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S^EQUIVARIANT FUNCTION SPACES
AND CHARACTERISTIC CLASSES

BENJAMIN M. MANN, EDWARD Y. MILLER AND HAYNES R. MILLER

ABSTRACT. We determine the structure of the homology of the Becker-
Schultz space SGiS1) ~ Q(CP^° AS1) of stable Sx-equivariant self-maps
of spheres (with standard free S1 -action) as a Hopf algebra over the Dyer-
Lashof algebra. We use this to compute the homology of BSGiS1). Along
the way, we give a fresh account of the partially framed transfer construction
and the Becker-Schultz homotopy equivalence. We compute the effect in ho-
mology of the '^-transfers" CPf AS1^ Q((BZpn) + ), n > 0, and of the
equivariant J-homomorphisms SO -> Q(RP£°) and U -» Q(CP°° A S1). By
composing, we obtain U —> QS° in homology, answering a question of J. P.
May.

Introduction. Let ii be a compact Lie group admitting a finite-dimensional
orthogonal representation W such that H acts freely on the unit sphere sW. H
must thus be S1, S3, the normalizer of S1 in S3, or one of a known list [13] of finite
groups with periodic cohomology, including (as subgroups of S3) the cyclic and
generalized quaternion groups. Let EndB(sW) denote the space of ü-equivariant
continuous self-maps of sW. By joining with the identity map we obtain inclusions
EndH(s(nW)) C EndH(s((n+l)W)), and we write G(H) for the direct limit. The
homotopy type of G(H) was determined by J. C. Becker and R. E. Schultz [2], and
turns out to be independent of W. If we write SG(H) for the component of G(H)
containing the identity map (so SG(H) = G(H) if H is connected), then in [3],
Becker and Schultz (see also [9] in case H is finite) enrich the composition product in
SG(H) to an infinite-loop space structure. The classifying space BSG(H) classifies
oriented spehrical fibrations with a fiber-preserving ü-action modelled on s(nW),
stabilized by forming fiberwise joins with the trivial if-fibration with fiber sW.

In this paper we determine the modp homology of SG(S1) and of BSG(S1) as
Hopf algebras over the Dyer-Lashof algebra. Along the way, we compute the effect
in homology of the "forgetful" maps SG(S1) —> 5G(Zpn) and of the equivariant
J-homomorphisms Jz, : SO -» SG(Z2) and jSi : U -+ SG(S1).

The starting point for our analysis is the study of certain "transfer" maps. §1
is devoted to an account of the construction and general properties of these maps.
In §2 we study certain transfers t associated to an inclusion K C H of compact Lie
groups. If E is a smooth principal H-space, then

t:(E/HY" ^Q((E/Ky«),
where ÇB is the vector-bundle obtained by mixing E J, E/H with the adjoint
representation of H on its Lie algebra, the superscript denotes formation of the
Thom space and QX is the enveloping infinite loop space of X.
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234 B. M. MANN, E. Y. MILLER AND H. R. MILLER

Then in §3 we describe a map

1:EndH(E)^Q((E/Hy»)
generalizing a variant of a construction of Becker and Schultz [2]. We show that
if K C H, then the inclusion EndB(E) C End^(i^) corresponds under 7 to the
transfer t. If H is a "periodic" Lie group as above, then we obtain from 7 a map

^:G(H)^Q(BH<)
which was shown by Becker and Schultz to be a homotopy equivalence. In partic-
ular, SG(S1) = G^S1) is homotopy-equivalent to Q(CP$° A S1).

§4 is devoted to the evaluation in modp homology of the transfer

tn: CP? A S1 -» Q(BZ+n),        n > 0,

associated to the inclusion Zpn C S1. This is one of our principal technical results.
We give the statement here for n = 1. Let ar G H2r+i(CP^° AS1) and er G hr(BZp)
be the standard generators (see §4), and let \ be the canonical antiautomorphism
on H*(QX).

Theorem A. Forp = 2,

tl.Sr = Y e2s+1 * Xe2(r-S) + Y Qt+le* * (XCr-t)*2.
s t

For p > 2,
tuär = 2je2s+i *xe2(r-s)-

s

Since transfers compose well, and the transfer associated to 1 C Zp essentially
defines the Dyer-Lashof operations, it is easy to deduce from Theorem A the effect
of io in homology; the formulae are given in Theorme C, and in Theorems 4.4 and
4.5. An easy filtration argument (carried out in §7) results in the

Corollary. For p = 2,

to. : H*(Q(CPy° A S1)) -» H.{QS°)
is infective. For p odd,

tu : H.(Q{CP? A S1)) - Ht(QBZ+)
is infective, while io* is not.

§5 is dedicated to a study of the equivariant J-homomrphisms

fZ2:SO^SG(Z2)^Q-RP?,
jSi : U -> SG(S1) ~ Q(CP? A S1).

Let
Ac: CP^1 A51 ->U{n)

send a pair (l,z), where / C Cn is a complex line and z G C has |z| = 1, to the
unitary transformation which is the identity on I1- and multiplies by z on I. Then
we have the following theorem.
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S'-EQUIVARIANT FUNCTION SPACES 235

Theorem B.  The composite

CP|° A5lA-S[/J^ Q(CP? A S1)

is homotopic to the standard inclusion.

There is a real analogue; see Theorem 5.1. Theorems A and B have as a corollary
the determination of the image of the generators of H„(U) under the classical com-
plex J-homomorphism Jc : U —> QS° in terms of the loop-structure in H„(QS°).
For p odd, this resolves a problem left open by J. P. May in [5, pp. 121-123].

THEOREM C.   The image ofär G H2r+i(U;Zp) under Jc* w

•/c.är=£Q25+1[i]*xQ2(r-s)[i]*[i]
s

+ YQt+1QtW*(xQr-tWT2*W
t

for p = 2, and
Jc.âr = (-\)k £a ßQ'[l\ * xQk-s[l]    ifr = (p-l)k-l

— 0 otherwise

for p odd.
The infinite-loop structure of SG(H) is very different from the natural infinite-

loop structure on Q(BHiH). In [11], R. E. Schultz described the composition
product in terms of the transfer associated to the diagonal embedding A : H —y
H X H. For H finite, this theorem is recovered and extended in [8]; and by the
Corollary to Theorem A, this case suffices for present purposes. In §6 we combine
this with Theorem A to prove the following result, which completely determines
the composition product o in H^(SG(S1)).

