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EQUIVARIANT HOMOLOGY THEORIES ON G-COMPLEXES
BY

STEPHEN J. WILLSON

ABSTRACT.  A definition is given for a "cellular" equivariant homology
theory on G-complexes.  The definition is shown to generalize to G-complexes
with prescribed isotropy subgroups.   A ring I is introduced to deal with
the general definition.  One obtains a universal coefficient theorem and studies
the universal coefficients.

1.    Introduction.    An equivariant homology theory is a functor analo-
gous to an homology theory, satisfying analogues of the Eilenberg-Steenrod
axioms, but defined for G-spaces and G-equivariant maps. A precise definition
will be given later. The notion of such an equivariant homology (and cohom-
ology) theory was introduced by Bredon [1] and [2] for finite groups and ab-
stracted by C. N. Lee [8]. Definitions of singular equivariant homology theories
have been given by Bröcker [3], Illman [5], [6], [7], and WiUson [12]. Related
questions of representability and obstruction theory have been discussed by Va-
seekaran [11].

This paper -is a systematic discussion of equivariant homology theories on a
particularly nice class of spaces-the so-caUed "G-complexes", where G is merely
assumed to be a topological group. These spaces share many properties with CW
complexes, after which they are patterned. Matumoto [10] and Illman [5] have
shown that all smooth G-manifolds, if G is a compact Lie group, admit the struc-
ture of a G-complex; hence the class of G-complexes is quite rich.

In §2 we define G-complexes and give a definition for certain equivariant
homology groups for such spaces. The proof that the groups have the desired
properties is relegated to an appendix, since the techniques are of use nowhere
else in this paper.

It turns out that this definition of equivariant homology groups admits an
easy extension to the study of G-spaces with specific restrictions on the aUowed
isotropy types.  Roughly, if H is a list of certain "nice" subgroups of G, one can
specialize one's attention to the study of G-complexes for which only the groups
in H appear as isotropy subgroups. In effect, this is what one is doing when one
studies "free" actions, "semi-free" actions, or "regular 0(«)-manifolds".

Received by the editors May 1, 1974 and, in revised form, July 9, 1974.
AMS (MOS) subject classifications (1970).   Primary 5SB2S; Secondary 57E15.

Copyright © 1975, American Mathematical Society

155

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



156 S. J. WILLSON

This generalization is presented in §§4 and 5.   With each group G and list
H of allowed subgroups of G, we associate a ring I, which we caU the isotropy ring.
It is shown that the coefficient systems appropriate to equivariant homology
theories are precisely left I modules, whereas the coefficient systems appropriate
to equivariant cohomology theories are precisely right I modules.

Use of this ring I permits a considerable simplification of the theory. In
§6 a universal coefficient theorem is obtained, which is dominated by the use of
1. It is seen that long exact sequences of homology groups result from short
exact sequences of left 1 modules; the famüiar Smith sequences are obtained in
this manner.

The homology groups with coefficients in I, viewed as a left I module,
play a crucial role in §6. Hence it is desirable to obtain a geometric interpreta-
tion of these groups. Such an interpretation is presented in §7 for compact Lie
groups G.  For finite groups G, the result is particularly simple; GHn(X; I)
merely consists of aU the «th homology groups of aU the fixed point sets XH for
various 77, appropriately combined.

It is easy to generalize these results to equivariant cohomology theories.
In a future paper we intend to discuss further the algebraic properties of

the ring I.  In particular we shaU be interested in the homological dimension of
I, in view of its role in simplifying the universal coefficient theorem.

This paper contains much of my doctoral dissertation, written at the Uni-
versity of Michigan under A. G. Wasserman.  I wish to acknowledge my gratitude
to him for suggesting the problem and working with me. Part of this research
was done whüe the author held an NSF Graduate Fellowship.

2.   An equivariant homology theory for G-complexes.   In this section
we recall the notion of a G-complex, where G is a topological group; and
we give the basic definitions for the (cellular) equivariant homology theory we
shall use in this paper.

If G is a topological group, a G-space is a topological space X together
with a left action of G on X. If X and Y are G-spaces, a continuous map /: X
—* Y is a G-map (or is G-equivariant) if figx) = gf(x) for all x G X, g G G.  If
X is a G-space and 77 C G, then XH shall denote the set of points in X left fixed
by each element of 77. Two G-maps, h, k: X —-► Y are G-homotopic if there
exists a G-map K: X x I —*■ Y (where 7 is the unit interval with the trivial G-
action) such that K\X x {0} = h and K\X x {1} = k.

Let D" denote the standard «-disk with boundary Dn.  Let 77 be a closed
subgroup of G, where G is a topological group.  The space G/77 x D" is called a
G-cell of type 77 and dimension n, or sometimes an «-cell; it is a G-space with
G-action gl • (g2H, s) = (gxg2H, s) for gx, g2 G G and s G D". Note that the
dimension of a G-cell need not equal its dimension as a topological space.
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EQUIVARIANT HOMOLOGY THEORIES ON G-COMPLEXES 157

If X is a G-space and /: G/H x D" —* X is a G-map (where G/x7 x b" C
G/H x Dn) then we may obtain a new G-space Y by setting Y = G/H x D" U^
X; i.e., by identifying points on G/H x D" with their image in X. The G-space
Y is said to be obtained from X by adjoining an «-cell. *

Let Y be a G-space.  A relative G-complex (X, Y) is a G-space X obtained
inductively as follows:  Let X~x = Y. Define X' to be the result of adjoining
arbitrarily many G-cells of arbitrary type but dimension i to X'~x ; we give X'
the weak topology and the natural G-action.  Let X = U,- X', with the weak
topology. We call X' the i-skeleton of the pair (X, Y). A G-complex X is a
relative G-complex (AC, 0). Its /-skeleton is denoted X'. A G-subcomplex A of
a G-complex X is a G-complex such that (X, A) is a relative G-complex.

