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EQUIVARIANT GEOMETRY AND KERVAIRE SPHERES

ALLEN BACK AND WU - YI HSIANG

Abstract. The intrinsic geometry of metrics on the Kervaire sphere which are
invariant under a large transformation group (cohomogeneity one) is studied.
Invariant theory is used to describe the behavior of these metrics near the singular
orbits. Nice expressions for the Ricci and sectional curvatures are obtained. The
nonexistence of invariant metrics of positive sectional curvature is proven, and'
Cheeger's construction of metrics of positive Ricci curvature is discussed.

I. Introduction. In [BdCH], a general framework for equivariant differential
geometry was sketched. In this paper, we apply that framework and study all
invariant metrics on a class of manifolds including the Kervaire sphere 24" + 1 with
an almost transitive (cohomogeneity one) 51 X 0(2« + 1) action.

§§II and III review the general approach to studying G-invariant metrics on a
manifold M as suggested in [BdCH]. §IV makes this explicit in the case of the
Kervaire sphere; particularly interesting is the somewhat delicate way that the
invariant theory of the slice representations at nonprincipal orbits dictate the
possibilities for smooth invariant metrics.

In §V, the Ricci and sectional curvature of arbitrary left invariant metrics on
51 X SO(n)/SO(n - 2) (principal orbits of the action) are calculated. §VI uses
these results to obtain curvature computations for arbitrary invariant metrics on
Kervaire spheres. The answers are remarkably simple.

We apply these considerations to the question of whether or not Kervaire spheres
possess equivariant metrics of positive curvature. Away from one orbit, the Kervaire
sphere is equivariantly diffeomorphic to the standard sphere with an orthogonal
action, yet we find that positive sectional curvature is impossible for an invariant
metric (VI.3). Cheeger [C] has shown the existence of invariant metrics with positive
Ricci curvature, and in §VII we relate his construction to our framework.

We also make use of the curvature formulas for 51 X SO(n)/SO(n — 2) to show
the nonexistence of invariant Einstein metrics on this homogeneous space (V.6) as
well as the uniqueness of Sagle's Einstein metric on SO(n)/SO(n — 2) (V.7).

In all sign conventions, we follow Kobayashi-Nomizu [KIN].
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208 ALLEN BACK AND WU-YI HSIANG

II. Geometry of orbit structures. First we recall the geometry of a complete
G-Riemannian manifold M as described in [BdCH]. Here M is a smooth Rie-
mannian manifold on which a Lie group G acts through isometries. Let 77 be a fixed
principal isotropy subgroup. The union M0 of the principal orbits (those with
isotropy group conjugate to 77) forms the regular part of M and has the structure of
a G/77 fiber bundle over M0/G. The complement Ms = M - M0 is the singular set.
The fixed point set M0 of 77 acting on M0 is the total space of a G = N(H)/H
principal bundle. The G action extends to the closure M of M0, and as M cuts every
G-orbit, G-equivariant information about M may generally be reduced to G-
equivariant data at points of M. M0 is the regular part of M.

In the diagram

M       ->        M
I i

M/G     ->     M/G

the vertical maps are Riemannian submersions along the regular sets. The submersed
metric measures the distance between orbits. Off the singular set, M/G -> M/G is
an isometry. The orthogonal complement to the orbits in M0 -* MQ/G determines a
G-connection in the principal bundle whose curvature is essentially the fundamental
tensor of the submersion (as in [ON]) M0 -» M0/G evaluated at points of M.

A function /: M/G -» £ is defined to be smooth if the composition /: M -»
M/G -> £ is smooth. In understanding this smooth structure, the following basic
theorem of Schwarz [Se] is fundamental since it points out the intimate relationship
between smooth functions near the singular set and the invariant theory of the slice
representations.

Theorem ILL For any given point x e M with isotropy group Gx, let Sx be the
linear Gx-space of all normal vectors to the orbit £ = G(x) at x (i.e. the slice). Let
{ a,, a2, • • •, ,a,} form a Hilbert basis of the ring £[5JG< of Gx-invariant polynomials.
Then the { a¡} form a local coordinate system for a suitable neighborhood of £ in M/G;
i.e. all Cx'-invariant functions near ¿ are C00 functions of the a¡.

Let f and A be the Lie algebras of G and 77, respectively. Choose a fixed
Ad ,,-invariant positive definite quadratic form on g and let fi be the orthogonal
complement of A in g with respect to this form. Then at each point of MQ, the orbit
of G is naturally identified with G/77 and the metric induced from M on this orbit
is given by an Ad „-invariant inner product on /i. Furthermore, the Schur lemma
tells us that the number of distinct left invariant metrics on G/77 is determined by
the decomposition Y.ra = xnapa of the linear isotropy representation into distinct
irreducible representations pa of 77. (The na are multiplicities.) More precisely the
representation spaces corresponding to nonisomorphic irreducibles are orthogonal,
and the bilinear form restricted to pairs of vectors in isomorphic irreducible
representation  spaces  must  be  (after  identification)  a  multiple of any  choiceLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(e.g. the trace form) of 77-invariant quadratic form. So an arbitrary Ad/r
invariant quadratic form on ft is given by an element of ®ra = pYs(na, R) Q
GYs(m, £), where GL(/c, £) denotes the nonsingular symmetric k X k real matrices
and m = L'a = xnadim(pa).

So the tangential components of the metric are determined by a function h:
M -* GU(m). It is important to realize that this function is G-covariant. Explicitly,
let {Vj\ 1 < / < m) be a fixed and chosen basis for fi, Bin) the matrix of Ad(n)
acting on fi with respect to this basis, and h¡¡ix) = (V*ix), V*ix)) where V*ix) is
the associated Killing field at x. (We drop the * when no confusion will result.)
Then, because V*(nx) = Ln((Ad(n~ï)Vj)*(x)), h satisfies the covariance property.

Proposition II.2. h(nx) = B(nl)'h(x)B(n~l).

The function h also determines the second fundamental form of each principal
orbit (see Proposition III.l).

