame, which is assumed to
coincide with the rigid body’s center of mass. In non-rotating,
flat earth assumption the (noise-free) system is written

˙G
IR = GIR (Iω − Ibω)∧ , (1a)
˙GpI = GvI , (1b)
˙GvI = GIR (Ia − Iba) + Gg (1c)

˙Ibω = 0, (1d)
˙Iba = 0. (1e)

Here G
IR corresponds to the rigid body orientation and it is

defined by a rotation matrix that rotates a vector Ix defined
in the {I} frame to a vector Gx = GIR Ix defined in the
{G} frame. The rigid body position and velocity expressed
in the {G} frame are denoted GpI and GvI respectively.
The gravity vector in the {G} frame is denoted Gg . The
body-fixed, biased, angular velocity and linear acceleration
measurements provided by an IMU are denoted Iω and Ia.
The gyroscope and accelerometer biases are denoted Ibω and
Iba respectively.

In order to exploit the geometrical properties of the sys-
tem, let ν, τω , τν , τa be, in general, virtual, non-physical
inputs and Ibν be an additional velocity-bias state vari-
able. Then the system kinematics can be extended as

˙G
IR = GIR (Iω − Ibω)∧ , (2a)
˙GpI = GIR (ν − Ibν ) + GvI , (2b)
˙GvI = GIR (Ia − Iba) + Gg , (2c)

˙Ibω = τω, (2d)
˙Ibν = τν , (2e)
˙Iba = τa. (2f)

Where it is clear that fixing the additional state variable and
virtual inputs to zero lets us retrieve the original kinematics
in Equ. (1). For the sake of clarity we have used bold letters
for state variables and modeled inputs and non-bold letters
without superscripts for virtual, non-physical inputs.



Let G
IT = (GIR, GpI , GpI) ∈ SE2 (3) denote plat-

form’s extended pose, and Ib = (Ibω , Ibν , Iba) ∈ R9 the
modeled measurement biases. Let u = (Iw∧, g∧, τ∧) ∈ L,
L ⊆ se2(3) × se2(3) × se2(3) denote the system input, where
Iw = (Iω , ν, Ia) ∈ R9. SE2 (3) is the SE2(3)-Torsor [19]
and se2(3) the Lie algebra of SE2(3). The biased inertial
navigation system can then be written as a first order kinematic
system, with state ξ = (GIT, Ib∧) posed on the direct product
manifold M ∶= SE2 (3) × se2(3), as

G

IṪ = f0
1 (GIT)GIT + GIT (Iw∧ − Ib∧) + g∧ GIT, (3)

I
ḃ∧ = τ∧, (4)

where f0
1 ∶ SE2 (3)→ TSE2 (3), f0

1 ∈R (SE2 (3)) is a right
invariant vector field defined by

f0
1 (GIT) ∶= [0 GvI 0

0 0 0
] . (5)

Moreover, the biased inertial navigation system kinematics
can also be written in the following compact affine form:

ξ̇ = f0 (ξ) + fu (ξ)
= f0 (ξ) + (GIT (Iw∧ − Ib∧) + g∧ GIT, τ∧) , (6)

with f0 (ξ) ∶= (f0
1 (GIT)GIT, 0∧), f0 ∈R (M) a right invari-

ant vector field, termed drift field.
Along this work, we consider the case where an extended

pose measurement of the rigid body is available to the system.
In such cases the output space can be defined by N ∶= SE2 (3)
and, thus, the configuration output h ∶ M → N is defined by

h (ξ) = GIT. (7)

Then a real-world measurement with associated Gaussian
noise n can be modeled as [20]

y = GIT exp (n∧) or y = exp (n∧)GIT. (8)

depending if uncertainties are associated locally or globally.

IV. SYMMETRY OF THE BIASED INERTIAL NAVIGATION
SYSTEM

Physical systems in robotics usually carry natural symme-
tries that encodes invariance or equivariance properties of
their dynamical models under space transformations given
by a symmetry group. As already recognized and widely
accepted, symmetric properties of kinematic systems can be
exploited to design high-performance and robust observers. In
particular, as mentioned in the introduction, a key contribution
of this paper is the exploitation of a novel symmetry group
SE2(3)⋉se2(3) = SE2(3) ⋉ se2(3) as a semi-direct product of
SE2(3) with se2(3), which leads to a new formulation of the
biased inertial navigation system as an equivariant kinematic
system. Additional mathematical preliminaries, as well as, ex-
tended proofs are available in the supplementary material [17].

