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Abstract. In this paper we employ equivariant Lyapunov-Schmidt procedure

to give a clearer understanding of the one-to-one correspondence of the peri-
odic solutions of a system of neutral functional differential equations with the

zeros of the reduced bifurcation map, and then set up equivariant Hopf bifur-

cation theory. In the process we derive criteria for the existence and direction
of branches of bifurcating periodic solutions in terms of the original system,

avoiding the process of center manifold reduction.

1. Introduction

Suppose that τ ≥ 0 is a given constant (or possibly infinity), and Rn is the n-
dimensional Euclidean space with norm | · |. Let C([−τ, 0],Rn) denote the Banach
space of continuous mapping from [−τ, 0] into Rn equipped with the supremum
norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)| for φ ∈ C([−τ, 0],Rn). If a ≥ 0, and x : [−τ, a] → Rn

is a continuous mapping, then for any t ∈ [0, a], xt ∈ C([−τ, 0],Rn) is defined
by xt(θ) = x(t + θ) for θ ∈ [−τ, 0]. In this paper, we consider the following
parameterized system of neutral functional differential equations (NFDEs)

(1.1)
d

dt
h(α, xt) = f(α, xt),

where h, f : R× C([−τ, 0],Rn) → Rn are two continuously differentiable mappings
satisfying that f(α, 0) = 0 for all α ∈ R. We say that (1.1) is equivariant with
respect to a group Γ if there exists a representation % of Γ such that

(1.2) h(α, %(γ)φ) = %(γ)h(α, φ), f(α, %(γ)φ) = %(γ)f(α, φ)

for (α, γ, φ) ∈ R × Γ × C([−τ, 0]; Rn), where %(γ)φ ∈ C([−τ, 0]; Rn) is given by
(%(γ)φ)(s) = %(γ)φ(s) for s ∈ [−τ, 0]. Recall that a representation % of a group Γ
is a group homomorphism % : Γ → GL(n,R). Condition (1.2) implies that system
(1.1) is invariant under the transformation (x, t) → (%(γ)x, t). Namely, x(t) is a
solution of (1.1) if and only if %(γ)x(t) is a solution. Throughout this paper we
always assume that Γ is a compact Lie group and system (1.1) is Γ-equivariant.
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The phenomenon of Hopf bifurcation concerns the birth of a periodic solution
from an equilibrium solution through a local oscillatory instability. The existence
of such a bifurcation was found in the context of ordinary differential equations
(ODEs) by Hopf in 1942 [11], after whom this type of bifurcation has been subse-
quently named. For delay differential equations (DDEs), the first results on Hopf
bifurcation date back to work by Chafee [1] in 1971. However, according to Hale [9],
the first proof of the Hopf bifurcation theorem for DDEs under analytically com-
putable conditions was presented by Chow and Mallet-Paret in 1977 [2]. The first
results on equivariant Hopf bifurcation of DDEs date back to the work by Wu [14].
In [12], Krawcewicz, Ma and Wu employ equivariant degree theory developed by
Geba et al (cf. [4]) to study the existence, multiplicity and global continuations
of symmetric periodic solutions for one parameter family of NFDEs with dihedral
symmetry.

In the standard Hopf bifurcation theory ([9, 10, 13]), the central hypothesis is
that at the critical value of the bifurcation parameter the infinitesimal generator
has a complex conjugate pair of simple purely imaginary eigenvalues. The presence
of symmetry may cause purely imaginary eigenvalues to arise with higher multi-
plicities which causes the bifurcation problem to become more complicated, see for
instance [6]. The most common approach to study bifurcation problems in function
differential equations involves the computation of (normal forms of) reduced bifur-
cation equations on center manifolds. For example, Faria and Magalhães [3], and
Weedermann [13] compute the reduced system on the center manifold associated
with the pair of purely imaginary solutions of the characteristic equation.

