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EQUIVARIANT intersection forms, knots in s4,
AND ROTATIONS IN 2-SPHERES

STEVEN P. PLOTNICK1

Abstract. We consider the problem of distinguishing the homotopy types of certain
pairs of nonsimply-connected four-manifolds, which have identical three-skeleta and
intersection pairings, by the equivariant isometry classes of the intersection pairings
on their universal covers. As applications of our calculations, we: (i) construct
distinct homology four-spheres with the same three-skeleta, (ii) generalize a theorem
of Gordon to show that any nontrivial fibered knot in S4 with odd order mono-
dromy is not determined by its complement, and (iii) give a more constructive proof
of a theorem of Hendriks concerning rotations in two-spheres embedded in three-
manifolds.

0. Introduction. In this paper we are interested in several sorts of "twists" on
low-dimensional manifolds, and their relationships. We consider three situations:

(i) In constructing four-manifolds by performing surgery on simple loops, one
makes a framing choice. The two possible choices are related by the twist coming
from mx(SO(3)) = Z2. How does the choice affect the homotopy type of the
resulting manifold?

(ii) At most two knots in S4 have the same complement, the possible difference
given by a twist in gluing a regular neighborhood of the knot to its exterior. How
does the choice affect the knot type (a relative version of (i))?

(iii) If a three-manifold M03 has 3M0 = S2, one may define the rotation p in S2
(see §1). Is p = idwo (rel9A/0)?

It turns out that by considering these situations from the point of view of
intersection forms on four-manifolds, we can give fairly complete answers (for
certain cases of (i) and (ii)). For instance, we prove

Corollary 3.5. There exist (infinitely many pairs of) homology A-spheres which
have the same 3-skeleton but distinct homotopy type.

Concerning (ii), we have the following generalization of a result of C. McA.
Gordon [8, Proposition 4.2]:

Theorem 6.2. Let K be any nontrivial fibered knot in S4 with odd order monodromy.
Then K is not determined by its complement.
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544 S P. PLOTNICK

As for (iii), we have a complete answer, giving a new proof of a result of H.
Hendriks [10] concerning certain homotopy equivalences of three-manifolds:

Theorem 7.4. Let M be a closed 3-manifold, and let M0 = M - B3. Then the
rotation p in dM0 is homotopic to idM) (rel3M0) if and only if every summand of M is
either S2 X Sl, S2 X Sl, = P2 X S\ or 2/V, where 2 is a homotopy 3-sphere, m is
a finite group acting freely on 2, and all Sylow subgroups of m are cyclic.

Actually, for the only if direction, we only consider the case where M has no
two-sided projective planes, since our main interest is the case M = 2/V. Our proof
relies on some of Hendriks' work, but has a more constructive flavor. It turns out
that the secondary obstructions which arise as we try to homotop p to id M (rel 3M0)
are closely related to equivariant isometries of intersection pairings on certain
" spun" 4-manifolds. By studying these isometries we can completely understand how
the homotopy behaves (when it exists) on the 1-cells of M0.

1. Definitions, notation, results. Since the common thread running through these
results is intersection forms on 4-manifolds, we recall this definition. Let M4 be a
closed, orientable 4-manifold. Define a symmetric, bilinear pairing by

H2(M; Z)/Torsion ® H2(M; Z)/Torsion -> Z,       a 9 b -» (a U b, [M]>.
Poincaré duality shows that this form is nonsingular. Alternatively, duality gives an
equivalent form

H2(M; Z)/Torsion ® H2(M; Z)/Torsion -* Z,        a ® ß -» a ■ ß,
where a ■ ß denotes geometric intersection number.

If M4 is simply connected, Whitehead showed that the intersection form de-
termines the oriented homotopy type of M [21]. If mxM ¥= {1}, pass to the universal
cover M. Letting [M] denote the fundamental class of M, with possibly infinite
chains, we have

ir2(M) <S ir2(M)     =     H2(M;Ztt{M)       ®       H2(M;Z^M)
III

//2(M;Z7i-,A/)      ®      H2(M;ZiTyM)      ^ H*(M\Z^M)

1 n[M]
H0(M;ZnxM) s Z',

where Z' denotes Z twisted by the first Stiefel-Whitney class of M. Via covering
transformations, mx(M) acts as isometries of the form. Assuming M is oriented, this
form is compatible with the intersection form on H2(M) in the following sense: Let
p: m2(M) -* H2(M) be the Hurewicz map. Then the form on H2, restricted to the
subgroup of spherical cycles, p(m2), is given by p(x) ■ p(y) = T. e x ■ gy, where
only finitely many of these terms are nonzero.