Proofs of elementary theorems about G-complexes tend to mimic exactly
the proofs of corresponding theorems about CW complexes. The following two
theorems may be proved in this manner, or one may consult Illman [5], or Will-
son [12] for proofs.

Theorem 2.1 (Ghomotopy extension property). Let Abe a G-subcomplex
of the G-complex X.  Let Y be a G-space, and let I denote the unit interval with
the trivial G-action. Any G-homotopy F: A x I —> Y has the property that, if
F\A x 0 extends to a G-map f:X—+Y, then F extends to a G-map F: X x I
-* Y such thatFlA xI = FandF\X x0=f

Definition. Let X and Y be G-complexes. A G-map /: X —* Y is cellu-
lar if/(X1) C Y* for all i.

Theorem 2.2 (Cellular approximation theorem). LetXand YbeG-com-
plexes, and let A C X be a G-subcomplex.  Let f:X —> Y be a G-map which is
cellular on A.   Then f is G-homotopic relative to Ato a cellular G-map f'.X —► Y.

The appropriate notion of a coefficient system for equivariant homology
theories was introduced by Bredon [2].

Definition.   A (covariant) coefficient system M for G is a function which
assigns to each left homogeneous space G/H an abelian group M(G/H) and to each
G-map /: G/H — G/K a homomorphism M(f): M(G/H) -#■ M(G/K) such that

(1) M(1G¡H) is the identity map on M(G/H), where \G,H denotes the
identity map on G/H.

(2) M(kf) = M(k)M(f) iff: G/H — G/L and k: G/L -* G/K.
(3) If / and k: G/H -*■ G/K are G-homotopic, then M(f) = M(k).
Suppose A" is a G-complex and A is a G-subcomplex.  Suppose M is a coef-

ficient system for G. We now define the «th equivariant homology group of
(X, A) with coefficients in M, denoted GHn(X, A;M).
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158 S. J. WILLSON

For each integer « > 0 let the (equivariant) «-cells of X which are not
cells of A be indexed by a set Bn; if b G Bn, then the corresponding cell is
G/Hb x D" adjoined along the G-map fb: G/Hb x D" —> X"~x. Observe that
each cell G/77ft x D" carries an orientation. We define GCn(X, A;M) =
®b&Bn M(G/Hb). This is the group of (equivariant) cellular «-chains of (X, A).

We shall define for each « a map

3 : GCn(X, A;M)-+ GCn_x(X, A ; M).
This map will have the property that 32 = 0, and we will define

GHn(X, A;M) = Hn(GC*(X, A;M),Z);
i.e., GHn(X, A;M) wül be the homology of the resulting complex.  If A = 0, we
shall write it instead as GHn(X; M).

The definition of 3 is somewhat involved. If b G Bn and c G Bn_x we
shall actually define 3ft c: M(G/Hb) —+M(G/HC) with the understanding that
3Ô c be the homomorphism 3 restricted to the appropriate factors. Thus 3 =

26eß„,cGB„_i   36c.
If « = 0, let db c be the zero map (by definition). If « = 1, then D" =

[0, 1] :  let the image of fb \G/Hb x { 1} lie in G/77C1 x D° and let the image of
fb\G/Hb x {0} Ue in G/HCQ x D°. Then fb\G/Hb x 7 induces a G-map fbi:
G/Hb —► G/77c. for i = 0, 1.   Define for s G M(G/Hb), 3Ô c(s) =
(- l)i+x(M(fbi))s ifc = ct and 36>c(s) = 0 if c * c0 and c =£ cx. (If c = c0 =
Cl, then let 3'0>c(s) = M(/ft ,)s -¿f(/ô 0)s.)

If « > 2, we observe that the composition

k: G/Hb xD"^ X"~x -^ (G/77c x D"-X)/(G/HC x Dn~x)

is a well-defined G-map where p is the obvious projection.  It is easUy seen, via
Theorem 2.1, that k may be G-homotoped to a map k such that the induced
orbit map k/G: Dn —» 7)"~ V^"-1 is transverse regular at 0 GD"~X/Dn~x. Hence
k~x(G/Hc x {0}) is G/77ö x {xx, x2,. . . , xm] for some finite set of points x¡
in D". For each i, i = 1,. . . , m, let e,- = + 1 if k/G preserves orientation near
x¡ and let et — -1 if F/G reverses orientation near x(-; let £,-: G/77ö x {x,} —>
G/77c x { 0} be the G-map induced from k. For s G M(G/Hb) define

3*,C(*) = Z e/WX*).i=i
Note that ^ may be viewed as a map from G/77ô to G/77c, so that (M(k¡))(s) is
indeed an element of M(G/Hf).

