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Abstract. The foundations of equivariant homotopy and cellular theory are
examined; an equivariant Whitehead theorem is proved, and the classical results by
Milnor about spaces with the homotopy-type of a CW complex are generalized to
the equivariant case. The ambient group G is assumed compact Lie. Further results
include equivariant cellular approximation and the procedure for replacement of
an arbitrary G-space by a G-CW complex.

This is the first of a series of three papers based on the author's thesis [Wal], the
object of which is to discuss equivariant homotopy theory in general, and equi-
variant fibrations in particular, culminating in classification theorems for the
various categories of equivariant fibrations and bundles.

In the present paper, we discuss the foundations of equivariant homotopy theory
and cellular theory and prove an equivariant version of Milnor's theorem on spaces
having the homotopy type of CW complexes, where we allow a compact Lie group
G to act everywhere. The second paper in this series, Equivariant fibratons and
transfer sets up the background for the study of (J-fiber spaces and equivariant
stable homotopy theory and contains a description of the equivariant transfer for
equivariant fibrations with compact fiber. In the third paper, Equivariant classifying
spaces and fibrations, the geometric bar construction is used to construct explicit
classifying spaces for equivariant bundles and fibrations, these results depending
heavily on the equivariant cellular theory presented here. Also in preparation is a
fourth paper which will sequel the present series and will deal with the classificaton
of oriented G-spherical fibrations and bundles [Wa2].

The three papers are divided as follows:

Equivariant homotopy theory and Milnor's Theorem

1. Notations and definitions
2. Equivariant homotopy groups
3. Equivariant cellular theory
4. Milnor's Theorem
5. Approximation of G-CW complexes by G-simplicial complexes
6. Finite dimensional G-simplicial complexes are G-equilocally convex
7. Reasonable GELC spaces are dominated by G-CW complexes
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Equivariant fibrations and transfer

1. Equivariant fibrations and quasifibrations
2. Equivariant quasifibrations and gammafication
3. Equivariant Spanier-Whitehead duality and stable homotopy
4. Equivariant fiberwise duality
5. Equivariant transfer
6. Equivariant cellular theory and fibrations

Equivariant classifying spaces and fibrations

1. Equivariant fibrations and categories of fibers
2. Construction of equivariant classifying spaces
3. Based fibrations, bundles and stable fibrations

I am extremely grateful to Professor Peter May, my thesis supervisor, for his
assistence and inexhaustible patience, and to Professors Mel Rothenberg and Dick
Lashof for their invaluable suggestions and encouragement.

0. Introduction. Equivariant homotopy theory has traditionally been handled in
two distinct ways:

(1) "Strict" G-homotopy theory, in which all homotopies are through G-maps,
and hence inverses are also G-maps;

(2) "sh" G-theory, in which one deals with G-maps which are homotopy
equivalences, although the inverses need not be G-maps, as in, for example, [LW].

The latter suggest the unlikelihood of a Whitehead theorem for G-spaces, and
hence the unlikelihood of a useful notion of a G-CW complex unless G is discrete.
Furthermore, the former approach seems to be a more natural generalization of
nonequivariant homotopy theory.

The purpose of this paper will be to establish the foundations of "strict"
G-homotopy theory for a compact Lie group G. In order to do this, various gaps in
the literature must be filled, especially in the area of cellular and simplicial theory.
The major concern of this paper will be to prove an equivariant version of Milnor's
theorem on spaces with the homotopy type of a CW complex [Mil]. When G is
finite, this is fairly straightforward, though it will be seen that the general case is
fairly intricate.

As far as the other results of this paper are concerned, it will be seen that the
generalized treatment of homotopy theory in [Mai] readily adapts to the equi-
variant case. In particular, we obtain an equivariant version of Whitehead's
theorem (our proof being simpler than that of Matumoto [Mol]).

The concept of a G-CW complex is due to Matumoto [Mol] (and to Bredon in
the case of finite G).

We shall be working in the realm of unbased G-spaces, though there will be
indication as to how to adapt the theory to the realm of based G-spaces where
necessary.
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EQUIVARIANT HOMOTOPY THEORY AND MILNOR'S THEOREM 353

1. Notations, definitions and categorical matter. % will denote the category whose
objects are compactly generated weak Hausdorff spaces and whose morphisms are
continuous functions. If G is a topological group, G% will denote the category
whose objects are spaces in % with specified right G-actions, and whose mor-
phisms are those morphisms in <2L which commute with the specified G-actions.

All coset spaces will be understood to be right coset spaces.
Observe that the categories % and G% have products, pushouts, pullbacks and

all the categorical limits and colimits. In addition, each contains the unit interval /
(which, on G%, has the trivial G action) and thus a notion of homotopy (called
G-homotopy in G%) and of associated homotopy category which will be denoted
by /i% and AG% respectively. Thus a G-homotopy equivalence is a G-map
/: X —> Y such that there exists a G-map g: Y —> X with fg and gf each homotopic
to the identity through G-maps.

The categories of «-tuples in °ll and G% will be denoted by %(«) and G%p).
^ will denote the full subcategory of <?L whose objects have the homotopy type

of a CW complex. Similarly, C¥ will denote the full subcategory of G% whose
objects have the G-homotopy type of G-CW complexes (defined in §3). This leads
again to categories h6^ and hG6^.

