EQUIVARIANT INDEX FORMULAS FOR ORBIFOLDS

MICHELE VERGNE

1. Introduction. Let P be a smooth manifold. Let H be a compact Lie group acting on P. We assume that the action of H is infinitesimally free, that is, the stabilizer $H(y)$ of any point $y \in P$ is a finite subgroup of H. We write the action of H on the right. The quotient space P / H is an orbifold. (If H acts freely, then P / H is a manifold.) Reciprocally, any orbifold M can be presented this way: for example, one might choose P to be the bundle of orthonormal frames for a choice of a metric on M and $H=O(n)$ if $n=\operatorname{dim} M$. We will assume that there is a compact Lie group G acting on P such that its action commutes with the action of H. We will write the action of G on the left. Then the space P / H is provided with a G-action. Such data (P, H, G) will be our definition of a presented G-orbifold. We will say shortly that P / H is a G-orbifold.

Consider a compact G-orbifold P / H. A tangent vector on P tangent at $y \in P$ to the orbit $H \cdot y$ will be called a vertical tangent vector. Let $T_{H}^{*} P$ be the subbundle of $T^{*} P$ orthogonal to all vertical vectors. We will say that $T_{H}^{*} P$ is the horizontal cotangent space. We denote by (y, ξ) a point in $T^{*} P$. Consider two $(G \times H)$-equivariant vector bundles $\mathscr{E}^{ \pm}$on P. Let $\Gamma\left(P, \mathscr{E}^{ \pm}\right)$be the spaces of smooth sections of $\mathscr{E}^{ \pm}$. Let

$$
\Delta: \Gamma\left(P, \mathscr{E}^{+}\right) \rightarrow \Gamma\left(P, \mathscr{E}^{-}\right)
$$

be a $(G \times H)$-invariant differential operator. Consider the principal symbol $\sigma(\Delta)$ of Δ. The operator Δ is said to be H-transversally elliptic if

$$
\sigma(\Delta)\left(y, \xi_{0}\right): \mathscr{E}_{y}^{+} \rightarrow \mathscr{E}_{y}^{-}
$$

is invertible for all $\xi_{0} \in\left(T_{H}^{*} P\right)_{y}-\{0\}$. When Δ is H-transversally elliptic, the equivariant index of Δ is defined as in [1] and is a trace-class virtual representation of $G \times H$. Introduce $(G \times H)$-invariant metrics on P and on $\mathscr{E}^{ \pm}$. Let Δ^{*} be the formal adjoint of Δ. The virtual space $Q(\Delta)$ of H-invariant "solutions" of Δ

$$
Q(\Delta)=\left[(\operatorname{Ker}(\Delta))^{H}\right]-\left[\left(\operatorname{Ker}\left(\Delta^{*}\right)\right)^{H}\right]
$$

is a finite-dimensional virtual representation space for G. More generally, we consider $(G \times H)$-transversally elliptic operators on P. Then the space $Q(\Delta)$ of H invariant "solutions" of Δ is a trace-class virtual representation of G.

Received 5 December 1994. Revision received 7 July 1995.

Let us first consider the case where Δ is H-transversally elliptic and H acts freely. It is then easy to describe what is the virtual representation $Q(\Delta)$ of G. Since Δ commutes with H, the operator Δ determines a map

$$
\Delta^{P / H}: \Gamma\left(P, \mathscr{E}^{+}\right)^{H} \rightarrow \Gamma\left(P, \mathscr{E}^{-}\right)^{H}
$$

We have $\Gamma\left(P, \mathscr{E}^{ \pm}\right)^{H}=\Gamma\left(P / H, \mathscr{E}^{ \pm} / H\right)$, and $\Delta^{P / H}$ is a G-invariant elliptic operator on P / H. Thus, we have, for $s \in G$,

$$
\operatorname{Tr} Q(\Delta)(s)=\operatorname{index}\left(\Delta^{P / H}\right)(s)
$$

Let $(P / H)(s)$ be the set of fixed points for the action of s on P / H. The equivariant index formula of Atiyah-Segal-Singer [2], [4] allows us to write index $\left(\Delta^{P / H}\right)(s)$ as an integral over $T^{*}(P / H)(s)$. If H acts only infinitesimally freely, we will give an integral formula for $\operatorname{Tr} Q(\Delta)(s)$ generalizing the formula for index $\left(\Delta^{P / H}\right)(s)$ in the case of free action.

More generally, if Δ is a $(G \times H)$-transversally elliptic operator on P, we state in Theorem 2 a formula for the character of the trace-class virtual representation $Q(\Delta)$ of G in terms of the equivariant cohomology of $T^{*}(P / H)$. This theorem generalizes the cohomological index formula given in [7], [9] for the equivariant index of G-transversally elliptic operators on compact manifolds to the case of compact orbifolds.

If $G=\{e\}$, we identify $Q(\Delta)$ with an integer. Several authors gave an integral formula for this integer in various degrees of generality. The notion of an orbifold was introduced by Satake who proved a Gauss-Bonnet formula [16] for orbifolds. For any H-transversally elliptic operator Δ, a formula for the number $Q(\Delta)$ was given by Atiyah [1, Corollary 9.12] in the case where H is a torus. When P / H is a complex algebraic variety, \mathscr{F} / H an holomorphic orbifold bundle on P / H, and Δ the $\tilde{\partial}$ operator on the space of sections of \mathscr{F} / H, the number $Q(\Delta)$ was computed by Kawasaki [12]. It is the Riemann-Roch number of a sheaf on P / H. For H an arbitrary compact group and any H-transversally elliptic operator Δ, a formula for the number $Q(\Delta)$ was given by Kawasaki [13].

In our case as well as in Kawasaki's proof in [13], Atiyah's algorithm to compute the equivariant index of an H-transversally elliptic operator is a fundamental ingredient. Indeed, our proof of the general formula for index of transversally elliptic operators [9] relies heavily on Atiyah's results in [1]. Once this general formula is established, it is a pleasant exercise on Fourier inversion for compact groups to deduce the formula given here for G-transversally elliptic operators on orbifolds from our index formula for transversally elliptic operators on manifolds. I feel it is useful to do this exercise in order to extend to symplectic orbifolds the universal formula [17] for the character of a quantized representation. In fact, G-orbifolds appear naturally when studying the quantized representation associated to a prequantized symplectic manifold M. Let M be a symplectic manifold with Hamiltonian action of $G \times H$. Let \mathscr{L} be a Kostant-

Souriau line bundle on M, and let $\mu: M \rightarrow \mathfrak{b}^{*}$ be the moment map for the $H-$ action. Consider the space $M_{\text {red }}=\mu^{-1}(0) / H$. When 0 is a regular value of μ, the space $M_{\text {red }}$ is a symplectic orbifold with a G-action. The quantized representation $Q(M, \mathscr{L})$ is a virtual representation of $G \times H$ constructed as the $(\mathbb{Z} / 2 \mathbb{Z})$ graded space of solutions of the \mathscr{L}-twisted Dirac operator on M. If $M_{\text {red }}$ is an orbifold, the virtual representation $Q\left(M_{\text {red }}, \mathscr{L}_{\text {red }}\right)$ of G can be constructed in a similar way [19]. We give in Proposition 4 an integral formula for the character of the quantized representation $Q\left(M_{\text {red }}, \mathscr{L}_{\text {red }}\right)$ of the symplectic orbifold $M_{\text {red }}$.