Theorem D. Forp = 2,

äqoär=äq*är + Y(q -s,f- s)Q2{q+r~s)+1às
S

+ Y(l - »,r- 2t)Qq+r+1Qq+r-2tat.
t

For p odd,
äqoär =äq*är+Y c(Q, r< t)ßQtäq+r+i-(p-i)t,

t
where

c(,.r,,)=^-1r-((,-i)rh-i)(y+r+y-y^>t).

We then appeal to results of [8], relating G(H) for H finite to the multiplicative
structure in a certain .Eoo-ring space A(H), the "Burnside space" of ii, introduced
(as a space) by G. Segal [12]. By the Corollary to Theorem A, the relationship
between the Dyer-Lashof operations in SG(Sl) and the »-product and loop Dyer-
Lashof operations in Q(CP^° A S1) are implied by analogous relationships for Zp.
These formulae show how the Dyer-Lashof action on dT (given, in view of Theorem B
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236 B. M. MANN, E. Y. MILLER AND H. R. MILLER

and the fact that i sí is an infinite-loop map, by Kochman's formula [7]) determine
the action on all of H,(SG(S1)).

We turn next to a "global" analysis of Ht(SG(S1)) by means of a "weight
valuation". In §7, we prove

THEOREM E. Ht(SG(S1);Zp) is a primitively generated Hopf algebra. For
p = 2

Ht(SG(S1)) = H.(U) ® P[äf : r > 0]
® H*(Q(CP? A Sl))l/P{är : r > 0],

and for p odd,
H^SG^1)) ä Ht(Q(CP? A S1))

as Hopf algebras.
Finally, we follow [10, 5 and 8] in using the classifying-space spectral sequence

and Dyer-Lashof operations to prove (using the usual Dyer-Lashof notation [5, p.
16])

THEOREM F.   As Hopf algebras, forp = 2
Ht(BSG(S1))^Ht(BU)®E[o-Q2r+1ar:r>0}

®P[aQ2r+2är:r>0]

® Plo-Q'är : I admissible, 1(1) > 1, e(I) >2r + 2, r > 0],
and for p odd,
H,(BSG(S1)) =i H,(BU) 0 S{aßeQr+1är : e = 0 or 1, r > 0]

O S[o-Q'är : I admissible, 1(1) > 1, e(I) + b(I) >2r + 2, r> 0].
Here S denotes the free commutative algebra.

We wish to thank J. R May for an instructive correspondence about signs. This
work was done in 1977-1979, when the authors were at Harvard University (Mann
and H. Miller) and M.I.T. (E. Miller). During this time all three authors were
partially supported by the NSF.

1. Generalities on the transfer. In this section we recall the definition of
the transfer, generalized slightly to allow twisting by a vector bundle. We then
catalogue various properties which will be used later. All manifolds will be smooth,
and we write t(M) for the tangent bundle of M.

Let 7T : E —> B be a smooth map between closed manifolds. Choose an embedding
j : E —> k of E into the trivial vector bundle over B of fiber-dimension k, such
that

E       ±      k=B
(1-1) rr\ /pr

B
commutes. (For example, embed E into Rfc by i, and let j have components (it, i).)
Write u(j) for the normal bundle of j. The Pontrjagin-Thom construction then
yields a map of Thom spaces:
(1.2) B+A Sk = Bk ^ E"^.
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S'-EQUIVARIANT FUNCTION SPACES 237

Given any vector bundle f over B, we may compose j with the axis embedding
kB —> Ç ® kB; the Pontrjagin-Thom construction then gives a "twisted" form of
(1.2):   '
(1.3) B< A Sk = BiBk -> E*'í9víj).

Given also a bundle £ over E, a relative framing of n, £, Ç is a bundle isomorphism

(1.4) <¿:7T*C©i/(i)=£e¿E

(or, rather, an equivalence class of pairs (j, ip)). We then obtain a stable map

(1.5) U = t*¿: B< -> E*
called the transfer associated to n, £, f (with (j, (¡>) understood).

If 7T is a submersion, we have a natural exact sequence of vector bundles

(1.6) 0 -> t(tt) --» r(£) -> tt*t(B) -» 0

in which t(tt) is the bundle of tangent along the fiber of rr. For any embedding j as
in (1.1), there is a natural exact sequence

0 -> t(tt) -> ¿E - u(f) -> 0.

Since k„ has a natural metric, we have a natural splitting:
— Lb

(1.7) t(tt) © i/(j') - âE-

A relative trivialization of 7r, £, f is a short exact sequence

(1.8) 0 -+ £ -» 7T*<; -> t(tt) -* 0.

A choice of metric in 7r*c splits (1.8) and gives an isomorphism

(1.9) 7T*f = £©t(tt).

Combining this with (1.7), we have defined a relative framing

(1.10) (p: tt*( © i/(j) =* ̂  © r(7r) © v(j) = í®kE.

The homotopy class of the associated transfer t„t<¡, : ßf —y E^ is independent of
choice of metric in tt*ç, because the homotopy class of the homeomorphism

is. All the relative framings we deal with here arise in this way.
We now note several features of the transfer.
Note 1.11. Fundamental classes. In case B is a single point and ç = 0, the map

(1.3) gives a stable homotopy class

[E] G SniE'W),
where u(E) is the zero dimensional virtual normal bundle of E and n is the dimension
of E. This is the stable homotopy fundamental class of E, with twisted coefficients.
A framing of E gives rise to a class [E] G Sn(E); and pinching E to a point produces
a class in the stable homotopy of spheres, Sn(*)—namely, the usual Pontrjagin-
Thom class of the framed manifold E.
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238 B. M. MANN, E. Y. MILLER AND H. R. MILLER

Note 1.12. Fundamental class of a framed map. In case £ = 0 and dimf =
dim E - dimß = n, the transfer (1.5) composed with the pinch map E —y * gives
a stable cohomotopy class

e(n,4>)(=S-n(Bs-*).

This is the stable fundamental class of tx, with twisted coefficients. A framing
ç © k — W © k gives rise to a class e G S~n(B), the Pontrjagin-Thom class of the
framed map tt.

Note 1.13. Composition with the projection. Suppose that tt is a fibration with
fiber F, and that we are given a trivialization u(j) = (k - n)g, n = dimF. Then
F has a well-defined framing, and so defines [F] : Sk —► S,fc~™. Then the diagram

dC0^ t wir*c(B(fc-n)

II i«
B< A Sk     lA-^]     B< A Sk~n

commutes.
Note 1.14. Products. Let *': E' —* B', (,',(;' be another relatively framed map.