A homotopy equivalence f:M^>N lifts to a proper homotopy equivalence
/: M -> Ñ inducing an equivariant isometry of the forms. If M and N are oriented,
this is compatible with the isometry induced on H2, as described above. We are thus
led to the following homotopy invariants:

(i) mx(M),
(ii) m2(M) as a Z7Tj(M)-module,
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EQUIVARIANT INTERSECTION FORMS 545

(iii) k 6 H3(mx(M); m2(M)), the first ^-invariant of Eilenberg-Mac Lane-
Whitehead [17], and

(iv) The equivariant isometry class of m2 ® m2 -» Z, together with H2® H2 -* Z,
related as above.

Now, (i)-(iii) are carried by the 3-skeleton of M, but (iv) depends strongly on the
attaching map for the top 4-cell of M. For example, S2 X S2 and S2 X S2, the
nontrivial S2 bundle over S2, differ only in the attaching map for the top cell, and
this is reflected in the nonisometric intersection forms (x ¿) and (x \).

This list is by no means a complete set of homotopy invariants for closed
four-manifolds. For example, let L(n,m) and L(n, m') be nonhomotopy equivalent
3-dimensional lens spaces. Then L(n, m) X S1 * L(n, m') X S1, as can be seen by
passing to infinite cyclic covers, although m2 = 0. The obstruction to a homotopy
equivalence lies in the third homology group of the universal cover. Since

(#endsofZ„X Z - 1) = rank H}(L(n, m) X Sl;Z)

= rank H3(S3 X R;Z) = 1,

we might view the obstruction as reflecting the fact that Z„XZ has two ends. For
groups with one end, however, it seems possible that (i)-(iv) above are a complete
list of homotopy invariants.

This naturally raises the question of whether there are examples of closed
four-manifolds, with one end, distinguished by intersection forms on m2. We give
such examples in §3.

We now describe our results in more detail, and establish notation. First, recall a
familiar diffeomorphism of S2 X S1. Let the twist t: S2 X S1 -> S2 X S1 be given
by

r(x,e) = (pe{x),6),
where pe is a polar rotation of S2 through angle 6. It is well known that t generates
mx(SO(3)) = Z2, t does not extend over S2 X D2, and, up to orientation reversals, is
the only nontrivial homotopy equivalence of S2 X S1 [7].

Now let M3 be a closed 3-manifold, with basepoint *. If we form M X Sl, and
perform surgery on the curve * X S1 with either of two possible framings (corre-
sponding to mx(SO(3)) = Z2), we obtain a four-manifold with the same fundamental
group as M. We call either of these a spin of M. More precisely, let M0 = M — B3
be a punctured copy of M. Via the product structure of M0 X S1, there is a natural
identification of 3(Af0 X S1) with S2 X S1. Let

s(M) = M0X S1 UldS2X D2

be the untwisted spin of M, and let

s'(M) = M0X S1 UT52 X D2

be the twisted spin of M. It is easy to see that s(M) and s'(M) have the same
3-skeleton, but different attaching maps for the top cell. Note also that the spins
contain natural 2-spheres S2 X {0}.
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546 S. P. PLOTNICK

We begin analyzing the spins of M in §2, where we describe m2. We also examine
some special cases. In particular, the case when M is a lens space provides the
motivation for much of this work, especially §§4, 6, and 7.

In §3 we consider the case when M is aspherical, i.e. M is contractible. Our
results are strongest in this case:

Theorem 3.1. Let M3 be a closed, aspherical 3-manifold. There is no mx-equi-
variant map m2(s(M)) -* m2(s'(M)) preserving the intersection forms. Consequently,
s(M)* s'(M).

Corollary 3.5 follows directly from Theorem 3.1.
The case when M is a closed, spherical 3-manifold, i.e. M is a homotopy

3-sphere, is more difficult and is treated in §4. First of all, we do not expect Theorem
3.1 to hold here, since s(M) = s'(M) if M is a lens space. Secondly, the analysis of
equivariant isometries is more subtle. Accordingly, we introduce the notion of a
special isometry, which should be thought of as the algebraic analogue of a homotopy
equivalence of pairs (s(M), S2 X {0}) -> (s'(M), S2 X {0}). The algebraic problem
encountered here can actually be solved for any finite group (Theorem 4.4). For
finite groups arising from 3-manifolds, our result is given by

Corollary 4.8. Suppose m acts freely on a homotopy 3-sphere 2. Then there is a
special isometry w2(s(2/w)) -» m2(s'(1./m)) if, and only if, all Sylow subgroups of m
are cyclic.