2. Equivariant index formula on orbifolds

2.1. Differential forms and integration. Let N be a manifold with infinitesimally free action of a compact group H. Let G be a compact Lie group acting on N such that the action of G commutes with the action of H. A differential form $\alpha \in \mathscr{A}(N)$ will be called H-horizontal (or simply horizontal if H is understood) if $t\left(Y_{N}\right) \alpha=0$ for all $Y \in \mathfrak{h}$. A form α on N is called H-basic if α is H-horizontal and H-invariant. If the action of H on N is free, a basic form is the pullback of a form on N / H. Thus, we will also say that an H-basic differential form α on N is a differential form on N / H. The operator $d_{\mathfrak{g}}$ on G-equivariant differential forms on N is defined as in [5, Chapter 7]. For $X \in \mathfrak{g}$, we denote by d_{X} the operator $d-t\left(X_{N}\right)$ on forms on N. A G-equivariant differential form on N is called H basic if, for all $X \in \mathfrak{g}$, the differential form $\alpha(X)$ is H-basic. We will also say that α is a G-equivariant differential form on N / H. The operator $d_{\mathfrak{g}}$ preserves the space of G-equivariant differential forms on N / H.

We identify the bundle of vertical vectors with $N \times \mathfrak{h}$. Choose a $(G \times H)$ invariant decomposition

$$
\begin{equation*}
T N=T_{\text {hor }} N \oplus(N \times \mathfrak{h}) \tag{1}
\end{equation*}
$$

This decomposition allows us to identify $T_{H}^{*} N$ with $T_{\text {hor }}^{*} N$.
The decomposition (1) gives us a connection form

$$
\begin{equation*}
\theta \in\left(\mathscr{A}^{1}(N) \otimes \mathfrak{h}\right)^{H \times G} \tag{2}
\end{equation*}
$$

We denote by $\Theta \in \mathscr{A}^{2}(N) \otimes \mathfrak{h}$ the curvature of θ. Let ϕ be a smooth function on \mathfrak{b}. Then we define the horizontal form $\phi(\Theta)$ on N using Taylor's expansion of ϕ at 0 . If ϕ is invariant, then $\phi(\Theta)$ is basic.

The stabilisers $H(y)$ of points $y \in N$ are finite subgroups of H. The set B of conjugacy classes of stabilizers of elements of N is a partially ordered set. Let N_{a} be a connected component of N. Then the set $\left\{H(y), y \in N_{a}\right\}$ has a unique minimal element [10]. This element S_{a} is referred to as the generic stabilizer on N_{a}. We consider the generic stabilizer as a locally constant function from N to conjugacy classes of subgroups of H writing $S(y)=S_{a}$ if $y \in N_{a}$. Let $|S(y)|$ be the order of $S(y)$. In particular, $y \rightarrow|S(y)|$ is a locally constant function on N. We
denote this function by $|S|$ (or $\left|S^{N}\right|$ when we need to specify the manifold N). An element $y \in N$ such that $H(y)$ is conjugated to $S(y)$ is called regular. We denote by $N_{\text {reg }}$ the set of regular elements. It is an H-invariant open subset of N, and $N_{\text {reg }} / H$ is a manifold.

Assume the bundle $T_{\text {hor }}^{*} N$ has an H-invariant orientation o. We will then say that N / H is oriented. If N is connected, we $\operatorname{define} \operatorname{dim}(N / H)$ to be $\operatorname{dim} N-$ $\operatorname{dim} H$. Otherwise, we consider $\operatorname{dim}(N / H)$ as a locally constant function on N.

An H-basic differential form α defines a differential form on $N_{\text {reg }} / H$. If α is compactly supported on N, then the component $\alpha_{[\operatorname{dim}(N / H)]}$ of exterior degree $\operatorname{dim}(N / H)$ of α is integrable on the oriented manifold $N_{\text {reg }} / H$. By definition,

$$
\begin{equation*}
\int_{N / H} \alpha=\int_{N_{\mathrm{rg}} / H} \alpha_{[\operatorname{dim}(N / H)]} \tag{3}
\end{equation*}
$$

Let us give a formula for $\int_{N / H} \alpha$ as an integral over N. Let $n=\operatorname{dim} \mathfrak{b}$. Let E^{1}, E^{2}, \ldots, E^{n} be a basis of \mathfrak{h}. We write the connection form $\theta \in \mathscr{A}^{1}(N) \otimes \mathfrak{h}$ as

$$
\theta=\sum_{1}^{n} \theta_{k} E^{k}
$$

Let $E_{1}, E_{2}, \ldots, E_{n}$ be the dual basis of \mathfrak{b}^{*}. It defines a Euclidean volume form $d Y$ on \mathfrak{h} and an orientation $o^{\mathfrak{h}}$ on \mathfrak{b}. We denote by $d h$ the Haar measure on H tangent to $d Y$ at the identity of H. Notice that the form

$$
v_{o^{9}}=(\operatorname{vol}(H, d h))^{-1} \theta_{1} \wedge \theta_{2} \wedge \cdots \wedge \theta_{n}
$$

depends only of θ and $o^{\mathfrak{b}}$.
Assume N / H is oriented. Let $o^{N / H}$ be the corresponding orientation. Then N is oriented. We choose as positive volume form $\omega \wedge v_{0^{\text {b }}}$ if ω is a positive H invariant section of $\Lambda^{\max } T_{H}^{*} N$. We denote this orientation by $o^{N / H} \wedge o^{\mathfrak{h}}$. If α is a basic form on N with compact support, then

$$
\begin{equation*}
\int_{N / H} \alpha=\int_{N}|S| \alpha \wedge v_{o^{\natural}} \tag{4}
\end{equation*}
$$

In this formula, the orientation on N is the orientation $o^{N / H} \wedge o^{b}$.
If $\mathscr{V} \rightarrow N$ is an H-equivariant vector bundle over N with projection p_{0}, then the integration over the fiber of an H-basic differential form on \mathscr{V} is an H-basic differential form on N. If α is compactly supported, we have the integration formula

$$
\begin{equation*}
\int_{\mathscr{V} / H} \alpha=\int_{N / H}\left|S^{\mathscr{V}}\right| /\left|S^{N}\right|\left(p_{0}\right)_{*} \alpha \tag{5}
\end{equation*}
$$

Let us define the cotangent bundle to an orbifold N / H. When H acts freely on N, then N / H is a smooth manifold and we have a canonical identification $T^{*}(N / H)=\left(T_{H}^{*} N\right) / H$. In our case, the action of H on $T_{H}^{*} N$ is infinitesimally free, and we define $T^{*}(N / H)$ as an orbifold by $T^{*}(N / H)=\left(T_{H}^{*} N\right) / H$. It is important to notice that the orbifold $T^{*}(N / H)$ is orientable. Indeed, the restriction of the canonical 1 -form ω^{N} of $T^{*} N$ to $T_{H}^{*} N$ is a basic 1-form; that is, a form on $T^{*}(N / H)$. We denote it by $\omega^{N / H}$ and refer to it as the canonical 1 -form on $T^{*}(N / H)$. The 2 -form $d \omega^{N / H}$ is nondegenerate on $T_{\text {hor }}\left(T_{H}^{*} N\right)$. We will choose on $T^{*}(N / H)$ the symplectic orientation given by $-d \omega^{N / H}$.
2.2. Index formula. Let $M=P / H$ be a compact G-orbifold. Consider two $(G \times H)$-equivariant vector bundles $\mathscr{E}^{ \pm}$on P. Let

$$
\Delta: \Gamma\left(P, \mathscr{E}^{+}\right) \rightarrow \Gamma\left(P, \mathscr{E}^{-}\right)
$$

be a $(G \times H)$-invariant differential operator. We assume that Δ is a $(G \times H)$ transversally elliptic operator on P. We will give an integral formula for $\operatorname{Tr} Q(\Delta)$ in terms of the equivariant cohomology of $T^{*} M$. We need some definitions.