Then n x 7r', £ x £', f x f' has a natural relative framing, and the diagram

(B x sp*'    H"'    (f; x £')íxí'

ßf A B's'       *"%*'        sí a £'«'
commutes.

iVoie 1.15. Compositions. Let 7ri : £i -+ F7, £i, £ be a relatively framed map to
E. Then n o tti : Ei —* 73, £i, ç has a canonical relative framing, and the associated
transfer is given by the composite:

Note 1.16. Pull-backs. Let /: B' —> ß be a smooth map transverse to tt, and let
7r' : E' —y B', £', çf be the pull-back of n, £, Ç along /. Then n', £', <;' has a canonical
relative framing, and the diagram

B't"      ■£      B<
t*> I [u
£?'€'      -£      £«

commutes.
Note 1.17. Reframings. The transfer can be interesting even in case E = B,w =

id, and £ = <;. One then has the canonical framing (f>: f —► f by the identity. Then
a smooth map X: B —y 0(k) induces a new relative framing

l©A:f©£-+f®¿,
where X(b,v) = (b,X(b)v), with an associated transfer t1 ^: B* —> B(. If J: 0(k) +
■—> 5° is the stable map adjoint to the inclusion O(fc) C O C QS°, then ij j is the
composite
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S'-EQUIVARIANT FUNCTION SPACES 239

Using Note 1.15, the transfer associated to reframings of more general maps may
also be expressed in terms of J.

2. Transfers associated to Lie groups. Let H be a compact Lie group and
E a compact smooth principal right ü-space. H acts also from the left on its Lie
algebra 9) by the adjoint action; and E/H thus supports a canonical vector bundle

f = fa = E XH fl,
called the adjoint bundle.   In this section we show how the transfer endows the
formation of the Thom space E* with new functoriality, and apply the notes of §1
to verify some properties which will be used in §4.

To begin, one may easily check the following lemma.

LEMMA 2.1. There is a natural short exact sequence of vector bundles over
E/H:

O^Çh^ t(E)/H -» t(E/H) -^ 0.       D
Now let K C H be a closed subgroup, so that it : E/K —y E/H is a fiber bundle

with fiber H/K. We have a natural commutative diagram of vector bundles over
E/K, with exact rows and columns:

0    -»      çK
I

0    ->    k'ch

The serpent lemma then provides a natural short exact sequence

(2.2) 0 -> Oc -r k'Çh -y t(tt) - 0,

i.e., a relative trivialization (1.8) of tt, ík,Íh- There results a stable "transfer" map

t: (E/HYH ^(E/K)iK.

If, for example, K is the trivial subgroup, then

(2.3) t:(E/Hy»-^E+.
These maps provide the construction (E/H)iH with the following extended func-

tionality. Consider the category whose objects are pairs (E, H), where H is a Lie
group and E a compact smooth principal ü-space, in which a morphism from
(E, H') to (E, H) is a closed inclusion H' D H and an ü-equivariant smooth map
E' —y E. Then (E,H) i—> (E/H)iH describes a functor into the stable homotopy
category.

By approximating BH by manifolds, we may contruct a stable map

0
I

r(7r)
I

t(E)/K)       ->      t(E/K)      -*    0
Il Ï

tt*(t(E)/H)     *->     tt*t(E/H)     -»     0
I
0

(2.4) t: (BH)iH -» (BKyx

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



240 B. M. MANN, E. Y. MILLER AND H. R. MILLER

from a closed inclusion K Ç H which is well defined up to weak homotopy.
This gives the suspension spectrum of (BH)tH a contravariant functoriality on
the cateogry of Lie groups and closed inclusions.

We now prove three lemmas which will be useful later.
Let K C H be a closed normal subgroup, and E a smooth principal ü-space.

Then

E/K x H/K    -^     E/K
(2.5) 1   pr, I   -r

E/K ^    E/H
is a pull-back diagram if a is the ü/if-action map a(xK, h) = xhK. This ac-
tion lifts to make Çk an ü/ií-equivariant vector bundle over E/K; so we have a
canonical bundle isomorphism

Q*Ík = ÍK xQ
over E/K x H/K. Thus the pull-back property (Note 1.16) of the transfer asserts
that the diagram

(£/A-)ÍK©rM «>      (E/HY«
(2.6) I tpr, | u

(E/KxH/K)tK*=     Â     (E/Ky«
is homotopy-commutative. Now n is a principal H/K-bund\e, so a choice of orien-
tation for H/K determines a natural trivialization for t(-k). Now using Notes 1.14
and 1.11, the diagram (2.6) leads to the following lemma.

LEMMA 2.7. Let K C H be a closed normal subgroup of codimension n, and
let E be a compact smooth principal H-space. Then, with the above notations, the
following diagram is homotopy commutative.

(E/KY* ASn S     (E/HY«
I   1A[H/K] i  t,

(E/KY« A (H/K)+     Ä     (E/KY*
Here [H/K] is the class of H/K with the chosen orientation and the corresponding
right-invariant framing.    D

this is a degenerate form of a "double coset formula", and its proper generaliza-
tion should be of great interest.

LEMMA 2.8. Let H be a compact Lie group of dimension n, and let E be a
compact smooth principal H-space with base point * and projection w: E —y E/H.
The diagonal inclusion A: H —> H x H iduces A: (E x E)/H -y E/H x E/H.
Let j: E -+ (Ex E)/H be the map e -> (e, *)H and let i: E/H -> E/H x E/H be
the inclusion on the first factor. Note that J*(Çh) — ¡R and í*(Ch x Çh) — Íh ®ñ-
Under these identifications

(E/HY" AS"     A     (E/HY" A (E/HY«
I   «»Al |   t-j

E+ASn A ((ExE)/HY"
commutes up to homotopy.
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PROOF. The diagram

E       Í*      (Ex E)/H
I - IS

E/H    -U    E/H x E/H

is a pull-back, so Note 1.16 gives the result.    D
Now let H be an Abelian compact Lie group with multiplication p: HxH —> H.

Since p is a group-homomorphism, the classifying space BH inherits a product p,
and the inversion x i-> x~l in H induces a self-map \ of BH. H acts trivially on
its Lie algebra, so the bundle ç has a canonical trivialization. Furthermore, p is
covered by a bundle map p: 0 x c —► ç, including an action map

p:BH+ ABHç^Bfr.
Let t : BH? —» 5° be the transfer associated to the inclusion of the trivial subgroup.
The following lemma (due to R. Schultz [11] in the case H is finite) computes the
transfer ía, associated to the diagonal subgroup H C H x H, in terms of t.