If H isa closed subgroup of G, we have forgetful functors ^H : G% —» //%, and
G% -> H% et cetera, adjoint to which are the functors -XH G: H% -» G%
which associate to a space X the twisted products X X H G. Thus: H6ll(X, *$„ Y)
a G^X X H G, Y). Furthermore, the functors (-)": G<$1 -> 9l and -XG/H:
% -» G% also form an adjoint pair, so that <%,(X, YH) st G%(X X G/H, Y),
where XH denotes the set of points in X fixed by H topologized as a subspace of X.

When there is no danger of ambiguity, hGGll(X, Y) will be denoted by [X, Y],
and sometimes by [A', Y]G.

I" will denote the unit «-cube, and /" its boundary. The basic facts about
cofibrations apply readily to G-cofibrations, namely maps which satisfy the G-ho-
motopy extension property.

The following results from [Mai] apply formally to the category G%.

Theorem 1.1 (Invariance of pushouts). Suppose that we have a commutative
diagram :

X1->t

in which t and ï are G-cofibrations, f andf are arbitrary G-maps, and a, ß and y are
equivariant homotopy equivalences. Then 8 is also a G-homotopy equivalence (9 being
the induced map on pushouts).
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354 STEFAN WANER

Theorem 1.2 (Invariance of colimits over cofibrations). Suppose given a
homotopy commutative diagram

in G, where the im andjm are G-cofibrations and the f" are G-homotopy equivalences.
Then the map colim/": colim X" —> colim Y" is a G-homotopy equivalence.

2. Equivariant homotopy groups.
Definition 2.1. Let (X, Y) be in G%(2), and let <f>: G/H

H an arbitrary closed subgroup of G. For each n > 1, define
y be a G-map with

irn"(X, Y, <b) = /!G%((/", /", {0}) X G/H, (X, Y, Q))

where Q is the image of <b, and all the homotopies are relative to <f>: G/H —* Q. {0}
specifies the basepoint in /". Also define tt"(X, <j>) = ir"(X, Q, <$>) with the under-
standing that the homotopies here are taken relative to <f> ° w2: I" X G/H —» Q,
where ir2 denotes the second projection.

For n = 0, we adopt the convention 7° = {0, 1} and Io = {0} and proceed as
above.

The operations w" extend to functors on the appropriate categories (modulo
adjustment at <f>). We shall recklessly omit <i> from the notations unless it becomes
necessary to consier the base orbit map. When considering varying ambient groups
G, we add G to the notation, writing tt"(X, Y, </>; G).

The adjunctions mentioned in §1 allow us to reduce many problems of equi-
variant homotopy theory to their nonequivariant analogues, as is demonstrated by
the following proposition.

Proposition 2.2. There are natural equivalences -n"(X) = irn(XH) and ir"(X, Y)
= wn(XH, YH) which preserve the (evident) group structures when n > 1 (for the
absolute case; the relative case requires n > 2).

Proof is omitted, since the proposition is an immediate consequence of the
adjunction relations mentioned above.

As a direct consequence of either 2.2 or the definitions, we obtain the expected
long exact sequences:

Proposition 2.3. For (X, Y) and H as in 2.1, there exist natural boundary maps 3
and long exact sequences

nn»(X,Y)^vn»_x(Y)^TTn»_x(X)- *oH(Y)-»v0H(X)

of groups up to ttx( Y) and of pointed sets thereafter.
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Definition 2.4. A map e: (X, Y)-*(X', Y') of G-pairs is a G-n-equivalence if
eH: (XH, YH) —> (X'H, Y'H) is an «-equivalence for each closed subgroup H of G;
a map e will be called a G-weak equivalence if it is a G-n -equivalence for each
n > 0.

Similarly, a map e: X^Y in G% is a G(«)-equivalence if each eH is an
«-equivalence.

Proposition 2.5. The functors ^H: G% —> 77% preserve weak n-equivalence for
all n.

Proof. This is an immediate consequence of 2.2.

3. Equivariant cellular theory. Some of this material is presented in [Mol], where
a version of the G-Whitehead theorem is proved. It is shown here how this
theorem, and more, follows from the general treatment of classical homotopy
theory in [Mai].

Let G be a topological group (not necessarily compact).
Definition 3.1. A G-CW complex is a space X in G% with a decomposition

X = colim X", where

Xo =    H    G/Ha,       r+1 - X" u „,(   U    D" X G/H\
aeA0 V «E^n

for some G-map <¡>: Ha(EA S" X G/Ha—*X", and {Ha}a<EA is a collection of
closed subgroups of G.

Recall that a G-orbit Q0 is said to be of type < that of a G-orbit Qx if there is a
G-map Qx —> Q0. (We sometimes say T(Q0) < T(QX).) This is equivalent to the
assertion that the isotropy subgroup of every point in Qx is contained in some
conjugate of the isotropy subgroup of some point in Q0. For example, T(G/H) <
T(G/K) if and only if H c K" for some a G G. (Here Ka denotes a~xKa, for all
coset spaces are right coset spaces.) (See [Brl] for details.)

