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EQUIVARIANT HOMOLOGY DECOMPOSITIONS
PETER J. KAHN

ABSTRACT. This paper presents some results on the existence of homology
decompositions in the context of the equivariant homotopy theory of Bredon.
To avoid certain obstructions to the existence of equivariant Moore spaces oc-
curring already in classical equivariant homotopy theory, most of the work of
this paper is done “over the rationals.” The standard construction of homology
decompositions by Eckmann and Hilton can be followed in the present equi-
variant context until it is necessary to produce appropriate k’-invariants. For
these, the Eckmann-Hilton construction uses a certain Universal Coefficient
Theorem for homotopy sets. The relevant extension of this to the equivariant
situation is an equivariant Federer spectral sequence, which is developed in
§2. Using this, we can formulate conditions which imply the existence of the
desired k’-invariants, and hence the existence of the homology decomposition.
The conditions involve a certain notion of projective dimension. For one ap-
plication, equivariant homology decompositions always exist when the group
has prime order.

1. Introduction and statement of results. This note presents some results
on the existence of homology decompositions in the context of equivariant homotopy
theory. G will always denote a finite group, and G-spaces and G-maps will always
be pointed, unless explicitly stated otherwise.

By equivariant homotopy theory, we mean the framework developed originally by
Bredon [B]. Thus, the reduced homology H, X of a G-space X is a certain graded-
abelian-group-valued functor that incorporates all the homology information of the
H-fixed sets X as H ranges over the subgroups of G. Analogous formulations
apply to other standard functors of algebraic topology, e.g., to homotopy groups
7,X. (See 2.1 or [B] for more details.)

A homology decomposition of a G-space X is defined when each X# is 1-
connected, i.e., when 7, (X) =0, for n < 1. It consists of a filtered G-space

sznKmD--‘DKmD---DKgDKl:*

and a G-map e: K — X which is a homology equivalence, such that (a) H,;K,, =
H,K,i<m;(b) H(K;) =0, i >m; (c) each K, is obtained from K,, by equi-
variantly attaching the cone éA,,+1 on a certain G-space A,,+1. More precisely,
the G-space A1 satisfies (i) m;Am+1 =0, © < my ~(ii) HApn1 =0,10>m;
(iii) the functor H,, A1 is naturally equivalent to H,,,;X. When m > 2, we
summarize (i)—(iii) by saying that A,,,, is a Moore G-space of type (H,, 11X, m),
or that A, realizes H,, +1X in degree m.
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274 P. J. KAHN

When G = {e}, e the identity element, the preceding definition reduces to
the standard, nonequivariant one. When fixed sets X are ignored for all H #
e, then the preceding defines what we call a “classical” (equivariant) homology
decomposition and classical Moore G-space. The functors H mAm+1 and H mi1X,
etc. then reduce to ordinary homology groups viewed as (left) modules over the
group ring ZG.

Unfortunately, even this simpler classical equivariant homology decomposition
of X may fail to exist for an obvious reason. Namely, it may be that some of the
ZG-modules Hy, .1 X cannot be realized in degree m by a classical Moore G-space.
For an example of this, first choose G and a ZG-module M that is not realizable
in some degree m > 2. Such G and M are described in [C, K1, Sm|. Then let X
be a classical Eilenberg-Mac Lane G-space of type (M, m + 1). These exist for all
M and all m > 0 (e.g., see [Ro)).

We wish to avoid such obvious obstacles. That is, we wish to be in a situation in
which all the needed Moore G-spaces do exist. We then attempt to determine what,
if any, further conditions are needed for obtaining a homology decomposition.

These considerations motivate the following conditions, which we shall impose
on most of our results.

(1) Abelian groups are vector spaces over Q (the rational numbers).

Q)

(2) Spaces are pointed and 1-connected and have finite-type over Q.

Note that if X is a G-space, then (1) and (2) taken together require that each
XH be pointed and 1-connected and have rational homotopy and homology groups
which are finite-dimensional Q-vector spaces.

Conditions (Q) do have the desired effect. That is, assuming (Q), a theorem of
Triantafillou [T1] applies to show that Moore G-spaces of all types exist (cf. [K2]).