Surprisingly, this class of 3-manifolds includes not just lens spaces, but also the
prism manifolds (2,2, a), a odd. The fact that special isometries exist for lens spaces
is fairly obvious once one knows that lens spaces admit circle actions with fixed
points (§2), but prism manifolds do not admit such actions. Nevertheless, this is
consistent with, and anticipates, Hendriks' results (§7).

It is now a fairly simple matter to extend these results to an arbitrary closed
3-manifold with no 2-sided P2's. We do this in §5, where we show (Theorem 5.1)
that a special isometry exists if and only if every summand of M is either S2 X Sl,
S2 X S1, or a spherical manifold as in Corollary 4.8.

The main application of this work, and the original motivation, is in §6, where we
discuss the question of whether knots in S4 are determined by their complements.
We first recall the issues involved here. For simplicity, we restrict our attention to
knots in S4, although everything we say holds equally well in S", n > 4 [1, 7, 13,
14].

Given K = (S4,S2) a smooth knot, let X(K) = S4\S2 X D2 be the exterior of
K. If ^ is a diffeomorphism of S2 X Sl, consider the homotopy sphere X(K) U ^ S2
X D2. This construction depends only on the pseudo-isotopy class of \p. The
pseudo-isotopy classes of S2 X S1 areZ2 X Z2 X Z2, where the first two Z2 factors
are represented by orientation reversals of S2 and S1 respectively, and the last Z2
factor is represented by the twist t. Since the orientation reversals extend over
S2 X D2, only t can possibly create a new knot. Thus, there are at most two knots
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EQUIVARIANT INTERSECTION FORMS 547

with the same complement, namely

K=(X(K)uidS2xD2,S2x{0})

and
K* = {X(K)UTS2XD2,S2X{0}).

Furthermore, K and K* are equivalent knots if and only if et extends over X(K),
where e represents an element of the first two Z2 factors.

Examples where K 1= K* have been given by Cappell and Shaneson [2] in
dimensions 4,5, and 6, and by Gordon [8] in dimension 4. Our examples generalize
those of Gordon. Very briefly, if K is fibered with odd order monodromy, then by
lifting to the cyclic cover determined by the order, we find that the equivalence of K
and K * implies the existence of special isometries. Using Theorem 5.1 and some
easily proved restrictions on the possible fibers, we prove Theorem 6.2.

Finally, in §7 we examine a closely related problem concerning homotopy
equivalences of three-manifolds. Suppose Af03 has3M0 = S2, with collars'2 X [0,277].
Define the rotation p in S2 by

p(y)=y, y^M0\S2x[0,2m],
p(x,6) = (Pe(x),e),    {x,$) e S2x[0,2m].

Notice that p\dM = id|8W, and that p = idM if 3A/0 is permitted to move during
the homotopy. We are interested in whether p = idM (rel 3M0).

Following Hendriks, we examine the obstructions which arise as we try to
homotop idw to p (rel 3). These turn out to be closely related to the special
isometries of Corollary 4.8. Our knowledge of special isometries leads to an alternate
proof of Hendriks' theorem (Theorem 7.4), and also to a complete description of the
homotopies on the 1-skeleton of M0 (Theorem 7.6).

2. Spinning 3-manifolds. We are interested in the homotopy types of the spun
manifolds s(M) and s'(M). First, here are some special cases which motivate the
work of the next few sections.

Case 1: M = S3. It is well known that s(S3) = s'(S3) = S4, since the twist t on
d(B3 X S1) extends to a diffeomorphism of B3 X Sl.

Case 2: M = L3(n, m). Any lens space L3 admits an S1 action with a circle of
fixed points [26]. If * e Fix(S\ L), then the action of 6 e S1 on a small invariant
transverse disk through * is rotation by 0. The action restricts to L0, and defines a
diffeomorphism/: L0 X S1 -» L0 X S1 by f(x,6) = (6 ■ x,0). Since/|3(L sl) = r,
we again have s(L) = s'(L). _

Lift this analysis to universal covers. We can describe s(L) (s'(L)) as the result of
performing equivariant surgery on the n = \m\ lifts of * X 51 in S3 X S1, with the
untwisted (twisted) framing. If we use the untwisted framing, then the first surgery
results in S4, and each successive surgery adds a copy of S2 X S2, so that
s(L) = #1""1S2 X S2. On the other hand, we can lift the Sl action on L to an
action on S3. The fixed circle in L lifts to a fixed circle in S3 which passes through
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ail lifts of *. Consequently, the diffeomorphism /: S3 X S1 -> S3 X S1, f(x,0) =
(d ■ x,8), simultaneously changes all the framings on the lifts of * X S1, and we
obtains'(L) = #f~lS*X S2.

