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EQUrVARIANT G-STRUCTURE ON VERSAL DEFORMATIONS

BY

DOCK S. RIM1

Abstract. Let X0 be an algebraic variety, and (x, 2) its versal deformation.

Now let G be an affine algebraic group acting algebraically on Xq. It gives

rise to a definite linear G-action on the tangent space of 2. In this paper we

establish that if G is linearly reductive then there is an equivariant G-action

on (x, 2) which induces given G-action on the special fibre X0 and its linear

G-action on the tangent space of the formal moduli 2. Furthermore, such

equivariant G-structure is shown to be unique up to noncanonical isomor-

phism.

Let X0 be an algebraic variety together with an action of an algebraic group

G, defined over a fixed field k. A question we pose here is to see if there exists

an equivariant G-structure on versal deformation of X0. To be more precise,

we ask if there exists a versal deformation

X0 ^     X

i I
Spec(k)     <^*     s

where we can provide G-action on X extending the given action on X0, and

G-action on the parameter scheme s, such that all the maps entering in the

above diagram are compatible with those G-actions. In the case when X0 is an

affine cone with the obvious Gm-action, an existence theorem was proven by

Pinkham in [4] by an elementary technique, and the question for the general

case was left open.

The purpose of this paper is to establish an existence theorem and unique-

ness for the case of linearly reductive group G, generalizing the case of Gm.

Indeed we show that if HX(G, — ) = 0 = H2(G, — ) for a class of G-modules

determined by X0, then an equivariant G-structure exists, and is unique up to

equivariant isomorphism.

Our technique is parallel to the original method of M. Schlessinger in

proving the existence theorem for versal deformations [8]. A crucial difference

is that we have to stay in the category of deformations and not the isomor-

phism classes of deformations, since we have to deal with a successive

extension problem of G-actions and equivariant isomorphisms. The same
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218 D. S. RIM

reason was indeed a motivating force in writing an exposé in [5], though it

may have been too heavy with the language of categories for some readers.

1. Fibred category with G-action. We denote by A: a fixed field, and set 33 to

be the category of "fat point" over k i.e., Spec(Ä) where R is an artinian local

A-algebra with the residue field k. If M" ^ 0 but M"+1 = 0, where M is the

maximal ideal of R, then Spec(Ä) is called a fat point of order v. If F is a

finite-dimensional vector space over k, A(V) stands for an affine space (with

the origin as a base point) i.e., A(V) = Spec(Symm(V*)). We set Af(V) =

Spec(Symm(K*)/A/"+1) where M is the maximal ideal of Symm(F*) gener-

ated by the linear forms. We shall further adopt the following notations:

• = Spec(/c), e = Spec(Ac[e]), (1) = category with a single object without auto-

morphism, 33, = the subcategory of 33 consisting of fat points of order < v.

Let X0 be an algebraic variety over k. A deformation of X0 over a fat point

s in 33 is a diagram

I

X

i
s

where X —» s is flat. A morphism of deformation of X0 is a pair (<b, a) which

yield a commutative diagram

Thus the deformations of XQ form a category 6D, and the assignment of

base scheme to each deformation yields a functor y: 'S) —» 33. We note the

following facts:

(1) If X

X Xss'-

(2) Let

i is a deformation of X0, then for any base change s' -» s,

s' is a deformation of X0 over s'.

X

I

X'

i

be a morphism of deformations of X0. If a is an isomorphism, then so is <i>.

(3) Consider two morphisms (<i>, a) and (\j/, ß):
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EQUIVARIANT G-STRUCTURE ON VERSAL DEFORMATIONS 219

If one of a, ß is a closed immersion, then A" Ux À"'-» s'IL. s" is a defor-

mation of X0.

The above properties (1) and (2) shows that the category 'S) of deforma-

tions of X0 is a fibred category in groupoid over 33 [1], [5]. We also note that

ty(-) is a one-point category without automorphisms. Abstracting the crucial

property (3) above, we define

Definition. Let y: g-»33 be a fibred category in groupoid, such that

S(') = (')• It is called "homogeneous" if we have that any diagram

in g admits £ II,, £', provided at least one of y(«f>), y(<>') is a closed immersion.

In other words, for any diagram

in 33 where at least one of them is a closed immersion,

Z(s'Us")^%(s') X   S(Ä")
ÚÍ.S)

is an equivalence of categories, where g(ft) stands for the subcategory of g

such that £ G ob g(ft) <=> y(£) = ft, and <f> G Mor g(ft) <=> y(<¡>) = the identity

on ft, and the right-hand side above stands for fibre-product of categories in

the sense of 2-category.