A G-subcomplex and a relative G-CW complex are now defined in the obvious
way. Observe that the orbits inAr"+l must be > those to which they attach in X".

Examples of G-CW complexes abound, and include all smooth G-manifolds for
G a compact Lie group (see [Mol] and [Mo2] for details, our G-CW complexes
being equivalent to his).

The following technical lemma is due to May [Ma2, 3.5.1] and is adapted here to
the equivariant case.

Lemma 3.2 (May). Suppose that e: Y^*Z is a G-n-equivalence. Then we can
complete the following diagram in G%:

37" x G/H

I" x G/77

97"   x G/77-5—► 37" x G/77 x 7 <--
h

//-* *.

7" x G/77 ■+ 7" x G/77 x 7 <-
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Proof. The maps/ and « fit together to yield an element of m^(Me, Y) = 0. The
resulting null homotopy easily gives g and «.

Theorem 3.3 (G-HELP). If (X, A) is a relative G-CW complex of dimension < «
and e: Y —» Z is a G-n-equivalence; then we can complete the following diagram in
G%:

A

+
X

Proof. This follows by induction on dim(X, A), applying 3.2 cell-by-cell at each
stage.

Due to the fact that we have insisted that the diagram above commute on the
nose, the « = oo variant of Theorem 3.3 follows formally.

We now prove the Whitehead Theorem.

Theorem 3.4 (G-Whitehead). (i) Suppose that X is a G-CW complex, and that e:
Y ̂ >Z is a G-n-equivalence. Then et: [X,y] —> [A", Z] is an isomorphism if dim X
< « and an epimorphism i/dim X — n.

(ii) If e: Y —» Z is a weak G-equivalence, and if X is any (possibly infinite) G-CW
complex, then e^[X, Y] —» [X, Z] is an isomorphism.

Proof, (i) Apply G-HELP to the pair (A", <¡>) for surjectivity, and to the pair
(X X I, X X I) for injectivity.

(ii) This is identical to (i), in view of the remark after 3.2.

Theorem 3.5 (G-Cellular approximation). Suppose that X is a G-CW complex,
and that A is a sub-G-CW complex of X. Then, iff: X —» Y is a G map which is
cellular when restricted to A, we can G-homotope f, relf\A to a G-cellular map g:
A"-> Y.

Proof. We first observe that the inclusions i„ : Y" -» Y are G-«-equivalences by
essentially the same argument as in the G-trivial case. The result then follows by an
easy adaptation of the proof given in [Mai, 1.5.4].

We recall the following terminology from [Mai, 2.1]:
Definition 3.6. Let & be a category. Then a set § of objects of 3, is said to be

compact if, for each sequence of maps Xn—*Xn+x, there exists a weak colim-
it Tel X„ such that the natural map colim &(J, X„) —> &(J, Tel X„) is a bijection
for every J in §.

Whether or not G is compact, the set § = {G/H X S", n > 0 and H a closed
subgroup of G} is a compact set in «G%. In view of this, we obtain the following
variant of [Mai, 3.8.1] (cf. [Ill] for finite G).
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Theorem 3.7. For any space X in Gtfl, there is a G-CW complex TX and a weak
G-equivalence y: TX -» X. Iff: X -» Y is a map, and if y: T Y -» Y is such a G-CW
approximation, then there is a map Tf: TX —» T Y, unique up to G-homotopy, such
that y ° Tf = / ° y.

Proof. One has to verify that the Brown construction [Mai, §2] yields a G-CW
complex TX. But the nonequivariant cellular decompositions of weak coequalizers
easily go over to the G case. Further, the universal map y: TX ^ X is a weak
G-equivalence by construction of TX.

(We have avoided the use of the geometric realization of the singular chain
complex as this is clearly inappropriate for nondiscrete groups G; that is, there is
no G-action on this realization. Perhaps an alternative treatment could involve
Illman's G-simplices; maps G/77 X A" -» X glued together according to his identi-
fications. A technical problem might arise here, as we would lose comparison
between the cardinality of the resulting complex, which would be vast, and that of
the G-homotopy groups of X over which we have control when X is reasonable.)

We now include a statement to the effect that the forgetful functors <SH preserve
G-CW structure up to homotopy. Assume that G is a compact Lie group.

Proposition 3.8. Let §#: G%->77% denote the forgetful functor. Then %„
restricts to a functor %: G <¥ -h> H <¥.

Proof. Assume given a G-CW complex X. Xo has the 77-homotopy type of an
77-CW complex by Milnor's Theorem in §4, since G-orbits are 77-equilocally
convex for any closed subgroup H < G. (See §4.) Thus we assume inductively that
we are given 77-CW complexes Xm for m < n, G-cellular inclusions lm: Xm~l -»
Xm, and 77-equivariant maps/"1: Xm —> Xm which are 77-homotopy equivalences
and commute with the inclusions im: Xm~l -h> Xm and tm: Xm~x-*Xm. For
notational simplicity, we assume that only one G-cell is attached at the «th stage.

We then have a diagram:

S" x G/77-—► X"

i r
Sn x G/77-3—> X" -► C0

0 r"

where <b is an 77-cellular approximation of /" ° 4>, so that the left-hand square
77-homotopy commutes. With Xn+1 = C<j>, the existence of/n+1 and the fact that it
is an 77-equivalence are purely formal. Now let X = colim Xm, which has a natural
77-CW decomposition. The conclusion then follows by 1.2.