Let \mathscr{E} be an H-equivariant bundle over P. If ∇ is an H-invariant connection on \mathscr{E}, we define its moment $\mu \in \Gamma(P, \operatorname{End}(\mathscr{E})) \otimes \mathfrak{h}^{*}$ and the equivariant curvature of ∇ as in [5, Chapter 7]. Our conventions for characteristic classes will be those of [11]. They differ slightly from those of [5]. In particular, if $F(Y)(Y \in \mathfrak{h})$ is the equivariant curvature of ∇, the equivariant Chern character will be $\operatorname{ch}(\mathscr{E}, \nabla)(Y)=$ $\operatorname{Tr}\left(e^{F(Y)}\right)$.

We will say that ∇ is an H-horizontal connection if $\mu(Y)=0$ for all $Y \in \mathfrak{h}$. It is always possible to choose a horizontal connection on \mathscr{E}. This can be done as follows. Consider a connection form $\theta \in \mathscr{A}^{1}(P) \otimes \mathfrak{h}$ for the action of H on P. Let ∇ be an H-invariant connection on \mathscr{E} with moment $\mu \in \Gamma(P, \operatorname{End}(\mathscr{E})) \otimes \mathfrak{b}^{*}$. Then the contraction (μ, θ) is an $\operatorname{End}(\mathscr{E})$-valued 1-form on P. Define $\nabla^{\prime}=\nabla+(\mu, \theta)$. Then ∇^{\prime} is horizontal.

If \mathscr{E} is a $(G \times H)$-equivariant vector bundle on P, it is always possible to choose on \mathscr{E} a $(G \times H)$-invariant horizontal connection ∇. Then the equivariant Chern character of (\mathscr{E}, ∇) is a G-equivariant basic form on P. An important example in the following is the case of a trivial vector bundle $\left[V_{\tau}\right]=P \times V_{\tau}$, where V_{τ} is a representation space of H. Let us denote also by τ the infinitesimal representation of \mathfrak{b} in V_{τ}. It is easy to see that $d+\tau(\theta)$ is a horizontal connection with equivariant Chern character the basic equivariant form $\operatorname{ch}\left(\left[V_{\tau}\right]\right)(X)=$ $\operatorname{Tr}(\tau(\exp \Theta(X)))$ where, for $X \in \mathfrak{g}, \Theta(X)=-\left(\theta, X_{P}\right)+\Theta$ is the equivariant curvature.

If $(s, u) \in G \times H$, the manifold

$$
P(s, u)=\{p \in P ; s p=p u\}
$$

is a $(G(s) \times H(u))$-manifold, where $G(s)$ is the centralizer of $s \in G$ and $H(u)$ the centralizer of $u \in H$. The group $H(u)$ acts infinitesimally freely on $P(s, u)$. We
denote by $M(s, u)$ the orbifold $P(s, u) / H(u)$. If γ is conjugated to u, the orbifold $M(s, \gamma)$ is diffeomorphic to $M(s, u)$.

Consider the horizontal bundle $\left.T_{\text {hor }} P(s, u) \subset T_{\text {hor }} P\right|_{P(s, u)}$ and the horizontal normal bundle

$$
T_{\mathrm{hor}, P(s, u)} P=\left.T_{\mathrm{hor}} P\right|_{P(s, u)} / T_{\mathrm{hor}} P(s, u)
$$

The vector bundles $T_{\text {hor }} P(s, u)$ and $T_{\text {hor }, P(s, u)} P$ are $(G(s) \times H(u))$-equivariant vector bundles on $P(s, u)$.

Define $T_{M(s, u)} M$ to be the orbifold bundle $\left(T_{\text {hor }, P(s, u)} P\right) / H(u)$ over $M(s, u)$. If M is a G-manifold, then $T_{M(s, u)} M$ is the normal bundle to $M(s, u)$ in M.

Let ∇ be a $(G \times H)$-invariant horizontal connection on $T_{\text {hor }} P$. Then ∇ induces $H(u)$-horizontal connections ∇_{0} on $T_{\text {hor }} P(s, u)$ and ∇_{1} on $T_{\text {hor } P(s, u)} P$. Let $R_{0}(X)$, $R_{1}(X)$ be the $G(s)$-equivariant curvatures of ∇_{0} and ∇_{1}. On $P(s, u)$ the action of (s, u) induces an endomorphism $g(s, u)$ of the bundle $T_{\text {hor }, P(s, u)} P$. Define the $G(s)-$ equivariant closed forms on $P(s, u) / H(u)$

$$
\begin{equation*}
J(M(s, u))(X)=\operatorname{det}\left(\frac{e^{R_{0}(X) / 2}-e^{-R_{0}(X) / 2}}{R_{0}(X)}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{(s, u)}\left(T_{M(s, u)} M\right)(X)=\operatorname{det}\left(1-g(s, u) e^{R_{1}(X)}\right) \tag{7}
\end{equation*}
$$

for $X \in \mathfrak{g}(s)$.
We denote by p_{0} the projection $T_{H}^{*} P \rightarrow P$. We denote by σ_{0} the restriction of the principal symbol σ of Δ to $T_{H}^{*} P$. Let $\nabla^{\delta^{ \pm}}$be horizontal connections on $\mathscr{E}^{ \pm}$. Consider the superconnection $\mathbb{A}_{0}\left(\sigma_{0}\right)$ on $p_{0}^{*} \mathscr{E}=p_{0}^{*} \mathscr{E}^{+} \oplus p_{0}^{*} \mathscr{E}^{-}$defined by

$$
\mathbb{A}_{0}\left(\sigma_{0}\right)=\left(\begin{array}{cc}
p_{0}^{*} \nabla^{\mathcal{B}^{+}} & i \sigma_{0}^{*} \\
i \sigma_{0} & p_{0}^{*} \nabla^{\mathcal{E}^{-}}
\end{array}\right) .
$$

Then the equivariant Chern character $\operatorname{ch}_{s, u}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)(X)$ is a $G(s)$-equivariant form on the space $\left(T_{\text {hor }}^{*} P(s, u)\right) / H(u)=T^{*} M(s, u)$. Thus, we can define a $G(s)$ equivariant closed, basic differential form on $T_{\text {hor }}^{*} P(s, u)$ given for $X \in g(s)$ small by

$$
\begin{equation*}
I\left(s, u, \sigma_{0}\right)(X)=\frac{\mathrm{ch}_{s, u}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)(X)}{J(M(s, u))(X) D_{s, u}\left(T_{M(s, u)} M\right)(X)} \tag{8}
\end{equation*}
$$

For $X=0$, we write

$$
\begin{equation*}
I\left(s, u, \sigma_{0}\right)=I\left(s, u, \sigma_{0}\right)(0) \tag{9}
\end{equation*}
$$

Assume first that Δ is H-transversally elliptic. Then the restriction σ_{0} of the principal symbol of Δ is homogeneous of positive order on each fiber of the vector bundle $T_{\text {hor }}^{*} P$. Furthermore, $\sigma_{0}\left(y, \xi_{0}\right)$ is invertible when ξ_{0} is not zero. Thus, for $X \in \mathfrak{g}(s)$, the form $\mathrm{ch}_{s, u}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)(X)$ is rapidly decreasing on $T_{\text {hor }}^{*} P(s, u)$ (this is seen as in [7]), so that $I\left(s, u, \sigma_{0}\right)(X)$ can be integrated over $T^{*} M(s, u)$.