In this paper, we present a treatment of generic codimension-one Hopf bifurca-
tion for equivariant NFDEs on the basis of equivariant Lyapunov-Schmidt reduc-
tion, following the spirit of the treatment of Golubitsky and Stewart [5, 6] in the
case of equivariant ODEs. Moreover, our results generalize those obtained by Wu
[14], Krawcewicz, Ma and Wu [12]. In the process we obtain explicit expressions in
terms of the original system that determine the monotonicity of the period and Hopf
bifurcation direction of branches of bifurcating symmetric periodic solutions. With
these expressions at our disposal, the study of equivariant Hopf bifurcation in ex-
plicit examples can be performed without having to resort to lengthy computations
associated to center manifold reduction.

2. Main results

Let D(α), L(α) : C([−τ, 0]; Rn) → Rn be the two linearized operators of h(α, ·)
and f(α, ·), respectively. Furthermore, we assume that D(α) is atomic at zero (see
[9] for more details). By the Riesz representation theorem, there exists an n × n

matrix-valued function µ, η : [−τ, 0] → Rn2
whose components each have bounded

variation and such that for ϕ ∈ C([−τ, 0],Rn),

D(α)ϕ = ϕ(0)−
∫ 0

−τ

dµ(α, θ)ϕ(θ), L(α)ϕ =
∫ 0

−τ

dη(α, θ)ϕ(θ),

where Var[s,0]µ(α, θ) → 0 as s→ 0 (see [9] for more details). For each fixed α, the
linear system

(2.1)
d

dt
D(α)xt = L(α)xt,
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generates a strongly continuous semigroup of linear operators with infinitesimal
generator Aα. The spectrum of Aα, denoted by σ(Aα), is the point spectrum.
Moreover, λ is an eigenvalue of Aα, i.e., λ ∈ σ(Aα), if and only if λ satisfies that
det ∆(α, λ) = 0, where the characteristic matrix ∆(τ, λ) is given by

∆(α, λ) = λD(α)(eλ(·)Id)− L(α)(eλ(·)Id).

It is well-known that φ ∈ C([−τ, 0]; Cn) is an eigenvector of Aα associated with the
eigenvalue λ if and only if φ(θ) = eλθb for θ ∈ [−τ, 0] and some vector b ∈ Rn such
that ∆(α, λ)b = 0. Let Eα,λ be the eigenspace of Aα associated with the eigenvalues
λ and λ. Assume that A0 has a pair of purely imaginary eigenvalues ±iβ0. The
symmetry group Γ often causes purely imaginary eigenvalues to be multiple. So,
we always assume that
(H1) A0 has a pair of purely imaginary eigenvalues ±iβ0, each of multiplicity m,

and all other eigenvalues of A0 are not the integer multiple of iβ0.
In studying the bifurcation problem we wish to consider how the eigenvalues of
Aα cross the imaginary axis at α = 0 and to describe the structure of the asso-
ciated eigenspace Eα,λ. We consider the following nontrivial restrictions on the
corresponding imaginary eigenspace of A0.
(H2) The imaginary eigenspace E0,iβ0 of A0 is Γ-simple.

Thus, we make use of the implicity function theorem and Lemma 1.5 in Page 265
of [6] and obtain the following results about the multiplicity of this eigenvalue and
its associated eigenvectors of Aα.

Theorem 2.1. Under conditions (H1)–(H2), for sufficiently small α, infinitesimal
generator Aα has one pair of complex conjugate eigenvalues σ(α) ± iρ(α), each
of multiplicity m. Moreover, σ and ρ are smooth functions of α and satisfy that
σ(0) = 0 and ρ(0) = β0.

In view of (H1), the purely imaginary eigenvalues of A0 has high multiplicity,
so the standard Hopf bifurcation theorem can not be applied directly. So, we
first develop the equivariant Lyapunov-Schmidt reduction for (1.1) to consider the
existence of periodic solutions. Let ω0 = 2π/β0, and Cω0 (respectively, C1

ω0
) be the

set of continuous (respectively, differentiable) n-dimensional ω0-periodic mappings.
If we denote

‖x‖0 = max
1≤i≤n

max
t∈[0,ω0]

{|xi(t)|}

for x = (x1, x2, · · · , xn)T ∈ Cω0 , and ‖x‖1 = max{‖x‖0, ‖ẋ‖0} for x ∈ C1
ω0

, then
Cω0 and C1

ω0
are Banach spaces when they are endowed with the norms ‖ · ‖0 and

‖ ·‖1, respectively. It is easy to see that Cω0 is a Banach representation of the group
Γ× S1 with the action given by

(γ, θ)u(t) = %(γ)u(t+ θ), for (γ, θ) ∈ Γ× S1.