4. Milnor's Theorem. This section is based largely on [Mil]. G will be assumed to
be compact Lie.

We first introduce a few basic concepts.

^Xn+l

'• sn + l

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



358 STEFAN WANER

Definition 4.1. A G-simplicial complex is a G-space X such that X has a given
G-CW decomposition X = colim X" such that the orbit space, A"/G, is a simplicial
complex under this structure. All the usual notions about skeleta, stars, links and so
on are defined by taking inverse images (under projection) from the orbit space.
G-simplicial maps are required to have the property that the induced maps on orbit
spaces are simplicial in the usual sense, and G-subdivisions are defined in the
natural way.

Definition 4.2. A G-space X is said to be G-equilocally convex (GELC) if there
is an invariant neighborhood U of the diagonal in JÍ XI and a G-map X:
U X I —> X which is a homotopy from the first to the second projection through
G-maps and restricts to a homotopy

X\:Uax UaxI^Ua

for some (nonequivariant) cover {Ua} of A" by open sets such that W G {Ua}
implies Wg G {Ua} for each g G G. Such a triple (X, X, {UJ) is called a GELC
representation for X, and the sets U are called the convex sets associated with the
representation.

The basic examples of GELC spaces are G-orbits G/H, for which GELC
representations may be constructed subordinate to any cover 6 of G/77 which is
invariant under the action W h» Wg for g G G and W E. G. (This is done by using
linear charts for the manifold G/77 and the G-action. Alternatively, we may use
invariant geodesies to pass from one point to another nearby.) Other important
examples are smooth G-manifolds supplied with invariant metrics.

GELC spaces, G-CW complexes and G-simplicial complexes are related by the
following lemmas:

Lemma 4.3. Every G-CW complex is G-homotopy equivalent to a colimit, colim Yn,
of finite dimensional G-simplicial complexes taken over cellular inclusions.

A proof appears in §5.

Lemma 4.4. Every finite dimensional G-CW complex is GELC.

A proof appears in §6.
Remark 4.5. When G is finite, we may drop the finite dimensionality in 4.4 by

adapting the proof of the corresponding result in the nonequivariant case, thus
drastically simplifying the proof. The point is that in the finite case, G permutes the
cells and the ELC homotopies Milnor defines in [Mil] are automatically equi-
variant.

Lemma 4.6. Let X be a completely regular G-paracompact GELC space. Then X is
dominated by a G-CW complex.

A proof appears in §7.

Lemma 4.7. Suppose that X is dominated by G-CW complex. Then X has the
G-homotopy type of a G-CW complex.

A proof appears in §5.
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Lemma 4.8. Let X = colim Xn, taken over a system of G-cofibrations such that
each Xn has the G-homotopy type of a G-CW complex. Then X has the G-homotopy
type of a G-CW complex.

The proof is straightforward homotopy theory; replace the colimit by the tele-
scope and use homotopy invariance of the homotopy colimit.

Assuming Lemmas 4.3 to 4.8, we then have the following:

Theorem 4.9 (Equivariant version of Milnor's Theorem). The following are
equivalent:

(i) X has the G-homotopy type of a G-CW complex.
(ii) X is G-equivalent to a colimit, colim Xn, where each Xn has the G-homotopy

type of a finite dimensional G-simplicial complex, and where Xn—>Xn + x is a G-
cofi brat ion for each n.

(iii) X is G-equivalent to a colimit, colim Xn (over G-cofibrations), where each Xn
has the G-homotopy type of a G-paracompact completely regular GELC space.

(iv) X is G-equivalent to a colimit as above, where each Xn is dominated by a
G-CW complex.

(v) X is G-equivalent to a colimit as above, where each Xn has the G-homotopy type
of a G-CW complex.

This is an immediate consequence of the above lemmas.
An important application of the above theorem is in the case of function spaces

or, more generally, «-ads of function spaces. In order to deal with the relative case,
we must define relative GELCs (and «-ads of GELCs).

Definition 4.10. Let (A', Y) be a pair of G-spaces. We say that (A", Y) is a
relative GELC if there exists a GELC representation for X which restricts to one
for Y. More generally, we may define GELC «-ads of G-spaces in a similar
manner.

If (A"; Xx, . . . , Xn) and (Y; Yx, . . . , Yn) are «-ads of G-spaces, we may define
the function space «-ad of G-spaces, (A"; Xx, . . . , Ar„)(y; r'.Yh) in the obvious
manner, with G acting by conjugation. The following result may be seen from the
proof of the corresponding result in [Mil]:

Proposition 4.11. Let (X; X¡) be GELC n-ad of G-paracompact completely
regular G-spaces with each X¡ closed and invariant, and let (K; K¡) be an n-ad of
compact G-spaces. Then the function space n-ad (X; X¡fK] *** is GELC G-paracom-
pact and completely regular. Thus it has the G-homotopy type of a G-CW complex, by
Theorem 4.9.

The most important application of 4.11 is the following:

Theorem 4.12. Let X be an n-ad of G-CW complexes, and let K be an n-ad of
compact G-spaces. Then XK has the G-homotopy type of an n-ad of G-CW com-
plexes.