For the sake of clarity, in the two following sections we
omit all the superscript and subscript associated with reference
frames from the state variables and input to improve the
readability of the definitions and theorems. Therefore, we
consider ξ = (T, b∧) ∈M and u = (w∧, g∧, τ∧) ∈ L.

A. The Semi-direct Product Group

Let X = (A,a) and Y = (B, b) be elements
of the symmetry group SE2(3)⋉se2(3). The semi-direct
group product is defined by Y X = (BA, b +AdB [a]).
The inverse element is X−1 = (A−1,−AdA−1 [a]) with
identity element (I,0). The inverse of a product is(Y X)−1 = ((BA)−1

,−Ad(BA)−1 [b +AdB [a]]).

B. Equivariance of the biased inertial navigation system

Lemma 4.1. Define φ ∶ SE2(3)⋉se2(3) ×M → M as

φ (X,ξ) ∶= (TA, AdA−1 [b∧ − a]) . (9)

Then, φ is a transitive right group action of SE2(3)⋉se2(3) onM.

Proof is provided in the supplementary material [17].

Lemma 4.2. Define ψ ∶ SE2(3)⋉se2(3) ×L → L as

ψ (X,u) ∶= (AdA−1 [w∧ − a] + f0
1 (A−1), g∧, AdA−1 [τ∧]) ,

(10)

where f0
1 ∶ SE2(3)→ TSE2(3) is given by Equ. (5). Then, ψ

is a right group action of SE2(3)⋉se2(3) on L.

Proof is provided in the supplementary material [17].

Theorem 4.3. The biased inertial navigation system in
Equ. (6) is equivariant under the actions φ in Equ. (9) and ψ
in Equ. (10) of the symmetry group SE2(3)⋉se2(3). That is

f0 (ξ) + fψX(u) (ξ) = ΦXf
0 (ξ) +ΦXfu (ξ) .

Proof is provided in the supplementary material [17].

Remark 4.4. Note that the re-modeling of the biased inertial
navigation system from Equ. (1) to Equ. (2) by adding
additional virtual inputs and state variables is a necessary step
to prove the equivariant property of the system. This is one of
our key contributions that allowed us to find a symmetry of
the biased inertial navigation system for the first time in the
field of biased inertial navigation.

C. Output equivariance

Lemma 4.5. Define ρ ∶ SE2(3)⋉se2(3) ×N → N as

ρ (X,y) ∶= yA. (11)

Then, the configuration output defined in Equ. (7) is equivari-
ant [15].

Proof is provided in the supplementary material [17].

V. LIFTED SYSTEM

A. Equivariant Lift

In order to design an EqF we need to find a lift of the system
kinematics into the Lie algebra of the symmetry group, that
is a smooth map Λ ∶ M ×L → se2(3)⋉se2(3) linear in L such
that

dφξ (I) [Λ (ξ,u)] = f0 (ξ) + fu (ξ) ,



∀ ξ ∈M, u ∈ L. For the sake of clarity and due to the
limited space, we split the lift function into two functions
Λ1,Λ2 ∶ M ×L → se2(3).

Theorem 5.1. Define Λ1 ∶ M ×L → se2(3) as

Λ1 (ξ,u) ∶= (w∧ − b∧) +AdT−1 [g∧] + T−1f0
1 (T) . (12)

And, define Λ2 ∶ M ×L → se2(3) as

Λ2 (ξ,u) ∶= adb∧ [Λ1 (ξ,u)] − τ∧. (13)

Then, the map Λ (ξ,u) = (Λ1 (ξ,u) , Λ2 (ξ,u)) is an equiv-
ariant lift for the system in Equ. (6) with respect to the defined
symmetry group.

Proof is provided in the supplementary material [17].

B. Origin

The lift Λ defined in Equ. (12)-(13) provides the nec-
essary structure that connects the input space with the Lie
algebra of the symmetry group and, therefore, defines a
lifted system on the symmetry group. However, in order
to do so, we need to define a state origin ξ0 ∈ M for a
global coordinate parametrization of the state space M by
the symmetry group SE2(3)⋉se2(3) given by the projection
φξ0 ∶ SE2(3)⋉se2(3) → M. The choice of the state origin is
arbitrary, however, a clever choice that makes the following
derivation easier is given by the identity of the symmetry
group, such that ξ0 = (I, 0∧). Moreover, given the choice of
the state origin ξ0 to be the identity, the output origin is
y0 = h (ξ0) = I.