In view of complexity in analyzing NFDEs, we introduce two kinds of bilinear
forms. One is the inner product < ·, · >: Cω0 × Cω0 → R defined by < v, u >=
1

ω0

∫ ω0

0
vT (t)u(t)dt, for u, v ∈ Cω0 . The other is (·, ·) : C([−τ, 0]; Rn)×C([0, τ ]; Rn) →

R defined by

(2.2)
(ψ,ϕ) = ψ

T
(0)ϕ(0)−

∫ 0

−τ

[
d
ds

∫ s

0
ψ

T
(ξ − s)dµ(0, θ)ϕ(ξ)dξ

]
s=θ

−
∫ 0

−τ

∫ θ

0
ψ

T
(ξ − θ)dη(0, θ)ϕ(ξ)dξ
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for ψ ∈ C([0, τ ]; Rn) and ϕ ∈ C([−τ, 0]; Rn). Let β ∈ (−1, 1), x(t) = u((1 + β)t).
Then equation (1.1) can be rewritten as

(1 + β)
d

dt
h(α, ut,β) = f(α, ut,β),

where ut,β(θ) = u (t+ (1 + β)θ) for θ ∈ [−τ, 0]. Define F : C1
ω0
× R2 → Cω0 by

(2.3) F (u, α, β) = −(1 + β)
d

dt
h(α, ut,β) + f(α, ut,β),

By varying the newly introduced small variable β, one keeps track not only of
solutions of (1.1) with period ω0 but also of solutions with nearby period. In fact,
solutions to F (u, α, β) = 0 correspond to ω0

1+β -periodic solutions of (1.1). It follows
that the Γ-equivariance of L and f that F is Γ× S1-eqivariant:

(γ, θ)F (u, α, β) = F ((γ, θ)u, α, β),

for all (γ, θ) ∈ Γ× S1. Define

Lu = − d

dt
D(0)ut + L(0)ut.

The elements of KerL correspond to solutions of the linear system Lu = 0 satisfying
u(t) = u(t+ω0). For convenience in computation we shall allow functions with range
Cn instead of Rn. With respect to the inner product < ·, · >: Cω0 × Cω0 → R, the
adjoint operator of L is

L∗u =
d

dt

[
u(t)−

∫ 0

−τ

dµT (0, θ)u(t− θ)
]

+
∫ 0

−τ

dηT (0, θ)u(t− θ).

It follows from (H1) that KerL ∼= E0,iβ0 and KerL∗ ∼= E∗0,iβ0
, both of which are

2m-dimensional. Here and in the sequel, denotes the adjoint map with respect to
the inner product < ·, · >. Furthermore, we have

Lemma 2.2. Spaces KerL, RangeL, and W = (KerL∗)⊥
⋂
C1

ω0
are Γ×S1-invariant

subspaces of Cω0 . Moreover, Cω0 = KerL ⊕ RangeL and C1
ω0

= KerL ⊕W.

Let P and I − P denote the projection operators defined by

P : Cω0 → RangeL, I − P : Cω0 → KerL.

Obviously, P and I − P are Γ× S1-equivariant. Thus, F (u, α, β) = 0 is equivalent
to the following system:

(2.4) PF (u, α, β) = 0, (I − P )F (u, α, β) = 0.

According to the above direct sum decomposition, for each u ∈ C1
ω0

, there is a
unique decomposition such that u = v+w, where v ∈ KerL and w ∈ W. Thus, the
first equation of (2.4) can be rewritten as

G(v, w, α, β) ≡ PF (v + w,α, β) = 0.