Case 3: If M = S2 X S1, S2 X S1, or P2 X S1, we again have s(M) s s'(M),
since these manifolds also admit circle actions with fixed points [26].

Case A: M = S3/m, where 77 is a finite group of order n acting freely on S3. If
S3/m is not a lens space, an Sl action on S3/m has no fixed points [26], so the
method of Case 2 fails. On the other hand, it does work for the universal covers: As
in Case 2, we have s(S3/m) = #"~l S2 X S2. Now pass an unknotted circle in S3
through all lifts of *. Since S1 acts as rotations about this circle, we have that
s'(S3/m) = #"~lS2 X S2. The universal covers are diffeomorphic but the obvious
diffeomorphism is not the lift of a diffeomorphism, i.e., not equivariant.

Case 5: M aspherical. Assume that M = R3 (no counterexamples are known).
Pass an unknotted, properly embedded line through the lifts of *, and let S1 act as
rotations about this line. Then

s(M)=s'(M) = S2XR2#1# S2X S2\.

Again, since M does not admit an S ̂ action with fixed points, the diffeomorphism is
not equivariant.

As the examples indicate, the spun manifolds have quite a bit in common. To
begin analyzing them, we describe m2. From now on we write m = mx(M). Recall

e
that the augmentation ideal Im is defined as Im = ker(Zw -* Z).

Proposition 2.1. Let N4 denote either spin of M3. Then m2(N) = Im © 7r2(M0) as
Zm-modules.

Proof. Covering space theory shows that Ñ = M0 X S1 U (jl„S2 X D2). The
Mayer-Vietoris sequence for this decomposition reduces to

0 -> H2(M0 X Sl) -* H2(Ñ) ->   0 HX(S2 X S1) -* HX(M0 X S1) -> 0,

or

0 -» H2(M0) -» H2(Ñ) -> Ztt -i Z ^ 0,

and ker(e) naturally splits back to H2(Ñ). To see this, pick * G dM0 to be the north
pole, and pick a lift of *, say *. Given gGir, g + e, let yg denote a path in M0
from * to g*. Crossing with S1 gives annuli {ygXS1}g#e in M0X S1. The
boundaries of the annuli are capped off, when we add MnS2 X D2, by jl„ (north
pole X D2), to give 2-spheres {Sg_e}g^e. These spheres are the natural generators
(over Z) of kere.

Note that it is irrelevant here whether TV is s(M) or s'(M), since t restricts to the
identity on * X D2. This completes the proof.   D

We might also add that the framing is irrelevant when we consider intersection
forms on H2(s(M)) = H2(s'(M)) = HX(M) ® H2(M), since this just reflects dual-
ity on M. However, the framing is relevant when we consider intersection forms on
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m2. We have

Proposition 2.2. (i) The intersection form for m2(s(M)), restricted to Im, is the
zero form.

(ii) The intersection form for m2(s'(M)), restricted to Im, is given by Sg_e ■ Sh_e =
1 + w(g)8 ., where w = wx is the first Stiefel-Whitney class of M, and 8gh is the
Kronecker delta.

Proof. We may assume that the paths yg in Proposition 2.1 are disjoint except at
*, so that the annuli yg X S1 intersect pairwise in * X S1. The spheres Sg_e and
Sh_e share a common disk * X D2. In s(M), this disk can be pushed off itself, but
for s'(M), a single intersection point ( + 1) is introduced. This is well known, for
example, in the case of the twisted 52-bundle over S2, S2 X S2 = S2 X D2 U T S2
X D2, and the situation here is identical. This proves the proposition if g # h.

To compute Sg_e ■ Sg_e, translate * X D2 to g * X D2. Again, in s(M), this
disk pushes off itself, while in s'(M) an intersection point is introduced, with sign
depending on whether g preserves or reverses orientation. This completes the proof.
D _

Note that, assuming M is orientable, the intersection form of s'{M), in the
natural basis {Sg_e}g#e, is given by

(Î \ !  -   \

3. Spinning aspherical 3-manifolds. Let M3 be aspherical, so that M is contract-
ible. Then m2(M0) = Zm, naturally represented by the boundary spheres of M0. We
write {5g}ge^ for this collection of 2-spheres with Se being the lift of dM0
containing *, and Sg = g(Se), as oriented manifolds.