Proof. Filter the «-ad XK by setting T^A"*) = (X')K, where A" is the ith
skeleton of X. Then apply Theorem 4.9 to each of the spaces F¡(XK).
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Other consequences are the following:

Corollary 4.13. Let X and K be as above, and let (XK)H denote the subspace of
XK consisting of H-equivariant maps for some closed subgroup 77 < G. 77ie« (XK)H
has the homotopy type of a CW complex.

Proof. (Xk)h is the fixed-point set of XK by the subgroup 77, and the result
follows by a check that a GELC representation of a G-space restricts to an ELC
representation of all its fixed-point sets.

Corollary 4.14. Let f: X —» Y be a G-map, and let y El Y have isotropy subgroup
H. Then, regarding f as an H-equivariant map based at y, the homotopy-theoretic
fiber Ff has the H-homotopy type of an 77-CW complex whenever X and Y have the
G-homotopy type of G-CW complexes.

Proof. One observes that Ff = (Y; {y}, A")^ {0)'{1)) if we replace / by an
inclusion. Thus the result follows.

5. Proof of Lemmas 43 and 4.7.
5.1. Proof of Lemma 4.3. This in turn is proved by lemmas:

Lemma 5.2. Every G-simplicial complex can be barycentrically G-subdivided sub-
ordinately to any given open cover by invariant sets.

Proof. Exactly the same as the G-trivial case (e.g., [Spl]).

Lemma 5.3. Let X be a G-simplicial complex of the form X = G/ H X Y, where Y
is a nonequivariant simplicial complex, and let Z be an arbitrary G-simplicial
complex, with f: X —> Z a G-simplicial map. Then there exists a G-simplicial pair
(M'f, X) which is G-homotopy equivalent, rel X, to the pair (Mf, X X {1}), where
Mf is the usual mapping cylinder off.

Proof. Let/j denote projection onto orbit spaces. Then we have a commutative
diagram

X        -» Z
pi if

X/G      -»      Z/G
f/G

in which// G is a simplicial map. Let Z' be the pullback of Z over f/G. Then Z'
has the structure of a G-simplicial complex such that the induced structure on X/ G
is the given one. Let /: X —> Z' be the universal map, and let g: Z'—» Z be the
natural map. Then / and g are G-maps. Observe that Mg and Mf have the structure
of G-simplicial complexes. Hence Mf U Mg is also a G-simplicial complex, where
Mf is attached to Mg via the inclusion Z' -> Z' X 7 —> Mg. Then M'f = Mf u Mg
is the required space.

X

Z'
Mf

M'f = Mf UMg
Mg
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(Note that, when G is not discrete, Mf itself need not have a G-simplicial
structure, even though the orbit space has one: consider, for example, the case /:
S1 x 7-> Sx given by/(/, s) = se", with G = Sx and 77 = 1.)

Lemma 5.4. Let (X, A) and (Y, B) be G-simplicial pairs, and let f: X -» Y be a
G-map which is simplicial on A. Then there is a G-homotope f of f such that
f\A = f, and f —/ rel A, with f simplicial on X (in some subdivision).

Proof. Using Lemma 5.2 the proof is identical to the nonequivariant case
treated in [Spl].

We may now prove Lemma 4.3: Let X be an arbitrary G-CW complex, let X"
denote its «th skeleton, and assume that we have equivalences

qn: X" -h> colim 7£    for each « < N,

where each Y^ is a G-simplicial complex of dimension no larger than «, where the
maps YÜ, -» Y£+l are given by composites

yz¿>b(y¿)-!» y-+1)
where B denotes the first barycentric subdivision and where / is inclusion of a
subsimplicial G-complex. Also assume that each Y£ is a subsimplicial G-complex
of Y£+1, and that the following diagrams commute up to homotopy for each
« <N:

X"        %        colim Y"m
i i

Xn+X       -^      colim Y" + 1

For each N-dimensional G-cell attached to XN, we may use qN to attach it to
some Y%. If we subdivide sufficiently many times, we may attach it simplicially to
Ym + r f°r some r, instead, giving the resulting space the structure of a G-simplicial
complex, by the above lemmas. Further subdivisions also allow us to attach it to
Y*+r+s for each s, giving us the complexes Y*+l for each m. Construction of qN+x
is now straightforward, completing the inductive construction of the colimits
colim YÜ, and of the maps qn.

Finally, set

Y = colim y„".

Since the sequence (Y¡¡) is cofinal in colimm(colimn Y£), Y is equivalent to X by
invariance of colimits, as required.

5.5. Proof of Lemma 4.7. Suppose that X is dominated by a G-CW complex Y.
Let y: TA'-» A" denote a G-CW approximation of X, and let u: X-> Y and e:
Y—> X satisfy ep. ~ 1. By the Whitehead Theorem, e ~ yë for some G-map ë:
Y -* TX. Now let y ~ ' : X -» TX be the composite ëp. One then easily checks that
yy~' ~ 1, and that y~'y is a weak-, and hence strong, G-homotopy equivalence.
From this it follows that y is a G-homotopy equivalence as required.
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6. Finite dimensional G-simplicial complexes are GELC. In this section, Lemma
4.4 is proved. First, we shall need some information about "barycentric convexity".

