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EQUIVARIANT HOMOLOGY DECOMPOSITIONS 

PETER J. KAHN 

ABSTRACT. This paper presents some results on the existence of homology 
decompositions in the context of the equivariant homotopy theory of Bredon. 
To avoid certain obstructions to the existence of equivariant Moore spaces oc-
curring already in classical equivariant homotopy theory, most of the work of 
this paper is done "over the rationals." The standard construction of homology 
decompositions by Eckmann and Hilton can be followed in the present equi-
variant context until it is necessary to produce appropriate k'-invariants. For 
these, the Eckmann-Hilton construction uses a certain Universal Coefficient 
Theorem for homotopy sets. The relevant extension of this to the equivariant 
situation is an equivariant Federer spectral sequence, which is developed in 
§2. Using this, we can formulate conditions which imply the existence of the 
desired k'-invariants, and hence the existence of the homology decomposition. 
The conditions involve a certain notion of projective dimension. For one ap-
plication, equivariant homology decompositions always exist when the group 
has prime order. 

1. Introduction and statement of results. This note presents some results 
on the existence of homology decompositions in the context of equivariant homotopy 
theory. G will always denote a finite group, and G-spaces and G-maps will always 
be pointed, unless explicitly stated otherwise. 

By equivariant homotopy theory, we mean the framework developed originally by 
Bredon [B]. Thus, the reduced homology H.X of a G-space X is a certain graded-
abelian-group-valued functor that incorporates all the homology information of the 
H-fixed sets XH as H ranges over the subgroups of G. Analogous formulations 
apply to other standard functors of algebraic topology, e.g., to homotopy groups 
'lInX. (See 2.1 or [B] for more details.) 

A homology decomposition of a G-space X is defined when each X H is 1-
connected, i.e., when 'lIn(X) = 0, for n ~ 1. It consists of a filtered G-space 

K = limKm ~ ... ~ Km ~ ... ~ K2 ~ Kl = * 
---+ 

and a G-map e: K ~ X which is a homology equivalence, such that (a) HiKm = 
HiK, i ~ m; (b) Hi(Km) = 0, i > m; (c) each K m+1 is obtained from Km byequi-
variantly attaching the cone cAm+! on a certain G-space A m+1 • More precisely, 
the G-space Am+! satisfies (i) 'lIiAm+! = 0, i < m; (ii) HiAm+l = 0, i > m; 
(iii) the functor HmAm+! is naturally equivalent to Hm+!X, When m ::::: 2, we 
summarize (i)-(iii) by saying that Am+! is a Moore G-space of type (Hm+!X,m), 
or that Am+! realizes H m+l X in degree m. 
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274 P. J. KAHN 

When G = {e}, e the identity element, the preceding definition reduces to 
the standard, nonequivariant one. When fixed sets X H are ignored for all H =l-
e, then the preceding defines what we call a "classical" (equivariant) homology 
decomposition and classical Moore G-space. The functors HmAm+1 and Hm+1X, 
etc. then reduce to ordinary homology groups viewed as (left) modules over the 
group ring ZG. 

Unfortunately, even this simpler classical equivariant homology decomposition 
of X may fail to exist for an obvious reason. Namely, it may be that some of the 
ZG-modules Hm+1X cannot be realized in degree m by a classical Moore G-space. 
For an example of this, first choose G and a ZG-module M that is not realizable 
in some degree m ~ 2. Such G and M are described in [e, KI, 8m]. Then let X 
be a classical Eilenberg-Mac Lane G-space of type (M, m + 1). These exist for all 
M and all m ~ 0 (e.g., see [Ro]). 

We wish to avoid such obvious obstacles. That is, we wish to be in a situation in 
which all the needed Moore G-spaces do exist. We then attempt to determine what, 
if any, further conditions are needed for obtaining a homology decomposition. 

These considerations motivate the following conditions, which we shall impose 
on most of our results. 

(Q) 
(1) Abelian groups are vector spaces over Q (the rational numbers). 
(2) Spaces are pointed and I-connected and have finite-type over Q. 

Note that if X is a G-space, then (1) and (2) taken together require that each 
X H be pointed and I-connected and have rational homotopy and homology groups 
which are finite-dimensional Q-vector spaces. 

Conditions (Q) do have the desired effect. That is, assuming (Q), a theorem of 
Triantafillou [TI] applies to show that Moore G-spaces of all types exist (cf. [K2]). 