For $s \in G$, we denote by $C(s)$ the set of elements $\gamma \in H$ such that $P(s, \gamma) \neq \emptyset$. Then $C(s)$ is invariant by conjugacy and the set $(C(s))=C(s) / \operatorname{Ad}(H)$ is a finite set. Let $M(s, \gamma)$ be the orbifold $P(s, \gamma) / H(\gamma)$. We denote by $S(s, \gamma)$ the generic stabilizer for the action of $H(\gamma)$ on $P(s, \gamma)$. The functions $\operatorname{dim} M(s, \gamma)$ and $|S(s, \gamma)|$ are locally constant functions on $P(s, \gamma)$.

Theorem 1. Let $M=P / H$ be an orbifold. Let Δ be a $(G \times H)$-invariant differential operator on P. Assume that Δ is H-transversally elliptic. Then, for each $s \in G$, the trace of the virtual finite-dimensional representation $Q(\Delta)$ of G satisfies the formula

$$
\begin{aligned}
\operatorname{Tr} Q(\Delta)(s \exp X)= & \sum_{\gamma \in(C(s))} \int_{T^{*} M(s, \gamma)}(2 i \pi)^{-\operatorname{dim} M(s, \gamma)}|S(s, \gamma)|^{-1} \\
& \times \frac{\operatorname{ch}_{s, \gamma}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)(X)}{J(M(s, \gamma))(X) D_{s, \gamma}\left(T_{M(s, \gamma)} M\right)(X)}
\end{aligned}
$$

for X small in $\mathfrak{g}(s)$.
Assume now that Δ is only $(G \times H)$-transversally elliptic. Let ω^{M} be the canonical 1 -form of $T^{*} M$. Similarly we obtain canonical 1-forms on $\omega^{M(s, \gamma)}$ on $T^{*} M(s, \gamma)$. Define then

$$
I^{\omega}\left(s, \gamma, \sigma_{0}\right)(X)=\frac{e^{-i d_{X} \omega^{M(s, s)}} \mathrm{ch}_{s, \gamma}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)(X)}{J(M(s, \gamma))(X) D_{s, \gamma}\left(T_{M(s, \gamma)} M\right)(X)}
$$

Then the form $I^{\omega}\left(s, \gamma, \sigma_{0}\right)(X)$ is a $G(s)$-equivariant form on $T^{*} M(s, \gamma)$, which can be integrated in $\mathrm{g}(s)$-mean [8].

The formula for $\operatorname{Tr} Q(\Delta)$ given in Theorem 1 for Δ an H-transversally elliptic operator has to be modified to obtain a meaningful formula in the case of a $(G \times H)$-transversally elliptic operator Δ where $\operatorname{Tr} Q(\Delta)$ is only a generalized function on G. The next theorem extends the cohomological formula for the index of G-transversally elliptic operators on manifolds [8], [9] to the case of G-transversally elliptic operators on orbifolds.

Theorem 2. Let $M=P / H$ be an orbifold. Let Δ be a $(G \times H)$-invariant differential operator on P. Assume that Δ is $(G \times H)$-transversally elliptic. Then, for
each $s \in G$, the trace of the virtual trace-class representation $Q(\Delta)$ of G satisfies the equality

$$
\begin{aligned}
& \operatorname{Tr} Q(\Delta)(s \exp X)=\sum_{\gamma \in(C(s))} \int_{T^{*} M(s, \gamma)}(2 i \pi)^{-\operatorname{dim} M(s, \gamma)}|S(s, \gamma)|^{-1} \\
& \times \frac{e^{-i d d_{X} \omega^{M(s, s)}} \operatorname{ch}_{s, \gamma}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)(X)}{J(M(s, \gamma))(X) D_{s, \gamma}\left(T_{M(s, \gamma)} M\right)(X)}
\end{aligned}
$$

as an equality of generalized functions on a neighborhood of 0 in $\mathfrak{g}(s)$.
Remark 2.1. If Δ is only pseudodifferential, the formula above holds, provided we choose a "good" representative $\sigma_{0}[8]$ of the symbol of Δ.

Before proving these theorems, let us write more explicitly the formula of Theorem 1 in the case where $G=\{e\}$. Then we must consider the set $C(e)$ of elements $\gamma \in H$ such that the set $P(\gamma)=\{p \in P, p \gamma=p\}$ is not empty. We define $M(\gamma)=P(\gamma) / H(\gamma)$. The formula obtained for the number $Q(\Delta)=\operatorname{dim}(\operatorname{Ker}(\Delta))^{H_{-}}$ $\operatorname{dim}\left(\operatorname{Ker} \Delta^{*}\right)^{H}$ is thus Kawasaki's formula:

$$
\begin{equation*}
Q(\Delta)=\sum_{\gamma \in(C(e))} \int_{T^{*} M(\gamma)}(2 i \pi)^{-\operatorname{dim} M(\gamma)}|S(\gamma)|^{-1} \frac{\operatorname{ch}_{\gamma}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)}{J(M(\gamma)) D_{\gamma}\left(T_{M}(\gamma) M\right)} . \tag{10}
\end{equation*}
$$

Let us give two examples where this formula is easily seen to be true.
(1) Assume H is a finite group. Then the dimension of the space $Q(\Delta)$ is evidently given by the average of the equivariant index

$$
Q(\Delta)=|H|^{-1} \sum_{\gamma \in H} \operatorname{index}(\Delta)(\gamma)
$$

Using the equivalent expression given in [7] of the Atiyah-Segal-Singer formula [2], [4], we have

$$
\operatorname{index}(\Delta)(\gamma)=\int_{T^{*} P(\gamma)}(2 i \pi)^{-\operatorname{dim} P(\gamma)} \frac{\operatorname{ch}_{\gamma}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)}{J(P(\gamma)) D_{\gamma}\left(T_{P(\gamma)} P\right)}
$$

In particular, index $(\Delta)(\gamma)$ is 0 if γ does not belong to $C(e)$. Let $\gamma \in C(e)$. In this case, $T^{*} M(\gamma)=T^{*} P(\gamma) / H(\gamma)$. On each connected component of $P(\gamma)$, the map $T^{*} P(\gamma) \rightarrow T^{*} P(\gamma) / H(\gamma)$ is a cover of order $|H(\gamma) / S(\gamma)|$ and, by definition, for α a differential form on $P(\gamma)$

$$
\int_{T^{*} M(\gamma)}(2 i \pi)^{-\operatorname{dim} M(\gamma)} \alpha=\int_{T^{*} P(\gamma)}|H(\gamma)|^{-1}|S(\gamma)|(2 i \pi)^{-\operatorname{dim} P(\gamma)} \alpha .
$$

Rewriting the set $C(e)$ as union of conjugacy classes, we see that the formula for $Q(\Delta)$ is indeed just the average of the Atiyah-Segal-Singer formula.
(2) Assume H acts freely on P. Then $C(e)=\{e\}$. Let $M=P / H$. The restriction σ_{0} of σ to $T_{H}^{*} P$ determines an elliptic symbol still denoted by σ_{0} on $T^{*} M=$ $T_{H}^{*} P / H$ which is the principal symbol of $\Delta^{P / H}$. We have $Q(\Delta)=\operatorname{index}\left(\Delta^{P / H}\right)$. Formula (10) for $Q(\Delta)$ as an integral over $T^{*} M$ of an equivariant characteristic class agrees with the Atiyah-Singer formula for the index of $\Delta^{P / H}$ in function of its principal symbol.