Our general existence theorem now requires one further condition, because of
the complexity of the }}omological algebra of the functors H,X. In particular, the
projective dimension H,X may be large, whereas, by way of contrast, all QG-
modules are projective. To describe the condition, we need the following notation:

conn X = sup{s|7,;(X) =0, =0,1,...,1},
y(m, X) = inf{i}i > 1 and H,,,(X) # 0}.
We shall say that the homology of X “has gaps” if v(m, X) > 2 for all m.

THEOREM A. Suppose X is a G-space satisfying (Q) and, for each m,

projdim H,, X < min{conn X, v(m, X)}.
Then X admats a homology decomposition.
This has the following immediate consequence which avoids reference to conn.

COROLLARY B. Suppose that X is a finite-dimensional G-space satisfying (Q)
and, for each m, 3
projdim H,,X < y(m, X).
Then some suspension of X has a homology decomposition. []

The next corollary feeds in some known facts about projective dimension to
produce specific examples.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT HOMOLOGY DECOMPOSITIONS 275

COROLLARY C. Let X be a G-space satisfying (Q). In each of the following
cases, X has a homology decomposition.

(a) G 1s a cyclic p-group.

(b) G=Z/p® Z/p and the homology of X has gaps.

(¢) X 1is an Eilenberg-Mac Lane G-space of type (m,n) with n > log, |G|.

A better lower bound for n in (c) is described in the proof of Corollary C in §4.

THEOREM D. Let X be a G-space satisfying
(a) conn X > 1;
(b) projdim H,, X < 1, for all m.

Then X admits a homology decomposition.

Note that this theorem does not assume (Q). When (Q) is assumed, then, of
course, D is an immediate consequence of Theorem A.
Our next result shows when we can obtain classical homology decompositions.

COROLLARY E. Suppose that X 1s a G-space satisfying
(a) X is 1-connected;
(b) projdimzg HnX < 00, for all m.
Then X admats a classical (equivariant) homology decomposition.

Note that (a) and (b) of this corollary are “classical“ analogues of corresponding
hypotheses in Theorem D. Typical cases in which (b) is satisfied occur when X
satisfies (Q) or is p-local or p-complete for some prime p not dividing |G].

Next we give an example showing that the conditions in Theorem A and Corol-
lary B are sharp.

THEOREM F. Let G =Z/2® Z/2. There exists a 5-dimensional G-complez X
satisfying (Q) and

(a) conn X = 2;

(c) projdim H3 X = 2;

(d) neither X nor any suspension of X admits a homology decomposition.

The notion of (nonequivariant) homology decomposition is due originally to J.
Moore [M] and to B. Eckmann and P. Hilton (see [H]). Their procedure for con-
structing such decompositions (cf. [H, p. 87 ff]) carries over in a straightforward
manner to the equivariant context, except for the argument that produces the k'-
invariant. In the nonequivariant case, this is produced via a short-exact “universal
coefficient sequence” for homotopy with coeflicients [H]. In the equivariant case
such a short-exact sequence must be replaced by a spectral sequence, and the con-
ditions we impose in, say, Theorem A are used to conclude that a certain portion
of the spectral sequence collapses, again producing the desired &’-invariant.

The spectral sequence in question is, essentially, an equivariant Federer spectral
sequence. While it is clearly related to the spectral sequence of [Sc|, the viewpoints
of the two results appear to be quite different, and there does not seem to be a
brief translation from one to the other. To describe the spectral sequence, we use
the following notation. Recall that all G-spaces and G-maps are pointed. Given
G-spaces X, Y, let [X, Y] denote the set of G-homotopy classes of G-maps X — Y.
As usual, when X is a (double) suspension, [X,Y] has a natural (abelian) group
structure.
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276 P. J. KAHN

THEOREM G. Let K and L be connected G-spaces with K a finite-dimensional
G-complez and w, L abelian. Then, there is a convergent spectral sequence {E';,q}
such that

(a)

B2, = HY(Kimpp L), p21, q21,
&(K;m L), p=0,¢21,

, otherwise,

N
©

where I;'& denotes reduced Bredon cohomology (see [B] or §2).
(b) For each p > 1, EX, is the graded abelian group associated to a finite filtra-
tion of [P K, L].

_ REMARKS. (1) Bredon [B, p. I-24] has a spectral sequence converging to
H(K;m,,,L). When K is a Moore G-space of type (M, n), this spectral sequence
collapses, and we get

HL(K;m,, L) = Ext? " (M;x

where Ext* is a certain derived functor (see §2).