The above discussion naturally leads to the following uniqueness theorem showing
that the G-isometry type of a G-Riemannian manifold is determined by the three
basic invariants consisting of: (a) submersed orbital distance metric on M0/G; (b) a
G-connection on the principal bundle M0 -* M0/G (= M0/G); (c) a matrix-valued
covariant function A, (x) on M0.

Theorem II.3. Suppose that M and M' are two complete Riemannian G-manifolds
with the same principal orbit type G/H. Assume there exists a G-equivariant map i:
M0 -* M¿ satisfying

(a) the induced map i: M0/G -» M¿/G is an isometry.
(b) i* preserves the G-connections.
(c) i* preserves the matrix-valued functions h¡¡ and h'¡¡.
Then there is an equivariant isometry i: M —> M' whose induced map on orbit spaces

is exactly i.

Equally important, the three basic invariants may be used to construct examples
of G-Riemannian manifolds. The basic tool is the slice theorem describing a tubular
neighborhood of any orbit G(x). The slice 5 at x is the intersection of an open ball
about 0 in TXM with the set of normal vectors to the orbit G(x). Then using the
exponential map, a tubular neighborhood of G(x) is identified up to equivariant
diffeomorphism with the bundle G X K S -* G/K where £ is the isotropy group at
x. The action of £ on 5 is orthogonal and is called the slice representation at x. The
projection GxfS-» K/S is just a local version of the orbit map, and principal
orbits are exactly the places where the slice representation is trivial.

If AT is a smooth £-manifold and Y is a smooth G-manifold with £ a subgroup of
G, it is immediate that any smooth £-equivariant map 8: X -» Y has a smooth
extension to a G-map 6: G X K X -» Y. Using this, it is easy to see

Proposition II.4. Let S be the slice at a point x with isotropy group K. Then any
K-invariant smooth inner product defined on TVM for all y e S has a (unique) smooth
extension to a G-invariant Riemannian metric on a neighborhood of G(x).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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So checking the smoothness of the metric determined by the basic invariants need
only be done at points of a slice. As a consequence, in the special case when M has
only one orbit type (Ms = 0 and the slice representation is trivial), we get the
following simple existence theorem.

Proposition II.5. Suppose M is a given G-manifold with all orbits of the same type
G/H. Then an arbitrary set of geometric invariants of type (a), (b), and (c) can be
realized by a suitable G-Riemannian structure on M. In fact, any smooth choice of
Ad ^invariant inner product on /i at points of S has a smooth extension to an
N (H)-covariant function h of type (c) defined on the open set G(S) of M.

The above proposition always applies to the regular part M0 of any G-Rieman-
nian manifold M. At points of Ms, the actual application of II.4 depends on the
understanding of smooth £-equivariant maps between linear representations. (The
failure of the equivariant Luna-Richardson theorem prevents a complete reduction
of the smoothness condition to G-slices in M.) The smooth (C00) £-equivariant
functions between linear representations form a module over the smooth real-valued
invariant functions on the domain. A module basis is given by a module basis for the
equivariant polynomials as a module over the invariant polynomials, and the smooth
invariant functions are given by Schwarz-s theorem.

We will need the cases of circle and cyclic actions, so we state the following
proposition readily proven by averaging:

Proposition II.6. (1) Let 51 act on C" = {(z,,..., z„): z¡e C) by X(zx,...,zn)
= (Xm,zx,..., X"'"zn) and on C by X(z) = X"'uz. Then the equivariant polynomial maps
from C" to C have as module basis (over C) the monomials zx' ■ ■ ■ z""z^1 ■ ■ ■ zjj"
with L"=xm,(a, -/?,■) = m0.

(2) If we restrict the above actions to the cyclic subgroup Zk, then the equivariant
polynomials are additively generated by the monomials with Y."=xmj(ai — /3,) — m0
divisible by k.

III. Curvatures in orbit map submersions. Here we recall the basic curvature
formulas of [BdCH] which specialize those of [ON] to' the case of invariant metrics.
Firstly, the second fundamental form of the fiber is determined by the covariant
function h.

Proposition ULI. If X is horizontal and V, W are vertical (Killing) vector fields,
then

{TyW,X)=-{Lx(,)(V,W).
Thus (TyVj,X) = - \Xhu in the notation of §11.

The fundamental method of describing invariant connections on a homogeneous
space G/77 is to use the following relation [KN], due to Wang:

Vy.V2* = \[VX*,V2*\ + U(VX,V2)\

where V, <=/ and 2(U(VX, V2), V3) = ([V3, V^, V2) + (VX,[V3, V2],). (Here V, e/,
V* is the associated Killing field, and [V„ KJ* = -[V*, Vf].)License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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In the almost homogeneous case (dim MQ/G =1), the fundamental tensor A of
the submersion, being a curvature, is zero. Let C: M0 -* R be the orbital volume
element function; C2 = det h. Then O'Neill's curvature formulae become [BdCH]

Proposition III.2. If M is almost homogeneous, the V¡ vertical Killing, and L a
unit horizontal, then

(1) (R(VX,V2)V„VA) = (R(VX,V2)V3,V4)

+ \[L(VX,V3)L(V2,V4) - L(Vx,V4)l(V2,V3)},

(2) (RiVx,L)L,V2) = -LL^1,Fz)  + (TyL,TyL),

(3) (RiVx,V2)V3,L) = l2[([L,UiV2,V3)],Vx) - ([L,UiVx,V3)],V2)},

(4) RiciVx,V2) = RTciVx,V2) - k^(Vx,V2)

LlogCL(Vx,V2) .      . ..+-*    ;   *'   2/  + 2(TyL,TvL).