Proof. Let us now prove Theorem 1 and Theorem 2. We give only the proof of the first theorem, as both proofs are very similar to the proof of the Frobenius reciprocity for free actions [9, Theorem 26]. We give the main steps. Define

$$
v\left(s, \gamma, \sigma_{0}\right)(X)=\int_{T^{*} M(s, \gamma)}(2 i \pi)^{-\operatorname{dim} M(s, \gamma)}|S(s, \gamma)|^{-1} \frac{\mathrm{ch}_{s, \gamma}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)(X)}{J(M(s, \gamma))(X) D_{s, \gamma}\left(T_{M(s, \gamma)} M\right)(X)} .
$$

We must prove that

$$
\begin{equation*}
\operatorname{Tr} Q(\Delta)(s \exp X)=\sum_{\gamma \in(C(s))} v\left(s, \gamma, \sigma_{0}\right)(X) \tag{11}
\end{equation*}
$$

Consider the virtual character index (Δ) of $G \times H$. Let \hat{H} be the set of classes of irreducible finite-dimensional representations of H. For $\tau \in \hat{H}$, consider the operator

$$
\Delta \otimes I_{V_{\tau}}: \Gamma\left(P, \mathscr{E}^{+}\right) \otimes V_{\tau} \rightarrow \Gamma\left(P, \mathscr{E}^{-}\right) \otimes V_{\tau}
$$

For $\tau \in \hat{H}$, let $\left[V_{\tau}\right]$ be the trivial bundle on P with fiber V_{τ}. We have

$$
\Gamma\left(P, \mathscr{E}^{ \pm}\right) \otimes V_{\tau}=\Gamma\left(P, \mathscr{E}^{ \pm} \otimes\left[V_{\tau}\right]\right)
$$

We denote by Δ^{τ} the operator $\Delta \otimes I_{V_{\tau}}$. It has symbol $\sigma_{\tau}=\sigma \otimes I_{p^{*}\left[V_{\tau}\right]}$. The map $\Gamma\left(P, \mathscr{E}^{ \pm}\right) \otimes V_{\tau} \otimes V_{\tau^{*}} \rightarrow \Gamma\left(P, \mathscr{E}^{ \pm}\right)$given by $(\phi \otimes f) \mapsto(\phi, f)$ for $f \in V_{\tau}^{*}$ and ϕ in $\Gamma\left(P, \mathscr{E}^{ \pm}\right) \otimes V_{\tau}$ induces an isomorphism from $\left(\Gamma\left(P, \mathscr{E}^{ \pm}\right) \otimes V_{\tau}\right)^{H} \otimes V_{\tau^{*}}$ to the isotypic space of type τ^{*} in $\Gamma\left(P, \mathscr{E}^{ \pm}\right)$. By definition, the trace of the action of G in $\left[\left(\operatorname{Ker}\left(\Delta \otimes I_{V_{\tau}}\right)^{H}\right]-\left[\left(\operatorname{Ker}\left(\Delta^{*} \otimes I_{V_{\tau}}\right)^{H}\right]\right.\right.$ is $Q\left(\Delta^{\tau}\right)$. Thus, we see that

$$
\operatorname{index}(\Delta)(s, h)=\sum_{\tau \in \hat{H}} \operatorname{Tr} Q\left(\Delta^{\tau}\right)(s) \operatorname{Tr} \tau^{*}(h)
$$

To verify equation (11) for $Q(\Delta)$, it is sufficient to verify, for each $s \in G$ and $X \in \mathfrak{g}(s)$ small, that we have the equality of generalized functions of H

$$
\begin{equation*}
\operatorname{index}(\Delta)(s \exp X, h)=\sum_{\tau \in \hat{H}} \sum_{\gamma \in(C(s))} v\left(s, \gamma, \sigma_{0}^{\tau}\right)(X) \operatorname{Tr} \tau^{*}(h) . \tag{12}
\end{equation*}
$$

To simplify formulas, we compute only for $X=0$. We write $v\left(s, \gamma, \sigma_{0}^{\tau}\right)$ for $v\left(s, \gamma, \sigma_{0}^{\tau}\right)(0)$.

Let $u \in H$ and let ϕ be an H-invariant test function on H with support in a small neighborhood of the conjugacy class of u. In particular, we assume that if $\gamma \in(C(s))$ is not conjugated to u, the support of ϕ does not intersect the orbit of γ. Let $\mathfrak{h}(u)$ be the Lie algebra of $H(u)$. Let

$$
\begin{equation*}
v_{1}(\phi)=\int_{H} \operatorname{index}(\Delta)(s, h) \phi(h) d h \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{2}(\phi)=\sum_{\tau \in \hat{H}} \sum_{\gamma \in(C(s))} v\left(s, \gamma, \sigma_{0}^{\tau}\right) \int_{H} \operatorname{Tr} \tau^{*}(h) \phi(h) d h \tag{14}
\end{equation*}
$$

We need to verify the equality

$$
\begin{equation*}
v_{1}(\phi)=v_{2}(\phi) \tag{15}
\end{equation*}
$$

Let us first state the main technical lemma. Let N be the manifold

$$
N=P \times \mathfrak{b}^{*}
$$

We denote by $f: P \times \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$ the second projection. We consider the 1 -form

$$
v=(\theta, f)
$$

on N. We choose a basis $E_{1}, E_{2}, \ldots, E_{n}$ of \mathfrak{h}^{*}. This determines the form $v_{o b}$ on P. We write $f=\sum f^{i} E_{i}$. We denote by $d f=d f^{1} \wedge d f^{2} \wedge \cdots \wedge d f^{n}$. We denote by p_{1} the projection of $N=P \times \mathfrak{h}^{*}$ on P with fiber \mathfrak{h}^{*}. The integration over the fiber is defined once an orientation is chosen on each fiber. We use the orientation given by $d f$. Furthermore, the integration over the fiber is defined with conventions of signs as in [5]: if $p: P \rightarrow B$ is an oriented fibration, $p_{*}\left(\alpha \wedge p^{*} \beta\right)=p_{*}(\alpha) \wedge \beta$ if α is a form on P and β a form on B.

The following lemma is obtained as Proposition 28 of [9].
Lemma 3. If ϕ is a test function on \mathfrak{h}, we have

$$
(2 i \pi)^{-\operatorname{dim} H}\left(p_{1}\right)_{*}\left(\int_{\mathfrak{h}} e^{-i d y v} \phi(Y) d Y\right)=(-1)^{n(n+1) / 2}(\mathrm{vol} H, d h) v_{o^{0}} \phi(\Theta)
$$

Let us return to the proof of the identity (15).
We first compute $v_{1}(\phi)$. The generalized function index (Δ) can be computed as
a special case of the index formula for $(G \times H)$-transversally elliptic operators. Let, for $Y \in \mathfrak{h}(u)$,

$$
J_{\mathfrak{W}(u)}(Y)=\operatorname{det}_{\mathfrak{h}(u)} \frac{e^{\operatorname{ad} Y / 2}-e^{-\operatorname{ad} Y / 2}}{\operatorname{ad} Y}
$$

Using the Weyl integration formula, we have

$$
\begin{gather*}
v_{1}(\phi)=\operatorname{vol}(H / H(u)) \int_{\mathfrak{b}(u)} \operatorname{index}(\Delta)\left(s, u e^{Y}\right) \phi\left(u e^{Y}\right) J_{\mathfrak{b}(u)}(Y) \tag{16}\\
\times \operatorname{det}_{\mathfrak{b} / \mathfrak{h}(u)}\left(1-u e^{Y}\right) d Y .
\end{gather*}
$$

Let $p: T^{*} P \rightarrow P$ the projection. Define on the superbundle $p^{*} \mathscr{E}=p^{*} \mathscr{E}^{+} \oplus p^{*} \mathscr{E}^{-}$ the superconnection

$$
\mathbb{A}(\sigma)=\left(\begin{array}{cc}
p^{*} \nabla^{\delta^{+}} & i \sigma^{*} \\
i \sigma & p^{*} \nabla^{\delta^{-}}
\end{array}\right)
$$

Let $T^{*} P=T_{\text {hor }}^{*} P \oplus P \times \mathfrak{b}^{*}$. We can assume by homotopy the symbol σ of Δ of the form $\sigma(y, \xi)=\sigma_{0}\left(y, \xi_{0}\right)$ where ξ_{0} is the projection of ξ on $\left(T_{\text {hor }}^{*} P\right)_{y}$. We choose on TP the direct sum of a horizontal connection on $T_{\text {hor }} P$ and of the trivial connection on $P \times \mathfrak{h}$.