It can be shown (see Appendix) that the definition of 3 is independent of
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EQUIVARIANT HOMOLOGY THEORIES ON G-COMPLEXES 159

the choices of k and that 92 = 0.  Moreover, if/: (X, A) —*■ (Y, B) is a G-map,
one may define a map GHn(f): GHn(X, A;M)—+ GHn(Y, B;M):  one uses
Theorem 2.2 to replace / by a cellular map, one restricts to appropriate cells,
and one defines GHn(f) by homotoping the appropriate orbit map to be trans-
verse regular, and then performing a certain count, analogous to the definition
of 9. The details need not concern us here.

To state the theorem in the generality we shall need, we make the follow-
ing definition:

Definition.   Let C be a category whose objects are certain pairs (X, A)
of G-spaces, where A C X, and whose morphisms from (X, A) to (Y, B) consist
of all G-equivariant maps /: (X, A) —> (Y, B). A G-homology theory on C is a
sequence h0, h1, . . , of covariant functors from C to the category of abelian
groups satisfying the following properties:

1. There is a natural transformation 3: h¡(X, A) —*■ «,„¡04, 0).
2. Exact sequence axiom.   If i: A —*■ X and /: (X, 0) —*■ (X, A) are the

inclusions, there is a natural exact sequence

.. . -+ hk(A, 0) -1* hk(X, 0) -1* hk(X, A) Î+ hk_x(A> 0)

-*...-* h0(X, A) — 0.

3. Homotopy axiom.   If/and k: (X, A) —► (Y, B) are G-maps which are
G-homotopic, then h¡(f) = h¿(k) for each i as maps from h¡(X, A) to hfY, B).

4. Excision axiom. If U is a G-subspace of A and ÜC int(A), then for
any i the map from hfX - U, A - U) to h¡(X, A) induced by the inclusion is an
isomorphism of groups.

Remark. We shall usually write h¡(X) for h¡(X, 0). If there is no reference
to C, we shall mean that C is the category of all pairs of G-spaces.

Definition.  A G-homology theory on C is said to be ordinary if it satis-
fies the foUowing Dimension axiom: h¡(G/H) = 0 for any / ¥= 0 and any closed
subgroup H of G such that G/H is an object in C.

We now state the principal properties of the groups GHn(X, A;M) defined
above:

Theorem 2.3.  Let C be the category of pairs of G-complexes (X, A). Let
M be a (covariant) coefficient system.   Then the functors which assign to « and
(X, A) the group GHn(X, A;M) form an ordinary G-homology theory on C. In
particular, if K is a closed subgroup ofG, then GHn(G/K;M) = 0ifn¥=0 and
GH0(G/K;M) = M(G/K); moreover, iff: G/H —► G/K is a G-map, then GH0(f)
= M(f).

The proof appears in the Appendix.
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160 S. J. WILLSON

3. Generalized G-homology theories on G-complexes.  In standard homology
theory there is a spectral sequence relating a generalized homology theory on a
CW complex X to various singular homology theories on X. There is an analogous
theorem for G-complexes and arbitrary G-homology theories.

Theorem 3.1. Let h* be a G-homology theory. Let X be a finite G-com-
plex and Y a G-subcomplex of X. For each integer i let h¡( ■ ) denote the co-
variant coefficient system whose value at G/H is h¡(G/H) and whose value at a
map f: G/H —*■ G/K is the homomorphism «,(/): h¡(G/H) -» h¡(G/K).  There is
a natural spectral sequence whose E2    term is E2    = GH (X, Y;h ( ■ )) and
which converges to a filtration ofh*(X, Y).

Proof.  The spectral sequence is that obtained from the exact couple

/A   ---►   A

where A and C are bigraded modules with Ap , = hp+q(Xp); Cp , =
W** >JP_1); and k: Ap.o -* Cp.q'fT- Cpiq-+Ap_ltq,f: Ap¡q-+
A +x„_x are aU the obvious maps induced from inclusions or the 3 map of a
long exact sequence.  Here, as usual, Xp = Xp U Y, the p skeleton of the G-
complex (X, Y). Further detaüs are precisely as in Dyer [4].      Q.E.D.

Corollary 3.2.   Let ft* be a G-homology theory satisfying the Dimen-
sion axiom.    Then for any finite G-complex pair (X, Y), hn(X, Y) ~
GHn(X, Y; hQ(-)). Moreover, the identification is natural in (X, Y).

Proof.  «,-(•) = 0 for i ¥= 0.  Hence the spectral sequence collapses, and

hn(X, Y) = E2nfi.      Q.E.D.
Corollary 3.3.   Let h* and k* be G-homology theories.  Suppose X:

«* —* k* is a natural transformation. Suppose for each n that X: hn( ■ ) —*
kn( • ) is an isomorphism.   Then X is a natural equivalence, and hn(X, Y) =
kn(X, Y) for any finite G-complex pair (X, Y).

Proof.  By naturality, X induces a map from the spectral sequence of
h*(X, Y) to that of k*(X, Y). By hypothesis, the map is an isomorphism on the
E2 level.  Hence it induces an isomorphism at all levels; hence the map X:
hn(X, Y) -* kn(X, Y) is an isomorphism.      Q.E.D.

4. The isotropy ring.   The ring I we shaU describe in this section is
useful in interpreting and defining coefficient systems and also in obtaining re-
lations between them.