C. Lifted System

The lift Λ together with the previously defined reference
origin ξ0 allow the construction of a lifted system on the
symmetry group SE2(3)⋉se2(3). Let u ∈ L be the system
input and X = (A,a) ∈ SE2(3)⋉se2(3) be the lifted system state,
then, according to the general form Ẋ = dLXΛ (φξ0 (X) ,u)
in [21], and considering the choice of the origin, the lifted
system kinematics for the biased inertial navigation system
follow

Ȧ = A (w∧ +AdA−1 [a]) + g∧A + f0
1 (A) , (14)

ȧ = AdA [ad(−AdA−1 [a]) [(w∧ +AdA−1 [a])
+AdA−1 [Gg∧] +A−1f0

1 (A)] − τ∧] . (15)

VI. EQUIVARIANT FILTER DESIGN

Starting from this section we restore our original notation
of state and input variables.

The Equivariant Filter design follows the steps de-
scribed in [15]. Let Λ be the equivariant lift defined in
Equ. (12)-(13), ξ0 be the chosen identity state origin and
X̂ ∈ SE2(3)⋉se2(3) be the Equivariant Filter state, with initial
condition X̂ (0) = (I,0). Then the state evolves according to

˙̂
X = dLX̂Λ(φξ0(X̂), u) + dRX̂∆,

such that
˙̂
A = Â (Iw∧ +AdÂ−1 [â]) + Gg∧Â + f0

1 (Â) +∆1Â, (16)
˙̂a = ad−â [(AdÂ [Iw∧] + â) + Gg∧ + f0

1 (Â)]−AdÂ [τ∧] +∆2 + ad∆1 [â] . (17)

The innovation term ∆ = (∆1,∆2) is defined in the follow-
ing analysis.

A. Linearized Error and Output Dynamics

Given the chosen identity state origin ξ0 and the Equivariant
Filter state X̂ , the state error and the filter error are defined to
be respectively e = φ−1

X̂
(ξ) and E =XX̂−1. Since we would

like to have ξ̂ = φX̂ (ξ0)→ ξ, the Equivariant Filter goal is to
drive the error e→ ξ0.

To compute the linearized error dynamics we need to select
a chart and a chart transition map ε ∶ Uξ0 ⊂M → R18. If,
similarly to what has been done for the lift and the innovation,
we split the error e ∈ M in the following two components
e = φ−1

X̂
(ξ) = (e1, e2). Then the chart transition map can be

defined as

ε (e) = (ε1, ε2) = (log (e1)∨ , e∨2) ∈ R18, (18)

and ε (ξ0) = 0 ∈ R18.
Therefore the linearized dynamics of ε at 0 are

ε̇ ≈ A0
t ε − De∣ξ0 ε (e) DE ∣I φξ0 (E) [∆] , (19)

A0
t = De∣ξ0 ε (e) DE ∣I φξ0 (E) De∣ξ0 Λ (e,u0) Dε∣0 ε−1 (ε) ,

(20)

where u0 ∶= ψ (X̂−1,u) is the origin input. The interested
reader is referred to [15] for a complete and detailed derivation
of the linearized error dynamics in Equ. (19).

Similarly, the output can be linearized by selecting a chart
and a chart transition map δ ∶ Uy0 ⊂ N → R9 defined as

δ (y) = log (y)∨ . (21)

Then linearizing δ as function of the coordinates ε about ε = 0
yields

δ ≈ C0ε, (22)

C0 = Dy ∣y0 δ (y) De∣ξ0 h (e) Dε∣0 ε−1 (ε) . (23)

Solving the equations (20) and (23) for the linearized error
state matrix A0

t and the linearized output matrix C0 yields

A0
t = [Υ −I

0 ad∨(Iw∧
0+Gg∧)] ∈ R18×18, (24)

Υ =
⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 0 I

Gg∧ 0 0

⎤⎥⎥⎥⎥⎥⎦
∈ R9×9, (25)

C0 = [I 0] ∈ R9×18. (26)

The output matrix C0 is constant. The (1,1) and (1,2) blocks
of A0

t are constant where the (1,2) block encodes a constant
linear coupling of the bias states into the navigation states.
Note that for existing design methodologies, where the bias is



added without an integrated equivariant geometry, the coupling
in the (1,2) block of A0

t will be time-varying and depends on
the observer state. One way of understanding this difference is
that the bias for the EqF is estimated in a time-varying “frame
of reference” adapted to the symmetry of the navigation states.
Conversely, classical approaches, and the “imperfect” IEKF,
estimate the bias states in a copy of the Lie-algebra that is not
adapted to the symmetry. This structure leads to the improved
bias estimation results shown in the sequel. The (2,2) block
of the matrix A0

t for the EqF encodes bias error dynamics
induced by the time-variation of the body-frame.