Let ω^{P} be the canonical 1-form on $T^{*} P$. Its restriction to $N=P \times \mathfrak{h}^{*}$ is the 1 -form $v=(\theta, f)$.

Let $(s, u) \in G \times H$. The index formula for Δ gives in particular for $Y \in \mathfrak{h}(u)$ sufficiently small:

$$
\operatorname{index}(\Delta)\left(s, u e^{Y}\right)=\int_{T^{*} P(s, u)}(2 i \pi)^{-\operatorname{dim} P(s, u)} \frac{e^{-i d_{Y} \omega^{P} \mid T^{*} P(s, u)} \mathrm{ch}_{s, u}(\mathbb{A}(\sigma))(Y)}{J(P(s, u))(Y) D_{s, u}\left(T_{P(s, u)} P\right)(Y)}
$$

The restriction of the connection form θ to $P(s, u)$ is valued in $\mathfrak{h}(u)$ and is a connection form for the $H(u)$-action on $P(s, u)$. We have $T^{*} P(s, u)=T_{\text {hor }}^{*} P(s, u) \oplus$ $P(s, u) \times \mathfrak{h}(u)^{*}$. Thus, the bundle $T^{*} P(s, u)$ projects on $N(s, u)=P(s, u) \times \mathfrak{h}^{*}(u)$ as well as on $T_{\text {hor }}^{*} P(s, u)$. We still denote by α the pullback to $T^{*} P(s, u)$ of a form α on $N(s, u)$ and by β the pullback to $T^{*} P(s, u)$ of a form β on $T_{\text {hor }}^{*} P(s, u)$. For our choices of connections and symbols, we have

$$
\begin{gathered}
\operatorname{ch}_{s, u}(\mathbb{A}(\sigma))(Y)=\operatorname{ch}_{s, u}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right) \\
J(P(s, u))(Y)=J(M(s, u)) J_{\mathfrak{h}(u)}(Y) \\
D_{s, u}\left(T_{P(s, u)} P\right)(Y)=D_{s, u}\left(T_{M(s, u)} M\right) \operatorname{det}_{\mathfrak{h} / \mathfrak{h}(u)}\left(1-u e^{Y}\right) .
\end{gathered}
$$

Thus, we obtain

$$
\begin{aligned}
& \operatorname{index}(\Delta)\left(s, u e^{Y}\right) J_{\mathfrak{h}(u)}(Y) \operatorname{det}_{\mathfrak{h} / \mathfrak{h}(u)}\left(1-u e^{Y}\right) \\
& \quad=\int_{T^{*} P(s, u)}(2 i \pi)^{-\operatorname{dim} P(s, u)} \frac{e^{\left.-\left.i d_{Y} \omega^{P}\right|_{T^{*} P(s, u}\right) \mathrm{ch}_{s, u}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)}}{J(M(s, u)) D_{s, u}\left(T_{M(s, u)} M\right)} .
\end{aligned}
$$

Let $(y, \xi) \in T^{*} P(s, u)=T_{\text {hor }}^{*} P(s, u) \oplus P(s, u) \times \mathfrak{h}(u)^{*}$. If $\xi=\xi_{0}+f$ with $\xi_{0} \in$ $\left(T_{\text {hor }}^{*} P(s, u)\right)_{y}$ and $f \in \mathfrak{h}(u)^{*}$, the Chern character $\mathrm{ch}_{s, u}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)$ is rapidly decreasing with respect of the variable ξ_{0}. The factor $e^{-\left.i d_{\mathrm{Y}} \omega^{\mathbb{P}}\right|_{T^{*} P(s, u)}}$ integrated against a test function of $Y \in \mathfrak{h}(u)$ is rapidly decreasing in the variable f. A transgression argument similar to those proven in [8] allows us to replace ω^{P} in $t v+(1-t) \omega_{P}$ with $t \in[0,1]$. Then we have also

$$
\begin{aligned}
& \operatorname{index}(\Delta)\left(s, u e^{Y}\right) J_{\zeta(u)}(Y) \operatorname{det}_{\mathrm{h} / \mathrm{K}(u)}\left(1-u e^{Y}\right) \\
& \quad=\int_{T^{*} P(s, u)}(2 i \pi)^{-\operatorname{dim} P(s, u)} e^{-\left.i d_{Y} v\right|_{T^{*} P(s, u)}} \frac{\operatorname{ch}_{s, u}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right)}{J(M(s, u)) D_{s, u}\left(T_{M(s, u)} M\right)} .
\end{aligned}
$$

We denote by v_{0} the restriction of v to $P(s, u) \times \mathfrak{h}(u)^{*}$. Consider the fibration $p_{1}^{u}: T^{*} P(s, u) \mapsto T_{\mathrm{hor}}^{*} P(s, u)$ with fiber $\mathfrak{h}(u)^{*}$. Using notation (9), we thus have

$$
\begin{aligned}
& \operatorname{index}(\Delta)\left(s, u e^{Y}\right) J_{\mathfrak{h}(u)}(Y) \operatorname{det}_{\mathfrak{G} / \mathfrak{b}(u)}\left(1-u e^{Y}\right) \\
& \quad=\int_{T_{\text {hor }}^{*} P(s, u)}(2 i \pi)^{-\operatorname{dim} P(s, u)}\left(p_{1}^{u}\right)_{*}\left(e^{-i d_{Y} v_{0}}\right) I\left(s, u, \sigma_{0}\right)
\end{aligned}
$$

Let Θ_{0} be the restriction of Θ to $P(s, u)$. The function $Y \mapsto \phi(u \exp Y)$ is an $H(u)$-invariant function on $\mathfrak{h}(u)$ and the form $\phi\left(u \exp \Theta_{0}\right)$ is a basic form on $P(s, u)$. Applying Lemma 3 to the manifold $P(s, u) \times \mathfrak{h}(u)^{*}$ and integration formula (16), we obtain

$$
v_{1}(\phi)=\varepsilon \operatorname{vol}(H, d h) \int_{T_{\text {hor }}^{*} P(s, u)}(2 i \pi)^{-\operatorname{dim} M(s, u)} v_{o \emptyset(u)} \phi\left(u \exp \Theta_{0}\right) I\left(s, u, \sigma_{0}\right)
$$

where ε is a sign.
Finally applying formula (4) to the basic form $\phi\left(u \exp \Theta_{0}\right) I\left(s, u, \sigma_{0}\right)$, we obtain

$$
\begin{equation*}
v_{1}(\phi)=\operatorname{vol}(H, d h) \int_{T^{*} M(s, u)}|S(s, u)|^{-1}(2 i \pi)^{-\operatorname{dim} M(s, u)} \phi\left(u \exp \Theta_{0}\right) I\left(s, u, \sigma_{0}\right) \tag{17}
\end{equation*}
$$

(A check of orientations shows that the sign ε disappears.)