Notice that G(0, 0, 0, 0) = PF (0, 0, 0) = 0 and DwG(0, 0, 0, 0) = PL = L. When L
is restricted in W, it is invertible, and so DwG(0, 0, 0, 0) is invertible. Applying the
implicit function theorem, we obtain a continuously differentiable Γ×S1-equivariant
map W : KerL × R2 → W such that W (0, 0, 0) = 0 and

(2.5) PF (v +W (v, α, β), α, β) ≡ 0.
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Substituting w = W (v, α, β) into the second equation of (2.4), we have

(2.6) B(v, α, β) ≡ (I − P )F (v +W (v, α, β), α, β) = 0.

Thus, we reduce our Hopf bifurcation problem to the problem of finding zeros of
the map B : KerL×R2 → KerL. We refer to B as the bifurcation map of the system
(1.1). It follows from the Γ × S1- equivariance of F and W that the bifurcation
map B is also Γ× S1- equivariant. Moreover, B(0, 0, 0) = 0 and Bv(0, 0, 0) = 0.

Finding periodic solutions to (1.1) rests on prescribing in advance the symmetry
of the solution we seek. This can often be used to select a subspace on which the
eigenvalues are simple. In addition, we should take temporal phase-shift symmetries
in terms of the circle group S1 into account as well as spatial symmetries. Here,
we place emphasis on two-dimensional fixed-point subspaces and assume that
(H3) dim Fix(Σ, E0,iβ) = 2 for some subgroup Σ of Γ× S1.
(H4) σ′(0) 6= 0.

Assumption (H4) is the transversality condition analogous to those of the standard
Hopf bifurcation theorem. Now, we can present our main results about equivariant
Hopf bifurcation.

Theorem 2.3. Under conditions (H1)–(H4), in every neighborhood of (x = 0, α =
0) system (1.1) has a bifurcation of periodic solutions whose spatio-temporal sym-
metry can be completely characterized by Σ.

Proof. We consider the restriction mapping B̃ : Fix(Σ,KerL) × R2 → KerL of
B : KerL × R2 → KerL on Fix(Σ,KerL)× R2, i.e.,

B̃(v, α, β) = (I − P )F (v +W (v, α, β), α, β)

for v ∈ Fix(Σ,KerL), α ∈ R, and β ∈ R. Clearly, B̃ is also Γ× S1-equivariant, and
satisfies that

(2.7) B̃(0, 0, 0) = 0, B̃v(0, 0, 0) = 0.

Moreover, it is easy to see that RangeB̃ ⊆ Fix(Σ,KerL). Namely, B̃ maps Fix(Σ,KerL)×
R2 to Fix(Σ,KerL). Therefore, we only need to consider the existence of nontrivial
zeroes of B̃.

Without loss of generality, assume that Fix(Σ,KerL) = span{q, q}, where q(θ) =
Aeiβ0θ andA ∈ Cn satisfies ∆(0, iβ)A = 0. Obviously, Fix(Σ,KerL)∗ = Fix(Σ,KerL∗).
Thus, there exists B ∈ Cn such that B

T
A = 1 and Fix(Σ,KerL∗) = span{p, p},

where p(θ) = Beiβ0θ. As stated in Theorem 2.1, for sufficiently small α, the in-
finitesimal generator Aα has one pair of complex conjugate eigenvalues λ(α) =
σ(α)± iρ(α), each of multiplicity m. Moreover, there exists a C1-continuous func-
tion Ã(α) such that Ã(0) = A and ∆(α, λ(α))Ã(α) ≡ 0 for all sufficiently small α,
we differentiate it with respect to α and obtain

[∆α(α, λ(α)) + λ′(α)∆λ(α, λ(α))]A(α) + ∆(α, λ(α))A′(α) = 0.

In particular, we have

[∆α(0, iβ0) + λ′(0)∆λ(0, iβ0)]A+ ∆(0, iβ0)A′(0) = 0.

This, together with the fact that B
T
∆(0, iβ0) = 0, implies that

(2.8) B
T
∆α(0, iβ0)A+ λ′(0)B

T
∆λ(0, iβ0)A = 0.
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For each φ ∈ Fix(Σ,KerL), φ = zq + zq, where z =< p, φ >. Let

g(z, α, β) :=< p, B̃(zq + zq, α, β) > .

Thus, we only need to consider the existence of nontrivial solutions to g(z, α, β) = 0.
It follows from (2.7) that

(2.9) gz(0, 0, 0) = 0, gz(0, 0, 0) = 0.