B. Equivariant Filter ODEs

To summarize, let X̂ = (Â, â) be the Equivariant Filter state
with initial condition X̂ (0) = (I,0) and Σ ∈ S+ (18) ⊂ R18×18

be the Riccati matrix with initial condition Σ (0) = Σ0. Let
A0
t and C0 be the matrices defined respectively in Equ. (24)

and Equ. (26). Let ∆ = (∆1,∆2) be the innovation term. Let
P ∈ S+ (18) ⊂ R18×18 and Q ∈ S+ (9) ⊂ R9×9 be respectively
a state gain matrix and an output gain matrix. Therefore,
the Equivariant Filter dynamics, the innovation term and the
Riccati Dynamics are

˙̂
A = Â (Iw∧ +AdÂ−1 [â]) + Gg∧Â + f0

1 (Â) +∆1Â, (27a)
˙̂a = ad−â [(AdÂ [Iw∧] + â) + Gg∧ + f0

1 (Â)]−AdÂ [τ∧] +∆2 + ad∆1 [â] , (27b)

∆ = DE ∣I φξ0 (E)†
dε−1ΣC0T

Q−1δ (ρX̂−1 (y)) , (27c)

Σ̇ = A0
tΣ +ΣA0

t

T +P −ΣC0TQ−1C0Σ. (27d)

VII. STABILITY ANALYSIS

Theorem 7.1. Consider the observer (27) computed for local
coordinates (18) (21) and linearized model A0

t and C0 given
by (24) and (26). Assume that the trajectory ξt and the
observer evolve such that the matrix pair (A0

t ,C
0) is uni-

formly observable. Then, there exists a local neighbourhood
of ξ0 ∈ M such that for any initial condition of the system
such that the initial error e(0) lies in this neighbourhood, the
observer (27) is defined for all time and e(t) → ξ0 is locally
exponentially stable.

Remark 7.2. Note that the assumption on uniform observ-
ability of the error dynamics linearisation (A0

t ,C
0) can be

inferred from uniform observability of the state trajectory, at
least in a local neighbourhood [22]. The details of such an
extension are beyond the scope of the present article.

VIII. EXPERIMENTS

To validate the proposed Equivariant Filter design for a
biased inertial navigation system, we performed different
simulations, as well as, real-world experiments, of a UAV
carrying an IMU and receiving extended pose measurements.
In simulation, the UAV is navigating a spline interpolated
trajectory passing through randomly chosen waypoints, pro-
viding ground-truth values for the UAV position, orientation,
velocities (linear and angular), and acceleration. These values

Figure 1. Averaged norm of the navigation and biases error over the 15 runs.
Left column: Transient phase. Right column: Asymptotic phase. Note the
different y-axes scale for the transient and the asymptotic phase.

Table I

RMSE Att [°] Pos [m] Vel [m/s] bias [rad/s] bias [m/s2]
EqF (T ) 2.3032 0.1884 0.1480 0.0224 0.0937

MEKF (T ) 4.7448 0.1819 0.1751 0.0241 0.0899

EqF (A) 0.5502 0.0902 0.0698 0.0009 0.0104

MEKF (A) 0.6896 0.0815 0.0713 0.0014 0.0146

Meas (A) 7.8687 0.2496 0.2505 − −

were used to generate simulated extended pose measure-
ments as well as simulated IMU measurements. In order to
replicate a real-world scenario, Gaussian noise was added
to both the simulated extended pose (modeled using the left
equation in Equ. (8)) and the IMU measurements. Moreover
non zero, time-varying biases (modeled as random walk
processes) were added to the simulated IMU measurements.
The standard deviation of the measurement noise values are
σw = 1.3 ⋅ 10−2rad/s, and σa = 8.3 ⋅ 10−2m/s2 for simulated
IMU measurements reflecting the real IMU noise specification
onboard a AscTec Hummingbird quadcopter used in the real
world experiments, and σθ = 8.7 ⋅ 10−2rad, σp = 0.25m and
σv = 0.1m/s for extended pose measurements.