Here Ric and £ denote the curvature functions of the orbit. The orbital volume
element function C enters in the above Ricci tensor formula because of the
well-known Tr(/2_17Jz) = £ (log det h) for any matrix-valued function h. In using the
above formulae, note that

(TyL,TvL) = \ZhkpLhlkLhJp,
k.p

where hkp is the inverse matrix of htJ. Also, for two-by-two matrices h,

hdeti'Lh)(Lh)h-\Lh) = (Lh)(L log det(A))
det(/j)

IV. The Kervaire example. We now apply the above discussion to a specific
example which includes the Kervaire sphere S2"^1 (w odd) defined as a Brieskorn
variety in C" + 1. Explicitly, if C" + l = C1 X C" has coordinates iza,Z) where
Z = (z,,..., zn), then 2, is the set of zeros of z0 + L"=1(z,)2 = 0 and E"=0|z,|2 = 1.
If we let X = Re(Z) and Y = Im(Z), these equations take the form

Re(z0) +X- X- Y ■ 7=0,

Im(z0) +2X- Y = 0,

|z0|2 + X- X+ Y ■ Y= 1,

where • denotes the ordinary Euclidean inner product. C" + l carries aG = 51xO(«)
action defined by

(e'8,g)iz0,X,Y) = (e2,ez0,cosl6gX- sinWgY,sinlOgX + cosWgY)

which is easily seen to induce an action on 2.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The 0( n )-invariant polynomials on C" + 1 are generated by x0, y0, a =
k(X ■ X + Y ■ Y), u = k(X ■ X - Y ■ Y), and v = X ■ Y. By studying the remain-
ing 51 action on these and setting w = u + iv (note w = \7L"=xz2), we see that a
Hubert basis for the G-invariant polynomials is given by

a= \(X- X + Y ■ Y),    ß=|z0|2,    y = u2 + v2=\w\\

a = Rez'()w,        t = Imzovv.
The above five basic invariant functions imbed the orbit space C" + l/G into £5 with
image the open cone over a topological 3-disc.

From now on, let us assume / is odd. Every orbit on 2, contains points with
Im(z0) = 0, so it is easy to see that the orbit space 2,/G is a curve in C" + l/G.
Reparameterizing, the projection map 2, -» [0, p2,] is induced by (z0,Z)^> |z0|2
where p0 is the positive real root of p2, + p'0 = 1. The principal isotropy group is
77 = Z2 X 0(n - 2). At z0 = 0, X and Y are orthogonal of the same length and we
have the isotropy group 770 = 51 X 0(n - 2) c 51 X 0(2) X 0(n - 2), where the
51 sits in 51 X 0(2) by e'B >-» (e'e, Rie), where Rie is the matrix of rotation
counterclockwise by 16. When z0 = p0, span(X, Y) becomes one-dimensional and
the isotropy group 77, = Z2 X 0(n - 1) c 51 X 0(1) X 0(n - 1) with Z2 c 51 X
O(l) by the diagonal.

A natural choice of complement fi of A in g is the span of vectors

P=0\,       O = (3/30)*,
£, = 0;,    F, = 0¡,       3</<n,

where 0/ is the skew-symmetric n X n matrix with 4-1 in row i, column j, and
zeros elsewhere above the diagonal, and 3/30 is the tangent to the 51 factor in
51 X O(n). Thus the principal orbit metric is is determined by the two symmetric
matrix-valued covariant functions a and b defined by

ü     W    a22)      \(E„F,)      (£„£,))'

h_[bn    bx2\_[{P,P)     (£,ô)\
Ui     b22)      \{P,Q)     (Q,Q))-

We shall use the notations A = det(a) and B = det(b).
The manifold M = £(77, 2,) is generally a Lens space 2, n (C1 X C2) and this is

the natural domain of the functions at] and b¡¡. The group G = N(H)/H is
51 X 0(2).

The slice representations for G and G are also easy to calculate. At z0 = 0, the
slices for both G and G are two dimensional and the isotropy 51 winds around
twice. At z0 = p0, the nontrivial part of the slice for the G action is given by the
standard action of 0(n - 1) on £"_1. The nontrivial part of the G-slice is given by
Z2 acting as a one-dimensional reflection.

The slice representations tell us exactly which functions a and b are realizable for
equivariant metrics on 2,. At z0 = 0, the slice is a two-dimensional vector space
with radial lines corresponding to horizontal geodesies. Let z be the natural complexLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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coordinate in the slice so that xex 4- ye2 is a unit horizontal vector (ex = d/dx, x =
Re(z); e2, y similarly). The covariance condition (Proposition II.3) requires that the
¿»,-7 and axx + a22 be invariant functions on the slice while axx — a22 + 2iax2 is
covariant with respect to rotation / times faster in the range than in the domain.
Thus near z = 0, there must be a smooth function t: £ -» C so that axx - a22 +
2iaX2 = zV(|z|2) and the invariant functions must be smooth functions of |z|2.

Since the orbit space is one dimensional, the functions a and b are determined by
their restrictions à and b to a single horizontal geodesic (radial ray) emanating from
the orbit at z0 = 0. Letting r denote the unit speed parameter along this geodesic
(r2 = |z|2), the above conditions become

«ii - ¿22 = r'jx(r2),    äx2 = r'r2(r2)/2,    äxx + ä22 = T3(r2),

where the t, are C00 functions (tx = Re(T), t2 = Im(r)). The btJ are all Cx
functions of r2.

However, because radial vector fields are singular at the origin, smoothness of the
functions a and b does not guarantee a smooth metric on 5. We must translate the
equivariance conditions above into conditions on the inner products of a spanning
set of vector fields. An easy calculation shows that

(P*,ex) = -^-2ibX2 + lbxx),        (Q*,ex) = i^(b22 + lbX2),
2rl 2r~

(ex,ex) = f-4{b22 + 2lbx2 + l2bxx) + ^.
Ar r

These show us that

Kr)-{\U    H^oi1     lMiU     lU)+Ab    H
K   '      \bl2     b22)        °\-l     I2) \bx2     b22j \hu     b22y

where b0, biJ e R, the b¡¡ are smooth functions of r2, and lbxx 4- 2lbl2 4- b22 = 4.
It is easy to check that these conditions are sufficient for smoothness and together
with positive definiteness are the only conditions on the functions a and b.

Suppose the distance between the singular orbits is £. Set r = L — r, where r as
above is the distance to the orbit at z0 = 0. Let us analyze the behavior of the
functions a and b near a point with isotropy group Hx = Z2X 0(n — l)c5'x
O(n) as described earlier. Choose an orthonormal basis ex,...,en_x for the slice
5 = £"' with associated coordinates xx,..., xn_x. Then X^'j/í*,)2 = r2. We again
use the notation à and b for the restrictions of a and b, respectively, to a radial
geodesic lying in the Gx = NiHx)/Hx slice.