It is easy to see that g(z, α, β)) is S1-equivariant. Using a similar arguments to
that in [6], we can find two functions <,= : R3 → R such that

(2.10) g(z, α, β) = <(|z|2, α, β)z + =(|z|2, α, β)iz.

It follows from gz(0, 0, 0) = 0 that <(0, 0, 0) = 0 and =(0, 0, 0) = 0. Let z = reiθ.
Then solving g is equivalent to either solve r = 0 or <(r2, α, β) = 0 and =(r2, α, β) =
0. In view of the implicitly defined function W (v, α, β), which vanishes through first
order in v = zq + zq, we have

F (v +W (v, α, β), α, β) = −(1 + β) d
dtD(α)vt,β + L(α)vt,β +O(|z|2).

Therefore,
Fα(v +W (v, 0, 0), 0, 0) = Ωvt +O(|z|2)
Fβ(v +W (v, 0, 0), 0, 0) = Ξvt +O(|z|2).

where operators Ω = − d
dtD

′(0)+L′(0), Ξvt = ∂
∂β [−(1+β) d

dtD(α)vt,β+L(α)vt,β ]β=0,
D′(0) = d

dαD(α)|α=0, and L′(0) = d
dαL(α)|α=0. Notice that

< p,Ωq > = < Beiβ0t, iβ0

∫ 0

−τ
dµα(0, θ)Aeiβ0(t+θ) +

∫ 0

−τ
dηα(0, θ)Aeiβ0(t+θ) >

= B
T ∫ 0

−τ
[iβ0dµα(0, θ) + dηα(0, θ)]Aeiβ0θ

= −BT
∆α(0, iβ0)A,

< p,Ξq > = − < Beiβ0t, iβ0e
iβ0t − iβ0

∫ 0

−τ
dµ(0, θ)A[1 + iβ0θ]eiβ0(t+θ) >

+iβ0B
T ∫ 0

−τ
dη(0, θ)Aθeiβ0θ

= −iβ0B
T
A+ iβ0B

T ∫ 0

−τ
dµ(0, θ)A[1 + iβ0θ]eiβ0θ

+iβ0B
T ∫ 0

−τ
dη(0, θ)Aθeiβ0θ

= −iβ0(p, q),

and (p, q) = B
T
∆λ(0, iβ0)A. It follows from (2.8) that < p,Ωq >= (p, q)λ′(0).

Similarly, we have < p,Ωq >=< p,Ξq >= 0. Therefore,

gα(z, 0, 0) = < p, Fα(v, 0, 0) >= z(p, q)λ′(0) +O(|z|2),
gβ(z, 0, 0) = < p, Fβ(v, 0, 0) >= −iβ0z(p, q) +O(|z|2).

Then
<α(0, 0, 0) = Re{λ′(0)(p, q)}, =α(0, 0, 0) = Im{λ′(0)(p, q)},
<β(0, 0, 0) = β0Im{(p, q)}, =β(0, 0, 0) = −β0Re{(p, q)}.

So the Jacobi determinant of functions < and = with respect to α and β is

det
[
<α(0, 0, 0) <β(0, 0, 0)
=α(0, 0, 0) =β(0, 0, 0)

]
= −β0Re{λ′(0)}|(p, q)|2.

Thus, under condition (H4), the above Jacobi determinant is nonzero. The implicit
function theorem implies that there exists a unique function α = α(r2) and β =
β(r2) satisfying α(0) = 0 and β(0) = 0 such that

(2.11) <(r2, α(r2), β(r2)) ≡ 0, =(r2, α(r2), β(r2)) ≡ 0



EQUIVARIANT HOPF BIFURCATION 7

for all sufficient small r. Therefore, g(z, α(|z|2), β(|z|2)) ≡ 0 for z sufficiently near
0. Therefore, system (1.1) has a bifurcation of periodic solutions whose spatio-
temporal symmetry can be completely characterized by Σ. This completes the
proof of Theorem 2.3. �

Remark 2.4. Theorem 2.3 implies that a Hopf bifurcation for (1.1) occurs at α = 0.
Namely, in every neighborhood of (x = 0, α = 0) there is a branch of Σ-symmetric
periodic solutions x(t, α) with x(t, α) → 0 as α → 0. The period ωα of x(t, α)
satisfies that ωα → ω0 as α → 0. Moreover, Γ-equivariance implies that there are
(Γ×S1)/Σ different periodic solutions, which have isotopy subgroups conjugate to
Σ in Γ× S1.