Thus the category of deformations is a good example of a homogeneous

fibred category. In case when s = ■ , then it follows from {$(•) = (1) that

I<5(yii5")|" |g(y)| x \%(s-)\,

Mor(f U f, t,' II t,")^. Mor(f, t,') X Mor(£", n"),

where we set |C| = the set of isomorphism classes of objects in the category

Q. These facts entail that |S(^i(^))| and Aut(l^) carries a canonical structure

of vector spaces over k where \v stands for the trivial object over AX(V) i.e.,

the pull-back under Ax(V)—>- of the object 1. Indeed, set

V:AX(V)^AX(V)UAX(V)

be the map given by the addition map V* 0 V* -> V*. Then |S(^,(F))|

becomes a vector space over k via the addition:

\%(A1(V))\x\%(Ax(V))\ = \Z(Ax(V)UAx(V))\Z \%(AX(V))\.

We further note that the canonical map  V* ® 13(e) I -* |S(^i(^))| is an
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220 D. S. RIM

isomorphism of vector spaces. For any £ G ob(Q(A,( V))), the same will hold

for Aut(£), if we define the addition via V*(a, t) for a, t in Aut(£). However,

V*(a, t) is equal to the ordinary composition of automorphisms, since

V*(a, t) = V*((a, 1) • (1, t)) = V*(a, 1)V*(L r) = or.

We also note that the canonical map Aut(lK)-> V* ® Aut(l£) is an isomor-

phism of vector spaces.

In this categorical language, a versal object for g -» 93 can be explained as

follows:

Definition. A versal object for y: g -> 33 is an object £ G ob(g) such that

every x G ob(<5) is induced by £ i.e., there exists a morphism x -»*> £, and

furthermore it is minimal in the sense that the canonical map £: Mor(e, y(£))

-* |S(£)I given by pull-back is an isomorphism.

One may note that this property entails that the canonical map £:

Mor(i, y(£)) -» \Q(s)\ is an isomorphism for every fat point s of order 1.

It is a theorem of M. Schlessinger that a versal object for g exists provided

|5(e)| is finite-dimensional. One important remark is in order. If |g(e)| is

finite-dimensional, then infinitesimal neighborhoods of the origin in the affine

space |?$(e)| form a subcategory 33' of 93. Then a versal object for ¡5' = <5|33' is

indeed a versal object for g. This fact will be used in the sequel, and

throughout the rest we assume that |g(e)| is finite-dimensional.

Now assume that an algebraic group G acts algebraically on the variety X0.

Let o G G. If

x0   4   x

i ïj
<^>      s

is a deformation of X0, then

X0     *£     X

i Ij
=-> S

is also a deformation of X0, provided s =£ ■ . Consequently, G acts on the

category S) (s) and in particular on 'S) (e). Since this G-action commutes with

amalgamated sum, it follows that the vector space ^(e)! receives a linear

representation of G. Consequently, if we set 33' to be the subcategory of 33

consisting of infinitesimal neighborhoods of the origin in the affine space

^(e)!, then G acts on the category 33'. We now define the action of G on

S)' = öD|33'via

I fc-.  i 1"
V   ->s  J V   ->o(s)J
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EQUIVARIANT G-STRUCTURE ON VERSAL DEFORMATIONS 221

i.e., if we denote a deformation by a triple then

o(j,X,i) = (oj,X,io-1).

The action of G on 6D' so defined is now compatible with that on 33', i.e., y:

^ ' —*• SB' is a G-equivariant fibration. We note that, for any G-invariant fat

point s of order 1 in 93', the canonical isomorphism Mor(j, e) ®

1^(6)1 -» \S)(s)\ is G-linear where G-action on Mor(i, e) <8> I^COI is given by

o(h <8> tj) = ho"1 <8> <rr/.

Definition. We say that £ = (j, X, i) in <S) ' admits a data for G-equivari-

ance if j = y(£) is G-invariant, and for each o G G there exists an isomor-

phism <i>„: a(£) -» £, identity on s i.e., we have a commutative diagram

or, what is the same, a commutative diagram

This means alternatively that s = y(£) is G-invariant and the isomorphism

class £ is a G-invariant element in |Q(e)|. We say that £ = (j, X, i) is

G-equivariant if it admits a data {<?>„: a(£)—»£|a G G} for G-equivariance in

such a way that <f>,0(<i>T) = <bar for all o, t in G where o(<j>T) stands for the

isomorphism o(t(Ç) ->* £) = (or(£) —>a('f,') o(£)). In case when £ is G-equi-

variant we simply use o instead of </>0 in case when there is no possible

confusion.