Definition. Let G be a topological group and letH={Hx,...,Hn,
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EQUIVARIANT HOMOLOGY THEORIES ON G-COMPLEXES 161

. . . } be a collection of closed subgroups of G satisfying that if / # /, then H¡
and H- are not conjugate subgroups in G. Then fi is called a list of isotropy
groups or, more simply, a list; any Hi is referred to as an allowed isotropy type.
If [{ contains one (and therefore precisely one) subgroup from every conjugacy
class of closed subgroups of G, then fi is called a complete list. If H¡, H¡ E U,
we denote by M(xV,., H¡) the set of G-homotopy classes of G-maps from G/H¡ to
G/Hj-

Lemma 4.1.   If G is a topological group, then M(xV-, xY,.) is the set of path
components of (G/H/.//'; i.e., of the fixed point set of G/H- under the induced
H- action.

Proof.   A G-map /: G/Hi —> G/H- is uniquely determined by f(H¡) -
aHj, where a~xHta C H y Hence the set of G-maps is in one-to-one correspon-
dence with (G/Hjfi. The lemma foUows.      Q.E.D.

Corollary 4.2.   // G is a compact Lie group, then M(H, K) is a finite set.

Proof. G/H is a compact smooth manifold on which G acts. Hence its
fixed point set under the induced K action is a compact smooth manifold, which
can have only finitely many components.      Q.E.D.

Definition. Let F be a commutative ring, G a topological group, H a Ust
of isotropy groups for G. Then the isotropy ring 1GH is the free F module on
\JH KGM U(H, K). We shall write elements of 1G'H, by abuse of notation, as
formal finite sums of terms of form ah where aEF and « is a G-map from some
G/H to some G/K. It is, of course, understood that we are actually dealing with
the G-homotopy class of h and not h itself. Notice that it is possible that H = K.
When the context makes any of F, G, H clear, they may be omitted from the
notation. Thus frequently we shaU write I for iGH.

The above definition yields I as a free F-module. We shaU impose a ring
structure on I by composition of G-maps. Explicitly, we shaU define a multi-
plication as follows:  Let (p: G/H —> G/J, \p : G/K —* G/L be G-maps in I ; we
shaU define (a0)(2>i//) to equal 0 if L + H and to equal ab(<p\p) if L = H. Clearly
the G-homotopy class of <p\p is determined by the G-homotopy class of <j> and \p ;
so our multiplication is weU-defined. We extend the above operation over I in
the unique manner so that right and left distributive laws hold.

Definition. lfHEfi, let 1G/H denote the identity map of G/H onto
itself.

Theorem 43.   Zq,h is an associative ring. If H is a finite list, then I has
the two-sided multiplicative unit 1 = E#ew ^g/h- tfm addition G is compact
Lie, then I is a finitely generated free F-module.

Proof.   The summation for 1 makes sense since H is a finite list.  The last
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162 S. J. WILLSON

assertion follows from Corollary 1.2.  The rest is trivial.  Q.E.D.
We now treat briefly the notion of a module over the ring 1G'H. If H is in-

finite, then I has no multiplicative unit, and it is perhaps not quite clear what
properties should correspond to the standard axiom that Im = m for any m in a
module.  Hence we make the following special definition:

Definition. A (left) module M over I is an abelian group M together with
a map I x M —» M, denoted by writing rm for the image of (r, m) G I x M, so
that

(1) r(mx + m2) = rmx + rm2;
(2) (rx +r2)m = rxm + r2m;
(3) (rxr2)m = rx(r2m);
(4) for each m G M, there is a finite set Km depending on m, so that

®HZKm XGiH)m = m-
(Here (1), (2) and (3) are assumed to hold for all r, rx, r2 G J and all m, mx, m2
GM.)

Remark.   The condition (4) is equivalent to the assertion that M =

^/efí ^gihm-

Proposition 4.4. Let I denote ÎGH. If H G H, then HG¡H is aprojec-
tive left 1 module.

Proof.  Let M and TV be left I modules, let /: M —> TV be an epimorphism,
and let k: HG¡H —*TV be a homomorphism. Since/ is surjective, there exists
m GM so j(m) = k(lG/H). Define /: 11G/H —* M by l(r) = rlG/Hm for r G
HGifj. Then / is a homomorphism; and/7 = k since jl(r) = j(r\G,Hm) =
ric/HJOn) - rlc/Hk(lG/H) = k(r)-      Q-E-D-

Corollary 4.5.   I is a projective left I module.

Proof.   I =©//6H I1G/// as a left Í module.Q.E.D.

Corollary 4.6.   Any left 1 module M admits a resolution by projective
left I modules.

Proof. By condition (4) in the definition of a left I module, any element
m in M lies in the image of the projective module ©#gk-     í Iq/h- Q-E.D.

Remark.   It is easy to see that many other properties associated with
modules of rings with multiplicative unit are stUl true for modules over I. We
shall use such properties, for the most part, without comment.

Example 1.   Let p be a positive integer, G = Zp, F = Z, H = {G, (e)).
Let a generator for G be a. Then JG-H is generated as a ring by lG/e, 1G/G,g, q
where g: G/e —> G/e is the G-map g(e) = a(e) and q: G/e —* G/G is the collapsing
map. The most general element in I is of the form
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C0lG¡e + ClS + C2g2 +■■■ + Cp_xf   X + Cpq  + Cp+11G/G

where the c¡ are all integers. The multiplication table includes such statements as
g = lG/e;  gq = 0;   qg = q;  a1 - ár'+'modP; *lc/c - 0; 1G/G<7 = <?.