Our general existence theorem now requires one further condition, because of 
the complexity of the homological algebra of the functors HiX, In particular, the 
projective dimension HiX may be large, whereas, by way of contrast, all QG-
modules are projective. To describe the condition, we need the following notation: 

conn X = sup{il1!:j(X) = 0, j = 0, 1, ... , i}, 

,),(m,X) = inf{ili ~ 1 and Hm+i(X) =I- O}. 
We shall say that the homology of X "has gaps" if ,),(m, X) ~ 2 for all m. 

THEOREM A. Suppose X is a G-space satisfying (Q) and, for each m, 
projdimHmX ~ min{connX,')'(m, X)}. 

Then X admits a homology decomposition. 
This has the following immediate consequence which avoids reference to conn. 
COROLLARY B. Suppose that X is a finite-dimensional G-space satisfying (Q) 

and, for each m, 
projdimHmX ~ ')'(m, X). 

Then some suspension of X has a homology decomposition. 0 
The next corollary feeds in some known facts about projective dimension to 

produce specific examples. 
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COROLLARY C. Let X be a G-space satisfying (Q). In each of the following 
cases, X has a homology decomposition. 

(a) G is a cyclic p-group. 
(b) G = Zip EB Zip and the homology of X has gaps. 
(c) X is an Eilenberg-Mac Lane G-space of type (1[,n) with n > log2lGI. 
A better lower bound for n in (c) is described in the proof of Corollary C in §4. 
THEOREM D. Let X be a G-space satisfying 
(a) conn X ~ 1; 
(b) proj dimHmX ~ 1, for all m. 

Then X admits a homology decomposition. 
Note that this theorem does not assume (Q). When (Q) is assumed, then, of 

course, D is an immediate consequence of Theorem A. 
Our next result shows when we can obtain classical homology decompositions. 
COROLLARY E. Suppose that X is a G-space satisfying 
(a) X is I-connected; 
(b) proj dimzGHmX < 00, for all m. 

Then X admits a classical (equivariant) homology decomposition. 
Note that (a) and (b) of this corollary are "classical" analogues of corresponding 

hypotheses in Theorem D. Typical cases in which (b) is satisfied occur when X 
satisfies (Q) or is p-Iocal or p-complete for some prime p not dividing IGI. 

Next we give an example showing that the conditions in Theorem A and Corol-
lary B are sharp. 

THEOREM F. Let G = Z/2 EB Z/2. There exists a 5-dimensional G-complex X 
satisfying (Q) and 

(a) conn X = 2; 
(b) "1(3, X) = 1,' 
(c) projdimH3X = 2; 
(d) neither X nor any suspension of X admits a homology decomposition. 
The notion of (nonequivariant) homology decomposition is due originally to J. 

Moore [M] and to B. Eckmann and P. Hilton (see [HJ). Their procedure for con-
structing such decompositions (cf. [H, p. 87 ffJ) carries over in a straightforward 
manner to the equivariant context, except for the argument that produces the k'-
invariant. In the nonequivariant case, this is produced via a short-exact "universal 
coefficient sequence" for homotopy with coefficients [H]. In the equivariant case 
such a short-exact sequence must be replaced by a spectral sequence, and the con-
ditions we impose in, say, Theorem A are used to conclude that a certain portion 
of the spectral sequence collapses, again producing the desired k'-invariant. 

The spectral sequence in question is, essentially, an equivariant Federer spectral 
sequence. While it is clearly related to the spectral sequence of [Sc], the viewpoints 
of the two results appear to be quite different, and there does not seem to be a 
brief translation from one to the other. To describe the spectral sequence, we use 
the following notation. Recall that all G-spaces and G-maps are pointed. Given 
G-spaces X, Y, let [X, Y] denote the set of G-homotopy classes of G-maps X ---- Y. 
As usual, when X is a (double) suspension, [X, Y] has a natural (abelian) group 
structure. 
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276 P. J. KAHN 

THEOREM G. Let K and L be connected G-spaces with K a finite-dimensional 
G-complex and JIl L abelian. Then, there is a convergent spectral sequence {E;,q} 
such that 

(a) 
E;,q = Ht;(K;JIp+qL), p ~ 1, q ~ 1, 

~ Ht;(K;JIqL), p = 0, q ~ 1, 
= 0, otherwise, 

where Ho denotes reduced Bredon cohomology (see [B] or §2). 
(b) For each p ~ 1, E~q is the graded abelian group associated to a finite filtra-

tion o/[EP K, L]. 
REMARKS. (1) Bredon [B, p. 1-24] has a spectral sequence converging to 

Ht; (K; JIp+qL). When K is a Moore G-space of type (M, n), this spectral sequence 
collapses, and we get 

Ht;(K;JIp+qL) = Extq-n(M;JIp+qL), 
where Ext· is a certain derived functor (see §2). 