Our objective is to establish an existence of G-equivariant versal deforma-

tion under a suitable condition on linear representations of G on ^(e)! and

Aut(lt). A remark is in order concerning G-action on Aut(le). Let tj be a

G-equivariant object in 6D. Then for any u G Aut(Tj), we set u" = o ■ o(u) •

o~\ Now for any G-invariant vector space W, \w (= the pull-back of

1 G ob S)(-) under AX(W) —> • ) is G-equivariant, and G-action on Aut(l^) is

fc-linear. Furthermore, the canonical map W* ® Aut(le) —» Aut(l^) is an

isomorphism of &[G]-modules.

Needless to say, the above definition can be carried over verbatim to an

abstract homogeneous fibred category with equivariant G-action.
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222 D. S. RIM

2. Existence of equivariant G-structure on versai deformation. Abstracting

the properties on the category of deformations of the variety X0 with

G-action, we put ourselves in the following situation:

(i) F is a fixed finite-dimensional vector space together with a linear

representation of G on it, and 93 is the category of infinitesimal neighbor-

hoods of the origin in the affine space V.

(ii) y: g -» S3 is a homogeneous fibred category in groupoid, provided with

a G-action on g compatible with that on 93, and we are given a definite

G-linear identification |g(e)| = V. A first step is to choose £, in ï}(Ax(V))

such that £,: Mor(s, AX(V)) -» (g(e)) is an isomorphism and £, carries a data

of G-equivariance.

Step 0. We choose £, as follows. We have the canonical G-linear isomor-

phism Mot(Ax(V), e) ® |g(e)| -» |g(yf,(F))| i.e., we have the canonical G-lin-

ear isomorphism V* ® V^> \%(AX(V))\. Choose £, G ob(%(Ax(V))) such that

its isomorphism class [£,] corresponds to 2"_, \ ® x¡ in V* ® V where xx,

x2, . . ., xn is a basis of V and X„ X2, . . . , \ is its dual basis. Since

ff(S\-® x¡) = 2\a_1 ® oxi, = 2\ ® x¡, [£,] is a G-invariant element in

|g(^,(F))|, and secondly £,: Mor(e, y(£,)) -* |g(e)| is an isomorphism since it

corresponds, under the canonical identification V = Mor(e, y(£,)), to the

identity map F—» V. The fact that [£,] is G-invariant means that £, admits a

data of G-equivariance.

Our construction of G-equivariant versal object for g is stepwise, and the

following is a key lemma.

Lemma. Let s —» s' be G-invariant fat neighborhoods of the origin in V

corresponding to the exact sequence 0 —» W —* R' ^> R—*0 such that mW = 0

where m is the maximal idea of R'. Let £ be a G-invariant object in g(s), and

let tj be an extension o/£ to s' with a data of G-equivariance extending the given

G-structure on £. If H2(G, W <8> Aut(le)) = 0, then tj can be provided with an

equivariant G-structure extending that on £.

Proof. Let {<ba: a(Tj)—»tj|o G G} be a data of G-equivariance extending

the given G-structure on £ i.e., we have, for each o G G, a commutative

diagram

or\-►• tj

We want to adjust the family {<i>a|a G G} by the automorphisms of tj identity

on £, so that we can have «i>0 • o(<br) = «f»^ for all a, t in G. For this purpose we

have to look into Aut^Tj) = the group of automorphisms of tj identity on £.

Now the canonical isomorphism s' 1IS s' =¿ s' II A x( W*) gives us the canonical

isomorphism tj 11^ tj =¿ tj II 1 w. identity on the first factor, and consequently

the   canonical   identification   Aut^Tj) = Aut(l^) = W ® Aut(le).   Thus
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Aut£(Tj) is an abelian group and is indeed a vector space over k. Furthermore,

the G-action on Autf(Tj) carried over from that on A\xt(\w.) corresponds to

the following operation: Given u G Aut^ij), u" = $ao(u)<b~l (one may note

that u -» <t>ao(u)<¡>~' does not depend on the choice of {«/»Jo G G} extending

the given data on £, since any other choice would differ by elements of

Aut£(Tj) which is abelian). Now let us return to the given data of G-equivari-

ance {(¡>a: o(tj) -» tj} extending that on £. Then/(a, t) = <f»a • o(<bT) • <b~x is an