LEMMA 2.9. With the above notation, the following diagram is weak homotopy-
commutative :

BH< A BH< —
|   AAl

BH< A BH+ A BH<
|   1AX+A1

BH< A BH+ A BH<
I   1A£

BH< A BH<
PROOF. Apply the composition property (Note 1.15) of the transfer to the

commutative diagram
BH      ^y     BHx BH

»i \ I »
BHxBH

where a(x,y) = (x,\(x)y) and ii(x) = (x, 1). Of course the transfer associated to
the diffeomorphism a is just the inverse of the map cr induced on Thom spaces; so

¿A = Ui °V-

Now the left leg of Lemma 2.9 is a, and the bottom composite, by Note 1.14, is
th.    D

3. The Becker-Schultz map.  We now describe the "graph" construction

1: EndH(E)^Q((E/HY),
which is a variant of a construction of Becker and Schultz [2]. Here H is a Lie
group, E a compact smooth principal ü-space, EndB(E) denotes the space of H-
equivariant conditions self-maps of E, and QX is the enveloping infinite loop space
of the space X.

->- B(H x HY»x»

I   «A

Ia,'    BH<AS°    A bh<
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Choose an embedding of B = E/H in a Euclidean space Rs, and let v denote
the normal bundle. We have the usual Pontrjagin-Thom collapse
(3.1) c:S3^Bu.

Let f:E—yEbean equivariant map, and form the "graph" f':E—> E2 by
/'(e) = (e,/(e)). This is equivariant, and we get a map f':B—> E2/H of orbit
spaces^ If pf1 : E2/_H —> B is induced from projection to the first factor, then
pTi o /' = 1. Thus /' is covered by a bundle map v —> pTjV, and we get a map

/': B" -*-(&tHr*iv
on Thorn spaces. This construction depends only on continuity of /, and depends
continuously on /, so we get a map

(3.2) EudH(E)+ Aß^ (E2/HfT>.
The reduced diagonal A: B —> E2/H has normal bundle isomorphic to t(E)/H,

which, by Lemma 2.1, is isomorphic to t(B) © Ç. Since A pT[i> = v, we get a
transfer

(3.3) t^: (E2/Hfl> -> B"©T(B)ffif s Bs A Ss.

The composite of End#(.E)+A (3.1), (3.2), and (3.3), gives a pointed map

%:EndH(E)+ AS3 ^B< AS3.

The map 7 is obtained by composing the adjoint of 7S with the inclusion OsEsßc —>
QB^, and is, up to homotopy, independent of choices. We may also compose with
a map B —► BH classifying E —> B, to obtain a map

7: Endjï(F;)+ -» QBHS.
The following naturality result is due essentially to Becker and Schultz [2, 5.16].

THEOREM 3.4. Let K be a closed subgroup of the Lie group H, and let E be a
compact smooth principal H-space.  Then

EndH(E)     35     Q((E/HY")
I   inc I  t

EndK(E)     35     Q((E/Kyx)

commutes up to homotopy if t is the infinite-loop extension of the transfer t as-
sociated to the canonical framing (2.2) of it: E/K —> E/H.

PROOF. By Notes 1.12, 1.15, and 1.16, we have a homotopy-commutative dia-
gram (in which the subscripts indicate the groups involved)

S3       c-5     (E/HY«     £     (E2/Hfx>«     H     (E/HY« AS3
CK    \ It I    t [t

(E/KY"     £     (E2/KYT>K     H     (E/KY><aSs
from which the theorem follows.    D

We will usually study 7 by mapping some compact smooth manifold M into
EndB(E), in such a way that the reuslting equivariant map /: M x E —> E is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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smooth. Moreover we will arrange that the reduced graph /': M x B —y E2/H
given by f'(m, e) = (f(m, e), e) is transverse to A : B —► E2/H. Then the pull-back
property (Note 1.16), applied to the pull-back diagram

A        B
IS

(3-5) p [   MxB    -C     E2/H

shows that
M+ %    QYq*<
I I Qg

EndH(E)+ 3      QB
commutes up to homotopy.

In [2], Becker and Schultz consider principal ü-spaces arising as the unit sphere
sV of an orthogonal representation V of H. They construct a map

X:EndH(sV)+ -+Q(sV/H).

The description [2, 5.6] of A shows that it is identical to 7 except that A is
replaced by the antidiagonal A~(w) = (u, -«); the identification (Theorem 3.4) is
essentially the transfer i-^-. Let A(u) = —u denote the antipodal map. We have a
commutative diagram, for any / G Endjf (sV),

(E2/H)^>
r / \ «s-

(3.6) Bv I TxÄ B< A S3
AI' \ / *s

(E2/HYr>

so we find that

EndH(sV)+
\  A

(3.7) { (Ao) QB<
/ 1

EndH(sVy

commutes up to homotopy.
When Ü admits a finite dimensional orthogonal representation V such that the

unit sphere sV is a principal ü-space, the maps 7 are compatible under joining
with the antipodal map, and given, in the notation of the introduction, a map

(3.8) i-.G(H)^Q(BH<).
Theorem 3.9 (Becker-Schultz [2]). 7 is a homotopy-equivalence.

We refer the reader to [2] for the proof.
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THEOREM 3.10. Let H = id. If dim V is even, then ï(f) = 1- [/] whereas if
dimV is odd, then î(f) = 1 + [/].

PROOF. [2, 6.13] shows X(f) = 1 - [/]. (There is a mistake in the original
proof of this fact in [2] but Becker (private communication) has given a correct
proof.) The corrected proof shows that A(/) = 1 + [/] when dimV is odd. The
even dimensonal case follows directly from (3.7) and [2, 6.13].

Finally, we recall R. E. Schultz's expression for the composition pairing o: G(H)
xG(H) -> G(H). Let A: Ü —> H x H be the diagonal inclusion, and let

#: QBW x QBH< A Q(B(H x Hy«*«) -4 QBH<,
where ía is the transfer associated to A. Then

THEOREM 3.11 (SZHULTZ [11]). The composition pairing o is homotopic
(under the identification 7) to the composite

(QBH<)2 A2 (QBH<Y lxÍxl (QBH<f A QBH<.