Since the S are pairwise disjoint, and any Sg can be pushed off itself in M0 X S1,
the intersection form is zero on Z7r, for both s(M) and s'(M).

To compute intersections between Im and Z77, note that each S intersects Se
transversely once, at *, and intersects Sg once, at g *. Taking orientations into
account, we find

(1) Sg_e-Se=-\,    Sg_e-Sh = w(g)8g,h,        h*e,

for both s(M) and s'(M). This discussion, along with Proposition 2.2, gives the
complete intersection forms.

It is fairly easy to see that the forms are isometric if we disregard the Zw action.
Order the elements of m, e = g0, gx, g2, — Define 0: Im © Zw -» Im © Zw to be
the identity on Z77, and, on Im, <f>(Sg_e) = Sg_e + L'j=xSg . If M is orientable, <f> is
an isometry from m2(s'(M)) to m2(s(M)). We leave the necessary modifications
when M is not orientable to the reader.
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This isometry, however, does not respect the Zw-module structure on m2. In fact,
we have

Theorem 3.1. Let M3 be a closed, aspherical 3-manifold, with spins s(M) and
s'(M). There is no Zm-equivariant map <j>: m2(s'(M)) -» m2(s(M)), covering an
automorphism of m, which preserves the intersection forms. Consequently, s(M) *
s'(M).

To prove this, we study maps of m2. This requires the following simple lemmas.

Lemma 3.2. Suppose m has one end. Then every Zm-map Im -* Z7r is the restriction
of a Zm-map Zît -» Zw.

Proof. Applying Homz„( , Ztt) to the short exact sequence 0 -» Im -» Z7r -» Z
-» 0 yields

0 -» HomZff(Z7r,Z7r) -» Homz„(Jw,Zw) -» Ext^Z.Zw)
Hi

Hl(ir;Zw) = 0,

proving the lemma. Here we used Homz„(Z, Zir) = 0, since m is infinite. Note that

the map Zít -» Ztt defined by <j>(e) = E«gg restricts to the map Im -* Ztt given by
<t>(h - e) = Zng(hg - g).   U

Lemma 3.3. Suppose m has zero or one end. Then every Zm-map Im -* Im can be
written uniquely as the restriction of a Zm-map Ztt -» Im, plus a multiple of the
identity.

e
Proof. Applying Homz„( , /7r)toO->/7r->Z7r->Z->0 yields:

a
0 -» Homz„(Zw,/w) -> Homz,(/w,/w) ->      Ext'^iZ, Im)     -* 0

III
f/0(»;Zff)^//°()t;Z)      ->        Hl(w;Iw)        -.     lil(*;Zm)

III II
Z 0

Here we used HomZw(Z, Tít) = 0, since Im has no fixed elements. Now H°(m; Z7r)
= (Zmy. If 7T is infinite, there are no fixed elements, so ExtZw(Z, 77r) = Z, which
splits back to HomZl7(/77, Im), generated by the identity, proving the lemma. But if
\m\ = n, (Zmy = Z, generated by the norm element N = Eg. The map e* is
multiplication by «, so that ExtZir(Z, /ît) s Z„. In this case, 5 (identity) generates
Z„, so every element of HomZv(Im, Im) can be written uniquely as the restriction of
an element of Homz„(Z7r, Im), plus m times the identity, 0 < m < n.

Given <t>: Z7r -» Im, <j>(e) = Eg#ewg(g - e), the restriction of <¡> to Im is given by
ï(h- e) = Lg*emg(hg-h- g + e).   D

Lemma 3.4. Let m be an infinite group, and let A, B c m be finite subsets. Then
there exists gSw, g ■ A C\ B = <j>.
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Proof. Pick g in the complement of the finite set B -A'1 = {ba~l :b g B,
aG/4}.    D

Proof of Theorem 3.1. Suppose <j>: Im ® Zm -* Im ® Ztt preserves the intersec-
tion forms, which we write as ( , )' and ( , ). Assume $ covers the identity map on
m. Then, for each h, k g m, e * h * k * e,

i = ( v,a-J'= (<k v,:u( vj)-
The intersection form on m2(s(M)) is zero on both Im © Im and Ztt © Zît. Hence,
in the notation from Lemmas 3.2 and 3.3,

(2)       1 = ( £ mg{Shg_e - Sh_e - Sg_e] + mSh_e, Z"g{Skg -Sg}\

+ ( E mg{Skg_e - Sk_e - Sg_e) + mSk_e, E«g{SAf -S-g)\.

Note that the set of g, g with mg, ng nonzero is finite, and that the contribution of
individual terms in (2) is given by (1).