(2) Uniqueness is not usually a feature of homology decompositions, even in 
the nonequivariant case. Although it is possible, using the spectral sequence, to 
obtain conditions under which k'-invariants are unique (up to G-homotopy), these 
conditions are too restrictive to admit a useful general formulation. 

It is worth noting, however, that under the conditions of Theorem A, the Moore 
G-spaces that actually appear in a homology decomposition are unique up to G-
equivalence. This follows from Theorem A of [K2]. We give some details in §4 after 
our proof of Theorem A. 

The paper is organized as follows. In §2 .we introduce terminology and derive 
the spectral sequence of Theorem G. In §3 we recall the construction of a homology 
decomposition, adapted to our equivariant context, and derive sufficient conditions 
for existence in terms of the spectral sequence. In §4 we prove all the results except 
Corollary B (which is evident) and Theorem F. The example in Theorem F is 
constructed in §5. 

2. An equivariant Federer spectral sequence. 
2.1. Terminology. Most of the terminology we present is explained in more detail 

in [B]. 
Let Oa denote the category of canonical orbits of G, that is, the category whose 

objects are the left-coset spaces GjH, H ~ G, and whose morphisms are their G-
maps. An Oa-object in a category C is defined to be a contravariant functor from Oa 
to C. When C is a familiar category, we may modify this terminology accordingly. 
For example, when C is the category Sets of sets and functions, or Top. of pointed 
spaces and pointed maps, or Abel of abelian groups and homomorphisms, we speak 
of Oa-sets, Oa-spaces, or Oa-modules, respectively. The category of all Oa-objects 
in C and their natural transformations will be denoted OS(C). 

If C is the category Sets or Top. (or anyone of a number of other related 
categories), we may consider the category G-C of corresponding G-objects and 
G-maps. There is then defined a fixed-point functor ~: G-C - OS(C) satisfying 
~(X)(GjH) = XH, ~(f:X _ Y)(GjH) = JH:XH _ yH. We may combine ~ 
with various standard functors in the following way. 
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Suppose F: C ---- D is a (covariant) functor, and use the same name for the functor 
O~(C) ---- O~(D) induced by composition with F. We then obtain a composite 

G-C -! O~(C) .& O~(D), 
which we denote by E. For example, when C is Top. and F is the reduced (singular) 
homology functor fIn: Top. ---- Abel, then fInis the homology functor described in 
the introduction. Similarly if F equals 7rn. 

For other examples, C may consist of pointed CW complexes and cellular maps 
and F may be the functor taking each CW complex to its n-skeleton, or F may be 
the cellular chain complex functor C •. Finally, if C equals Sets, F: Sets ---- Abel may 
denote the free-abelian-group functor (which, in fact, we denote by F). Then we call 
F[X] the free Oc-module on the G-set X (cf. [B, p. 1-23]). If X indexes the n-cells 
of a G-complex K, then there is an isomorphism of Oc-modules Cn(K) ;::::; E[X]. 
Bredon shows that E[X] is projective as an Oc-module. 

2.2. Setting up the spectral sequence. This construction follows closely the usual 
nonequivariant case [F] with some technical differences in the computations. Since 
we are particularly interested in the sequence for small values of p, where the 
construction is a bit delicate, we shall go into some detail. 

Without loss of generality, we may assume that K has precisely one O-cell (cf. 
[B, Proposition 7.1]). Now proceed just as in the nonequivariant case and filter K 
by skeleta 

* = KO C Kl C ... C Kq-l C Kq c ... C Kd = K, 
where each Kq is obtained from Kq-l by equivariantly attaching a bouquet Dq I\X: 
of q-cells, q ~ 1. Here Xq is a G-set and X: is the pointed G-set obtained from it 
by adjoining a disjoint (G-fixed) basepoint. 

For each q ~ 1 we obtain an exact equivariant Puppe sequence, as in [B, p. 
I1I.4], 

[Sq-l 1\ X:' L] L- [Kq-l, L] ::... [Kq, L] /!- [sq 1\ X:' L] L-

... /!- [Sp+q-lI\X:,L] L- [tKq-l,L] ::... [tKq,L] 

/!- [Sp+q 1\ X:' L] L- .... 
Define A = ffip,q Ap,q, El = ffip,q E;,q, p, q E Z, as follows. 

A - { [LP Kq, L] , p ~ 1, q ~ 1, 
p,q - 0, otherwise. 

{ 
[Sp+q 1\ X:' LJ, p ~ 1, q ~ 1, 

E;,q= kergc[SqI\X:,LJ, p=O, q~1, 
0, otherwise. 