4. The homology of the /7(l)-transfer. Let <7(1) act by multiplication on
52m-i c Cm   There resuits (2.3) a stable transfer map

cp™-1 a s1 -> sl"1-1,
using the canonical trivialization of the adjoint bundle to identify the source. Pinch-
ing S2m-1 to a point gives an "Euler class" CP^""1 AS1-» 5°. These are com-
patible over m, and give a stable map

(4.1) CP? AS1 ^S°.
This is precisely the map considered by K. Knapp in [6]. We will compute the
homology of its adjoint, the pointed map

(4.2) i0: CP™ AS1 ^QS°.
Actually, the same work yields a computation of the homology of the transfer
associated to an inclusion Zp» C <7(1). If Ln denotes BZpn, then this is a pointed
map

(4.3) tn:CP™ AS1 -QL+.
To state the results, let Ü* denote modp homology, p any prime. Let x G

H2(CP°°) be the canonical generator, let ar G H2r(CP°°) be dual to xr, and let
dr G 7J2r+i(CP£° AS1) be the suspension of ar. Let u G #*(£„) and v — -ßnu G
H2(Ln) be the natural generators, and let er G Hr(Ln) be the dual of the monomial
in dimension r. Embed Zpn into S1 so that the resulting map 7r: Ln —y CP°° pulls
x back to v; then -K*e2n = an.

THEOREM 4.4.   Letp-2 and let tn be as in (4.2) and (4.3).  Then
(a) t0tär = Zs Q2s+1W * xQ2(r"a)[i] + Et Qt+1Q'[i] * (xQr-t[i])'2-
(b) íi»Or = £s e2a + l * XC2(r-S) + Et Qt+1^t * (x^r-t)*2.
(c) For n>2, tntar = £,, e2s+i * xe2(r-s) + Et Q2t+1^t * (xe,-2t)*2-

THEOREM 4.5.   Let p be odd and let tn be as in (4.2) and (4.3).  Then
(a) i0.är = (-l)fc EtWil] * xQfc-i[l] for r = (p-l)k- 1, and = 0 otherwise.
(b) For n > 1, tn*är = Es e2s+i * X^2{r-s) ■
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PROOF. We apply Lemma 2.7 to Zpn c U(l) with E = 52m_1. As a framed
manifold, the quotient group U(l)/Zpn is S1 with its nonbounding framing. The
lemma thus adjoints to give (taking m = oo henceforth) a homotopy-commutative
diagram:

Lt A S1 <$l     CP~ A S1
WS1]   |

(4.6) L+ A QS1. | tn
A I

QKLnAS1)*)     Q-+ QLi
Here A is the usual smash product map, and a is the action map. Since K*e2r = ar,
we can compute tn*är from (4.6).

To begin with, let
h: ir*QSl -+H~,QSl

be the Hurewicz homomorphism. Then /¿[S1] G HiQS]_ is characterized by three
properties:

(1) It is a coalgebra-primitive and is killed by all Steenrod operations.
(2) It reduces in HiQS0 to the Hurewicz image of n G ttiQS0, by Note 1.11.

This is Q1 [1] * [-2] for P = 2 and 0 for p odd.
(3) It reduces in Ü1S1 to the fundamental class a.
It follows that

(4.7) hiS1] = a * [-1] + Q^l] * [-2]    for p = 2,

(4.8) h[S1] = a*[-l]   for p odd.
We now restrict attention to p = 2, leaving the rather degenerate case of p odd

to the reader. We first treat the case n = 1, so that the diagonal and Steenrod
action in ü*Li = Ü,RP°° are given by

(4.9) Aer =   Y e*®et,
s+t=r

(4.10) SqÉ»er =

Recall the distributivity formulae [5, p. 15]:

(4.11) xA(y*z)=Y(x'Ay)*(x"Az),

(4.12) xAQ3y = YQS+t((S<llx)Ayy
t

where Ax = Ex' (8) x". From (4.7) and (4.11),

er A h[S^ = erA(a* [-1] + Qx[l] * [-2])

= 5>s A a) * (er_s A [-1]) + £(cs A Q'[l]) * (er_s A [-2]).
S 3

r-t
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From (4.11), (4.12) and (4.10),

er_s A [-1] = xer-s,
er_s A [-2] = (Xet)*2        iî r - s = 2t,

= 0 if r — s is odd,
e3 A Q1 [1] = tef if s = 2* - 1,

= Qt+1et        if s = 2t.
Thus (replacing r by 2r)

(4.13) e2r A hfi1] = 5>s 0 a) * Xe2r_s + Y Qt+'et * (x^r-t)*2-
s t

Finally, in cohomology
a*x = x0l + l0x,

so dualizing,

(4.14) a»(er0l)=er,        a.(er 0<r) = (r +l)er+i.

Theorem 4.4(b) now follows by applying a» to (4.13) and recalling the diagram
(4.6).

The proof for p = 2, n > 1, is completely analogous, using the different structure
of H*Ln, namely

Ae2r =   2^  e23 0e2t,
s+t=r

Ae2r+i =     Y     es®et,
s+t=2r+l

Sq'»er = ( J er_t    for t even,

= 0 for t odd.

Part (a) follows from part (b), since transfers compose well (Note 1.15), while
the transfer t : RP|° —► QS° is given in homology by

Uer=Qr[l]

by definition of the Dyer-Lashof operation Qr. This completes the proof.    D
REMARK 4.15. The odd cells in BZpn map to 0 in CP£°, and hence in QBZpn

and in QS°. This results in the following amusing identities for all n > 1 and r > 0:
(4.16)In#,(QPZ£,;Z2),

Y e2s+l * Xe2(r-s) + l + Y e2t + l * (Xßr-2t)*2 = 0.
s t

(4.17)Ini7t(QS0;Z2)
YQ2s+1W * xQ2{r~s)+1W + £(Q2t+1[i]r2 * (xQr-2t[i]y2 = o.

s t

(4.18) In Ht(QBZ+n-,Zp) for p odd,

Y e2s+1 * Xe2(r-s) + l = 0.
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(4.19) In H*(QS°; Zp) for p odd,
YßQtW*xßQr~t[i] = 0-
t

REMARK 4.20. A similar analysis may be applied to compute the transfer

t: (HP°°Y -> QRP~
in mod2 homology, where HP00 is quaternionic projective space and Z2 c Sp(l)
is the center. The Thom complex (HP00)^ is then James' "quasiprojective space".
The computation is substantially more tedious here, however, since by the same
argument as above, the Hurewicz image of the stable homotopy fundamental class
of Sp(l)/Z2 = SO(3) in H3Q(SO(3)+) has nine terms:

h[SO(3)] =e3 + ei*e2* ey1 + Q2ex * ey1

+ Q3e0 * ey1 +ei* Q1ei * ey2 + Q2Q1e0 * ey3

+ Q1e0 * Q^i * eö3 + Q1e0 * Q2e0 * e0 3 + QieQ * Q1Q1e0 * e,-70    >

where en generates HnSO(3).
REMARK 4.21. The restriction map G(S1) —> G(Zpn), regarded as a map

Q(CP|° A S1) -» QBZp, is by Theorem 3.10 the infinite loop extension of the
transfer tn: CP™ A 51 —+ QBZpn. In homology it therefore commutes with loop
products and loop Dyer-Lashof operations. Since these generate H»(Q(CP^° AS1))
from Ü«(CP£° A S1), we have completely analyzed the homology of the restriction
maps G(5X) -> G(Zpn) and G(SX) -* G(l).