In all the simulations and real-world experiments, the state
origin ξ0 was chosen to be the identity of the state space,



Figure 2. Initialization error in logarithmic scale. e1 represent the navigation
error, while e2 represent the biases error. The red area represents the region of
initial condition that lead to a failure of the MEKF, whereas the EqF converges
for each initial condition.

Table II

RMSE Att [°] Pos [m] Vel [m/s] bias [rad/s] bias [m/s2]
EqF (PT , T ) 3.1313 0.1022 0.0530 0.0694 0.1331

MEKF (PT , T ) FAIL FAIL FAIL FAIL FAIL

EqF (PR, T ) 3.1584 0.1001 0.0451 0.0695 0.1411

MEKF (PR, T ) 6.0439 0.0812 0.1362 0.0896 0.1367

leading to an identity output origin y0. The state and the output
gain matrix for the Equivariant Filter were selected to reflect
input and output measurements noise respectively.

In the first simulation setup, the proposed EqF and a MEKF
were evaluated on a 15 runs Monte-Carlo simulation. Each run
has different input data, covering a time span of 120 s with
IMU provided at 100 Hz, and extended pose measurements
provided at 30 Hz, to account for different sensor clock
frequencies. Both filters were wrongly initialized with identity
orientation, zero position, velocity, and biases. The initial value
for the Riccati matrix was chosen to reflect the initial error.
Tab. I reports the averaged RMSE over the 15 runs, of the
navigation states and biases for the two filters, computed for
the first 40 s (the transient, T ) and the last 40 s (the asymptotic
behaviour, A) of each run. Furthermore, Fig. 1 better shows the
trend of the averaged error, and the sample standard deviation,
of the navigation and biases states. It is of particular interest to
note the improved transient performance and the lower ∼ 30%
asymptotic error on the bias states, of the proposed EqF.

To show the benefit on the stability of the appropriate
geometric description of the nonlinear structure of the prob-
lem, we compared the EqF and the MEKF in a known
challenging condition for EKF-like filters, in particular, in
this simulation we consider a typical run with noise-free
IMU and extended pose measurements provided respectively
at 100 Hz, and 30 Hz. Both filters were wrongly initialized, and
different tuning of the state gain matrix P were considered. An
appropriate tight tuning PT (small process noise), consistent
with a highly accurate IMU, and a robust tuning PR ≫ PT
with artificially inflated process noise [23]. Tab. II shows
the RMSE of the transient phase for both filter tuning. With
tight tuning the MEKF diverges (denoted as FAIL Tab. II).
This is due to the gain quickly approaching zero whereas
the estimation error has not sufficiently decreased due to
nonlinearities. The EqF, instead, remains unaffected. A robust
tune with inflated process noise is required to make the MEKF
converge, however, this engineering trick often degrades the
stochastic performance of the filter given that the tuning is not
according to the sensors noise specifications.

To show the robustness of the proposed methodology to
different initial conditions, in the third simulation setup, we ran

a batch of 10 different runs with the same input data including
IMU and extended pose measurements provided respectively
at 100 Hz, and 30 Hz, but with different initialization of the
filters with increasing initialization error in all the states. The
initial value for the Riccati matrix was increased accordingly
with the initialization error. Fig. 2 shows the different initial-
ization error in logarithmic scale. The proposed EqF exhibit
improved robustness to initialization error converging in each
run of the experiment whereas the MEKF diverges when the
initial error is high (red shaded area in Fig. 2). Unknown true
initial state is common in robotics application and improved
stability and robustness to wrong initialization are desirable
properties for an estimator.

Finally, the proposed EqF was evaluated, and compared with
a MEKF, on real-world in-flight data. Raw IMU readings were
recorded at 200 Hz on a AscTec Hummingbird quadcopter
flying a Lissajous curve [24], and raw pose measurements
gathered at ∼30 Hz from a OptiTrack motion capture system.
Velocity measurements were derived by numerical differen-
tiation of the filtered position measurements. The obtained
extended pose measurements at 30 Hz were then added with
zero mean white Gaussian noise. Standard deviation of the
IMU, and extended pose, measurement noise values was set
to the aforementioned values. Tab. III shows the RMSE (on
the full trajectory) of the EqF compared to the EKF for the
navigation states on the real-world in-flight data. Note that
there is no ground-truth for the bias states, hence we omitted
the corresponding entries.