In what follows, we consider the bifurcation direction. Assuming sufficient
smoothness of h and f , we write

h(0, ϕ) = D(0)ϕ+
1
2
B(ϕ,ϕ) +

1
6
C(ϕ,ϕ, ϕ) + o(‖ϕ‖3)

f(0, ϕ) = L(0)ϕ+
1
2
E(ϕ,ϕ) +

1
6
F(ϕ,ϕ, ϕ) + o(‖ϕ‖3),

In view of (2.5), we have PF (zq + zq +W (zq + zq, α, β), α, β) ≡ 0. Write W (zq +
zq, 0, 0) and g(z, 0, 0) as

W (zq + zq, 0, 0) =
∑

s+l≥2

1
s!l!

Wslz
szl g(z, 0, 0) =

∑
s+l≥2

1
s!l!

gslz
szl.

It follows from (2.10) that g21 = <1(0, 0, 0) + i=1(0, 0, 0), where <1(u, α, β) =
<u(u, α, β) and =1(u, α, β) = =u(u, α, β). Therefore, <1(0, 0, 0) = Re{g21} and
=1(0, 0, 0) = Im{g21}. From (2.11), we can calculate the derivatives of α(r2) and
β(r2) and evaluate at r = 0:

α′(0) = − Re{(p,q)g21}
Re{λ′(0)}|(p,q)|2 , β′(0) = − Im{λ′(0)(p,q)g21}

Re{λ′(0)}|(p,q)|2 .

The bifurcation direction is determined by signα′(0), and the monotonicity of period
of bifurcating closed invariant curve depends on signβ′(0). Using a similar argument
as that in [5], we have

g21 = < p,F(q, q, q)− d
dtC(q, q, q) >

+2 < p, E(q,W11)− d
dtB(q,W11) >

+ < p, E(q,W20)− d
dtB(q,W20) > .

We still need to compute W11 and W20. In fact, it follows that

W20 = −L−1P
{
− d

dtB(q, q) + E(q, q)
}
,

W11 = −L−1P
{
− d

dtB(q, q) + E(q, q)
}
,

In order to evaluate function W20, we must solve the following differential equations

(2.12)
d

dt
D(0)W20 − L(0)W20 = P

{
− d

dt
B(q, q) + E(q, q)

}
.

Note that B(q, q) = B(Aeiβ0(·), Aeiβ0(·))e2iβ0t and E(q, q) = E(Aeiβ0(·), Aeiβ0(·))e2iβ0t.
So, g20 =< p,− d

dtB(q, q) + E(q, q) >= 0. Namely, − d
dtB(q, q) + E(q, q) ∈ RangeL.

Hence, the projection P on − d
dtB(q, q) + E(q, q) acts as the identity, and (2.12) is

an inhomogeneous difference equations with constant coefficients. Thus, there is a
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particular solution of (2.12) of the form W ∗
20(t) = D2e

2iβ0t. Substituting W ∗
20 into

(2.12) and comparing the coefficients, we obtain

(2.13) D2 = ∆−1(0, 2iβ0)
{
E(Aeiβ0(·), Aeiβ0(·))− 2iβ0B(Aeiβ0(·), Aeiβ0(·))

}
In addition, W ∗

20 is orthogonal to p, so it belongs to RangeL. Thus W20(0, 0, 0) is
equal to W ∗

20 with D2 determined by (2.13). Similarly, we have

g02 = g11 = 0, W02 = D2e
−2iβ0t, W11 = D0,

where D0 = ∆−1(0, 0)E(Aeiβ0(·), Ae−iβ0(·)). Therefore,

g21 = B
TF(Aeiβ0(·), Aeiβ0(·), Ae−iβ0(·))− iβ0B

TC(Aeiβ0(·), Aeiβ0(·), Ae−iβ0(·))
+2B

TE(Aeiβ0(·), D0)− 2iβ0B
TB(Aeiβ0(·), D0)

+B
TE(Ae−iβ0(·), D2)− iβ0B

TB(Ae−iβ0(·), D2).