Note that all the Ap,q's are groups and the E;,q's abelian groups. The Puppe 
sequences splice together in the usual way to give an exact couple 

A e 

---- A 
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just as in Federer [F]. The bidegrees of e, f, and g are (0, -1), (-1,1), and (0,0), 
respectively. The spectral sequence is now obtained as in [F], converging to the 
graded group associated to a filtration Gp,q = ker ([l:P K, L] ~ Ap,q), p ~ 1, i.e., 

[t K, L 1 = Gp,-l ::J Gp,o ::J Gp,l ::J ... , p ~ 1, 

with Gp,q-t/Gp,q = E:;:q. The bidegree of dT is (-1, r). 
It remains for us to evaluate the E2 term. 

2.3.LEMMA. 

E~,q = Cl;(K;1!.p+qL), 
~ Cl;(K; 1!.qL), 
=0, 

p ~ 1, q ~ 0, 
p = 0, q ~ 0, 
otherwise. 

Here CoCK; M) is defined as follows for any OG-module M. If N is another 
OG-module, let Hom(N, M) denote the abelian group of natural transformations 
N -+ M. The ith derived functor of Hom will be denoted Exti. If C.K = C.(K, *) 
denotes the reduced, cellular OG-chain complex of K, then CoCK; M) is the cochain 
complex Hom(C.K, M). 

PROOF OF 2.3. For p ~ 1, q ~ 1, 

E~,q = [Sp+q AX:,L] = Hom(F[Xq],1!.p+qL), 

by Lemma 6.5, p. II.15 of [B]. But, by definition, this last is Cl;(K;1!.p+qL). The 
other cases are similar or easier. 0 

2.4. LEMMA. d1 = fog: E~,q -+ E~-l,q+1 is induced, up to sign, by the 
standard co boundary map 8:Cl;(K;1!.p+qL) -+ Cl;+l(K;1!.p+qL), for each p ~ 0, 
q ~ O. 

Here we are identifying E~,q with a subgroup of Cl;(K;1!.p+qL) via Lemma 2.3. 
PROOF. Note that for q = 0 the result is trivially true, so assume q ~ 1. We 

first assume also that p ~ 1. 
The composite (coming from the Puppe construction) 

p-l P p 

(1) Sp+q AX:+1 = 2)Kq+1jKq) -+ LKq -+ L(KqjKq-l) = Sp+q AX: 

induces a commutative diagram 

(2) 
[Sp+q A X:' L] 

! 

fog 
---+ [Sp+q A X:+1,L] 

! 
Hom(1!.p+qSp+q A X: ' 1!.p+qL) -+ Hom(1!.p+qSp+q A X:+1' 1!.p+qL) 

The bottom horizontal arrow of (2) is equivalent to the map 

Hom(Hp+q(Sp+q A X:),1!.p+qL) -+ Hom(Hp+q(Sp+q A X:+1)' 1!.p+qL) 
which is obtained by applying the functor Hom( , 1!.p+qL) to the composite 

(3) Hp+q(Sp+q A X:+1) -+ Hp+q (t Kq) ~ Hp+q(Sp+q A X:) 
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induced by (1). But the composite (3) is, up to sign and after desuspending, the 
cellular boundary map Qq+1 (K) --+ Qq(K). Thus, the bottom row of (2) equals 

(4) 
The vertical arrows at either end of (2) are bijective, by Lemma 6.5, p. 11.15 of [B], 
as in the proof of Lemma 2.3. 

When p = 0, we modify the above argument as follows. First, in (1), 
p-1 
2:(Kq+1/Kq) 

no longer makes sense, but Sp+q 1\ X:+1 does. The map Sp+q 1\ X:+1 --+ I:P Kq 
is simply the attaching map for the (q + 1 )-cells of K. For q :::: 2 proceed exactly 
as before. When p = ° and q = 1, modify the bottom horizontal arrow of (2) by 
replacing ZI:p+q by H p+q throughout the row. The argument then continues just as 
before, implying that the bottom arrow of (the modified) (2) equals 

( 4') p = 0, q = 1. 

The assumption that ZI:1 L is abelian now allows us to replace H p+qL by ZI:p+qL, so 
our conclusion is the same as before, with the exception that the vertical arrows at 
either end of (2) are now known only to be injective, as in 2.3. 0 

2.5. COROLLARY. 

E~,q = H'b(K;ZI:p+qL), p:::: 1, q:::: 0, 
~ H'b(K;ZI:qL), p = 0, q:::: 0, 
= 0, otherwise. 