Table III

RMSE Att [°] Pos [m] Vel [m/s]
EqF 3.4448 0.1210 0.5224

MEKF 3.9755 0.1357 0.5473

IX. CONCLUSION

In this paper we presented a novel Equivariant Filter design
for the biased inertial navigation system. We introduced an
innovative input-bias extension to the original system formu-
lation, together with a symmetry based on semi-direct product
group, that lead to the proof of the system’s equivariance. In
contrast to state-of-the-art solutions, we presented an equivari-
ant observer for the concurrent estimation of navigation states
and input measurement biases characterized by a well behav-
ing linearized error dynamics, asymptotic stability, improved
performance and robustness. The results shown in this paper
could lead to a series of work that can potentially bridge
the gap between existing geometric observers and practical
inertial-based navigation robotic applications since, to the best
of our knowledge, we are the first to show the inclusion of
bias terms as present in IMUs, in a tightly-coupled geometric
observer design. We validated our theoretical findings and the
proposed EqF in extensive simulation setup and real-world in-
flight data, specifically to show its improved accuracy, stability
and robustness compared to industry standard solutions for
robotics application.
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This document provides supplementary material for the
ICRA 2022 submission “Equivariant Filter Design for Inertial
Navigation Systems with Input Measurement Biases” [1].

MATHEMATICAL PRELIMINARIES

A. Fréchet derivative

Let h ∶ M → N be a continuous and differentiable
map between manifolds. The differential is writen
dh ∶ TM → TN . Given ξ ∈M and ηξ ∈ TξM, the
differential dh is evaluated pointwise by the Fréchet
derivative [2] as

dh (ξ) [ηξ] = Dζ ∣ξ h (ζ) [ηξ] ∈ Th(ξ)N .
B. Left translation on the Semi-Direct product group

Define the left translation on the semi-direct product
group G⋉

g by LX ∶ G⋉
g →G⋉

g , LXY ∶=XY . Define a map
dLX ∶ TY G⋉

g → TXY G⋉
g by

dL(A,a)[w1,w2] = (Aw1,AdA[w2]).
Lemma 1.1. dL(A,a) is the differential of the left translation
L(A,a).
Proof. Computing the differential of the left translation

D(B,b)∣
I,0

((A,a)(B, b))[w1,w2]
= D(B,b)∣

I,0
(AB,a +AdA[b])[w1,w2]

= (Aw1,AdA[w2])= dL(A,a)[w1,w2].

C. Right translation on the Semi-Direct product group

Define the right translation on the semi-direct product group
G⋉

g by RX ∶ G⋉
g → G⋉

g , RXY ∶= Y X . Define a map dRX ∶
TY G⋉

g → TY XG⋉
g by

dR(A,a)[w1,w2] = (w1A,w2 + adw1[a]).
Lemma 1.2. dR(A,a) is the differential of the right translation
R(A,a).
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Proof. Computing the differential of the right translation

D(B,b)∣
I,0

((B, b)(A,a))[w1,w2]
= D(B,b)∣

I,0
(BA, b +AdB[a])[w1,w2]

= (w1A,w2 + adw1[a])= dR(A,a)[w1,w2].

PROOFS

This section provides extended proofs of the Theorems and
Lemmas presented in the main document [1]. It should be
noted that the references to Lemmas, Theorems, and Equations
in this document refer to the original numbering from the main
document [1].

D. Proof of Lemma 4.1

Lemma 4.1. Define φ ∶ SE2(3)⋉se2(3) ×M → M as

φ (X,ξ) ∶= (TA, AdA−1 [b∧ − a]) .
Then, φ is a transitive right group action of SE2(3)⋉se2(3) onM.

Proof. Let X,Y ∈ SE2(3)⋉se2(3) and ξ ∈M. Then,

φ (X,φ (Y, ξ))= φ (X, (TB, AdB−1 [b∧ − b]))= (TBA, AdA−1 [AdB−1 [b∧ − b] − a])
= (TBA, Ad(BA)−1 [b∧ − (b +AdB [a])])
= φ (Y X, ξ) .

This shows that φ is a valid right group action. Then,∀ ξ1, ξ2 ∈M we can always write the group element
Z = (T−1

1 T2, b
∧
1 −Ad(T−1

1 T2) [b∧2]), such that

φ (Z, ξ1) = (T1 T−1
1 T2,

Ad(T−1
1 T2)−1 [b∧1 − b∧1 +Ad(T−1

1 T2) [b∧2]])= (T2, b
∧
2) = ξ2,

which demonstrates the transitive property of the group action.
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E. Proof of Lemma 4.2

Lemma 4.2. Define ψ ∶ SE2(3)⋉se2(3) ×L → L as

ψ (X,u) ∶= (AdA−1 [w∧ − a] + f0
1 (A−1), g∧, AdA−1 [τ∧]) ,

where f0
1 ∶ SE2(3)→ TSE2(3) is given by Equ. (5). Then, ψ

is a right group action of SE2(3)⋉se2(3) on L.