(2) Uniqueness is not usually a feature of homology decompositions, even in
the nonequivariant case. Although it is possible, using the spectral sequence, to
obtain conditions under which k’-invariants are unique {(up to G-homotopy), these
conditions are too restrictive to admit a useful general formulation.

It is worth noting, however, that under the conditions of Theorem A, the Moore
G-spaces that actually appear in a homology decomposition are unique up to G-
equivalence. This follows from Theorem A of [K2]. We give some details in §4 after
our proof of Theorem A.

The paper is organized as follows. In §2 we introduce terminology and derive
the spectral sequence of Theorem G. In §3 we recall the construction of a homology
decomposition, adapted to our equivariant context, and derive sufficient conditions
for existence in terms of the spectral sequence. In §4 we prove all the results except
Corollary B (which is evident) and Theorem F. The example in Theorem F is
constructed in §5.

L),

p+q

2. An equivariant Federer spectral sequence.

2.1. Terminology. Most of the terminology we present is explained in more detail
in [B].

Let Og denote the category of canonical orbits of G, that is, the category whose
objects are the left-coset spaces G/H, H < G, and whose morphisms are their G-
maps. An Og-object in a category C is defined to be a contravariant functor from O¢g
to C. When C is a familiar category, we may modify this terminology accordingly.
For example, when C is the category Sets of sets and functions, or T'op. of pointed
spaces and pointed maps, or Abel of abelian groups and homomorphisms, we speak
of Og-sets, Og-spaces, or Og-modules, respectively. The category of all Og-objects
in C and their natural transformations will be denoted O3(C).

If C is the category Sets or Top. (or any one of a number of other related
categories), we may consider the category G-C of corresponding G-objects and
G-maps. There is then defined a fixed-point functor ®: G-C — O&(C) satisfying
O(X)(G/H) = XH, &(f: X - Y)(G/H) = fH: XH — YH. We may combine ®
with various standard functors in the following way.
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EQUIVARIANT HOMOLOGY DECOMPOSITIONS 277

Suppose F:C — D is a (covariant) functor, and use the same name for the functor
0&(C) — OZ(D) induced by composition with F. We then obtain a composite

a-¢ 2 08(0) £ 0g(p),

which we denote by F. For example, when C is T'op. and F is the reduced (singular)
homology functor H,: Top. — Abel, then H » 18 the homology functor described in
the introduction. Similarly if F' equals 7.

For other examples, C may consist of pointed CW complexes and cellular maps
and F may be the functor taking each CW complex to its n-skeleton, or F may be
the cellular chain complex functor C,. Finally, if C equals Sets, F: Sets — Abel may
denote the free-abelian-group functor (which, in fact, we denote by F). Then we call
F[X] the free Og-module on the G-set X (cf. [B, p. I-23]). If X indexes the n-cells
of a G-complex K, then there is an isomorphism of Og-modules C,(K) ~ F[X].
Bredon shows that F[X] is projective as an Og-module.

2.2. Setting up the spectral sequence. This construction follows closely the usual
nonequivariant case [F] with some technical differences in the computations. Since
we are particularly interested in the sequence for small values of p, where the
construction is a bit delicate, we shall go into some detail.

Without loss of generality, we may assume that K has precisely one 0-cell (cf.
[B, Proposition 7.1]). Now proceed just as in the nonequivariant case and filter K
by skeleta

+x=K°cK!'c...cK'cKic---CcK‘=K,
where each K9 is obtained from K9~! by equivariantly attaching a bouquet DIAX ;
of g-cells, ¢ > 1. Here X, is a G-set and X;’ is the pointed G-set obtained from it
by adjoining a disjoint (G-fixed) basepoint.

For each ¢ > 1 we obtain an exact equivariant Puppe sequence, as in [B, p.
11L.4],

[Set A XS, L] L (Kot L) & (KoL) & [sTAXF L) &
D p
L [gpta—1 /\X;’,L] L [ZKQ_I,L} £ [ZK(J’L}

Esrraaxt L)L
Define A = @, , Ap.q; El = D, ., E! ., p,q € Z, as follows.
_JDZPKL), p>1, 921,
Apg =

0, otherwise.