Here Ho denotes (reduced) Bredon cohomology, which equals the homology of the 
cochain complex Co. 

PROOF. Except for the case p = 0, the result is immediate from 2.3 and 2.4. 
When p = 0, we look at the commutative diagram 

Et,q-1 
d 1 

EJ,q 
d 1 

E:' 1,q+1 = ° --+ --+ 

II n 1 
C'b- 1(K;ZI:qL) ±8 C'b(K; ZI:qL) ±8 - +1 --+ --+ C'b (K; ZI:qL). 

Clearly, Eg,q = EJ,q/d1(E},q_d C ker8/im8 = H'b(K;ZI:qL). 0 
This completes our discussion of the spectral sequence and our proof of Theorem 

G. 

3. Equivariant homology decomposition. Here we outline the construction 
of an equivariant homology decomposition of X, in preparation for the proof of 
Theorem A. Suppose that conn X = c - 1 :::: 1. 

For m :::; c - 1, set Km = *. It is easy to see that a homology decomposition 
must begin with a Moore G-space Ke which is a suspension and is of type (HeX, c). 
We suppose this exists and attempt to find a G-map 

(3.1) 
inducing an He-equivalence. 
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Next, assuming that we have constructed a partial homology decomposition 
Kc <.......t K C+l <.......t • • • <.......t Km- l 

~X~ (3.2) 

we try to find a Moore G-space Am of type (H mX, m - 1) and to form a pushout 
square 

Am 
k' 

K m- l 
em-l X ~ --+ 

(3.3) r 17 cAm --+ Km 
in such a way that em-l extends to a G-map em: Km --+ X with the required 
properties. 

As in the nonequivariant case, one sees that such a pushout can be constructed 
if and only if the solid arrow diagram 

(3.4) 

k' 
~ Km - 1 

1 em-l 

k" cAm--_m- ~X 

can be completed so as to induce an equivalence 

Hm(cAm,Am) ~ Hm(X, Km-t} 

Now let ~(em-t) denote the homotopy-fibre of em-l, i.e., 
~(em-t) = K m - l Xx P(X), 

where P(X) is the pointed G-space of based paths in X. Clearly, ~(em-t) inherits 
the structure of a pointed G-space, and there is a bijective correspondence between 
diagrams (3.4) and pointed G-maps 

(3.5) 

The correspondence respects G-homotopy, and (3.4) induces an Hm-equivalence 
if and only if (3.5) induces an Hm_l-equivalence. Note that both Hm_1Am 
(= 1!:m-1Am) and Hm-l~(em-t} (= 1!:m-l~(em-d) are isomorphic to HmX. 

Thus, we look for conditions which imply that the canonical map 

(3.6) 

maps onto an equivalence. It is, of course, sufficient for the map to be surjective. 
Assume that Am is a suspension LBm, and replace Hm-l~(em-t} by 

1!:m-l~(em-t}. Then, (3.6) becomes 

(3.7) [L: Bm, ~(em-t)] --+ Hom(Hm_ 2 Bm,1!:m_l ~(em-d), 

which comes from the Federer spectral sequence of §2 in the following way: 
[E Bm , ~(em-t}J is filtered 

[L: Bm , ~(em-t)] = Gl,-l :J Gl,o :J Gl,l :J "', 
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with G1,-1 = G1,D = ... = G1,m-3 :::l G1,m-2, by the connectivity of Bm, and 

G1,m-3/G1,m-2 = Erm-2 c Ef,m-2 = FrG-2(Bm;JIm_1<P(em-d)· 
By Remark (1) following Theorem G in §1, this last group is 

Hom(H m-2Bm, JIm-1 <P(em-d), 
and (3.7) may be identified with the composite 

281 

(3.8) [2: Bm, <P(em-d] = G1,m-3 ---+> G1,m-3/G1,m-2 = Erm-2 ~ Ef,m-2' 

Therefore, we can find the desired equivalence (3.5) provided that the differentials 

(3.9) dT: El,m-2 -> EO,m+T-2 
vanish, for all r ~ 2. Now Elj,m+T-2 is a quotient of E6,m+r-2' which, by Corollary 
2.5, is contained in 

Hc+T- 2(Bm; JIm+T-2<P(em-1)) = Extr (H m-2Bm, JIm+T-2<P( em-d). 
Thus, a sufficient condition for the existence of the desired map k:r, is that 

ExtT (H m-2Bm, JIm+T-2<P(em-d) 

be O. Note that Hm_2Bm = Hm_1Am = HmX. 
Completely analogous considerations apply to the problem of finding the He-

equivalence (3.1). Only now Ae = Ke is a Moore space of type (HeX,c) (not 
(HeX, c - 1)) and <P is replaced by X. In this case, the sufficient condition is that 
ExtT(HeX,JIe+T_IX) be O. 