Proof. Let X,Y ∈ SE2(3)⋉se2(3) and u ∈ L. Then,

ψ (X,ψ (Y,u))
= ψ (X, (AdB−1 [w∧ − b] + f0

1 (B−1) , Gg∧, AdB−1 [τ∧]))
= (AdA−1 [AdB−1 [w∧ − b] + f0

1 (B−1) − a] + f0
1 (A−1) ,

Gg∧, Ad(BA)−1 [τ∧])= (Ad(BA)−1 [w∧ − (b +AdB [a])] +AdA−1 [f0
1 (B−1)]

+f0
1 (A−1) , Gg∧, Ad(BA)−1 [τ∧]) .

Due to the right invariant property of the drift field f0, it can
be shown that

(f0
1 (A−1B−1) , 0∧) = (A−1f0

1 (B−1) + f0
1 (A−1) , 0∧)

= (AdA−1 [f0
1 (B−1)] + f0

1 (A−1) , 0∧) .
Therefore,

ψ (X,ψ (Y,u))
= (Ad(BA)−1 [w∧ − (b +AdB [a])]

+ (A−1f0
1 (B−1) + f0

1 (A−1)) , Gg∧, Ad(BA)−1 [τ∧])= ψ (Y X,u) .
Thus, proving that ψ is a valid right group action.

F. Proof of Theorem 4.3

Theorem 4.3. The biased inertial navigation system in Equ.
(6) is equivariant under the actions φ in Equ. (9) and ψ in
Equ. (10) of the symmetry group SE2(3)⋉se2(3). That is

f0 (ξ) + fψX(u) (ξ) = ΦXf
0 (ξ) +ΦXfu (ξ) .

Proof. Let X ∈ SE2(3)⋉se2(3), ξ ∈M and u ∈ L,
then φX−1 (ξ) = (TA−1, AdA [b∧] + a) and
f0 (φX−1 (ξ)) + fu (φX−1 (ξ)) = (f0

1 (TA−1) ,0∧) +(TA−1 (w∧ −AdA [b∧] − a) + g∧ TA−1, τ∧), one has

ΦXf
0 (ξ) +ΦXfu (ξ)

∶= dφX (f0 (φX−1 (ξ)) + fu (φX−1 (ξ)))
= (Tf0

1 (A−1) + f0
1 (T) ,0∧)

+ (TA−1 (w∧ −AdA [b∧] − a)A + g∧ TA−1A,

AdA−1 [τ∧] )
= (T (AdA−1 [w∧ − a] + f0

1 (A−1) − b∧) + g∧ T,

AdA−1 [τ∧] ) + (f0
1 (T) ,0∧) = f0 (ξ) + fψX(u) (ξ) .

This proves the equivariance of the system.

G. Proof of Lemma 4.5

Lemma 4.5. Define ρ ∶ SE2(3)⋉se2(3) ×N → N as

ρ (X,y) ∶= yA. (1)

Then, the configuration output defined in Equ. (7) is equivari-
ant [3].

Proof. Let X = (A,a) ∈ SE2(3)⋉se2(3) and h (ξ) = T ∈ N
then,

ρ (X,h (ξ)) = TA = h (φ (X,ξ)) . (2)

This proves the output equivariance.

H. Proof of Theorem 5.1

Theorem 5.1. Define Λ1 ∶ M ×L → se2(3) as

Λ1 (ξ,u) ∶= (w∧ − b∧) +AdT−1 [g∧] + T−1f0
1 (T) . (3)

And, define Λ2 ∶ M ×L → se2(3) as

Λ2 (ξ,u) ∶= adb∧ [Λ1 (ξ,u)] − τ∧. (4)

Then, the map Λ (ξ,u) = (Λ1 (ξ,u) , Λ2 (ξ,u)) is an equiv-
ariant lift for the system in Equ. (6) with respect to the defined
symmetry group.