[SPran X, L], p>1,q¢>1,
Epq=kerg C[STAX},L], p=0,g>1,

0, otherwise.

b

Note that all the A, .'s are groups and the E;,q s abelian groups. The Puppe
sequences splice together in the usual way to give an exact couple
A 5 A
AN
El
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278 P. . KAHN
just as in Federer [F|. The bidegrees of e, f, and g are (0,—1), (—1,1), and (0,0),

respectively. The spectral sequence is now obtained as in [F], converging to the
graded group associated to a filtration G, 4 = ker (3P K, L] — A, 4), p > 1, ie,,

P
I;ZK,L}:Gp,_le,,,ODG,,,ID---, p>1,

with Gpq-1/Gp,q = E55,. The bidegree of d" is (—1,7).
It remains for us to evaluate the E? term.

2.3.LEMMA.
Ez%,q = ~é(K3 7rp+qL)’ P 2 1) q 2 0,
C C4(K;z, L), p=0, ¢>0,
=0, otherwise.

Here C‘&(K ; M) is defined as follows for any Og-module M. If N is another
Og-module, let Hom(/N, M) denote the abelian group of natural transformations
N — M. The sth derived functor of Hom will be denoted Ext®. If Q*K =C.(K,*)
denotes the reduced, cellular Og-chain complex of K, then (:‘E;(K ; M) is the cochain
complex Hom(Q*K, M).

PROOF OF 2.3. Forp>1, ¢ > 1,

= [§PT9 A XF, L] = Hom(F[X,], 7, ,L),

by Lemma 6.5, p. II.15 of [B] But, by definition, this last is C%(K; TpirqLl). The
other cases are similar or easier. [

2.4. LEMMA. d' = fog:El — El_; ., is induced, up to sign, by the
standard coboundary map 6: CG(K oy L) — C'q+1(K T, oL), for each p > 0,

q>0.

=pt+q =p+q

Here we are identifying E; , with a subgroup of CG(K TptqL) via Lemma 2.3.

PROOF. Note that for ¢ = 0 the result is trivially true, so assume g > 1. We
first assume also that p > 1.

The composite (coming from the Puppe construction)

p—1

P P
(1) SPYIAXS, =) (K9'/Kq) - Y K- (KI/K9™') = §P+a p X7}
induces a commutative diagram

[SP+e A X3, L] fog [SPHa A XE I
(2) l l
Hom(z,,  SP*IA X} 7,0, L)  —  Hom(z, ,SPYIAX[,  ,x,, L)

The bottom horlzontal arrow of (2) is equivalent to the map

Tptiq

Hom(H,, (SP** A X ), 7, L) — Hom(H,,,(SP** A X}, ), 7,00 L)

which is obtained by applying the functor Hom( ,x_, L) to the composite

Tpiq

(3) Hp+q(Sp+q A X++1 - H <ZK > p+q(Sp+q A X;)
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EQUIVARIANT HOMOLOGY DECOMPOSITIONS 279

induced by (1). But the composite (3) is, up to sign and after desuspending, the
cellular boundary map Cq 1K) — C 4(K). Thus, the bottom row of (2) equals
LBy (K;x,, L),

(4) CG(K T 1 Iptq
The vertical arrows at either end of (2) are bijective, by Lemma 6.5, p. I11.15 of [B],
as in the proof of Lemma 2.3.

When p = 0, we modify the above argument as follows. First, in (1),

p+q

p—1

S (K

no longer makes sense, but 579 A Xf, | does. The map SP*7A X, — 5P K¢
is simply the attaching map for the (g + 1)-cells of K. For ¢ > 2 proceed exactly
as before. When p =0 and ¢ = 1, modify the bottom horizontal arrow of (2) by
replacing ., by H,,, throughout the row. The argument then continues just as
before, implying that the bottom arrow of (the modified) (2) equals
(4) Ci(K;H,, L) =2 CHYK;H,, L), p=0,g=1

==p+gq ~=p+q

The assumption that 7, L is abelian now allows us to replace H H,  Lbymr, L, so
our conclusion is the same as before, with the exception that the vertical arrows at
either end of (2) are now known only to be injective, as in 2.3. O

2.5. COROLLARY.
2
Ep7q

' Mpiq
(K;mgL), p=0,g>0,
otherwise.