5. Equivariant J-homomorphisms. We shall study maps

iz2 : O -» QRPÍ0,        j8t : U -* Q(CPf A S1)
arising from the fact that orthogonal transformations are Z2-equivariant and uni-
tary transformations are 5^equivariant. Define a map Ar: RPn_1 —> 0(n) by
sending a real line / C R" to the reflection through the hyperplane perpendicular
to /. Define a map CP"_1 A S1 —y U(n) by sending (l,z), where I C Cn is a
complex line and z G C has \z\ = 1, to the unitary transformation which is the
identity on I1- and multiplication by z on /. Also, let A: RP™-1 —y SO(n) be Ar
composed with the reflection R through the hyperplane xi = 0 (if xi,... ,xn are
the coordinates in R"). These maps are compatible as n varies, and give maps

Ar:RP°°->0,    A:RP°°-^50,    Ac : CP^° A S1 -+ U.
Let i: S° -y RP£° be induced by the inclusion 1 C Z2, and let t: RP^° -+ QS°

be the associated transfer. Let t\ : RP+5 —> QRP^° be the transfer associated to
the identity map of RP°° with the framing twisted by A (as in Note 1.17). Any
infinite loop space has an involution \ obtained by smashing with -1 G QS°. Let
l: X —y QX denote the standard inclusion, and A : X —y X x X the diagonal map,
for any space X.

THEOREM 5.1.   With these notations,
(a) j'z2 o Ar ~ X¿: R^+° -» QRP?°.
(b) The following three maps are homotopic.
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(i) RP£° A SO 5î QRP^°,
(ii) RPf -^ QRP°° x QRP|° !tAx QRP^° *(^1] QRP~,

(iii) RP°° ^4 QRP£° *(-^1) QRP|°.
(c) jSi oXc^l: CP£° A S1 -> Q(CPf A S1).

Before giving the proofs, we note some corollaries.

COROLLARY 5.2.   In the stable category, CP£° A S1 is a retract ofU.D     .

COROLLARY 5.3.   (a) in mod2 homology,

Jz-er =   Y  QSeo*Xet*ey1.
s+t=r

(b) In homology with any coefficients,

jSi*är=är.        D

Here we are writing er for A,er and ar for Ac*är.
PROOF OF 5.1(a) Let -Ar.: RP2n_1 -» 0(2n) be Ar composed with the

antipodal map A G SO(2n). Since SO(2n) is connected, —Ar is homotopic to Ar.
We apply (3.5) to the map

/=iz2o(-AR):RP2"-1-EndZ2(S2"-1).

The adjoint map /: RP2n_1 x 52n_1 —> 52n_1 is smooth, and the associated map
/' is transverse to the diagonal A (see (3.5)), with pull-back S2n~1/Z2:

^^S2n~1/Z2 5 S2n~1/Z2

f I   A IS
p (       RP2"-1 x S2n~1/Z2     ^     (52""1 x S2n~1)/Z2

\. I Pri
^~~+■ RP2""1

The composite p is clearly the identity.  The framing, however, is nontrivial; it is
twisted because u(A) is pulled back across the degree —1 map /'. Thus

ÍZ2 ° Ar ~ X«.

by Note 1.17.
The proof of 5.1(c) is similar, except that the analogue of /' has degree +1.
PROOF OF 5.1(b). By Lemma 2.8, we have a homotopy-commutative diagram

QS° x QRP^°     ^     QRP? x QRPy°
I   lAt |   #

QS° A QRPy°
where # is the diagonal transfer as in Theorem 3.11. Thus the map (-1)# : QRPy°
—> QRP|° is homotopic to itx- By Theorem 3.11, therefore, the lower right-hand
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box in the following diagram commutes.

QRP?       =*      QRP? x QRP
I x I xxx

A2     QRP°°       --4       QRP°° x QRP°°        j ii*x
I   (-l)o I  ¿t"x*l

J3     QRP?     *t13 QRP?
The upper left-hand box commutes by (5.1)(a), and the rest of the diagram com-
mutes for trivial reasons. This proves (i)~(ii).

To see that (ii)~(iii), we recall that E. H. Brown has proven [4] that t\ is
homotopic to the composite

RF|° A QRP? A QRP? x QRP? ^ QRP?.
The result follows.    D

Theorem 3.10 implies that

U 3£     Q(CP^° AS1)
I  Jc

Qi(s°) I
I *(-i)

Qo(S°)       -4 Q(S°)
commutes up to homotopy. Adjoint to this is the stable diagram:

U -►     CP|° A S1
(5.4) I jc | í

S°      Q        s°
Theorem C of the Introduction follows from this and Theorems 4.4 and 4.5.

Also, (5.4) together with 5.1(c) yield the homotopy commutative stable diagram:

CP? A S1     -4       U
I   * I   JC
s°       4    s°

6. The local structure of Ht(SG(S1);Zp). In this section we describe for-
mulae sufficient to characterize the P-Hopf algebra structure of Hr(SG(S1);Zp).
We rely on [8]. There we construct, for a finite group H, an F^-ring space A(H),
called the Burnside space of H. There is a homotopy equivalence of infinite loop
spaces

(6.1) l[Q(BW+)K)~A(H),
K

where K ranges over a set of subgroups of H representing its conjugacy classes of
subgroups, and Wk is the quotient by K of the normalizer of K in H. There is thus
a map

(6.2) i: QBH+ -> A(H),
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which is up to homotopy a split monomorphism. The ring-structure map p in
A(H) extends the transfer # induced as in Theorem 3.11 by the diagonal inclusion
A : H —y H X H; that is to say, the diagram

QBH+ x QBH+     4     QBH+
(6.3) I ixi I i

A(H) x A(H)       A      A(H)

is homotopy-commutative.
If H admits a finite-dimensional orthogonal representation W such that the unit

sphere sW is a free P-space, then a map p: G(H) —» A(H) is constructed. This
map carries the infinite loop-space structure [3, 8] on SG(H) to the multiplicative
structure in A(H). Furthermore, if *(—1) denotes the evident component-shifting
self-map of A(H), then

G(H)       4       QBH+
p I I *

A(H)     *(-4X)      A(H)

is homotopy-commutative. In particular, p is (up to homotopy) a split monomor-
phism.