The G slice is one dimensional and it is easy to see that covariance demands that
<512 and hx2 be odd functions of f while a¡¡ and bu are even functions. But it turns
out that this is an example where the equivariant Luna-Richardson theorem does not
hold.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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By choosing an explicit rotation from rex to an arbitrary point x = (xx,..., xn_x)
e 5, we can verify that at x,

(£„£)= X-^(bxx-äxx),        (F„P) = ^à12,r r

Smoothness of the metric and the first equation require that bxl = äxx at r = L.
This is just an infinitesimal version of the requirement that we have a G-invariant
metric on G/77j ~ 51 X 5"_1. The second equation forces äX2 to vanish to first
order, but the fourth requries vanishing to third order. Thus äxx = ox(r2), äl2 =
r3o2(r2), and á22 = r2 + fAa3(r2) (where the a, are C00). One can verify that these
conditions together with the previously mentioned even/odd conditions on the btj
characterize smooth metrics.

We could translate these conditions to other points of the singular orbit at r = L,
but for geometric reasons this is not necessary here. The horizontal geodesic in M
emanating from a point with isotropy group exactly the above Hx (as opposed to
some conjugate of 77! ) eventually becomes a radial line in a slice with isotropy group
51 X 0(n — 2) at r = 0. Because different points in the singular orbit G/Hx with
the same isotropy subgroup Hx differ by the action of an element of the center of G,
the functions ä and b do not depend on which point with isotropy group Hx we
consider. Because all slices along the other singular orbit G/770 are geometrically
equivalent (i.e., elements of N(H0)- and 770-equivariant linear maps of 5 induce
enough equivariant diffeomorphisms to take a radial line in one slice to any other
radial line in any other slice along this orbit) we see that the equivariant isometry
class is independent of anything other than the functions à and b. Thus we have

Theorem IV.l. (1) For an 51 X 0(n)-equivariant manifold 2, with the above orbit
structure, the equivariant isometry class is uniquely determined by the distance L and
the functions ä and b along a horizontal geodesic between two singular points with
isotropy groups H0 and Hx.

(2) Any set of functions ä and b on [0, L] with the above discussed vanishing
properties at r = 0 and r = L (and positive definiteness conditions) give a smooth
equivariant metric on 2.

It is interesting to note that the standard constant curvature sphere in the
51 X O(n) representation space R2 <8> R" has the orbit structure of 2, for / = 1.
Thus the manifolds 2, are all equivariantly diffeomorphic to the sphere 52"-1 away
from one orbit. It is the imbedding of the 51 factor into 51 X 0(2) at this orbit
which determines the topological type of 2,. When /= +3 (mod 8), 2, is a
Kervaire sphere, /= ±1 (mod 8) makes 2, a standard sphere; otherwise 2, has
torsion in its homology of dimension / — 1.

An interesting subclass of the equivariant metrics on 2/ comes from those
equivariantly and isometrically imbedded in C" + 1 with the same orbit structure as
our  Brieskorn example above.  We shall call these special.  Then at  the pointLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(x0, y0, xx, yx, x2, y2)e M c C3, the induced metric satisfies

flu = A + yh blx = x¡ + x\ + y\ + y22,
ax2 = xxx2 + yxy2,    bx2 = 2/(x2y1 - xxy2),

a22 = x\ 4- y22, b22 = 4(x2 + y2) + l2(x2 + x\ 4- y2 4- y2).

Note that 2 special means there are only four independent functions atJ and by
since bxx = Tra and b\2 = 4l2A. We will see in §V that this simplifies the curvature
of 2.

One might ask which curves in the orbit space of C" + 1 by G correspond to
smooth manifolds equivariantly diffeomorphic to 2,. To understand the behavior
near singularities, note that for G acting on C"+1, we have isotropy group H0 = Sl
X 0(n - 2) only at points (0, X, Y) e R2 X R" X R" with X ■ X = Y ■ Y * 0 and
X • Y = 0. The slice representation of 770 is modelled on 51 winding twice in one
plane (corresponding to the part of the slice in 2,), 2/ times in another plane, and
51 acting trivially on a third line. For 51 acting on C2 X R by X(zx,z2,x3) =
(X2zx, X2lz2, x3), the invariant functions are generated by

.2 .2 . ._
•^l = lzi I '    A2=\z2\ ,    A3 + iA4 = zxz2,    A5 = x3.

For 2 c C2 X R to be smooth with £(0i0)2 e C X {0}, 2 must be expressible
locally near zero as the graph of an equivariant map q: C -» C X £, i.e., z2 =
z'xqxiAx) and x3 = q2iAx) where q is C00. For the image curve of 2 in the orbit
space, this means A2 = A[\qx(Ax)\2, A3 + iA4 = A'xq~xiAx), A5 = q2iAx). By ex-
plicitly choosing a slice in C" + l and translating this result, we obtain

Proposition IV.2. In order to give a smooth manifold equivariantly diffeomorphic to
2' near the orbit of type 51 X 0(« — 2), it is necessary that near zero the image curve
in the orbit space of C" + l be of the form

A2=^xiAx)\2A[,    A5 = ^2iAx),    A3 + tA4 = ^xiAx)A'x,

where $ = (i//x, <p2): R -* C X R is C°°.

One can also ask rigidity questions such as when are two special manifolds 2,
equivariantly isometric? It is easy to see that such an isometry must preserve the
invariant functions A5,AX, and A2, but A3 and A4 are only constrained by
A\ + A24 = A'XA2. (This circle of indeterminacy corresponds to the natural 51 action
on the orbit space C" + l/G given by the centralizer of G in 0(2n + 2).)