1L(K;m, L), p>1, >0,
&

N
S

b

Here H, & denotes (reduced) Bredon cohomology, which equals the homology of the
cochain complez C},.

PROOF. Except for the case p = 0, the result is immediate from 2.3 and 2.4.

When p = 0, we look at the commutative diagram
1
Ell,q—l % Eé,q 4 Eil,q+1 =0
| N !
CrlyKim, L) B CL(Km,L) 2 CL(Kixm,L).

Clearly, E3 , = E} ,/d\(E} ,_,) C ker§/im6 = HL(K;z,L). O

This completes our discussion of the spectral sequence and our proof of Theorem

G.

3. Equivariant homology decomposition. Here we outline the construction
of an equivariant homology decomposition of X, in preparation for the proof of
Theorem A. Suppose that coon X =¢—-12> 1.

For m < ¢ — 1, set K, = *. It is easy to see that a homology decomposition
must begin with a Moore G-space K which is a suspension and is of type (H X, ¢).
We suppose this exists and attempt to find a G-map

(3.1) K, %

inducing an H -equivalence.
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280 P. J. KAHN

Next, assuming that we have constructed a partial homology decomposition

Kc — c+1 — e — Km—l
(3:2) TN L
c X m—1

we try to find a Moore G-space A,, of type (I_~I mX,m — 1) and to form a pushout
square

k, €m 1

An 3 Ky - X

(3.3) P [
éA,,  — Km/

in such a way that e,,_; extends to a G-map e,,: K,, — X with the required
properties.

As in the nonequivariant case, one sees that such a pushout can be constructed
if and only if the solid arrow diagram

Am k—’m Km—-l
(3.4) ! Lemos
A - s

can be completed so as to induce an equivalence
H,\(6Am, Am) ~ Hyp(X, K1) (~ H, X).
Now let ®(e,,—1) denote the homotopy-fibre of e,,_1, i.e.,
®(em-1) = Km-1 xx P(X),
where P(X) is the pointed G-space of based paths in X. Clearly, ®(e,,_1) inherits
the structure of a pointed G-space, and there is a bijective correspondence between
diagrams (3.4) and pointed G-maps
kn

(3.5) Am =3 ®(em—1).
The correspondence respects G-hqmotopy, and (3.4) induces an H m-eqyivalence
if and only if (3.5) induces an H,,_;-equivalence. Note that both H, A,
(=1 1Am) and H,,_19(em—1) (= 7,n_1P(em—1)) are isomorphic to H,, X.

Thus, we look for conditions which imply that the canonical map

(3.6) [Am, ®(em-1)] = Hom(H,,,_1Am,H,,_1®(em-1))

maps onto an equivalence. It is, of course, sufficient for the map to be surjective.
Assume that A,, is a suspension ) B,,, and replace H,,_;®(em—1) by

Tn—1P(eém—1). Then, {3.6) becomes

(3.7) > By ®(em-1)] — Hom(H 2B, T ®(em-1)),

which comes from the Federer spectral sequence of §2 in the following way:
3" B, ®(em—1)] is filtered

[Z Bmaq)(em—l)] =G1,-10G102G11D--,
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EQUIVARIANT HOMOLOGY DECOMPOSITIONS 281

with G1,-1 = G109 ="+ = G1,m-3 O G1,m—2, by the connectivity of B,,, and
Gl,m—3/G1,m—2 = Ef?m—2 - Ef,m—? = f{én-2(Bm;ﬂm—l¢(em—‘1))'

By Remark (1) following Theorem G in §1, this last group is

Hom(H,,_3Bm, Ty 1B(€m-1)),
and (3.7) may be identified with the composite
(3.8) [Z B, @(em_l)] = Gim-3 > Crm_3/Grms = ES, 5 E2,_,.
Therefore, we can find the desired equivalence (3.5) provided that the differentials
(3.9) d" B g = E§mir_2

vanish, for all v > 2. Now Ef ., _, is a quotient of Ej, ., 5, which, by Corollary
2.5, is contained in

HE "2 (Bmi T gr—2®(em—1)) = Ext"(Hpy_9Bin, T yr 2®(em—1)).
Thus, a sufficient condition for the existence of the desired map k;,, is that
EXtT(Hm—2BMvF_m+r—2q>(em—l))

be 0. Note that H,, ,Bm =H,, Amn=H_ X.