We now compute $v_{2}(\phi)$. Define

$$
v_{2}(\gamma, \phi)=\sum_{\tau \in \hat{H}} v\left(s, \gamma, \sigma_{0}^{\tau}\right) \int_{H} \operatorname{Tr} \tau^{*}(h) \phi(h) d h .
$$

Let $\tau \in \hat{H}$. Let us compute

$$
v\left(s, \gamma, \sigma_{0}^{\tau}\right)=\int_{T^{*} M(s, \gamma)}(2 i \pi)^{-\operatorname{dim} M(s, \gamma\rangle}|S(s, \gamma)|^{-1} \frac{\mathrm{ch}_{s, \gamma}\left(\mathbb{A}_{0}\left(\sigma_{0}^{\tau}\right)\right)}{J(M(s, \gamma)) D_{s, \gamma}\left(T_{M(s, \gamma)} M\right)}
$$

We have

$$
\mathrm{ch}_{s, \gamma}\left(\mathbb{A}_{0}\left(\sigma_{0}^{\tau}\right)\right)=\mathrm{ch}_{s, \gamma}\left(\mathbb{A}_{0}\left(\sigma_{0}\right)\right) \mathrm{ch}_{s, \gamma}\left(\left[V_{\tau}\right]\right)
$$

For the horizontal connection $d+\tau(\theta)$ on $\left[V_{\tau}\right]$, we have $\mathrm{ch}_{s, \gamma}\left(\left[V_{\tau}\right]\right)=$ $\operatorname{Tr}\left(\tau\left(\gamma \exp \Theta_{0}\right)\right)$. Thus,

$$
v\left(s, \gamma, \sigma_{0}^{\tau}\right)=\int_{T^{*} M(s, \gamma)}(2 i \pi)^{-\operatorname{dim} M(s, \gamma)} \frac{I\left(s, \gamma, \sigma_{0}\right)}{|S(s, \gamma)|} \operatorname{Tr}\left(\tau\left(\gamma \exp \Theta_{0}\right)\right)
$$

We obtain

$$
\begin{aligned}
v_{2}(\gamma, \phi)= & \int_{T^{*} M(s, \gamma)}(2 i \pi)^{-\operatorname{dim} M(s, \gamma)} \frac{I\left(s, \gamma, \sigma_{0}\right)}{|S(s, \gamma)|} \\
& \times\left(\sum_{\tau \in \hat{H}} \operatorname{Tr} \tau\left(\gamma \exp \Theta_{0}\right)\left(\int_{H} \operatorname{Tr} \tau^{*}(h) \phi(h) d h\right)\right) \\
= & \operatorname{vol}(H, d h) \int_{T^{*} M(s, \gamma)}(2 i \pi)^{-\operatorname{dim} M(s, \gamma)} \frac{I\left(s, \gamma, \sigma_{0}\right)}{|S(s, \gamma)|} \phi\left(\gamma \exp \Theta_{0}\right),
\end{aligned}
$$

using the Fourier inversion formula.
The basic form $\phi\left(\gamma \exp \Theta_{0}\right)$ depends on the Taylor expansion of ϕ at $\gamma \in H$. Recall that ϕ vanishes on a neighborhood of γ if γ is not conjugated to u. Thus, only the class (u) makes a nonzero contribution to $v_{2}(\phi)=\sum_{\gamma \in(C(s))} v_{2}(\gamma, \phi)$, and we obtain

$$
\begin{equation*}
v_{2}(\phi)=\operatorname{vol}(H, d h) \int_{T^{*} M(s, u)}(2 i \pi)^{-\operatorname{dim} M(s, u)}|S(s, u)|^{-1} I\left(s, u, \sigma_{0}\right) \phi\left(u \exp \Theta_{0}\right) \tag{18}
\end{equation*}
$$

Comparing formulas (17) and (18), we obtain formula (15).
3. Quantization on orbifolds. We here consider the special case of Dirac operators. Consider the case where P has a ($G \times H$)-invariant metric and where $T_{H}^{*} P$ is a $(G \times H)$-equivariant oriented even-dimensional bundle with spin structure. Let

$$
T P=T_{\mathrm{hor}} P \oplus P \times \mathfrak{h}
$$

be the orthogonal decomposition of the tangent bundle. We identify $T_{H}^{*} P$ with $T_{\text {hor }} P$ with the help of the metric. Let $\mathscr{S}_{\text {hor }}$ be the spin bundle for $T_{\text {hor }} P$. Choose a ($G \times H$)-invariant orientation o on $T_{\text {hor }} P$. The orientation o determines a $\mathbb{Z} / 2 \mathbb{Z}$ gradation $\mathscr{S}_{\text {hor }}=\mathscr{S}_{\text {hor }}^{+} \oplus \mathscr{S}_{\text {hor }}^{-}$. If $v \in\left(T_{\text {hor }} P\right)_{y}$, then the Clifford multiplication $c(v)$ is an odd operator on $\left(\mathscr{S}_{\text {hor }}\right)_{y}$. Let \mathscr{F} be a $(G \times H)$-equivariant Hermitian vector bundle on P. Let $\mathscr{S}_{\text {hor }} \otimes \mathscr{F}$ be the twisted horizontal spin bundle. With the help of a choice of a $(G \times H)$-invariant unitary connection $\nabla=\nabla^{+} \oplus \nabla^{-}$on $\mathscr{S}_{\text {hor }} \otimes \mathscr{F}=$ $\mathscr{S}_{\text {hor }}^{+} \otimes \mathscr{F} \oplus \mathscr{S}_{\text {hor }}^{-} \otimes \mathscr{F}$, we may define the formally selfadjoint "horizontal" Dirac operator $D_{\text {hor }, \mathscr{F}}$ by

$$
D_{\mathrm{hor}, \mathscr{F}}=\sum_{i} c\left(e_{i}\right) \nabla_{e_{i}},
$$

where e_{i} runs over an orthonormal basis of $T_{\text {hor }} P$. We have $D_{\text {hor }, \mathscr{F}}=D_{\text {hor }, \mathscr{F}}^{+} \oplus$ $D_{\text {hor }, \mathscr{F}}^{-}$with

$$
D_{\text {hor }, \mathscr{F}}^{+}: \Gamma\left(P, \mathscr{S}_{\text {hor }}^{+} \otimes \mathscr{F}\right) \rightarrow \Gamma\left(P, \mathscr{S}_{\text {hor }}^{-} \otimes \mathscr{F}\right)
$$

and

$$
D_{\text {hor }, \mathscr{F}}^{-}: \Gamma\left(P, \mathscr{S}_{\text {hor }}^{-} \otimes \mathscr{F}\right) \rightarrow \Gamma\left(P, \mathscr{S}_{\text {hor }}^{+} \otimes \mathscr{F}\right)
$$

Clearly, the operators $D_{\text {hor }, \mathscr{F}}^{ \pm}$are H-transversally elliptic operators and commute with the natural action of \mathcal{G}. The principal symbol of $D_{\text {hor }, \mathscr{F}}^{+}$is given by

$$
\sigma\left(D_{\mathrm{hor}, \mathscr{F}}^{+}\right)(y, \xi)=c^{+}\left(\xi_{0}\right) \otimes I_{\mathscr{F}_{y}},
$$

where ξ_{0} is the projection of $\xi \in\left(T^{*} P\right)_{y}$ on $\left(T_{H}^{*} P\right)_{y}$. We define

$$
Q^{o}(P / H, \mathscr{F})=(-1)^{\operatorname{dim} M / 2} Q\left(D_{\text {hor }, \mathscr{F}}^{+}\right) .
$$

When H acts freely, this coincides with the quantization assignment defined in [17]. We generalize to this case the universal formula for the virtual representation $Q^{o}(P / H, \mathscr{F})$ [6], [17], [18].