Using Lemma 3.4, pick k so that
kg* e* kg,    kg* g,    kg* g,    k* g.

Now pick h so that
hg * e * hg,    hg * kg,    hg * g,    hg * k,
hg * kg,    hg* g,    h* kg,    h* g.

With this choice of h, k, the right-hand side of (2) becomes

-2 ne{T.mg - m)+ 'Lmgng-w{g)8

a contradiction.
This proves the theorem when </> covers the identity. More generally, suppose </> is

an a-map for some a G Aut m. We could go back and redo this proof by considering
a-maps from Im to Im and Zw. It is perhaps more enlightening to do the following:
Since M is aspherical, a'1 can be geometrically realized by a homotopy equivalence
/: M -» M. We can assume, for a small ball B c M, that f'l(B) = B and f\B:
B -* B is ±id [4]. Then / X idsi restricts to a homotopy equivalence of M0 X S1,
and induces a homotopy equivalence F: s(M) -* s(M). Lifting to s(M), we obtain
an a^-equivariant isometry ^ of m2(s(M)). Then ^o^, covers the identity and
preserves the intersection forms. This completes the proof of Theorem 3.1.   D

Corollary 3.5. There exist (infinitely many pairs of spun) homology A-spheres
which have the same 3-skeleton but distinct homotopy type.

Proof. Pick M to be an aspherical homology 3-sphere, and apply Theorem 3.1.
D

Remark. Spun homology spheres arise naturally in the study of S ̂ actions on
4-manifolds. Work of Fintushel [5] and Pao [27], extended from the case ^(TV4) =
{1} to Hx(N4;Z) = 0 in [28], shows: Let (S\N4) be a smooth Section on a
homology 4-sphere N. Then 7V/51 = M is a homology 3-sphere (or disk), and N is
either s(M) or s'(M). Thus, at most two homology 4-spheres admit S^-actions with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



552 S. P. PLOTNICK

quotient M. If M is aspherical, Theorem 3.1 shows that the two homology spheres
are distinct, completing the topological classification in this case.

4. Spinning spherical 3-manifolds. Let M3 be spherical, M = 2/w, where 2 is a
homotopy 3-sphere and m is a finite group of order n acting freely on 23. The
Lefschetz fixed point formula shows that M is orientable.

Let TV = £gejrg be the norm element of m. Then m2(M0) = Zm/N, naturally
generated by the boundary spheres of M0. Writing {S } e„ for the boundary
spheres, we have T.Sg = 0 in H2(M0). Fix an ordering of m, e = g0, gx,..., g„_x.
Then Im is generated over Z by {Sg_e}"x~l, and Zm/N is generated over Z by
{Sg } "~ '. We will always use these bases to express the intersection forms.

Proposition 2.2 and the discussion at the beginning of §3, trivially modified, allow
us to express the intersection forms in (n - 1) X (n - 1) blocks as follows. For
m2(s(M)) we have

'0    V
I    0,

and for m2(s'(M)) we have

2       1 1
1      2        1
1       1 2

1 1
0/

Recall the discussion for lens spaces, Case 2, §2. Given a lens space L, with
mx(L) = Z„, there is a circle action on L with a circle of fixed points, and this circle
is a generator g of Zn. The action lifts to an action on S3, with fixed axis the lift of
g. Pick a small ball i'cL,«e dB3, and a lift * g 3£3 c S3. Take the paths yg.
from Proposition 2.1 to lie on the axis, except for small detours along d(gJB) = Sg/,
1 < j < i, as in Figure 1.

S ) CL

Sí-5

Figure 1
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The diffeomorphism / of (S3 \ il,. g'B) X S\ f(x, 6) = (6 ■ x, 6), clearly acts by
the identity on the spheres S ¡ (the Zm/N part of 7r2). For Im, note that /*(Yg- X S1)
= (ygl X S1) + H'j.iSgj in H2((S3\±g'B) X S\3;Z). Adding jl „S2 X D2 now

gives /: slj) - KL), with /,(Sg,) = Sg„ f*(Sg,_e) = Sg,_e + L'^xSgJ, so /, is
represented by ( 'x   °,), where

X =

This determines an isometry between the forms:

X'
I

I
X

Oj
since

X+ X'
¡2

1

2)
From its geometric origin, this isometry must be equivariant, although the reader
might verify directly that X gives a Z7r-map Im -» Zm/N.

This suggests we study HomZir(/7r, Im) and HomZ7r(./V,Z7r/./v"). Lemma 3.3
computes HomZ97(/w, Im). For HomZw(/7r, Zm/N), we have

Lemma 4.1. Let the finite group m act freely on a 2-connected space 2. Then

0 -> Zm/N -» Homz„(lm,Zm/N) -» Hxm -+ 0

is exact, but does not split.