Completely analogous considerations apply to the problem of finding the H -
equivalence (3.1). Only now A, = K. is a Moore space of type (H,X,c) (not
(H X,c—1)) and & is replaced by X. In this case, the sufficient condition is that
Ext"(H,X,m,.,_1X) be 0.

3.10. Summary. Suppose that X is a pointed G-space with coorn X =¢c¢—1> 1.
The following conditions are sufficient for the existence of a homology decomposition
of X.

(a) Moore G-spaces of types (ECX, ¢) and (ﬂmX,m — 1), for all m > ¢, exist
and are suspensions.

(b) Ext"(H X, 7.y, 1X) =0, for all r > 2.

(¢) For each m > ¢, a partial homology decomposition (3.2) exists and

EXtT(-H—er Em+r—2q)(em-—1)) =0,

for all r > 2.
Theorem A simply replaces (a)—(c) with more readily verifiable conditions. We
next give the proof.

4. Proofs of A, C, D, E.

PROOF OF THEOREM D. Recall that, by hypothesis, X is a pointed G-space
with conn X > 1 and projdim H mX <1 for each m. Therefore, by 3.10, it suffices
to verify that Moore G-spaces of all types (M, n), n > 2, exist and are suspensions,
provided projdim M < 1. This is proved by an equivariant version of a standard,
direct cell-attachment argument (Theorem 4.2(a) and §5 of [K2]), using a short,
free resolution of M to prescribe the attaching map. (Although the theorems in
[K2] are proved subject to condition (Q), this plays no role in the proof of 4.2(a),
nor in the relevant construction in §5.) O

The proof of Theorem A requires the following well-known fact.
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282 P. J. KAHN

LEMMA. Let L be an n-connected rational CW complez, n > 1, and suppose
that © < 2n. Then the Hurewicz homomorphism m;L — H;L 1s bijective. [

PROOF OF THEOREM A. We proceed to verify the conditions of 3.10 under
the given hypotheses.

Condition (a). We begin with the case conn X = ¢ — 1 = 1. The hypotheses of
the theorem then force projdim H mX < 1, for all m, and we have already shown
above that all required Moore G-spaces exist and are suspensions in this case.

When conn X = ¢ — 1 > 1, we need only find appropriate Moore G-spaces of
type (M,n) for n > 3. Under condition (Q), a theorem of Triantafillou [T1] implies
the existence of Moore G-spaces of type (M, 2), and we suspend these sufficiently
often.

Conditions (b) and (c). We begin by evaluating 7., , _,®(em—1), assuming
1 <r<connX <m-— 1. Of course, by construction,

7rm+r—2¢(em—1) = _m+'r——1(X’ Km-1).

Since r < conn X < m — 1, we have conn K,,,_; = conn X, and the Blakers-Massey
Theorem applies:

Em—{—'r—l(X’ Km_l) = Em+r—1(X/Km-‘1)'

Now conn(X/Kpy—1) > m — 1, so the above lemma gives

= ﬂm+r—1(Xa Km—-l) = E"H_T_IX,

for all r < conn X. Thus, m,,,,_o®(em+1) = Hpppr 1 X.

The lemma also implies that 7, , ;X = Hc+,_1X when r <conn X =c¢— 1.

We now verify the algebraic conditions in 3.10(b), (c). An inductive construction
as in §3 then constructs the decomposition. Consider

(1) Ext’(ECX,EC+T_1X), ¢—1=conn X, and

(2) EXtT(_ﬁ_mXa .7£m+r—2‘b(em-l))’ m > c.
Of course, if r > proj dim_fiiX, 1 = c or m, then (1) or (2) is zero, respectively, so
assume r < proj dimﬁ_iX, 1 = ¢ or m. In either case we get r < conn X so that
both (1) and (2) reduce to

(3) Ext™(H,X,H;,,_;X)
by the above computation. But, we also have projdim H ;X < ~4{1,X), so that
Hiir_1X =0, for every r satisfying 2 < r < proj dim_fiiX. Thus (3) is zero and
our verification is complete. [

Remark on uniqueness of Moore G-spaces. Suppose that conn X =c—1 > 1 and
set

_ | (HpX,m), m <,
(Mo, ) = { (H,X,m-1), m>ec.