Definition 6.1. A subset C of a simplicial complex K is barycentrically convex if,
whenever kx and k2 are in C, then so is tk¡ + (1 — t)p(kx, k^ for / G 7 and
/ = 1,2, where p(kx, k2) is the point whose yth barycentric coordinate is

min{kXy,k2y}

Y.  min{kly,k2}

k2)
The average of kx and k2.

(T is the set of vertices in K, and k¡ is the yth barycentric coordinate of k¡.)
(It follows therefore that kx and k2 must both lie in some star Sy of a vertex y.)

Obvious examples of barycentrically convex sets are open and closed stars. A
slightly less obvious example is the following.

The X-star of y.

Let X G (0, 1). The X-star of a vertex y0 in K is the set of points in the star of y0
whose y0th coordinates are greater than X. X-stars are barycentrically convex simply
because S?er min{&lr, k2y) < 1 for any pair (kx, k^ of points in K. (Note that
2ïer ky = 1 for k = (ky).) Intersections of A-stars of the first barycentric subdivi-
sion will be used in constructing convex sets for G-simplicial complexes.

We are now ready to prove 4.4. As remarked earlier, when G is finite, one simply
observes that the first barycentric subdivision of any G-simplicial complex is a CW
complex on which G acts by permuting the cells. (In fact, it is a regular G-complex
as described in Bredon [Brl].) It is then easy to verify that the ELC representation
described in [Mil], applied to any subdivided G-simplicial complex, yields a GELC
representation. As a consequence, we may ignore all countability assumptions
made here when dealing with finite group actions. When G is not finite, we have to
take local convexity of the orbits into account, and it does not seem at all likely
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that we can choose a system of GELC representations {(G/77, XH, {UH }): 77 <
G} compatibly (in the sense that for every G-map <b: G/H —» G/K there are
commutative diagrams):

a«
UHa X UHaX I     -*      UHa

4</> X <> X 1 4<f>
UK x UK x I     -+     UK

Thus the "obvious" generalization of the G finite case cannot possibly work. We
must therefore be able to pass continuously from one GELC representation
(G/H,XH, {UH }) to another, possibly incompatible, representation
(A"1-1, X, { Ua}) whenever an «-simplex A" X G/77 is attached to a given G-simpli-
cial complex A""~ '. This is achieved by using a deformation 9 of the outer rim of A"
to its boundary, and then using X to pass from the image of XH (under this
deformation) to X itself. Use of 0 precludes taking the convex sets to include the
barycentric coordinates of a whole star as our convex sets, so we shall have to take
smaller sets to obtain ^-invariance, and make sure that they are also invariant
under the various homotopies defining the convexity property.

We proceed now to the proof.
Proof of Lemma 4.4. If A" is a disjoint union of G-spaces of the form G/ Hy, for

varying y, then X is certainly GELC by the remarks after 4.2.
Proceeding inductively on dimension, we may assume that X is obtained from an

« — 1 dimensional complex Y by attaching G-simplices, and that we have a GELC
representation ( Y, X, { Ua}) for Y. Let <¡>: 3A" X G/77 -+ Y denote a typical attach-
ing map.

Consider the open cover {4>~x(Ua)} of 3A" X G/77. Since G/77 is GELC, we
may choose a representation (G/H, x, {Vß}) and an e > 0 such that if B is any
e-ball in 3A", then <j>(B x Vß) lands in some Ua. Assume e <\. Choose a finite
cover of A" by open (in A") simplices of diameter < e whose faces are parallel with
those of A" itself, and then let {Sy} denote the set of those simplices that meet 3A".
We may then replace {Sy} by a subordinate finite collection of such simplices,
{Sy} such that {Sy n 3A"} is still a cover of 3A", and such that Sy n Sy is a
simplex which meets 3A" in a single face, or is empty, for each y and y'. It follows
that for each y, <i>((5y n 3A") X Vß) lands in some Ua for every y and ß.

Since {Sy} is finite, we can find numbers 0 < rx < r2 < r3 < diam(A") such that
if A" c A" is the simplex concentric and parallel with A'„ of diameter r„ then
{Sy n AH forms a cover of 3A? (/ = 1, 2, 3).

Since the S intersect appropriately, we may choose a homotopy 9,: A" -» A"
which deforms A2 to the boundary keeping 3A" and A? fixed such that each Sy is 9,
invariant, and such that the curves 9,(x) approach the boundary montonically and
with 9,(x) closer to 3A" than, and on the same curve 9s(y) as, y wherever 9Í(¡(y) = x
for some t0 G 7 (see Figure 1).