Example 2. Let G = 0(n), H = {0(n), 0(n - 1),..., 0(2), 0(1), 0(0) = e}
where each 0(i) is embedded in 0(n) in the natural manner; i.e., the square i by i
matrix A is identified with the square n by n matrix

W\
where / is the identity matrix. The corresponding isotropy ring is called that of
regular 0(n)-manifolds.

It is not hard to see that U(0(k), 0(k)) has two elements if k < n, one if k =
n; and U(0(k), 0(0) has just one element if / < k. Hence I is generated as a ring by
the mapslk;rk: 0(n)IO(k) -*■ 0(n)/0(k) where i\ = 1 k for k = 0,..., n - 1 ; 1 n:
0(ri)IO(n) —> 0(n)/0(n); and pk: 0(n)IO(k) —► 0(n)jO(k + 1) for k = 0.n - 1.
The only interesting multiplication ispfcrft =pfc.

5.   The isotropy ring and ceUular homology.   The definition of I is
motivated by the foUowing theorem:

Theorem 5.1. Let G be a topological group. Let H be a complete list. Let
F = Z. There is a one-to-one correspondence between (isomorphism classes of) co-
variant coefficient systems and (isomorphism classes of) left lG,H modules.

Proof. Choose, once and for all, for each closed subgroup H of G an element
aH E G so that aHlHaH = H¡ for some H¡ E H. Such an aH exists since H is com-
plete. If H E H, choose aH = e. The choices of the aH yield for each H a G-homeo-
morphism \H: G/H —► G/xY,. defined by XH(H) = aHH¡.

Let Af be a left I module. We define a covariant coefficient system Mas fol-
lows: If aHxHaH = H i then define M(G/H) = 1G IH¡ M. Iff: G/H -* G/K is a G-map
and aHxHaH = H¡, a~¡>KaK = Hjt define M(f): 1G/H.M -+ lG///.Mby
I(fX Ig i h m) = (¿kÍ^h^g/Hí™ for mEM-  Since >WV: GlHi -> GlHj
is a G-map, M(f) is well-defined.  It is now immediate that M is a coefficient
system.

Conversely, suppose that N is a covariant coefficient system. We construct
a left I module xV as follows:  Let N =®hsh MG/xY,) as an abelian group. We
define the module structure on A^ by (af)n = a((N(f))(n)) if K = H and (af)n =
0 if K * H, where /: G/H —> G/J, n E N(G/K), and a E Z; we then extend this
definition linearly.  Note that if K = H then (af)n £ N(G/J) as desired.

It is now a simple matter to verify that the correspondence given above is
one-to-one.    Q.E.D.
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Remark. The correspondence in the theorem is not natural in G: it is af-
fected by the choices of the elements aH.

Remark. A correspondence between right I modules and "contravariant
coefficient systems"—defined in Bredon [2] and appropriate to equivariant coho-
mology theories-may be made analogously.

It foUows from the above theorems that if (X, Y)isa relative G-complex, W
is a complete list, and M is a left I ç'"module, then we may define GHn(X, Y;M)
merely by interpreting M as a coefficient system.

In fact, considerably more may be said, and we wUl obtain uses for 1G,H even
if fi is not a complete list.

Definition. Let X be a G-complex. Let fi be a list. We say X has type H
if for every G-cell G/K x D' of any dimension in X, we have K conjugate to an ele-
ment of fi. Evidently, we may always assume that in fact KGÜ.

Thus, if H is a complete list, every G-complex X has type H- If rf is not a
complete list, a G-complex X which has type H has only certain kinds of ceUs per-
mitted.

The significance of IG'H for general H is that only information in a coefficient
système associated with lGis required to compute GHn(X, Y;M) when X is a
G-complex of type fi. More precisely, suppose fi is an arbitrary list, X is a G-com-
plex of type H, Y is a G-subcomplex of X, and M is a left I £'" module. For each
« > 0 let Bn be the set of «-cells in X but not in Y. If b G Bn, let 77ô G ff be the
type of the n-cell b. Define the group GCn(X, Y;M) = ©ftefin lG/HbM. Define
3 : GCn(X, Y;M) —► GCn_x(X, Y;M) by the formulas in §2. Then we obtain a
chain complex since 32 = 0, and we may define GHn(X, Y;M) to be the nth ho-
mology group of this chain complex.

We should like to conclude that GHn(X, Y;M) is in the appropriate sense an
equivariant homology theory.

Theorem 5.2. Let G be a topological group and H be a list for G. Let C be
the category of pairs (X, Y) where X is a G-complex of type H and Y is a G-sub-
complexofX. LetMbealeft lG'Hmodule, where Fis arbitrary. Then the func-
tors defined by sending (X, Y) to GHn(X, Y;M)for n > Oform an ordinary equi-
variant homology theory on C-

Proof. The theorem would foUow from the corresponding properties of
GHn(X, Y;N) provided there were a coefficient system TV (in the sense of §2) so
that GHn(X, Y;M) = GHn(X, Y;N) for aU « and (X, Y). Thus we reduce the proof
to the following lemma:

Lemma 5.3. Let L be a complete list and H a subset of L 7/TV is a left
JG,L module, there is a unique left Iç,H module TV defined by setting lG/fJN =
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lGjHN for H E H. If M is a left IG,H module, there exists at least one left 1q<l
module N so N = M.