element of G-module Aut^Tj). Then

f(or, p)f(a, Tp)~lf(o, t) = f(a, r)f(or, p)f(o, Tp)~*

= <ba-o(<bT)-OT(<t>p)-o(<t>rpyl-<t>-1

= <t>„-o(f(r,p))<f>-l=f(r,Py

i.e.,/: G X G ^> Aut{(Tj) = W <8> Aut(le) is a 2-cocycle. Therefore, if we have

H2(G, W 0 Aut(lE)) = 0, then there exists u: G-> Aut^rj) such that/(a, t)

= u>^\ for a11 ». T- In other words, <bao(<bT)<b-1 - "„"Xi' =

^>a<J(.uM>o\"^i i-e., o(<bT)4>-1 = o(uT)$-xu0u-x i.e., (u~x^„) ■ o(u~\) =

«ijT'^tfT- Therefore if we replace the data {<;>„: o-(tj)-»tj} by {>pa = u~x<t>„:

a(Tj)—»tj} then \p„o(\¡/r) = \(/aT for all a, r in G i.e., tj is a G-equivariant

extension of £.

A consequence of the above lemma is that our choice of £, in Step 0 is

provided with an equivariant G-structure under the assumption that

H2(G, V* ® Aut(lJ) = 0. Thus assume that £, is extended to a G-equivariant

£„, which is versal for g|33„. We want to extend £„ to £n+„ which is versal for

g|93„+, and also G-equivariant.

Step I. Set í = y(£) where £ = £„. If s = Spec(Ä) with the exact sequence

0 -> I -> Symm( V*) -> R -+ 0, then set s" = Spec(Symm( V*)/MI), and con-

sider all the subschemes of s" containing s. If £ can be extended to s¡ c s"(i

= 1, 2), then it can be extended to sx u s2 since sx u s2 = sx II s'2 for some

subscheme s'2 of s" containing s. Therefore if we set s' to be the largest

subscheme of s" on which £ can be extended, then we must have s' u o(s') c

s' for all a G G i.e., s' has to be G-invariant. We now pick some tj over s',

which extends £, and set s' = sn + x.

Step II. Set í = Spec(R), s' = Spec(Ä'), and let 0 -> W^> R' -> R -> 0 be

exact. Then m W = 0, and W is a G-invariant quotient of / and hence is a

G-invariant subquotient of Symm( V*). The canonical isomorphism

i'U s'^s'UAx(W*)

entails a canonical equivalence of categories:

g(/) x g(0^g(y)xg(^,(w")). (*)
Si-5)

Now tj is an extension of £ which is G-equivariant, and hence, for each

a G G, the pair (tj, ct(tj)) defines an object in g(j') XL^ g(s') and hence an

object Xa in ^(AX(W*)) such that tj II£ ct(tj) ^ tj II Xa, where Xa is uniquely
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224 D. S. RIM

determined up to canonical isomorphism. By abuse of notation, we denote by

the same symbol Xa its isomorphism class in |g(^,(iF*))| = W 0 |g(e)| = W

0 V. Now the commutative diagram

i'll i'll i'    ^   s'\l(s'\lAx(W*))   ^   s'UAx(W*)UAx(W*)

f'w To. v)

s'ils' Z s'UAx(W*)

applied to tj II£ a(ij) II£ ctt(tj) over s' Us s' Us s' yields a canonical isomor-

phism tj II \,T at tj II V*(Aa, o(\)) over s' UAl(W*), identity on the 1st

factor, and hence we have \,T = Xa + o(\) in |g(^,(IF*))| = W 0 V. In

other words, X: G —» W 0 V determines a 1-cocycle. Consequently, if we

have HX(G, W 0 V) = 0 then there exists f G ob(g(^4,(W*))) such that

K - Í - <Kf ) for all o G G.
By virtue of (*) above, we may and shall pick an extension tj' of £ over s'

determined by the isomorphism tj II£ tj' at tj II f. Then the above commuta-

tive diagram, applied to tj II£ a(-rj) II£ a(ij') on s' lls s' 1IS s', yields an isomor-

phism «/>„: ct(tj') -» tj' extending the given isomorphism o: a(£) -* £. Replacing

tj by tj', this proves an existence of data of G-equivariance on tj, extending the

given data on £.