V. The homogeneous space 51 X SO(n)/SO(n - 2). In this section, we will
outline the explicit calculation of the curvature tensor of the homogeneous space
51 X SO(n)/SO(n - 2) which occurs as principal orbit (up to coverings and
components) for the 51 X O(n) action on 2;. The results are summarized in
Theorems V.l and V.2 below.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



216 ALLEN BACK AND WU-YI HSIANG

Theorem V.l. (A) The nonzero components of the Ricci tensor of an invariant metric
on 51 X SO(n)/SO(n — 2) are given by

(1) Ric(Q,Q) = (n-2)b2X2/(2A),

(2) Ric(£,£) = („ - 2)[2 +{b2x -(Tra)2)/(2A)\,

(3) Ric(P,Q)=(n-2)bxxbx2/(2A),

(4) Ric(£„ £,) = (n - 2) - b22Jra/B 4- axxb22(Tra)2/(2AB) - anbxx/(2A),

(5) Ric(£,, £,) = (n - 2) - b22Tra/B + a22b22(lraf/(2AB) - a22bxl/(2A),

(6) Ric(£„ £,) = aX2b22(Jraf/(2AB) - ax2bxx/(2A).

(B) The scalar curvature is given by

(n-2) (n-2)Yra-bf+h^{AA-iJraf)

Theorem V.2.   Modulo the obvious symmetries and skew symmetries iincluding
Bianchi   identity),   the   nonzero   components   of  the   curvature   tensor for   51 X
50( n )/SO( n-2) are given by

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
(10)
(11)

(12)

(13)

(14)

(15)

(R(P,Q)Q,P) =0,
(£(£,, £)£, £,) = bxx - a22 + axlibxx - Tra)2/(¿U)

(£(£„£)£, £,) = bu - axx + a22(bxl - Tra)2/(4^1),

(£(£,, £)£, £,) = aX2 + ax2ibxx - Tr af/iAA),

(£(£,,0)0, £,) = axxb22/i4A),

<£(£„<2)0, £,) = a22b2x2/i4A),

{RiE,,Q)Q,F) = ax2b\2/i4A),

(£(£,, P)Q,E) =/712[-l+(a11(fl11-/311)4-ûl22)/^],

(R(F„P)Q,F,) = bl2[-l +{a22ia22- bxx) + a2x2)/A\.

(£(£,, £)0, £,) = bxlax2ibxx - Tra)/i4A),

(£(£,, Q)P,F) =bx2ax2(bxx-Tra)/(4A),

£(£,, £,)£,,£„,) = (a22b22/B - axx) -(ô,,ô/m - 8JkSim),

£(£,, Ej)Ek, Fm) = -aX2(B + b22(axx - a22))/(2B) -{8ik8Jm - 8Jk8im),

£(£,, Ej)Fk,Fm) = {bxx/4 - Tra/2 + b22(axl - a22)2/(4B))

■iSikSjm - Sjkô,m)'

(£(£,. Fj)Fk, Em) = a2x2b22/Böjko,m-(bxx - Txa)/28y8km

+ {b22(alx - a22)2 - bxxB)/(4B)Sik8/m,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(16) (£(£„ £,)£,, Em) = -aX2{B + b22ia22 - axx))/i2B)(SlkSjm - 8jk8im),

(17) (£(£„ Fj)Fk,Fm) = {a22b22/B - a22)(8ik8Jm - 8Jk8im).

Of course most of the zero components in the curvature tensor are due to
Ad SO(n - 2) invariance. (The curvature tensor gives an invariant map A2(Txm) -»
A2(Txm) which is accordingly restricted by the Schur lemma.) Still the answers are
remarkably simple, and they simplify considerably further under the assumptions
bxx = Tra and b\2 = 4l2A which arise when 2, is naturally embedded in £2n+2.

In calculating, it saves redundancy to note that there is an inner automorphism a
of G = 51 X 50(n) interchanging £, and £, while leaving SO(n - 2) fixed. This
allows geometrically defined functions of the £, to be written down immediately
upon determining the corresponding functions of the £,.

Lemma V. 3. The automorphism a of 51 X SO(n)/SO(n — 2) interchanges E¡ and
F¡, sends P to -P and leaves Q fixed. Accordingly it induces an isometry from
51 X SO(n)/SO(n - 2) with invariant quadratic forms

Z    a22)    and   b      yb       b
bn     bx2

22

to 51 X 50(« — 2) with quadratic forms

and
V "12        "11/

respectively.

22    "12 \ bxx       bX2

-bn       b22

The first step in calculating R(X,Y)Z is to determine the bilinear form U(X, Y)
describing the connection. (At e, VX*Y* = - \[X, Y]* 4- U(X, Y)*, where [X, Y] is
taken in #.) Table V.l describes the Lie bracket structure of p. (These relations
follow from the calculation [0„",0/] = -Sac0dh + t)aßl + 8„flf - §„&.)

In stating UiX,Y) it is convenient to introduce new elements of ft orthogonal to
some of our standard basis elements. We will use the notation

E'k = ia22Ek-ax2Fk)/A,    F¿ = i~a12Ek + axlFk)/A,    P' = ib22P - bX2Q)/B.

Notice (Ek, Fk) =0 and (Ek,Ek) = (Fk, Fk)/A with similar identities for the
others. Also, as the parameter bxl — Tra appears frequently, we will set r = bn —
Tra. Table V.2 summarizes the Lie bracket structure of our additional elements.
Table V.3 gives (U(X,Y),Z) = \(([Z, X]^,Y) + (X,[Z,Y\¿). Using this, it is
quite easy to verify

Proposition V.4. The nonzero components of U(X,Y) are given by

(1) UiEk,Ek) = a12P',

(2) U(Ek,Fk) = (a22-alx)P\License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(3) U(Fk,Fk) = -ax2P',

(4) U(Ek,Q) = bX2E'k,

(5) UÍFk,Q) = -b12F¿,

(6) U(Ek,P)--(Fk + rF£)/2,

(7) UiFk,P)=-{Ek + rE'k)/2.

The curvature tensor £( X, Y)Z is given by the sum of seven term (KN):
£(1)
£(2)
£(3)
£(4)
£(5)
£(6)
£(7)

-[[X,Y]„Z],

-[[X,Y]^Z]â/2.
-U([X,Y]â,Z),

([X,[Y,Z]~â]â-[Y,[X,Z]Jâ)/4,
(U(X,[Y,Z['a)-U(Y,[X,Z]¿)/2,
i[UiX,Z),Y]â-UiY,Z),X]'â)/2,
Ui X, Ui Y, Z j) - U( Y, t/( X, Z)).