Proof. Let ξ ∈M,u ∈ L and X ∈ se2(3)⋉se2(3) then

dφξ (I) [Λ1 (ξ,u) ,Λ2 (ξ,u)]
= (TΛ1 (ξ,u) ,−adΛ1(ξ,u) [b∧] −Λ2 (ξ,u))
= (T (w∧ − b∧) + g∧ T + f0

1 (T) ,
−adΛ1(ξ,u) [b∧] − adb∧ [Λ1 (ξ,u)] + τ∧)

= (T (w∧ − b∧) + g∧ T + f0
1 (T) , τ∧)

= f0 (ξ) + f (ξ,u) ,
where we have made use of the anti-commutative prop-
erty of the Lie bracket. To demonstrate the equivari-
ance of the lift we have to show that the condition
AdX [Λ (φX (ξ) , ψX (u))] = Λ (ξ,u) holds. Let ξ ∈M,u ∈
L and X ∈ SE2(3)⋉se2(3). The adjoint of the semi-direct prod-
uct follows

AdX [Λ (φX (ξ) , ψX (u))]
= (AdA [Λ1 (φX (ξ) , ψX (u))] ,Ω),

where Ω is defined as

Ω = AdA [Λ2 (φX (ξ) , ψX (u))]−adAdA[Λ1(φX(ξ),ψX(u))] [a] .
Then, we have

AdA [Λ1 (φX (ξ) , ψX (u))]
= Ad (A) [AdA−1 [w∧ − a] + f0

1 (A−1) −AdA−1 [b∧ − a]
+AdA−1 [AdT−1 [g∧]] +A−1 T−1f0

1 (TA)]
= (w∧ − b∧) +AdT−1 [g∧] + T−1f0

1 (TA) +Af0
1 (A−1)

= (w∧ − b∧) +AdT−1 [g∧] + T−1f0
1 (T) = Λ1 (ξ,u) ,



where we have employed the right invariant property of f0

and the fact that Af0
1 (A−1) = −f0

1 (A). Moreover,

Ω = AdA [Λ2 (φX (ξ) , ψX (u))] − adΛ1(ξ,u) [a]= AdA [−adΛ1(φX(ξ),ψX(u)) [AdA−1 [b∧ − a]]]− τ∧ − adΛ1(ξ,u) [a]= −adAdA[Λ1(φX(ξ),ψX(u))] [b∧ − a]− τ∧ − adΛ1(ξ,u) [a]= adb∧ [Λ1 (ξ,u)] − τ∧ = Λ2 (ξ,u) .
I. Proof of Theorem 7.1

Theorem 7.1. Consider the observer in Equ. (27) computed
for local coordinates in Equ. (18), (21) and linearized model
A0
t and C0 given by Equ. (24) and (26). Assume that the

trajectory ξt and the observer evolve such that the matrix
pair (A0

t ,C
0) is uniformly observable. Then, there exists a

local neighbourhood of ξ0 ∈ M such that for any initial
condition of the system such that the initial error e(0) lies in
this neighbourhood, the observer (27) is defined for all time
and e(t)→ ξ0 is locally exponentially stable.

Proof. Assume that the initial condition for the state and the
observer is such that the error lies in the local coordinate
neighbourhood Uξ○ Equ. (18). By continuity, there exists a
time T > 0 (possibly infinite) on which the observer solution
is well defined, continuous and the error remains in U for
t ∈ [0, T ). Since (A0

t ,C
0) are uniformly observable and the

gain matrices are bounded strictly-positive matrices, then there
exists constants 0 < σ1 < σ2 <∞ such that the solution of the
Riccati equation Equ. (27d) satisfies [4] σ1Im < Σ(t) < σ2Im
for t ∈ [0, T ). Define Lt = ε⊺Σ−1ε. Consider the linearized
error dynamics Equ. (19) and Equ. (22) on the interval [0, T ).
One has

d

dt
Lt = −ε⊺ (Σ−1PΣ−1 +C0⊺Q−1C0) ε.

Since the right-hand side is negative definite, then there exists
a neighbourhood of 0 in the linearised error coordinates ε
(corresponding to a neighbourhood U1 of ξ○ in the error
coordinates e) such that d

dt
Lt < 0 for the full nonlinear error

dynamics. Since Σ(t) is bounded below and above, there
exists a value L0 > 0 such that L−1

t ([0,L0]) ⊂ Uξ○ ∩ U1

as a function of ε for all times t. It follows that for any
initial condition such that the error ε(e) ∈ L−1

t ([0,L0]) thenL(t) < L0 for all time and the solution exists and the error
remains in Uξ○ ∩ U1 for all time. Exponential stability of the
linearised error ε follows directly from Lyapunov’s second
method and local exponential stability of the error e for the
full nonlinear system follows from the standard properties of
linearisation and local coordinates.
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