Proof. The first assertion is obvious. To see the second assertion, it
suffices, by an application of Zorn's Lemma, to show that if H E L - H, then
there is an 1^'^°      module xV whose restriction to IG,W is just M.

Let A = Uatgh M(H, K). Iff: G/K -+ G/H is in A, denote d(f) = K.
Define Ñ = (&f£A lG/d(f^I. The desired module N wÜl involve the quotient
of xV by a subgroup B, which we now define.

Whenever there is a commutative diagram

for Ki,K2 E H, and whenever m E 1G/K M, we obtain an element of TV whose
/i component is m, whose f2 component is -km, and whose other components
are zero. (If/x = /2, we let the fx component be (m - km) and all other com-
ponents be zero.)  Let B be the subgroup of xV generated by aU such elements
for aU such commutative diagrams.

Define TV as an F-module by 1G/KN = 1G/KM if K E H, 1G/WN = Ñ/B.
Iff: G/K —+ G/L is a G-map, we must define a corresponding operation in N.
The definition is obvious if both K and L are in H. There are three other cases:

(i) K = L = H. For this case, / is invertible.  If k: G/J —► G/H is in A,
and m E N/B, then fin is the element whose k component is the f~xk compo-
nent of m; i.e., (fm)k = (m)f-\k.

(il) L = H, K E H. For this case, if m e 1G/KM = lG/KN, we define
fm to have the value m in the component corresponding to / and 0 in the other
components.

(in) K = H, L E H. For this case, if m G N/B, we represent m in N and
let the component of m corresponding to k: G/J —> G/H be (m)k E 1G/JM.
Define fm = ~Lk(fk)(m)k. Observe that fk: G/J —> G/L so that fm E 1G/LM.
To see this is weU-defined, we verify that any element of B is taken to zero.
But if

commutes and (m)f2 = -p(m)fl and aU other components are 0, then fm =
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(ff2)(m)f2 + 07, )(«*)/, = (ff2)(-p(m)fl) + iff2p)(m)h = 0.
There remains to verify that the module axioms hold for TV. The verifica-

tion is a tedious consideration of numerous cases, each of which is very easy.
Q.E.D.

Notation. It is clear from Theorem 5.2 that if ff is a complete list, then
GHn(X, Y;M) = GHn(X, Y;M). Henceforth we shaU omit the circumflex in
the notation: if fi is an arbitrary list and M is an TG,H module, we shaU write
GHn(X, Y;M) for GHn(X, Y;M) and GCn(X, Y;M) for GCn(X, Y;M).

We note the following coroUary, which we shall use extensively:

Corollary 5.4. Let JÍ be a list, I = ÍGH, M be a left I module. Let
X be a G-complex of type H and A a G-subcomplex of X.   The chain complex
{GCn(X, A; M), 3} is naturally chain isomorphic with the chain complex
{GCn(X, A; I) ®   M, 3 ® id} where id is the identity map.

Proof.   1g/hM = 1G/H1 ®-LM.      Q.E.D.

6.   Applications.    In this section we note some easy consequences of the
algebraic formulation in §5.  Roughly, if H is a list, the ring I = lG,H may it-
self be regarded as a left I module and hence as a coefficient system; and this
fact leads us to some long exact sequences and a universal coefficient theorem.

The foUowing proposition is the fundamental lemma which makes every-
thing work.

Proposition 6.1. Let G be a topological group, H a list. Let X be a G-
complex of type H and Y be a G-subcomplex of X. Let I = lG,H. Then for
each n, GCn(X, Y; I) is a projective right I module.

Proof.  Let Bn be the set of «-cells of (X, Y); i.e., the set of cells/: G/H*
x D" -*■ X" which are not cells of Y. Then GCn(X, Y; I) = ©/es„ Ig/h/1.
But IgihA is a projective right I module by an argument like the proof of
Proposition 4.4.  Hence GCn(X, Y; I) is projective.      Q.E.D.

Theorem 6.2.  Let H be a list, X a G-complex of type H, Y a G-subcom-
plex ofX, Í ■ IG'H. Suppose 0-^-A^>-B—*C-+0isan exact sequence
of left 1 modules.   Then there is a natural long exact sequence

-► GHn(X, Y; A) h GHn(X, Y; B)

h GHn(X, Y;Q-+ GHn_x(X, Y,A) — • • •
in which the maps h* and k* are induced by h and k respectively.

Proof.  We obtain a commutative diagram
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I 1 I
0 —cCn(AT, Y; l)QA-+aC„(X. Y; J)®B-+GCn(X, Y;T)®C-+0

1* |* ¡a
0 — GCn-,(X. Y; I) ®A -> cCn_x(X, Y; I) ®x? — CC„_,C*, K; I) ®C-+ 0

I 1 1
Since GCn(X, Y; J) is a projective right I module by Proposition 6.1, the rows
are exact.  In the familiar manner a diagram chase yields a long exact sequence
in homology. By Corollary 5.4, the theorem is proved.      Q.E.D.

Example (Smith Theory).  Let G = Zp for p prime; ff = {e, Zp}, a
complete list; F = Zp. The ring I was described in Example 1 of §4. Using
the same notation, let t = lG/e -g, p¡ = r , p¡ = tp~'. There is for each i a
short exact sequence of left I modules

o-* nG/G eTp/->iiG/e->ip/-*o

where k is right multiplication by p¡ and h(a. b) = aq + b for a E HG/G and
b E Jpr Hence there is a long exact sequence

-► GHn(X; I1G/G) © G Hn(X; lp,) -♦ GxY„(X; IlG/e)

— GHH<X;Jp,)-+ ••••

We shall see that GxY„(A"; HG/G) = HH(XzP;Zp) and GxY„(A; HG/e) =
/fn(A"; Z ); this long exact sequence is merely the Smith long exact sequence.