In view of this, it is natural to prove the following:

Lemma V.5. The nonzero components of [UiX, Y), Z], and 77(t/( A', Y), Z) are as
given in Tables V.4 and V.5. iNote that the last column gives a common factor which
should be multiplied by each entry in the given row.)

It is now fairly straightforward to calculate RiX,Y)Z and simplify. As V.2
indicates, a remarkable amount of algebraic simplification occurs. (To calculate
Ric(X, Y) in V.l, it is convenient to use the orthogonal basis {E¡, £/, £, £'} of ft.
For orthonormal bases (e¡), Ric(u, v) = £,(£(e,, u)v,e,).)

The question of Einstein metrics on 51 X SO(n)/SO(n - 2) is a natural one. If
Ric(0, Q) = cb22 and Ric(£, Q) = cbx2 with c =£ 0, we see quickly that bx2 # 0,
bxx = 2 Ac/in - 2), and b22 = (n - 2)b\2/2Ac. Hence B = 0, contradicting the
nondegeneracy of the metric. The Ricci flat case is handled by noting bx2 = 0 from
Ric(O,0) and then

Ric(£,,£,) = Ric(£,, £,) = 0=>au = a22 =» Ric(£,£) = (« - 2)b\x/2A. + 0

for nondegenerate metrics. So we have

Theorem V.6. 51 X 50(«)/5O(« - 2) does not admit a homogeneous Einstein
metric.

(Theorem V.6 is well known as a consequence of the theorems of Bonnet-Myers
and Bochner.)

When 6,2 = 0, 51 X 50(«)/5O(« - 2) splits isometrically, and thus our for-
mulas give the Ricci tensor of the Stiefel manifold 50(n)/5O(« - 2) as well. If one
starts by considering the equation  Ric(£,,£,)-Ric(£,,£,)= c(au - a22), one
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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fairly quickly finds that the only homogeneous Einstein metric on SO(n)/SO(n - 2)
is proportional to the one given by axx = a22 = 1, ax2 = 0, and

bxx = 2(« - 2)/in - 1).
This example was first discovered by Sagle [Sa].

Theorem V.7. Any two homogeneous Einstein metrics on 50(w)/50(w — 2) are
homothetic.

Table V.l. [X, Y]

IX. E,} [X,Fj] [X.P]

S,,P
S..P

0' = 0

[X,Q]

Table V.2. [X, Y]¿

«12 J»
A

a22P
A

~a22Fk - auEi

f,:
~"12 P "nFk + "nEk

-hi Ek

Table V.3. (U(X,Y),Z)

U(X,Y) (U(X.Y).E,) (U(X,Y),FI) (U(X,Y),P) (U(X.Y).Q)

U(Ek,E,) Skl"i2

U(Ek,F,)
a    (a22 - "ii)
Su---,-

0(Fk,F,) 0 A/«12

U(Ek,P)
~s,k"\i s,*(üii " bu)

U(Ek,Q)
-Sikbl2

U(Fk,P)
(hu - "22)

U(Fk.Q) '" 2

U(P,P)
U(P,Q)
U(Q,Q)License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Table V .4. Nonzero [ U( X, Y ), Z ]¿

U(X,Y)
Common

Factor

U(E,,Ek) -E, a,2b.

U(ErFk) Sjk J^("22 - "ill

U(Fj,Fk) -E, s   anh2
SJk—B-

U(ErP) 8U(A + ran)P s,i™np -AEf - r{uuEj + ul2Fj)
1

2A

U(FrP) 8nTanP BnlA +tu22)P -AFj - r(a22Fj + ul2Ej)
1

1A

U(Ej.Q) S,,«uP Sua12P -(an(Ej + al2Fj)) 2 4

U(FrQ) SijOnP 8ija22P -(uX2E/ + u22Fj) 2.4

Table V.5. U(U(X,Y),Z)

Common
Factor

U{i:,.i:k)
C'::"n - l>)7 "r-^r;

-(«   b22a2,)t:;

i¡lk íj12

2«

V(i:,.Fk)
same as
above

same as
above

fi,t(«:: - "n )

U(F.Fk)
same as
above

samt: as
above

-s,l«.:

((/.;./')
fl,»/>'[r(af1 + ur,)

--<(2«,,      '',,)] l'[ilra + 2/1] (fc.,T    A)i:k • "i:7;]

L(Fk.P)
tilk al,

■PirTra + 2/41 + A(2a2:      />,,)]
-</>,,t - .4)f; '>!7.["i:^

+ («:: - *nK]
1

4 !

I ( /•! . Q ) fi,A 7,'|üf1 + ut. - A] S,kal2JraP'
(a22-bu)i:k

-°nFk
-bn'k

'•i:
4 1

( < Fk.Q) tilk u.,Tr aP' S,k Plah +u¡2- A\
(«ii   - hn)Fk

-a¡21;t
-h,2Fk 4 I

VI. Curvature formulas for Kervaire spheres. Using the results of §111 it is now
very easy to determine the components in orbital directions of manifolds such as the
2/ described in §1. The remaining components are covered in the following theorem
which follows by computation from III.2 and V.2.

Theorem VI. 1. Let M be an almost homogeneous manifold with principal orbit type
51 X SO(n)/SO(n — 2). Then (up to the usual curvature symmetries), the nonzero
components involving L are given by

(1) (£(£,£)£,£) = -LLbxl/2 +[LbxxLB - bndellb]/4B,
(2) (R(L,P)Q,L) = -LLbX2/2 +[Lbx2LB - bX2det Lb]/4B,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(3) (R(L,Q)Q,L) = -LLb22/2 +[Lb22LB - b22detlb]/4B,

(4) (£(£,£,)£,,£> = -LLau/2 +[LaxxLA - axxdetLa]/4A,

(5) (£(£,£,)£,,£) = -LLaX2/2 4-[£a12£4 - aX2detla]/4A,

(6) (£(£,£,)£,,£) = -££a22/2-r[£a22£4 - a22detla]/4A,

(7) <£(£,Ö)£,£)=0,

(8) (£(£,0)O,£>=O,
(9) (£(£,,£)£„£> = l[-ctLan-(ß+ \)LaX2 +aX2(b22Lbxx - bl2LbX2)/B],