Step III. Let £ -» tj be an extension to s', admitting a data of G-equivari-

ance {<i>0: ct(tj)-» Tj|a G G} extending that on £. By virtue of the above

lemma, the given equivariant G-structure on £ can be extended to tj under the

assumption that we have H2(G, W 0 Aut(le)) = 0.

Step IV. Assume that HX(G, W 0 V) = 0 = H2(G, W 0 Aut(l„)) for all

G-invariant subquotients W of Symm(F*) where V= |g(e)|. Pick £, over

AX(V) as in Step 0. Then £, is provided with an equivariant G-structure, and

£,: Mor(e, y(£,)) -» |g(«)| is an isomorphism. Our hypothesis on the cohomol-

ogy of G insures that we can proceed with the Steps I, II, III, getting a

G-equivariant extension £, —* £2. Since £2 is G-equivariant, our hypothesis on

the cohomology of G enables us to repeat the Steps I, II, III, getting a

G-equivariant extension £2 -» £3, etc. Then £ = lim„ £„ is a versal object for g,

and carries an equivariant G-structure.

We thus have established an existence under the hypothesis that HX(G, W

0 V) = 0 = H2(G, W 0 Aut(le)) for every G-invariant subquotient W of

Symm(F*) where V = |g(e)|. We now deal with its uniqueness, which is

simpler as usual.

Uniqueness. Given £ G ob(g) with s = y(£), we set sn = the maximal closed

subscheme of s of order < n. We thus have • = s0 c sx c s2 c s3 c . . . and

s = lim sn. We set £„ = £|i„. Now let £, tj be any two G-equivariant versal

object for g. We then have an isomorphism

by the nature of versality. We now assume that </>, had been extended to an
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equivariant isomorphism

c   *"

By versality, <bn can be extended to some isomorphism

«f*; £.+i-*iï»+i-
We want to adjust ip so that it becomes equivariant, i.e., ip • o = o ■ o(\p) i.e.,

\¡/° = \¡/ for all a G G. Set ua = ip"-\f/~x. It is an automorphism of tj„ + 1

inducing the identity on Tjn, i.e., u„ G Aut^(Tj„ + 1). Since u° ■ ua = (\pT • xp'1)" •

\p" -\¡/~x = \p°T -\p~x = u^, it is 1-cocycle. Consequently if we have

HX(G, Autn](Tjn + ,)) = 0, then u„ = u" • u~x for some element u G Aut^(Tjn + ,)

i.e., {p" • \p~x = u" • u~x, i.e., (\j/- u~x)a = \p- u~x for all a G G. Thus if we set

tbn+x = \p • u~x, then it is an equivariant extension of <f»„. Since Aut^(Tjn+1) at

W 0 Aut(lc) as G-modules for some G-invariant subquotient W of

Symm(K*), we shall have uniqueness provided HX(G, W 0 Aut(le)) = 0 for

every G-invariant subquotient W of Symm( V*).

We thus have established

Theorem. Let y: g—»93 be a homogeneous fibred category in groupoid

together with equivariant G-action. We assume that g(-) = {1} and V = |g(e)|

is finite-dimensional. If we have HX(G, W 0 V) = 0 = H2(G, W 0 Aut(le))

for every G-invariant subquotient W of Symm(F*), then there exists a G-equi-

variant versal object for g. If HX(G, W 0 Aut(lc)) = 0 for every G-invariant

subquotient W of Symm( V*), then a G-equivariant versal object is unique up to

G-equivariant isomorphism.

Now let a variety X0 be either complete or affine with only a finite number

of nonsmooth points. Then 1^ (e)| is well known to be finite-dimensional.

Now let an algebraic group G act on X0 algebraically. Then Aut(le) =

Autjr (A^ X e) may be infinite-dimensional in case when X0 is affine, but in

any case it is a rational G-module. Consequently, if G is linearly reductive,

then H'(G, W 0 ^„(e)!) = 0 = H'(G, W 0 Aut(l£)) for all i > 0 and for

every finite-dimensional G-module W. Therefore we have

Corollary. Let G be an algebraic group and X0 an algebraic variety

together with an algebraic G-action where X0 is assumed to be either complete or

affine with only a finite number of nonsmooth points. If G is linearly reductive,

then X0 admits an equivariant G-structure on versal deformation, unique up to

G-equivariant isomorphism.
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