Theorem 6.3   (Universal Coefficient Theorem). Let H be a list,
X be a G-complex of type ff, and A be a G-subcomplex. Suppose 1 = IG,H
and M is a left 1 module.   Then there is a first quadrant spectral sequence for
which E2    — ToTp (GHq(X, A; 1),M) and which converges to a filtration of
GH*(X,A;M).

Proof.    We note that GHq(X, A; I) is a right I module since
GC (X, A; I) is a right I module and 9 is a map of right I modules. Hence
the formation of Tor^ (GHq(X, A; V),M) makes sense.

To prove the theorem, we obtain a projective resolution —► Yr —* Yr_x
—» • • —>■ YQ —> M —* 0 of M by projective left I modules. We then obtain
abicomplexKp q = GCp(X,A; J) ®j Yq with the natural boundary maps. Con-
sideration of the two spectral sequences for this bicomplex yields the theorem:
one of them has the E2q term indicated in the theorem; the other is degenerate
with limit GH*(X, A;M). Further detaUs may be found in Mac Lane [9].
Q.ED.

Bredon [2] obtains, for equivariant cohomology of finite groups, a theorem
which is simüar to Theorem 6.3.
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7.  Identification of GH*(X, A; J). We assume that G is a compact Lie
group and H is an arbitrary list. We have seen in Theorem 6.3 that GHJX, A; 1)
plays a central role in the study of the G-homology theories on (X, A).  In this
section we interpret GH*(X, A; Ï) geometrically.

Suppose A" C 77 C G are closed subgroups.  Let N(K) = {gGG: gKg~x = K)
denote the normalizer of K in G, and C(K) = {gGG: gkg~x = k for aU k G K)
the centralizer of K in G. Recall that (G/Hf* is a closed submanifold of G/77 with
a natural TV(A") action.

We observe that eH G (G/H)K. Moreover the orbit of eH under the N(K)
action is N(K)/N(K) n H. SimUarly the orbit of eH under the C(K) action is
C(K)/C(K) n 77. Let (N(K)/N(K)nH)0 denote the component containing eH, and
use a simüar notation for C(K).

Lemma 7.1.   The component C of(G/HyK which includes eH is precisely
(N(K)/N(K) n 77)0 = (C(K)/C(K) n 77)0.

Proof.  Let r(M)x denote the tangent space to a manifold M at a point x.
There is an exact sequence

0 -> T(H)e ■£* r(G\ -&> T(G/H)eH —♦ 0

where i is the inclusion and p is the projection. Yet if the adjoint representation
on G is denoted Ad G, it is clear that di: (Ad H)\K —*■ (Ad G)l7<r is a K-map of
K representations, and the induced K representation on T(G/H)eH is merely the
differential of the left K action on G/77. Hence

0 -> (Ad H)\K —► (Ad G)\K -* t(G/H)bH\K -+ 0

is an exact sequence of K representations, which splits since K is compact.
Since the dimension of C is the dimension of (T(G/H)eff)k, we obtain that

dim C = dim (Ad G)K - dim (Ad 77)* where dim C denotes the dimension of C.
Yet (Ad G)* = r(C(K))e. To see this, we observe immediately the inclusion

(Ad G)* D T(C(K))e. If X G r(G)e, then the curve expe (tX) is a one-parameter
subgroup of G; hence so is k expe (tX)k~x for any kGK, with tangent vector
(Ad k)(X) at e. If AT G (Ad Gf1, then it foUows by uniqueness of one-parameter
subgroups that k expe (tX)k~x = expe (tX) for aU r and k. Hence expe (fX) G
<XK), and X G t(C(K))b.

Thus dim C = dim C(7T) - dim (C(K) n 77) = dim (C(K)/C(K) n 77).  Since
(C(K)/C(K) n 77)0 C (N(K)/N(K) n 77)0 C C and the manifolds on the ends
have the same dimension, our result follows.       Q.ED.

Corollary 7.2.   7,ei a/7 G (G/Hf.  Then the component of(G/Hf con-
taining aH lies in the image ofN(K) under the map which takes N(K) into (G/H)?
by sending « G N(K) to naH.
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Proof.   If axY E (G/Hf then K C oxYa-1 ; so axYa-1 E (G/aHa*1)*. We
apply the lemma to this latter space.      Q.E.D.

Theorem 7.3.  Let G be a compact Lie group and K a closed subgroup of
G.  Let H be a list containing K.   Then for all i and all pairs (X, Y) of G-complex-
es of type ff, there is a natural equivalence between the G-homology theories
GHt(X, Y; Ï^HG/K) and HaT^/mOHOo' YK¡(N(K)IK\; F).

Here XK/(N(K)/K)0 denotes the orbit space of XK under the action by the
identity component of the Lie group N(K)/K.