The only Moore G-spaces appearing in a homology decomposition of X are of types
(M,,,nm), m > 2. The hypotheses of Theorem A imply that

o

projdimM,, + 1 < npy, m>2,
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and this is precisely the hypothesis for the uniqueness theorem (Theorem A of
[K2]). Thus, under the hypotheses of Theorem A, the said Moore G-spaces are
unique up to G-equivalence.

Note that, in contrast to the nonequivariant case, uniqueness does not hold in
general for Moore G-spaces (Theorem B of [K2]).

PROOF OF COROLLARY C. (a) When G is a cyclic p-group, every rational Og-
module has projective dimension < 1 [T3, T2]. The result now follows immediately
from Theorem A.

(b) When G = Z/p + Z/p, every rational Og-module has projective dimension
< 2 [T3, T2|. Again, the result is an immediate consequence of Theorem A.

(c) For any finite G, let I{G) denote the largest [ for which there exists a chain
of subgroups

e=Go<G1 < <G =G
Since |Gi: Git1] > 2, [(G) < logy |G|. A lemma of [R & T| shows that, assuming
(Q), I(G) is an upper bound for the projective dimension of Og-modules.

If K is a rational Eilenberg-Mac Lane G-space of type (m,n), then it is well
known that _I:L-K = 0 except when ¢ = 0 (modn). Thus, either H,K = 0 or
~(m, K) = n. The assumption n > log, |G| (or, better, n > I(G)) then insures that
proj dimEmK < min{eonn K, y(m, K)}, for all m, so that Theorem A applies. [

PROOF OF COROLLARY E. Let X be given as in the corollary. Then there
exists a pointed G-space Y and a G-map f:Y — X such that

(1) YH = «, unless H = ¢;

(2) f is a weak homotopy equivalence of spaces.

In fact, Y is obtained from the product X x E, E a contractible, free (unpointed)
G-space, by adjoining the cone on * X E. The map f is the trivial extension of the
projection X x E — X. This construction is also used in K1 and K2].

Note that Y satisfies

(3) H,Y(G/H) =0, unless H = ¢;

(4) H,Y(G/e) = Hy, X.

Using hypothesis (b) of the corollary, together with a theorem of Rim [Ri], this last
has projdim < 1, as a ZG-module. Let

(5) 0P B8P %H, X0

be a length-one projective ZG-resolution. 3
We define a length-one projective Og-resolution of H,,Y

©) 0~ Py 3PS H,Y —0
as follows. Let
0, unless H =, .
(e ={% e i=01,

with (the only possible) trivial maps P,(G/K) — P;(G/H) corresponding to mor-
phisms G/H — G/K, H < K. It is not hard to check that these Og-modules are
projective. The maps 3, of (6), ¢ = 0, 1, are given at G/e by the J; in (5).

Thus, projdim H mY < 1, for all m, and Theorem D applies to produce a ho-
mology decomposition * = Ky C Ko C --- C K 5 Y. The composite K for x
then gives the desired classical equivariant homology decomposition of X. [
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5. A G-space with no homology decomposition.

5.1. Algebra. In this section we construct an Og-chain complex which will be
the cellular chain complex of our example.

Choose G =Z /26 Z/2. A typical Og-module M may be represented as follows:

B
/ N
A — Bz - C
N /
B;

where A = M(G/G) is an abelian group, C = M(G/e) is a Z[G]-module, and
B, = M(G/H;) is a Z|G/H;}-module, ¢ = 1,2,3, with Hy, Hz, H; denoting the
three order-two subgroups of G. The arrows in the diagram denote appropriate
module homomorphisms. (See [K2 or T3] for more details.) When the maps are
understood or unimportant, we abbreviate the above by

B,
A By C
Bs

We now assume condition (Q)(1), so that all abelian groups become Q-vector
spaces, modules are Q[G| or Q[G/H]-modules, etc. Q itself will be given the trivial
Q[G/H] structure for all H < G. Set

0 Q
M=Q 0 0 and Py=Q Q Q,
0 Q

with all maps in P, the identity. Py is projective. In fact, P, is the free, rational
Og-module on the singleton G-set {c}: if Q: Sets — Q-vector-spaces is the functor
that sends the set X to the Q-vector-space Q[X] on the basis X, then we can write
Py = Q[{c}], following the notation of 2.1.