3.10. Summary. Suppose that X is a pointed G-space with conn X = c - 1 ~ 1. 
The following conditions are sufficient for the existence of a homology decomposition 
of X. 

(a) Moore G-spaces of types (HeX,c) and (HmX,m - 1), for all m > c, exist 
and are suspensions. 

(b) ExtT(HeX,JIe+T_IX) = 0, for all r ~ 2. 
(c) For each m > c, a partial homology decomposition (3.2) exists and 

ExtT(HmX,JIm+r_2<P(em-d) = 0, 

for all r ~ 2. 
Theorem A simply replaces (a)-(c) with more readily verifiable conditions. We 

next give the proof. 

4. Proofs of A, C, D, E. 
PROOF OF THEOREM D. Recall that, by hypothesis, X is a pointed G-space 

with conn X ~ 1 and proj dim H mX ~ 1 for each m. Therefore, by 3.10, it suffices 
to verify that Moore G-spaces of all types (M, n), n ~ 2, exist and are suspensions, 
provided proj dim M ~ 1. This is proved by an equivariant version of a standard, 
direct cell-attachment argument (Theorem 4.2(a) and §5 of [K2]), using a short, 
free resolution of M to prescribe the attaching map. (Although the theorems in 
[K2] are proved subject to condition (Q), this plays no role in the proof of 4.2(a), 
nor in the relevant construction in §5.) 0 

The proof of Theorem A requires the following well-known fact. 
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LEMMA. Let L be an n-connected rational CW complex, n 2: 1, and suppose 
that i ::; 2n. Then the Hurewicz homomorphism 7riL ---7 HiL is bijective. 0 

PROOF OF THEOREM A. We proceed to verify the conditions of 3.10 under 
the given hypotheses. 

Condition (a). We begin with the case conn X = c - 1 = 1. The hypotheses of 
the theorem then force proj dim H mX ::; 1, for all m, and we have already shown 
above that all required Moore G-spaces exist and are suspensions in this case. 

When connX = c - 1 > 1, we need only find appropriate Moore G-spaces of 
type (M, n) for n 2: 3. Under condition (Q), a theorem of Thiantafillou [Tll implies 
the existence of Moore G-spaces of type (M, 2), and we suspend these sufficiently 
often. 

Conditions (b) and (c). We begin by evaluating 1Im+r_2<'J>(em-d, assuming 
1 ::; r ::; conn X ::; m - 1. Of course, by construction, 

7rm+r_2<'J>(em-d = 1Im+r-l(X, Km-d· 

Since r ::; conn X ::; m -1, we have conn K m - 1 = conn X, and the Blakers-Massey 
Theorem applies: 

1Im+r-l(X,Km-d = 1Im+r-l(XjKm-d· 
Now conn(Xj Km - 1 ) 2: m - 1, so the above lemma gives 

1Im+r-l(XjKm-t) = Hm+r_1(XjKm-t) 
= Hm+r_1(X,Km-d = Hm+r-1X, 

for all r::; connX. Thus, 1Im+r_2<'J>(em+d = Hm+r-1X. 
The lemma also implies that 1Ic+r-1X = i1+r-1X when r ::; conn X = c - 1. 
We now verify the algebraic conditions in 3.1O(b), (c). An inductive construction 

as in §3 then constructs the decomposition. Consider 
(1) Extr(HcX'1Ic+r_1X), c - 1 = conn X, and 
(2) Extr(HmX,1Im+r_2<'J>(em-t)), m> c. 

Of course, if r > proj dim HiX, i = c or m, then (1) or (2) is zero, respectively, so 
assume r ::; proj dim H iX, i = c or m. In either case we get r ::; conn X so that 
both (1) and (2) reduce to 

(3) Extr(HiX,Hi+r_1X) 
by the above computation. But, we also have projdimHiX ::; ,(i,X), so that 
Hi+r-1X = 0, for every r satisfying 2 ::; r ::; proj dim HiX, Thus (3) is zero and 
our verification is complete. 0 

Remark on uniqueness of Moore G-spaces. Suppose that conn X = c -1 2: 1 and 
set 

(M n) = {(l!mX,m), 
-m' m (Hm X,m-l), 

m::; c, 
m>c. 