Now define open sets of Y as follows:
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Figure 1.   The Simplices Sy and the Homotopy öf

For each triple p = (y, a, ß) such that <¡>((Sy n 3A") X Vß) lands in Ua, set

R, = ((<i> ° 0.r'(ua) n ((A" - 52«) x g/77)) u ffr'(sy x vß).
(See Figure 2.)

typical "geodesies"

Figure 2. The Sets p(Rß) C X/G

Now 7?M is 0,-invariant for all /, because of the properties of 9t.
For each Ua, also let

Wa = (<*> ° Ör')(^) n (A" - A"2) X G/77.
Finally, let T = A"x.
Our convex sets t/a" will consist of the sets T, the sets Wa (for all the «-dimen-

sional G-simplices being attached) and unions R^ u R^U ■ ■ •  with each R^ in a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT HOMOTOPY THEORY AND MILNOR'S THEOREM 365

distinct «-dimensional G-simplex, G/77, X A" such that they intersect Y in the
same convex set Ua, and such that the resulting sets are open in X. The collection
{U£) then forms a 9, -invariant open cover of X.

Since there are only finitely many little simplices Sy in each «-simplex, we can
find a deformaton 9, : A" —» A" for each «-simplex which deforms each 5" into the
boundary such that each Sy is 9,-invariant for all /.

We shall define the required GELC homotopies Aa": i/a" X U¡¡¡ X I -> t/a" by a
succession of five homotopies /x, which have the following effect:

(i) ft, homotopes the first projection to the first projection followed by 9X.
Schematically, we represent this by/? ~* 9x(p) (for a pair (p, q) G U¡¡ X U£).

(ii) /X2 applies 9; 9X to everything outside A2, and 90 = 1 to everything inside A".
We thus obtain 9x(p) ~> 9rl9x(p) for some r G 7.

(iii) In this stage, we pass continuously from a GELC representation for the new
cell to the one given inductively by using A, ° 9X ° 9X. The new GELC representa-
tion is given by first averaging the barycentric coordinates (as in [Mil]) keeping the
orbit coordinate fixed (up to the action of the attaching map), then using
(G/77, x, {Vß}) to get around the image of G/77, and finally going to 9rt9x(q).
Schematically, this is

(p',[g\\)     ~»    «(/>', l'), [g\]     ~*    M/>', q'), [ g2]
II I

öJAp) (<?', [&])
II

WM)
Stages (iv) and (v) are, respectively, the mirror images of (ii) and (i).

Proceeding formally, we define the p¡ as follows:
(i)(px), = 8, ° itx where -nx is the first projection,
(ii) (p2\(x, [q],y, [g']') = 9r,(9x(x), [q]), where

r = min{max{d(p(9x(x), 9x(y))), 0}, l},
p(p, q) is the average of p and q, and 1 — d(p) is the ratio

distance (p, A" - A^/distance (A?, 3A^)
(for some metric on A").

(iii)   (p3),(x, [g],y, [g']') = p,(9x9x(x), [g], 8x9x(y), [g']')   if   p(9x(x), 9x(y)) G
a-, a,o>,(?>,W, [g], 9My\ lg']% V(«i*iW. [gl WM* \g'\)if K«iW. «i(j'))
G A3 - A2 (where í is the ratio)

distance (p(x,y), A2)/distance (A2, 3A");

X,(9x9x(x), [g], 9x9x(y), [g']') if p(9x(x), 9x(y)) G A" - A?.
Here, p, = p¡ + p2 + pf where

p!(x,[g],y,[g']') = ((1 - t)9x9x(x) + tp(x,y), [g]);

p2(x,[g],y, [g']') = (p(x,y),Xj([g], [g']'));    and

pf(x, [g],y, [g']') = (t9x9x(y) + (1 - t)p(x,y), [g']').
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(We are also identifying the points (x, [g]) and (y, [g']') with their images in y.)
(iv) is (ii) reversed, with y and [ g']' replacing x and [ g].
(v)is0,_, °7T2.
It is then straightforward to check that (Y, X", {£/„"}) is the required GELC

representation. This completes the inductive step, and the proof.

7. Reasonable GELC spaces are dominated by G-CW complexes. In this section,
4.6 is proved. The following types of spaces will be used for the construction of
G-CW complexes which dominate suitable G-spaces.

Definition 7.1. Let 0 = {Qa}a^A be a set of G-orbits (of not necessarily
distinct type). The indexed reduced join, J(Q) of 0 is defined to be the geometric
realization of the simplicial space /t(0 ) whose «th space is given by

y„(0) = {(*„, . . . , xn) G (II Qa)" + X: i *j*>Xt

and Xj lie in distinct summands \,

and the /th face operator is given by omitting the /th term. There is no degeneracy,
and G acts diagonally on /„(© ).

Proposition 7.2. Let 0 be a set of G-orbits, and let 7^,(0 ) be a subsimplicial G
space o//%(0). Then J'(B) is in G% whenever each J„'(0) is in G%.

Proof. Let F denote the standard filtration of J'(6). Any representation of
(A", 3A") as an N.D.R. pair gives rise to a G-N.D.R. representation for Fn(J'(6)),
F„_X(J'(6 )). Thus the maps /„_,: Fn_x(J'(6 )) -» Fn(J'(S )) are G-cofibrations.

By 1.2, it suffices to construct a homotopy commutative diagram:

F0(J'(6))     X     Fx(J'(e))     Í      ■■■
¿«o 4«i
X0 -h> Xx -r*      • • •

Jo h
in which each oç is a G-homotopy equivalence, each X¡ is a G-CW complex, and
each/, is a G-cellular inclusion.