Proof. Applying HomZw( , Zm/N) to 0 -> Im -* Zît -> Z -» 0 yields

0 - Homz„(Zff,Zff/AO -» HomZir(/ir,Zir/JV) -* ExtZir(Z,Zîr/Ar) -* 0,

since Zm/N has no fixed elements. Now ExtZw(Z,Zm/N) = Hl(m; Zm/N), and the
coefficient sequence 0 -* Z -* Zw -» Zm/N -» 0 yields

-» //*(»; Zw) -► tfl(>; Zw/AT) - #2(tt; Z) -> 7/2(t7; Zir) -> .

Since m is finite, H\m; Z?r) = 0, and H2(m; Ztt) = tf2(2; Z) = 0, since 2/tt has
the 3-skeleton of a /£T(ît, 1). Finally, H2(m; Z) s H2(2/m;Z) s Hx(2/m; Z) s
Hx(m; Z), by universal coefficients. The sequence cannot split as HomZw(/7r, Zm/N)
is torsion-free.   D
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Example. Let m = Z„. Then

Ztt = Z[x]/(x" - 1),
Zm/N = Z[x]/(x" - 1,1 + x+ ■■• +xn~l),
Im={p(x)^Z[x]/(x"-l):p(l) = 0}.

A map Im -» Zm/N is given by an assignment x' - 1 -» p¡(x), 1 < /' < n — 1,
subject to the condition jc-'/?, = pJ+j - pj. Given /»j, we find p2 = (1 + x)/7j, />3 =
(1 + x + x2)px,..., so the map is determined by px, and Homz„(Im,Zm/N) =
Zm/N. Changing this map by the restriction of a map Zít -» Zm/N modifies px by
(x — \)q, q G Zm/N, so that

HomZZn(/Z„,ZZ„/V)/ZZ„/V
= Z[x]/(x" - 1,1 + x+ ■■■ +x"-l,l - x) = Z„.

The map determined by px = x, namely p¡ = x + ■ ■ ■ +x', maps to a generator of
HX(Z„). This map is precisely the map X described in the discussion of lens spaces.

It should be clear by now that Homz„(/7r,Z7r/./V) is crucially involved in the
question of whether the two forms on Im © Zm/N are equivariantly isometric, but it
seems difficult to write down the typical element of Y\omz„(Im, Zm/N), except for
cyclic groups. We plan to circumvent this problem by tensoring with Z[l/w] (or Q),
since then Im and Zm/N become isomorphic. But first, we rephrase our problem in
more convenient terms.

So let m be any finite group of order n. In the usual bases, let ( , ) be the form on
Im © Zm/N represented by (° ¿)> and let ( * )' be represented by

2    1     ...     1
1     2

1 2
\ I

\

0
Lemma 4.2. The isometries (equivariant or otherwise) of (°, '0) are given by (£ BD),

where

(3) A'C + C'A = 0,    B'D + D'B = 0,    A'D + C'B = I.   D
We have that ( 'x °f) is an (Z) isometry from

(lm®Zm/N,( , )')    to    (Im © Zm/N, ( , )).

Thus, every (Z) isometry

H: (Im © Zm/N,( , )) - (im © Zm/N,( , )')

satisfies ('x °r) H = (¿ BD), with A,B,C,D as in (3). We conclude that every (Z)
isometry H is given by

„     / /      0\(A     £W       A B       \
\-X    IJ\C    DJ     [-XA + C    -XB + Dj'

where A,B,C,D satisfy (3).
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We would like to know whether H can be equivariant, i.e. do A, B, -XA + C,
-XB + D represent Zw-maps? This seems too difficult. In view of the geometric
discussion above (and §§6, 7), define a special isometry to be an equivariant isometry
H, as above, with A = ± I.

More generally, for a closed 3-manifold M3, we have m2(s(M)) = m2(s'(M)) =
Im © m2(M0) by Proposition 2.1. Define a special isometry

H:(lm®m2(M0),( , )) -* (im © m2(M0), ( , )')

to be an equivariant isometry represented by (¡Í *), with A = ±1. The point of
special isometries is given by

Proposition 4.3. A homotopy equivalence of pairs, f: (s(M), S2 X {0}) -»
(s'(M),S2 X {0}), inducing the identity on mx, induces a special isometry on m2.