We summarize the above discussion as follows.

Theorem 2.5. In addition to conditions (H1)–(H4), assume that L(α) and f(α, ·)
are sufficiently smooth. Then there exists a branch of Σ-symmetric periodic so-
lutions, parameterized by α, bifurcating from the trivial solution x = 0 of (1.1).
Moreover,

(i) Re{λ′(0)}Re{(p, q)g21} determines the direction of the bifurcation: the bi-
furcation is supercritical (respectively, subcritical), i.e. the bifurcating peri-
odic solutions exist for α > 0 (respectively, < 0), if Re{λ′(0)}}Re{(p, q)g21} <
0 (respectively, > 0). and

(ii) Re{λ′(0)}Im{λ′(0)(p, q)g21} determines the period of the bifurcating peri-
odic solutions along the branch: the period is greater than (respectively,
smaller than) ω0 if it is positive (respectively, negative).

Example 2.6 (Application of Theorems 2.3 and 2.5 to ODEs). Consider the fol-
lowing system

(2.14)
[
ẋ
ẏ

]
=

[
α β0

−β0 α

] [
x
y

]
+

[
f1(x, y)
f2(x, y)

]
where β0 > 0, f j is three times differentiable and satisfying f j

x(0, 0) = f j
y (0, 0) = 0,

j = 1, 2. It is easy to see that if α = 0, then at the origin (0, 0), the linearized
system of (2.14) has a solution basis {e1, e2}, where e1(t) = (cos(β0t),− sin(β0t))T

and e2(t) = (sin(β0t), cos(β0t))T . If we choose q = 2p = (1, i)T eiβ0(·) and denote
Re{g21} by Υ. Then, (p, q) = 1 and

Υ = f1
xxx + f1

xyy + f2
xxy + f2

yyy

+ 1
β0

[f1
xy(f1

xx + f1
yy)− f2

xy(f2
xx + f2

yy)− f1
xxf

2
xx + f1

yyf
2
yy].

It follows from Theorem 2.5 that there exists a branch of periodic solutions of (2.14)
bifurcating from the trivial solution x = 0, and that Υ determines the directions of
the Hopf bifurcation: the Hopf bifurcation is supercritical (subcritical), i.e. the bi-
furcating periodic solutions exist for α > 0 (respectively, < 0) if Υ < 0 (respectively,
> 0). It should be noticed that the above Υ is exactly the one derived by Hassard
and Wan [10] by using center manifold reduction and normal form approach (for
more details, see [7]).
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3. Application to a ring network

To illustrate the results presented above, we consider a ring network consisting
of n identical elements with time delayed nearest-neighbour coupling [12]:
(3.1)

[uj(t)− cuj(t− 1)]′ = g(uj+1(t− 1)) + g(uj−1(t− 1))− 3g(uj(t− 1)),

where i (mod n), g ∈ C3(R; R) with g(0) = g′′(0) = 0 and g′(0) = b > 0, and
c ∈ [0, 1) is the bifurcation parameter. Define the action of the dihedral group Dn

on Rn by

(3.2) (ρ · u)j = uj+1 and (κ · u)j = u2−j

for all j (modn) and x ∈ RN . It is easy to see that system (3.1) is Dn-equivariant
(see [8, 12]). Let A(c) be the infinitesimal generator of linear operator generated
by the linearization of (3.1) about the trivial solution u = 0. It can be shown
[12] that λ ∈ C is an eigenvalue of A(c) if and only if

∏n−1
j=0 pj(λ, c) = 0, where

pj(λ, c) = λ+ (ϑj − cλ)e−λ and ϑj = b+ 4b sin2(2jπ/n) > 0.
For a given j, pj(·, c) has a pair of purely imaginary zeros ±β0 if c = cosβ0 and