It follows that relations between the composition structure and the loop structure
in H*(SG(H)) can be obtained by translating the usual distributivity and mixed
Cartan and Adem relations valid in H*(A(H)). To describe the translation, let

# : Ht(A(H)) 0 Ht(A(H)) -> Ht(A(H))
be the multiplicative product p* ; on elements in the image of H* (QBH+ ) it is in-
duced by the diagonal transfer. Let Qr be the multiplicative Dyer-Lashof operation
in H„(A(H)), while * and Qr denote the additive (loop) product and Dyer-Lashof
operation. Let o and Qr denote the (composition) product and (composition) Dyer-
Lashof operation in SG(H). Then

LEMMA 6.5.   Omitting "pt",

xoy = Y(-iyx'Vy'lx'*y'*(x"#y"),

Qr(x*y)=   Y   Qlx'*Q3(x"#y')*Qk(y"),
i+j+k=r

where Ax = SX' ® x" and Ay = £t/ 0 y".

PROOF. The first expression is due (in the more general case of a periodic
compact Lie group) to R. E. Schultz [11]; it follows from his Theorem 3.11 above.
It follows also from (6.3) and Hopf-ring distributivity:

(xo2/)*[l] = (x*[l])#(y*[l])

= ^(-l)1*"1 '»V * y' * (x"#y") * [!]•

The second expression follows similarly from (6.3), the mixed Cartan formula, and
the fact that 0U[1] =0 for u > 0.    D
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In principle, the structural formulae valid in the homology of an P^-ring space
could now be translated into formulae relating o and Qr to * and Qr. These would
determine the structure of Ht(SG(H)), give xoy and Qrx for x,y G H*(BH). In
view of the complexity of the mixed Adem relation, however, we shall not complete
this exercise here.

We turn now to S1.
Since the infinite loop map i: SG(S1) —> SG(ZP) is injective in homology, the

formulae considered above hold also in H„ (SG(S1)). Indeed, since t* was computed
in §4, while the P-Hopf algebra structure of Ht(SG(Z2)) was computed in [8], we
"know" the P-Hopf algebra structure of Ht(SG(S1); Z2); and similarly, for p odd,
we "know" the Hopf algebra structure of Ht,(SG(S1);Zp) and some information
about its P-module structure. We wish to be more explicit, however; and, by the
indicated formulae, it will suffice to compute üq o ar and Qqdr, where as in §4, ar
is the canonical generator of H2r+i(CP? A S1; Zp).

THEOREM 6.6.   Leip = 2. In H,(SG(S1)) S H,(Q(CP? A S1)),

(a) äqoär -äq*är + Y(l ~ s,rs)Q2(q+r~3)+1äs
s

+ Y(Q -2t,r- 2t)Qq+r+1Qq+r~2tät.
t

(b) Q2q-ar=(q-l\äq+r,        Q2q+1är = 0.

THEOREM 6.7.   Letpbeodd. In Ht(SG(S1)) s H*(Q(CP? A S1)),

(a) ö«jOär =äq*är + Yc(l,r,t)ßQtäq+r+i_(p_i-)t,
t

where

c(q,r,t)^Y(-iy+k(r+k((p-l)k-í\     q + r+l-(p-í)t
r I\ t-k

(b) Q«ârM-l)9+r+ir/U+9(P-i)-

PROOF OF THEOREM 6.6. We apply Lemma 2.9 with H = S1. Note that
X: Ht(CP°°) -> P„(CP°°) is the identity (with mod2 coefficients), and that
fit : Ht(CP?) 0 H*(CP? AS1)^ Ht(CP? A S1) is given by

p* (au 0 ar) = (u, r)är+u.

Thus,

(6.8) ä,#ör = Y(u> r)äq-u A Uar+U.
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According to Theorem 4.4, ttar+u is a sum of two sorts of terms. For the first, we
use

Aäq-U = äq-u 01 + 10 äq-u,
1 A xQf[l] = 61,

a  2t- /<7~U-M-bq   aq-u — I I aq-u-t,

to find
(6.9) aq-uA(Q23+1[í]*xQ2{u+r-s)W)

= ér^^-«-AQ2s+2t+Vu_(

Similarly, for the second we find

äq-uA(Q3+1Q3[l]*(XQu+r-3ll]y2)

= ^£ Í9-U- i\   (q-U-i- t\ Qs+2i+lQS+2t-aq_u_%_t.

Now Q8+2l+1 kills this dimension unless 2i > q - u, while the first binomial coeffi-
cient is zero unless 2i < q — u. The expression is thus trivial unless q — u is even,
and then
(6.10) d2v A (Q3+1Q3[1] * (xQu+r-s[l])*2)

= ¿su+r£ (V t ') Qs+q-u+1Q32täv-t.

Substituting (6.9) and (6.10) into (6.8),

-aq#är=5>-r) (q " r') Q2{u+r+t)+iäi-»-t

+ Y(q-2v,r)(V~t\ Qo+^Qi+r-^W

Now, for fixed s,

Y (u'r) \   "   ) = («-«!*■-•).
u+t=q-s \ /

Y (q-2v,r)(V-t)=(q-2s,r-2S),
v-t=s \ I

so we conclude that

âqéâr = £> - s'r - s)Q2iq+r-3)+1äs
s

+ YíQ - 2s, r - 2s)Qq+r+1Qq+r-2säs.
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Now aq and är are primitive, so by Lemma 6.5,

äq o ar = äq * är + äq#är,

and part (a) of the theorem follows
Part (b) follows from Kochman's formula [7] and the fact that jgi : U —» SG(S1)

is an infinite-loop map [3].    D
The proof of Theorem 6.7 is analogous and is left to the reader.    D
REMARK 6.11. From (6.6) we find that

är o aT = dr * dr + Q2r+1ar = 0

which is consistent with Corollary 5.3. Indeed, it can be used to prove that js^är —
är at p = 2.