Inductively, let X0 = F0(J'(<9)), let a0 be the identity, and suppose that Xn_x,
a„_] and jn_x have been defined with the required properties. Consider the
following diagram, in which both inner squares are pushouts:

L„ x 3A"

01

/xl

•/„(e) x sa"
|3
,.,(/(€))-
?|a»-i

/«-

/xl

J'n(C).xAn

I
Fn(J'(€))

-> L„ x A"

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT HOMOTOPY THEORY AND MILNOR'S THEOREM 367

Here, Ln is a G-CW approximation to J^(6 ), X'n is the pushout of /„ and an_, and <f>
is a G-cellular approximation of an_x ° 3 ° (/ X 1). This data gives us the dotted
arrows making the outer square and the trapezoid on the right G-homotopy
commutative, Xn being the double mapping cylinder of i and <¡>, which has the
structure of a G-CW complex.

Definition 7.3. If 9: V x H G -> X is an embedding of a tube, and if S c
G/77, then we call 9\p~\ô) the tube segment generated by S. Here/»: V X H G -*
G/77 is the projection.

When X is a completely regular G-space, the open tube segments form a base for
the topology of X (by the topological slice theorem [Brl] and compactness of G).

We now prove Proposition 4.6.
Proof of Proposition 4.6. In view of 7.2, it suffices to show that X is dominated

by a G-space of the form /'(0 ) as described there.
Let {Ua}a(EA be a cover of X by convex sets forming part of a GELC

representation (A", X, { Ua}), and let { Vß}ßlEB be a subordinate cover by open tube
segments. Then {Vß G} is an open cover of X by invariant open sets. By G-para-
compactness, there exists a locally finite cover of X by open tubes, { Ty}yer, which
is so fine that the star of any point is contained in some VßG, and hence in some
UaG.

For each y G T, let Qy denote the central orbit of Ty. Then there are open
subspaces Py of Qy such that if Ry denotes the segment generated by Py, then the
star of every point in X, taken among the sets R^g with p G T and g G G, is
contained in some V . Recalling that Uag G {Ua} for every g G G, we define
•7„'(0) C (Uyer Qy)n + X as follows:

For each «, let J¿(& ) be the union over all y, of the sets (Pyogo X • • • X Pygn)G
with (7^ g0 u • • • U Ry g„) included in the star of some point in X.

Then /„'(0) satisfies the hypothesis of 7.2.1
We may assume that the Ty are enumerated by a G-partition of unity, so that

there is a natural map 9: X^>J'(8) defined by this partition. It thus suffices to
show that 9 is a homotopy section of some G-map q: J'(&)—>X. q will be defined
inductively.

Order the set and give J'(6) a filtration F, by defining F„(J'(Q)) c J'(6) to be
the «th simplicial filtration. Since the inclusions Fn(J'(<S))^ Fn + x(J'(6)) are
G-cofibrations, we have/'(S) = colim Fn(J'(&)).

There is an obvious map qQ: FqJXO) -* X. Suppose, then, that q„_x: Fn_xJ'(6)
—> X has been defined and extends qn_2. Let (([g]7o, /), (1 — t)x) be a point in
FnJ'(6 ), where y0 is smaller than each index appearing in x. Then set

í.(([4,'')-(l-^) = A([«L,,?„-,W>').

The fact that [g]yo and q„„x(x) are in the same convex set follows from the
definition of J'(6) and the induction hypothesis. This gives q = colim qn.

See the note at the end of the proof.
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Finally, let 77: 1 — q9 be given by (x, t) ^>X(x,q9(x),t). In order to see why
q9(x) and x both lie in some convex set, we note that the sets (Ry g0 u Ry gx
U • • • U7c^gm) form a cover of X, and that if x G (Ry0g0 U B^gi
U • • •  URyngm),   then   q9(x)   lies   in   any   Ua   for   which   (Ryog0 U Ry>gx
U        •        •        • U    Ryjj      C        t/„.

This completes the proof.
Remark 7.4. Although it is folklore that smooth G-manifolds have the structure

of G-CW complexes, there appears to be no rigorous proof in the literature for G
compact Lie.

The spaces J¿(® ) in the above proposition are smooth G-manifolds, and it would
suffice to show that they have the G-homotopy type of G-CW complexes. This may
be seen by exploiting the existence of G-handlebody decompositions of smooth
G-manifolds [Wsl] and arguing by induction over dimension, as suggested by
Rothenberg (private communication), the key point being that the unit disc of a
representation is the cone of a smooth G-manifold of lower dimension.

On the other hand, we may avoid handle decompositions entirely by arguing as
follows: There are natural projections from the components of /„'((9) onto any one
of the orbits G/77y occurring in that component. Thus /„'((} ) = G X H Y for some
closed subgroup 77 < G. For nontriviality, assume that 77 =¿= G. We then assume,
by induction over closed subgroups of G that Milnor's Theorem holds for the
proper subgroup 77 < G. Then Y, being a smooth 77-manifold, is automatically
77ELC, and hence has the 77-homotopy type of an 77-CW complex. But then
G X H Y then has the G-homotopy type of a G-CW complex, since any 77-CW
decomposition of an 77-homotope Y' of Y determines a natural G-CW structure for
G X H Y'. Thus we may carry on to establish Proposition 4.6, and hence Milnor's
Theorem.
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