ϑj = β0 sinβ0. This results in a family of bifurcation values cj,k in the interval [0, 1),
where cj,k = cosβj,k for k ∈ N, and {βj,k}∞k=1 is a strictly increasing sequences of
positive numbers satisfying ϑj = βj,k sinβj,k for all k ∈ N and limk→∞ βj,k = ∞.
Moreover, if λ(c) is a smooth curve of zeros of pj(·, c) with λ(cj,k) = iβj,k, it is easy
to see that

(3.3) λ′(cj,k) = D(cj,kβ2
j,k − iϑjβj,k),

where D = |(cosβj,k + i sinβj,k)(1 + βj,k) − cj,k|−2. Therefore, for fixed j and
k, A(cj,k) has a pair of purely imaginary eigenvalues ±iβj,k with the associated
eigenspace E0 spanned by the eigenvectors eiβj,k(·)vj , eiβj,k(·)vj , e−iβj,k(·)vj and
e−iβj,k(·)vj , where vj = (1, e2πi/n, . . . , e2(n−1)jπ/n). Thus, assumptions (H1), (H2),
and (H4) hold. If j 6= 0 and j 6= n/2, it furthermore follows from [8] that

(3.4)

Fix(Σ+
κ ) = span{w1 cos(βj,kt), w1 sin(βj,kt)},

Fix(Σ−κ ) = span{w2 cos(βj,kt), w2 sin(βj,kt)},
Fix(Σ+

ρ ) = span{Re(vje
iβj,kt), Im(vje

iβj,kt)},
Fix(Σ−ρ ) = span{Re(vje

iβj,kt), Im(vje
iβj,kt)}.

where w1 = Re(vj), w2 = Im(vj), and Σ±κ = (κ,±1) and Σ±ρ = (ρ, e±2ijπ/(nβj,k))
are subgroups of Dn × S1. Thus, all conditions of the equivariant Hopf bifurcation
theorem (Theorem 2.3) are satisfied. Therefore, we apply Theorem 2.3 to system
(3.1) and obtain the following results.

Theorem 3.1. (i) Near c = c0,k for each k ∈ N, there exists a branch of synchro-
nous periodic solutions of period ω near (2π/β0,k) bifurcated from the zero solution
of the system. (ii) Near c = cj,k for each j ∈ {1, 2, . . . , [(n−1)/2]} and k ∈ N, there
exist 2(n+1) branches of asynchronous periodic solutions of period ω near (2π/βj,k)
bifurcated from the zero solution of the system and these are two phase-locked waves,
n mirror-reflecting waves, and n standing waves.

In what follows, we start with the two phase-locked oscillations mentioned above,
which are characterized by Σ±ρ . In view of (3.4), for the vectors A and B defined
in Section 2, we choose A = nB = vj or A = nB = vj . We have

(3.5) Re{(p, q)g21} = ϑ2
jg
′′′(0) and Im{λ′(0)(p, q)g21} = −g′′′(0)ϑjβj,k.
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Similarly, we choose A = n
2B = w1 for the the mirror-reflecting waves charac-

terized by Σ+
κ , and A = n

2B = w2 for the the mirror-reflecting waves characterized
by Σ−κ . By a direct computation, we have

(3.6) Re{(p, q)g21} = m
4 ϑ

2
jg
′′′(0) and Im{λ′(0)(p, q)g21} = −m

4 g
′′′(0)ϑjβj,k.

where m = 4 if 4j = 0 (mod n), or m = 3 otherwise.
Finally, for the synchronous periodic solution mentioned in Theorem 3.1, we can

show that (3.5) holds for j = 0. Thus, applying Theorem 2.5, we have the following
results.

Theorem 3.2. Near c = cj,k for each j ∈ {0, 1, . . . , n − 1} and k ∈ N, system
(3.1) undergoes a Hopf bifurcation, both the bifurcation direction and the period of
bifurcating periodic solutions are determined by the sign of g′′′(0). More precisely,
if g′′′(0) < 0 (or > 0) then (i) the Hopf bifurcation is supercritical (respectively,
subcritical) and all the bifurcating periodic solutions exist for c > cj,k (respectively,
< cj,k); (ii) the period of each branch of bifurcating periodic solutions is greater
(respectively, smaller) than (2π/βj,k).
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