(10) (£(£,,£)£„£) = \[(\-y)Laxx + aLaX2 +(Lbxl - 2La22)/2

+ («22 - axx)(b22Lbxx - bX2Lbx2)/(2B)\,

(11) (£(£„£)£„£) = {[-aLax2-{ß + \)La22+i2Lan - Lbu)/2

+ («22 - ulx)ib22Lbxx - bx2LbX2)/i2B)\,

(12) <£(£„ £)£M £) = HU - y)^i2 + «^22 + ax2ib12Lb12 - b22Lbxl)/B\,

(13) (£(£,,0)£,,£> = [è12(au£a12 - a12Lau)/(4^)

+ a12(-f712£f722 4- ¿>22£Z712)]/(2£),

(14) (£(£„0)£„£) = [¿12(fll2£a22 - «22^12)/(4.1)

+ a12(/712£/722-f722£t>12)/(2£)],

(15) (£(£,,0)£„£) = bx2iaX2Lax2 - a22Laxx)/(4A)

+ LbX2/4 +iaxx - a22)ibX2Lb22 - b22Lbx2)/i4B),

(16) (£(£„0)£,,£> = b12ianLa22 - a12La12)/i4A)

-Lbx2/4+(axx - a22)(bx2Lb22 - b22LbX2)/(4B),

where a = raX2/(2A), ß = - \ - axxr/(2A), y = j + a22r/(2A),  and r = blx -
axx - a22.

It is now quite easy to determine the Ricci tensor of M. If we introduce the
differential operators Tx and £2 below, the results are then easy to state.

-LLf _ f det La      f
l/_      2 2A f

TF_-ÊLf      f det Lb      j
T2p~     2 2B~+Lf

£log£       (4-n);,

LlogB   |   (2-«)¿ log/ILicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem VI.2. Let M be as in IV.l. The Ricci tensor of M is given by (where Rie
is in V.l)

(1) Ric(£,,£,) = Rk(£/, Et) + Txan,
Ric(£,,£,) = Rk(£,,£,) 4- TxaX2,

Ric(£„£,) = Rk(£„£,) + £1a22,

(2) Ric(£,£) = Ric(£,£)4- T2blx,

Ric(£,0) = Rk(£,0)4-£2f7,2,

Ric(0,0) = Rk(0,0)4- £2f722,

(3) Ric(L,L)^ + ^l + ^

+ (n-2) LLA       (Ilogyl)2       det£a
2A 4 2A

(        —   l\
Ric(£,£) = —^j—[a12(£ün - La22) +(a22- au)Lal2],

Ric(£,0) = O.

Proof. (1) and (2) are immediate upon noting logC = j(logB + (n — 2)logA)
and using our observation about (Lh)h~1(Lh) for two-by-two matrices. (3) utilizes
the sectional curvature formulae above.    D

We would like to make several remarks about curvature realizability questions.
First, by virtue of invariant theory (Theorem IV.l), when / > 1, Lb = La = 0 at
r = 0. Thus the curvature tensor of 2 restricted to this singular orbit is equal to the
curvature tensor of a homogeneous metric on a Stiefel manifold. Since Stiefel
manifolds 0(n)/0(n — 2) do not have homogeneous metrics of positive curvature
[Be and W], we obtain (without using VI.1)

Theorem VI.3. When I > 1, 2/ does not have an equivariant metric of positive
curvature in any neighborhood of the orbit of type 51 X 0(n — 2).

Cheeger has shown that equivariant metrics of positive Ricci curvature are
possible.

We also remark that it is not difficult to combine the results of §IV with the above
formulas to obtain curvature near the singular orbits. For example, near r = 0,
B = 4b0r2 + 0(r4). Since b is an even function of r, terms like det(Lb)/B and
LbL log B have well-behaved limits at r = 0.

One can study the Ricci-tensor or Einstein metric realizability questions near zero
by power series. As questions of formal power series, there do not seem to be local
obstructions beyond those given by invariant theory. The question of convergence
has not yet been resolved.

We also note that the contracted Bianchi identity S Rie = \dn is useful in
understanding VI.2. For example, in looking for Einstein metrics, we find that if the
Ricci tensor along the fibers is proportional to the metric and Ric(£, £) = 0 (i.e.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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axx — a22 and aX2 are proportional), then

£(Ric(£, £)) = £(log£^""2)(l - Ric(£, £))

allowing one to establish that the metric is Einstein if Ric(£, £) is initially 1.

VII. Cheeger's example. In [C], Cheeger elegantly bypassed many of the computa-
tions of this paper and sketched the construction of metrics of positive Ricci
curvature on the Kervaire sphere. His strategy produced invariant metrics of a
restricted kind. In this section, we will explain how his approach fits in with ours.

An equivariant tubular neighborhood of an orbit of type £ is given by G XKS
which is the quotient of G X 5 by a £-action. Hence the product of a left
G-invariant, right £-invariant metric on G with a left £-invariant metric on 5 will
induce, by submersion, a left G-invariant metric on the tubular neighborhood. This
is the basic construction of [C].

At r = 0, the isotropy group 770 is 51 X 0(n - 2). The adjoint representation of
G restricted to 770 is AdSO(„_2) © p„_2 ® p'x © 20, so suitable metrics on g (before
submersion) will satisfy

<£,,£,)     <£„£,>\/a0     0
<£„£,)     (£„£,)]      ^0     a0

(P,P)     (P,Q)
(Q,P)     (Q,Q)

for constants a0, sxx, sX2, and s22; the remaining Lie algebra of the 50(« - 2) block
is perpendicular to the above and will not affect the submersed metric. D2 is given a
metric dr2 + /02 d62 in polar coordinates, where /0 is a function solely of r.