7. The global structure of Hr(SG(S1)) and of Ht(BSG(S1)). Recall the
weight valuation

w:H,(QS°;Zp)^Ñ,
where N = {0,1,..., oo}.  It is the smallest function with this source and target
satisfying

(7.1) w(x*y) >w(x)+ w(y),

w(x + y)> min{w(x),w(y)},

w(Q*[l]) = pl{1)    for I admissible with e(i) > 0.

(We refer to [5, pp. 16, 42] for definitions of length, admissibility, and excess, for
Dyer-Lashof operations.) Thus in particular w(0) = oo and w([n]) = 0.

Similarly, we define
«;:P*(QPZ+;ZP)^N,

respectively
w: H*(Q{CP? ASX);ZP) -N,

to be the smallest such functions satisfying (7.1), (7.2), and, for I admissible,

w(QIer) = pl{1)+1    for e(I) > r > 0, and 1(1) > 0,

w(er) — p for r > 0,

w(e0) = 0,

respectively,
w(QIär) = pl{1)+1    for e(i) > 2r + 1 > 1.

In all three cases it is clear that

(7.3) w(xi * ■ ■ ■ * xr) — w(xi) + ■ ■ ■ + w(xr)

if xi * • • • * xr is nonzero and each x¿ is such an element, Q/[l], Q/er, or Q1^.
It is easy to check, using Theorems 4.4 and 4.5, that the transfer map

H*(Q(CP? AS1))-t^^Hf(QBZ+)

V'
■Ht(QS°)

preserve weight:   w(9t(x)) > w(x) for 6 — ío,íi, or t.   Thus it makes sense to
compute them modulo higher weight, and we have the following lemma.
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LEMMA 7.4.   For any p,

tuQ'är = Q'e2r+i * eyp        ,

and for p = 2,
io.Q7âr = Q/Q2'"+1[l]*[-2U/)+1],

mod higher weight.

PROOF. For I empty, these are immediate from Theorems 4.4 and 4.5. The
Adem relation for QnQ° implies that for any n > 0 and any k G Z, w(Qn[pk]) > p2.
It follows by induction that

QW'+Ml] * [-p]) = Q'Q2r+1[l] * [-pl^+1]
mod higher weight. The assertion for £0* follows, and the other case is similar.    D

As a corollary, we have the injectivity needed in §6:

Corollary 7.5. Forp = 2,

to. : Ht(Q(CP? A S1)) -» H*(QS°)
is infective, and for p arbitrary,

tu ■ Ht(Q(CP? A S1)) -> Ht(QBZ+)
is injective.    □

Next we note the behavior of the weight valuation with respect to the composi-
tion product in SG^S1) ~ Q(CP^° A S1).

LEMMA 7.6.  InH*(Q(CP? AS1)),
(a) w(xffy) > w(x) + w(y), with equality if and only if p = 2 and w(x) = 2 =

w(y); i.e., x = äs,y =ät.
(b) w(x o y) > w(x) + w(y).
(c) x o y = x * y modulo higher weight unless p = 2, x = ä3, y = ät.

PROOF, (a) By the mixed Cartan formula, Q1 äs#QJät is a sum of terms of
the form QK(äi#äj), where l(K) — 1(1) + l(J). Substituting in the value of äi#äj
from Theorems 6.6 and 6.7 we find that each term in this sum has weight at least
pl(I)+l(J)+2    Now

pl(I)+l(J) + 2 > pl(I) + l +pl(J) + 2^

and the inequality is strict unless p = 2 and 1(1) = 0 — l(J). This proves (a) for
such elements. If xi,..., xq, yi,..., yr, are such elements, then each is primitive, so
the distributivity formula implies that

(xi *-..*xq)#(yi *---*yr) =0    iîq^r

= Y Mxi#y*(i)) *■■■* {xq#ya{q))   if ? = r

and the result holds by (7.3).
(b) and (c). Since Q!äs and QJät are primitive,

Q'aa o QJät = <2Jäs * QJät + Q/äs#QJät
by Lemma 6.5. By (a), this is congruent to Q/as * QJdt mod higher weight, with
the noted exceptions. Again, the extension to monomials is easy.    D
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As a corollary, we have

THEOREM 7.7. Ht(SG(S1)) is a primitively generated Hopf algebra. For p —
2,

Ht(SG(S1)) = H.{U) 0 P[K2 : r,> 0]
0P.(Q(CP^oAS1))//P[är:r>O],

and for p odd,
H,(SG(S1)) a H,(Q(CP? A S1)),

as Hopf algebras.    D

We now study P« (BSG(S1 )) by means of the classifying space spectral sequence

(7.8) Tor£(SG(sl))(Zp,Zp) => H.íflSGÍS1)).

This is a first quadrant homology spectral sequence of Hopf algebras. Consider first,
among the generators with s > 1, the divided powers of the suspension adr of ar.
The equivariant J-homomorphism jgi : U —» SG(S1) maps onto these elements, by
Corollary 5.3. Since the spectral sequence

Toth'(u\Zp,Zp)=>H.(BU)

collapses at E2, we conclude that these generators are permanent cycles.
For p = 2, there are no further generators with s > 1, so the spectral sequence

(7.8) collapses at E2. For p ^ 2, each odd generator in Ht(SG(S1)) leads to a
divided power sequence in P2. These are connected by the universal differential [5,
p. 125]

dp_17P+:,((Tx) = -(<T0Qix)*1j(<Tx).

Here, if 2s = |x| + 1, then Q\x = uQ3x for some unit u G Zp. To compute Q\, we
have

LEMMA 7.9.   In Ht(SG(S1)), for I admissible with e(I) > 2r +1 and 1(1) > 0,

QlQ'ür s QlQ'är

mod higher weight.

This is a routine exercise with the weight valuation, and is described in more
detail in [9], so its proof is omitted here. This lemma results in

Ep Si T[aar : r > 0] 0 E[aßQsär : s > r > 0]

0 DlaQ1 Or : 1(1) > 1, e(I) > 2r + 1, r > 0],

where D denotes the free commutative algebra truncated at height p. No further
differentials are now possible: Ep = E°°.

Lemma 7.9, together with the equivariant J-homomorphism, and the next lemma
when p = 2, determines the multiplicative extension, and Theorem F of the Intro-
duction results.
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LEMMA 7.10.   Forp = 2
Q*r + 3Q2r+lär = Q

in H,(SG(S1)).

PROOF. Using Lemma 6.5 and the fact that ar is primitive, we expand

Qir+3Q2r+1är = Q4r+3(K2)

into a sum in which each term appears exactly twice. Since we are working mod 2,
the lemma follows.    D
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