Consider the vector bundle $T_{H}^{*} P \rightarrow P$ with projection p_{0}. We have chosen a $(G \times H)$-invariant orientation o of $T_{H}^{*} P$.

The horizontal connection ∇_{0} of $T_{\text {hor }}^{*} P$ determines a connection on $\mathscr{S}_{\text {hor }}$. Consider on the equivariant bundle \mathscr{F} a horizontal connection. Then $\mathrm{ch}_{\mathrm{s}, u}(\mathscr{F})$ is a $G(s)$-equivariant form on $M(s, u)$.

Consider the pullback of $\mathscr{S}_{\text {hor }} \otimes \mathscr{F}$ to $T^{*} P$. Then

$$
\mathbb{A}(\sigma)=-\mathbf{c}_{0} \otimes I_{p^{*} \mathscr{F}}+p^{*} \nabla^{\mathscr{S}_{\mathrm{hor}} \otimes \mathscr{F}}
$$

where \mathbf{c}_{0} is the odd-bundle endomorphism of $p^{*} \mathscr{S}_{\text {hor }}$ given by $\mathbf{c}_{0}(y, \xi)=c\left(\xi_{0}\right)$, where c is the Clifford action of $\left(T_{H}^{*} P\right)_{y}$ on $\left(\mathscr{S}_{\text {hor }}\right)_{y}$ and ξ_{0} the projection of ξ on $\left(T_{H}^{*} P\right)_{y}$.

Let B be the superconnection on $p_{0}^{*}\left(\mathscr{S}_{\text {hor }}\right) \rightarrow T_{\text {hor }}^{*} P$ defined by

$$
\begin{equation*}
\mathbf{B}=-\mathbf{c}_{0}+p_{0}^{*} \nabla^{\mathscr{S}_{\mathrm{hor}}} . \tag{19}
\end{equation*}
$$

Let $(s, u) \in G \times H$. We have for $X \in \mathfrak{g}(s)$

$$
\mathrm{ch}_{s, u}(\mathbb{A}(\sigma))(X)=\mathrm{ch}_{s, u}(\mathbf{B})(X) \mathrm{ch}_{s, u}(\mathscr{F})(X)
$$

Consider the bundle $T_{\mathrm{hor}}^{*} P(s, u) \rightarrow P(s, u)$. It is a $(G(s) \times H(u))$ even-dimensional equivariant orientable vector bundle (see [5, Lemma 6.10]).

Let us choose an orientation o^{\prime} on the vector bundle $T_{\text {hor }}^{*} P(s, u) \rightarrow P(s, u)$. The rank of this vector bundle is $\operatorname{dim} M(s, u)$. If $U_{o^{\prime}}^{s, u}$ is the Thom form of the vector bundle $T_{\text {hor }}^{*} P(s, u) \rightarrow P(s, u)$, we have

$$
\begin{aligned}
& i^{\operatorname{dim} M / 2} \operatorname{ch}_{s, u}(\mathbf{B})(X) \\
& \quad=\varepsilon\left((s, u), o, o^{\prime}\right)(-2 \pi)^{\operatorname{dim} M(s, u) / 2} J^{1 / 2}\left(T^{*} M(s, u)\right)(X) D_{s, u}^{1 / 2}\left(T_{M(s, u)}^{*} M\right)(X) U_{o^{\prime}}^{s, u}(X)
\end{aligned}
$$

where $\varepsilon\left((s, u), o, o^{\prime}\right)$ is a sign. This follows from [14] (see also [5, Chapter 7]). The equation determines the $\operatorname{sign} \varepsilon\left((s, u), o, o^{\prime}\right)$. Here the generic stabilizer of the action of $H(u)$ on $T_{\text {hor }}^{*} P(s, u)$ is equal to the generic stabilizer $S(s, u)$ for the action of $H(u)$ on $M(s, u)$. Thus, integrating over the fibers the formula of Theorem 1 for the index of $D_{\text {hor }, \mathscr{F}}^{+}$and using Formula 5, we obtain the following proposition, which is the analogue of the equivariant Hirzebruch-Riemann-Roch theorem in the form given in [6], [18].

Proposition 4. Let $M=P / H$ be an even-dimensional orbifold such that $T_{\text {hor }} P$ is a $(G \times H)$-oriented spin vector bundle with orientation o. Let \mathscr{F} be $a(G \times H)$ equivariant complex vector bundle on P. Then

$$
\begin{aligned}
\operatorname{Tr} Q^{o}(P / H, \mathscr{F})(s \exp X)= & i^{-\operatorname{dim} M / 2} \sum_{\gamma \in(C(s))} \int_{M(s, \gamma), o^{\prime}}(2 \pi)^{-\operatorname{dim} M(s, \gamma) / 2}|S(s, \gamma)|^{-1} \\
& \times \frac{\varepsilon\left((s, \gamma), o, o^{\prime}\right) \mathrm{ch}_{s, \gamma}(\mathscr{F})(X)}{J^{1 / 2}(M(s, \gamma))(X) D_{s, \gamma}^{1 / 2}\left(T_{M(s, \gamma)} M\right)(X)}
\end{aligned}
$$

for X small in $\mathfrak{g}(s)$.

References

[1] M. F. Atiyah, Elliptic Operators and Compact Groups, Lecture Notes in Math. 401, SpringerVerlag, Berlin, 1974.
[2] M. F. Atiyah and G. B. Segal, The index of elliptic operators, II, Ann. of Math. (2) 87 (1968), 531-545.
[3] M. F. Atiyah and I. M. Singer, The index of elliptic operators, I, Ann. of Math. (2) 87 (1968), 484-530.
[4] - The index of elliptic operators, III, Ann. of Math. (2) 87 (1968), 546-604.
[5] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Grundlehren Math. Wiss. 298, Springer-Verlag, Berlin, 1992.
[6] N. Berline and M. Vergne, The equivariant index and Kirillov character formula, Amer. J. Math. 107 (1985), 1159-1190.
[7] -_, "The equivariant Chern character and index of G-invariant operators" in D-Modules, Representation Theory and Quantum Groups, Lecture Notes in Math. 1565, Springer-Verlag, Berlin, 1993.
[8] -_, The equivariant Chern character of a transversally elliptic symbol and the equivariant index, to appear in Invent. Math.
[9] , L'indice équivariant des opérateurs transversalement elliptiques, to appear in Invent. Math.
[10] G. E. Bredon, Introduction to Compact Transformation Groups, Pure Appl. Math. 46, Academic Press, New York, 1972.
[11] M. Duflo and M. Vergne, Cohomologie équivariante et descente, Astérisque 215 (1993), 5-108.
[12] T. Kawasaki, The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math. 16 (1979), 151-159.
[13] - The index of elliptic operators over V-manifolds, Nagoya Math. J. 9 (1981), 135-157.
[14] V. Mathal and D. Qullen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85-110.
[15] V. K. Patodi, Holomorphic Lefschetz fixed point formula, Bull. Amer. Math. Soc. 79 (1973), 825828.
[16] I. Satake, The Gauss-Bonnet theorem for V-manifolds. J. Math. Soc. Japan 9 (1957), 464-492.
[17] M. Vergne, Geometric quantization and equivariant cohomology, European Congress of Mathematics, Paris 1992, to appear in Progr. Math.
[18] ——, Multiplicities formula for geometric quantization, Part I, Duke Math. J. 82 (1996), 143179.
[19] -, Multiplicities formula for geometric quantization, Part II, Duke Math. J. 82 (1996), 181194.

Département de Mathématiques et d'Informatique, Ecole Normale Supérieure, 45 rue d'Ulm, 75005 Paris, France; vergne@dmi.ens.fr