After submersion, we are basically measuring the inner products of the compo-
nents of £,, F¡, P, and 0 perpendicular to the isotropy 51 which acts nontrivially on
G and D2. Consequently the submersed metric becomes (in the notation of §IV)

«o     0\      ,5/1     -l\,4fl
0     aoy q\-l     /^r    q

where 5 = sxxs22 — sX2 and q = l2sxx + 2lsX2 + s22 4- 4/02.
Near the other singular orbit f = 0 (r = £), the isotropy group is Hx = Z2X

0(n — 1) and invariant metrics on G will satisfy

(£,£>     (P,Q)\      ¡bx     0
(Q,P)     (Q,Q) 0     b2

(£,,£,)     <£,,7->\ = lbx
(£„£,)     (£„£,) 0
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Combining this with a metric dr2 + fxd®2 on D"1 (spherical coordinates where
(702 is the canonical metric on the sphere 5"~2 and fx is a function solely of r), we
obtain a submersed metric satisfying

lo    a/ \o    ¿2j

where /. = fxa2/(a2 + fx).
The metrics are glued together in a region where /0 and /, are constant; let /0

and /j denote these respective constants and q = l2sxx + 2lsx2 4- s22 4- 4/02. Requir-
ing the two sets of equations for a and b to match up gives five equations in the nine
variables a0, sxx, sx2, s22, f0, bx, b2, a2, and fx. Using the equation for bx2, we
obtain 5 = 4/02//. Set a = 4f^/q, u = lsxx + sX2, and v = lsX2 + s22. Plugging our
expression for 5 into the equations for bxx and b22 gives u = lbx/o, v = b2/o. Now
the three equations

5 = aqsx2/l,    lu + v = (l — a)q,    S = (uv -(lu + v)sX2)/l

may be combined with those for u and v to solve first for sX2 and then for sxx and
s22. Thus a2, by, b2 and a may be viewed as arbitrary parameters (0 < a < 1,0 <
bx < a2, and b2 > 0) and the class of metrics obtained by Cheeger's construction
may be described as follows:

(I) Region where the metric is induced from the tubular neighborhood about the
Stiefel manifold (r = 0):

¡bx     0] lbx     0\       [l2b\     lbxb2\

where

_  1 - ° _ 1
8 OK OK + 4f02O2'

Here k = l2bx 4- b2 and both g and f0 are functions of r. The value /0 of fQ in the
overlap region is given by 4/02 = k/(1 - a). Also/O(0) = 0, /o'(0) = 1, g(0) = -1/k,
g"(0) = 8/k2, and the overlap value of g is 0.

(II) Region where the metric is induced from the tubular neighborhood about
S1 x 5"_1 (r = 0):

where h = (f2 - 2)/(fx + a2) and /, are functions of f and the overlap value of
/, is given by f2 = bxa2/(a2 - bx). Additionally fx(0) = 0, /„'(0) = 1, /i(0) = 0,
h'(0) = 0, h"(0) = 2, and h = bx in the overlap.
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Thus metrics of the kind utilized in [C] are specified by the length £ of the orbit
space, four constants a2, bx, b2, and a, and the two functions /0 and /, defined on
complementary portions of the orbit space. General invariant metrics are specified
by six functions {a, , biJ) and the length of the orbit space (Theorem IV.l).

In the region where description (I) is valid,

(n - 2)l2b\b2g2       big   ,      Kg2b222
2a2 2 r(l 4- kg)

Ric(P,P)      (" - 2)b2i(l + ¡'big)*       l2b\g   |     Kg2/2/,2
2a2 2 4(1 + kg) '

(n - 2)lb2xb2g(l + l2bxg)       lbxb2g   ,     Kg2/Z>l£>2Ric(£,Q) = ^-7   l ¿°" LOJ  - ^^ +
V     *' 2a\ 2 4(1 4-Kg)'

Ric(Ei,Ei) = (n-2)-±{l + l2bxxg),
Ric(Fi,Fi) = Ric(Ei,Ei),
Ric( £,,£,) = Ric(£,£) = Ric(0,£) = 0,

Ric(£,£) = ---——12.(1 + Kg)1/2.
(1 + Kg)1/2

Here g = Lg = dg/dr and g = LLg.
A straightforward calculation gives

[Ric(£,£)Ric(0,0)-Ric(£,0)2] („ - 2)(1 4- Kg)1/2 . Wl ,1/2
-riTi-= "-;—2-LL" + KS>b{b2 2K.a{

and

^ + Mp> . i^A[  (1 + ̂  + ,w]
°1 °2 2flj        L J

-(14-Kg)1/2££(1+Kg)1/2.

We obtain the corollary:

Corollary VII.l. If LL(1 4- Kg)1/2 < 0 and -1/k < g < 0, r/ie« /o/- n > 3,
metrics of the form (I) give positive Ricci curvature on the neighborhood of the Stiefel
manifold.

Since f0 < 0 implies ££(1 4- Kg)1/2 < 0, this corollary refines the positivity
argument used by Cheeger in this region.
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Within the region where the metric is given by (II), the Ricci tensor is given by:

Ric(£,£) = («-2)(l-¿-),

Ric(£,0) = Ric(O,0) = 0,

Ric(£„ £,-) = (« -2)
2*n '

RlciF„F,) = in-3)+ — -- + ^^r-

(n-3)(\-{L(4h))2)+-^--^LL(^h),
2b\

Ric(£,,£,) = Ric(£,£) = Ric(0, L) = 0,

Ric(i.i).(.-2)(-i + ¿)-íí^au(VD.

At f = 0, h = 0, L(\/A ) = 1, and LL({h) = 0 in the limit. (We view L = o/of.)
Thus LL()fh) < 0 and L({h) > 0 implies 0 < L0) < 1. We obtain

Corollary VII.2. 7/££(v« ) < 0 and \fh increases ias f increases) from 0 to bx,
then for n > 3, metrics of the form (II) in the neighborhood of the 51 X 5"_1 orbit
have nonnegative Ricci curvature.

Again, /, < 0 and /, increasing with the given boundary conditions implies the
applicability of the above corollary and we are generalizing Cheeger's condition.

As in [C], these arguments suffice for obtaining nonnegative Ricci curvature on
2,. The obstructions to positivity lie in the fact that Ric(0, Q) = 0 in region (II) and
Ric(£, £) = 0 along the 51 X 5""1 orbit and in the overlap (/■ = constant region).
Deformations of the equivariant metric which solely involve b22 and are supported
away from the Stiefel manifold orbit are sufficient to realize positive Ricci curvature,
as is to be expected from the result of Ehrlich cited in [C].
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