The only Moore G-spaces appearing in a homology decomposition of X are of types 
(M m' nm ), m 2: 2. The hypotheses of Theorem A imply that 

m 2: 2, 
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and this is precisely the hypothesis for the uniqueness theorem (Theorem A of 
[K2]). Thus, under the hypotheses of Theorem A, the said Moore G-spaces are 
unique up to G-equivalence. 

Note that, in contrast to the nonequivariant case, uniqueness does not hold in 
general for Moore G-spaces (Theorem B of [K2]). 

PROOF OF COROLLARY C. (a) When G is a cyclic p-group, every rational Dc-
module has projective dimension ~ 1 [T3, T2]. The result now follows immediately 
from Theorem A. 

(b) When G = Zip + Zip, every rational Dc-module has projective dimension 
~ 2 [T3, T2]. Again, the result is an immediate consequence of Theorem A. 

(c) For any finite G, let l(G) denote the largest l for which there exists a chain 
of subgroups 

e = Go < G1 < ... < Gl = G. 
Since IGi: Gi+11 2: 2, l(G) ~ log2lGI. A lemma of [R & T] shows that, assuming 
(Q), l(G) is an upper bound for the projective dimension of Dc-modules. 

If K is a rational Eilenberg-Mac Lane G-space of type (1[, n), then it is well 
known that HiK = 0 except when i == 0 (modn). Thus, either HmK = 0 or 
,(m, K) = n. The assumption n > log21GI (or, better, n > l(G)) then insures that 
projdimHmK ~ min{connK,,(m,K)}, for all m, so that Theorem A applies. 0 

PROOF OF COROLLARY E. Let X be given as in the corollary. Then there 
exists a pointed G-space Y and a G-map f: Y -+ X such that 

(1) yH = *, unless H = e; 
(2) f is a weak homotopy equivalence of spaces. 

In fact, Y is obtained from the product X X E, E a contractible, free (unpointed) 
G-space, by adjoining the cone on * X E. The map f is the trivial extension of the 
projection X X E -+ X. This construction is also used in [Kl and K2]. 

Note that Y satisfies 
(3) HmY(GIH) = 0, unless H = e; 
(4) HmY(Gle) = HmX. 

Using hypothesis (b) of the corollary, together with a theorem of Rim [Ri], this last 
has proj dim ~ 1, as a ZG-module. Let 

(5) 
be a length-one projective ZG-resolution. 

We define a length-one projective Dc-resolution of H mY 
a a-

(6) O-+Pl~PO~HmY-+O 

as follows. Let 

Pi(GIH) = {~. 
" 

unless H = e, 
H=e, i = 0, 1, 

with (the only possible) trivial maps Pi (G I K) -+ Pi (G I H) corresponding to mor-
phisms G I H -+ G I K, H < K. It is not hard to check that these Dc-modules are 
projective. The maps fli of (6), i = 0,1, are given at Gle by the 8i in (5). 

Thus, projdimHmY ~ 1, for all m, and Theorem D applies to produce a ho-
mology decomposition * = Kl C K2 C ... c K -=. Y. The composite K 1..':.; X 
then gives the desired classical equivariant homology decomposition of X. 0 
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5. A G-space with no homology decomposition. 
5.1. Algebra. In this section we construct an OG-chain complex which will be 

the cellular chain complex of our example. 
Choose G = Z/2 EB Z/2. A typical OG-module M may be represented as follows: 

Bl 
/' '\. 

A - B2 - C 
'\. /' 

B3 
where A = M(G/G) is an abelian group, C = M(G/e) is a Z[G]-module, and 
Bi = M(G/Hi) is a Z[G/Hi]-module, i = 1,2,3, with Hl,H2,H3 denoting the 
three order-two subgroups of G. The arrows in the diagram denote appropriate 
module homomorphisms. (See [K2 or T3] for more details.) When the maps are 
understood or unimportant, we abbreviate the above by 

Bl 
A B2 C 

B3 
We now assume condition (Q)(1), so that all abelian groups become Q-vector 

spaces, modules are Q[G] or Q[G / H]-modules, etc. Q itself will be given the trivial 
Q[G/H] structure for all H ~ G. Set 

o 
M= Q 0 0 

o 
and 

Q 
Po=Q Q Q, 

Q 

with all maps in Po the identity. Po is projective. In fact, Po is the free, rational 
OG-module on the singleton G-set {O'}: if Q: Sets - Q-vector-spaces is the functor 
that sends the set X to the Q-vector-space Q[X] on the basis X, then we can write 
Po = Q [ { 0' }], following the notation of 2.1. 