We now construct a minimal projective resolution of M using the projective-cover
construction of [T2]. To do this, we need to define two more projective Og-modules.
First, define

Q 0 0 0
N,=00Q, N,=0QQ, Ny=000Q, J=00 Q,
0 0 Q 0
with all maps standard inclusions. All are projective. Set
Q
P,=N,®N,®6N;=0 Q Q3,
Q

and
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The resolution can now be written down as

M « Bo — Bl i Bz
I I I I
0 Q Q 0
Q00 « QQQ ~ 0QQ* —~ o00Q?
(1) 0 Q Q 0
AR
Ko= 0QQ 00Q? =K,
Q 0

P, is the projective cover of M, K, is the corresponding kernel. P, is the projective
cover of K, etc. It follows that the resolution (1) is minimal.
Next, we add complementary modules to the Pi to make the resolution free.

Write F, = F[X,], for some G—sets Xi, 7= 1, 2,3.
Consider the chain complexes

8
(3) C:Fy & F, % F,
and
(4) DFo - Fy

obtained from (2). We shall realize both of these. The realization L of D will be
our example.

5.2. LEMMA. Every chain map ¢:C — D induces the zero homomorphism
¢, HoC — HoD.

PROOF. Suppose the conclusion is false. Since by construction HgC = M =
Hy D, there exists a nonzero rational number r such that r-¢ is a chain map inducing
the identity HyC — HpD. Thus, we may as well assume that ¢ already has this
property. B

Let D — C denote the inclusion. This is a chain map, hence, so is z o ¢:
C — C. Since C is a projective resolution of M and i o ¢ induces the identity, 7o ¢
is chain-homotopic to idg. In particular, there is a homomorphism s: F; — F,
such that idg —20¢ = 800, as maps Fy — F,. Since to¢ is 0 on Fy, idg = s09,,
i.e., F, is a direct ‘summand of F,. a

It follows that M has a projective resolution of length one, contradicting the fact
that (1) was constructed as a minimal projective resolution. [J

5.3. Realizing the chain complezes. We use 9; and J, to construct G-maps

SIAXT BSIAXS,  SPAXS Béd),

where ¢é(dy) is the reduced mapping cone of d;.
More precisely, note that there are canonical isomorphisms

13(S* AXS) = Fy = F[Xo),
(S AXT) = Fy = F[X4],
m3(S] A XF) = Fy = FXa).
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Thus, 9, may be regarded as a map of Og-modules F; — m,(S? A X ), and this
may be represented by a G-map d;, unique up to G-homotopy, using Lemma 6.5,
p. IL.15, of [B].

The mapping cone é(d;) is 1-connected and satisfies H 36(d1) = kerd; =imJ,.
Thus, we have a diagram

» T3¢(d1)
~ 7_9'2 l hur
Ez — E:}é(dl)

9,

in which hur, the Hurewicz homomorphism, is an epimorphism of Og-modules (i.e.,
hur(G/H) is surjective for each H < G). Since F, is projective, the diagram may
be completed. Now apply the same result of [B] to 85, obtaining ds.

Set L = > é(d1) and K = Y é(dz). The (reduced) cellular chain complexes
C.K and Q*L are precisely C and D, respectively, modulo a dimension shift of 3.
Note that K is a Moore G-space of type (M, 3).

5.4. PROPOSITION. L does not admit a homology decomposition.

PROOF. L is 2-connected and H 3L = M. We show that there is no Moore G-
space K3 of type (M, 3) admitting a G-map e3: K5 — L which is an H s-equivalence.
Thus, a homology decomposition of L cannot get started.

Since projdimM = 2, Moore G-spaces of type (M,3) are unique up to G-
homotopy type [K2, Theorem A]. Thus, we need only show that there is no H H,-
equivalence e3: K — L. But, if such an e3 existed, it could be G-deformed into
a cellular G-map. This would give a chain map C K — C L which induced an
H j-equivalence, contradicting Lemma 5.2. []

REMARK. The same argument applies to any suspension )" L. In this case we
need the uniqueness of Moore G-spaces of type (M, n + 3), which also follows from
Theorem A of [K2].
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