Proof.  To prove the theorem we first observe that the latter is a G-homol-
ogy theory. Moreover, H&G/Hf l(N(K)!K)n F) = 0 for i # 0 by CoroUary 7.2.
Hence it is an ordinary G-homology theory.  Finally, we note that

GH0(G/H; IG-  1G/K) = 1G///HG/JC =Ho^-GlH)  >F)

= H0((G/Hfl(N(K)lK)0;F)

where the identification is clearly natural in the subgroup xY. By CoroUary 3.2 of
§3 we obtain the theorem.      Q.E.D.

Corollary 7.4.   Let G be a finite group and H be a list for G. Let X
be a finite G-complex of type H and Y be a G-subcomplex.   Then GH¡(X, Y; I) =
®K^HH¡(XK,YK;F).

Corollary 7.5. Let G be a finite group and H be a complete list for G. Let
X and Y be finite G-complexes and f: X'—* Y be a G-map. Suppose for each i and
for each subgroup KofG the map from HfXK ; Z) to H¡( YK ; Z) induced by f is an
isomorphism. Then for any equivariant homology theory «* the map h¡(f): h¡(X)
—*■ h¡(Y) is an isomorphism.

Proof.  By Corollary 7.4, the map GH¡(f; I): GH¡(X; I) —► GxY,(P; I)
is an isomorphism for each i. By the universal coefficient theorem, it follows that
GHi(f;M): GH¡(X;M) —► GH¡(Y;M) is an isomorphism for any coefficient system
M and any integer /. By Theorem 3.1, the result now foUows.      Q.E.D.

Appendix. In this appendix we sketch the proof of Theorem 2.3. The
proof relies on properties of the singular equivariant homology theories described
in Illman [7] or WiUson [12]. In particular, we use the fact that they are indeed
equivariant homology theories. For purposes of this appendix, we shall denote
the singular homology groups of (X, A) by GHn(X, A;M) and retain the notation
GHn(X, A;M)foi our ceUular theory. RecaU that X" denotes X" U A, the rela-
tive «-skeleton of the G-complex (X, A).

Step 1. There is a natural isomorphism GCn(X, A;M)^ GHn(Xn, X"~x ;M).
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Step 2. Define 3: GHn(Xn, X"~X;M) -* GHn_x(Xn-x, Xn~2 ; M) by the
composition

GHn(X", X"~x; M) -^ GH„_X (Xn~x; M) — GHn_x (X"~x, X"~2 ; M).

Then 32 = 0 and GHn(X, A; M) is the «th homology group of the chain complex
{GHn(Xn, X"~x ; M), 3}.  The proofs of both the above steps are exactly analo-
gous to the proofs of the corresponding theorems about homology of CW com-
plexes.  By our cellular definition, it therefore suffices to show the following dia-
gram commutes:

GCn(X, A;M)^ GHn(Xn,X"-x;M)V Is
GCn_x(X,A\M) ^> GHn_x(Xn-\ Xn~2;M)

where 3 is the map of §2.
The general case wUl ultimately be reduced to the following lemma.

Lemma.  Assume n > 1. 7,er/: 5" —*• S" be a continuous map (with
trivial G-action), and t: G/H —> G/K be a G-map.  Let p: G/K x S" —>
(G/K x S")/(G/K x x) be the projection, where x G S". Let h be the composition

txf p    G/K x S"     G/K xD"
G/H x S"-► G/K x 5"-►-=-— •

G/K xx      G/K x D"

IfcGM(G/H) = GHn(G/H xSn;M), then (GHn(h))(c) - (deg f)(M(t)c) where
deg / is the degree of the map f.

Proof.  It is not hard to see that M(G/H) = GHn(G/H xSn;M) and
M(G/K) = GHn((G/K x Dn)/(G/K x Dn);M); so the above claim makes sense.
Then it is easy to verify that (GHn(t x f; TW)(c)) = (deg f\M(t)c) and that
GHn(p;M) is an isomorphism.      Q.E.D.

For the general case, we denote by [X, Y] G the set of G-homotopy classes
of G-maps from X to Y, and by [X, Y] the set of (nonequivariant) homotopy
classes of maps from X to Y. Then

[G/77 x />, (G/K x D"~X)/(G/K x 7>_1)]G

- [G/77 x Sn~x,(G/K x Sn-X)/(G/K x x)]G

= [Sn~x, ((G/Kf x Sn-X)/((G/Kf x jc>] = 7T„_1((G//r)//+ AS""1).

Here (G/Kf1 is the fixed point set of G/K under the obvious 77 action; x is a
point of S"~x; and (G/Kf+ is (G/Kf with an extra point added disjointly from
(G/K)H. But (G/Kf1 is a C°° manifold since G is compact Lie and K is closed.
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A familiar argument shows then that TJn_x((G/lCf+ A S"'1) = Sl0((G/Kf+)
if n - 1 > 2. The map from £20 to irn_x is given by the Pontryagin construc-
tion; the map is an isomorphism by transversality arguments.

Hence, if/: G/H x Dn -*• (G/K x D"-X)I(G/K x xT"1) is a G-map, to
obtain the induced map on G-homology, it suffices to view / as an element of
S20((G/xV)//+). But the generators of Q,0((G/K)H+) correspond precisely to maps
of the form given in the lemma, on which we can already compute the map
induced on G-homology.   By the lemma, the formula for 9: GCn(X, Y; M) —*
GCn_x(X, Y; M) given in §2 holds if n > 3.   That the formula for 9 holds if
n = 2 is an exercise in one-manifolds.   For n < 2, the verification that the for-
mula holds is trivial.       Q.E.D.
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