We now construct a minimal projective resolution of M using the projective-cover 
construction of [T2]. To do this, we need to define two more projective OG-modules. 
First, define 

Q 
N1=O 0 Q, 

o 

o 
N3=O 0 Q, 

Q 

with all maps standard inclusions. All are projective. Set 

and 

Q 
P 1 = N 1 EB N 2 EB N 3 = 0 Q Q3, 

Q 

o 
P 2 = J..2 = J.. EB J.. = 0 0 Q2. 

o 

o 
J..=O 0 Q, 

o 
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The resolution can now be written down as 
M - Po f-

II II 
0 Q 

Q 00 - QQQ f-

(1) 0 Q 

1 / 
Ko= OQQ 

Q 

P 1 

" Q 
o Q Q3 

Q 

i 
00 Q2 

0 

+-< 

+-< 

P2 

II 
o 

00 Q2 
o 

285 

Po is the projective cover of M, Ko is the corresponding kernel. £1 is the projective 
cover of Ko, etc. It follows that the resolution (1) is minimal. 

Next, we add complementary modules to the Pi to make the resolution free. 
8 8 2 (2) M +-< Fo =4 F1 H F2. 

Write Ei = F[Xi], for some G-sets Xi, i = 1,2,3. 
Consider the chain complexes 

(3) 
and 

Ql (4) D:Fof-F1 
obtained from (2). We shall realize both of these. The realization L of D will be 
our example. 

5.2. LEMMA. Every chain map rJ!.: C - D induces the zero homomorphism 
rJ!..: HoC - HoD. 

PROOF. Suppose the conclusion is false. Since by construction HoC = M = 
HoD, there exists a nonzero rational number r such that r·</> is a chain map inducing 
the identity HoC - HoD. Thus, we may as well assume that rJ!. already has this 
property. 

Let i: D - C denote the inclusion. This is a chain map, hence, so is i 0 </>: 
C - C. Since C is a projective resolution of M and i 0 </> induces the identity, i o¢ 
is chain-homotopic to ide. In particular, there is a homomorphism §.: F 1 - F-; 
such that ide - i 0 </> = §. O~2 as maps E2 - F 2' Since i 0 </> is 0 on E 2, ide = §. 0 112, 
i.e., F 2 is a direct summand of Fl' --

It follows that M has a projective resolution of length one, contradicting the fact 
that (1) was constructed as a minimal projective resolution. D 

5.3. Realizing the chain complexes. We use 111 and 112 to construct G-maps 

s21\Xi ~ S2I\Xt, S31\Xi ~ c(dt), 
where c( d1 ) is the reduced mapping cone of d1 . 

More precisely, note that there are canonical isomorphisms 
1[2(S2 1\ xt) = Eo = E[Xo], 
1[2(S2 1\ Xi) = E1 = F[X1], 
1[3(S3I\Xi) = F2 = F[X2J. 
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Thus, fl.l may be regarded as a map of OG-modules El - 1[2(82 1\ Xij), and this 
may be represented by a G-map d1 , unique up to G-homotopy, using Lemma 6.5, 
p. ILl5, of [B]. 

The mapping cone c(dd is I-connected and satisfies if3C(dd = kerfl.1 = imfl.2 . 
Thus, we have a diagram 

,...1[3c(dd 
./ ~~ ! hur 
~ if3C(dd 
Q2 

in which hur, the Hurewicz homomorphism, is an epimorphism of OG-modules (Le., 
hur( G / H) is surjective for each H ::; G). Since F 2 is projective, the diagram may 
be completed. Now apply the same result of [B] to fl.;, obtaining d2 • 

Set L = Ec(dd and K = Ec(d2 ). The (reduced) cellular chain complexes 
O.K and Q.L are precisely C and D, respectively, modulo a dimension shift of 3. 
Note that K is a Moore G-space of type (M, 3). 

5.4. PROPOSITION. L does not admit a homology decomposition. 

PROOF. Lis 2-connected and if3L = M. We show that there is no Moore G-
space K3 oftype (M, 3) admitting a G-map e3: K3 - L which is an if requivalence. 
Thus, a homology decomposition of L cannot get started. 

Since proj dim M = 2, Moore G-spaces of type (M,3) are unique up to G-
homotopy type [K2, Theorem A]. Thus, we need only show that there is no if3-

equivalence e3: K - L. But, if such an e3 existed, it could be G-deformed into 
a cellular G-map. This would give a chain map O.K - O.L which induced an 
if 3-equivalence, contradicting Lemma 5.2. 0 

REMARK. The same argument applies to any suspension En L. In this case we 
need the uniqueness of Moore G-spaces of type (M, n + 3), which also follows from 
Theorem A of [K2]. 
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