Proof. We can assume that / restricts to a homotopy equivalence /: M0 X S1 -+
M0 X Sl, inducing er on 3(M0 X S1), where £ corresponds to possible orientation
reversals of S2 and Sl. Lifting to /: M0 X S1 -» M0 X Sl, we see that / preserves
the boundaries of the annuli yg X S1 of Proposition 2.1 and either preserves all the
orientations, or reverses them all. Referring to the proof of Proposition 2.1, we see
that / induces a map between the exact sequences giving m2(s(M)) and m2(s'(M)),
and the result follows. In fact, the induced special isometry is given by (¿ ' °±,).   D

We will eventually (Theorem 7.4) reverse this implication, and show that the
existence of a special isometry allows us to extend t: 3M0 X S1 -> 3M0 X S1 to a
homotopy equivalence of M0 X S1, thereby giving a homotopy equivalence of pairs.

Returning to the algebraic question arising from the two forms defined on
Im © Zm/N, m any finite group, we ask whether integral special isometries exist. We
emphasize integral, since we can tensor with a commutative ring, say Z[l/n] or Q,
and ask the same question. The main result of this section is

Theorem 4.4. Special isometries (Im © Zm/N,( , )) -» (Im © Zm/N,( , )') exist
over Z[l/n] for any finite group m of order n. An integral special isometry exists if and
only if there is a homomorphism \f/\ m -» Z[\/n]/Z such that \p(g) = 2 for a"
elements g of order 2.

Proof. It is well known that Im and Zm/N become isomorphic if we invert
e

\m\ = n. To see this, let R = Z[l/w], and let IRm = ker{ Rm -* Z). The natural map
z

IRm -» Rm/N,

g- e -» g- e = g+   £ h
h*e

has inverse

Rm/NZ^IRm,

g-*g- — = (g - e) - - £ (h - e).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



556 S. P. PLOTNICK

In terms of the usual bases, we have
/l     ...     1\

Z = I +
,1      •••

This allows us to rewrite H as

z-l = i

H =
A

Z~l(-XA + C)

1
n

BZ

,1

r

il

Z-\-XB + D)Z
representing a map IRm © IRm -* IRm © IRm, with the basis {g - e}g^e used for
both factors. The original H is equivariant if and only if the new H is equivariant.

Now assume A = +1. Replacing H by -H if necessary, we can assume A = I.
From (3), C = -C.

Assume H is equivariant, and consider the lower left entry of H, Z~x(-X + C). By
Lemma 3.3, extended in the obvious way, this map has the form
(4)     h - e -»   £ mg[(hg -e)-(h-e)-(g- e)] + m(h - e)

g*e

£  (mg- mh-lg)(g- e) +1 £ mg + mh - m\{h - e)
g=£e,h ^ g^e '

for mg, m g Z[l/n]. This expression determines the hth column of Z'l(-X + C).
Observe that multiplying a matrix on the left by Z adds the sum of a given

column to every entry in that column. The hth column of Z~\-X + C) sums to

£   (mg- mh-ig) +   £ mg + mh - m
g*e.h g*e

£ m   + mh-i - m

Let m = Ex* e mg. Then the hth column of -X + C is given by

(5) h-e £   (mg - mh-ig + mh-i + m - m)g
g*e.h

+ {2(m — m) + mh + mh-i)h

Since C + C = 0, we have

(-X+ C)+(-X+ C)'= -(X+ X')

(2    1
1     2

1
Using (5) to compute (-X + C) + (-X + C)', we find
(6a)    m   - mh-i   + mh-i + mh- m -ih + m -i + 2(m - m) = l,        g*h,

mg + mg-i + 2(m — m) = 1,       g * e.(6b)
In particular, mg + mg-¡ is a constant. Notice that (6a) follows from (6b). The

equivariance of H is thus equivalent to choosing mg, m G Z[l/n] so that (6b) holds.
It is a simple exercise to show that this is equivalent to
/-, ^                                                                1 + 2«(7a) mg+wg-,=-,
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(8) h- e

.7M                                                    ñ, -   ("-1)(1 + 2^)(7b) m- -- ,

so we can always choose mg g Z[l/n] to satisfy (6b). To construct a special
isometry, simply let H = ('c_x0,), where C - X is given by (5) and (7). In general,
the entries lie in Z[l/n].

Using (5) and (7), C - X is given by

v«   /                                   n — \ — 2m \        ,
L   \mg + mh-i- mh-ig+-—-  g + h

_g*e,h\ Ln I

Thus, we have reduced the problem of finding an integral special isometry to the
problem of choosing m , m g Z[l/n], so that (7) holds and the entries in (8) are
integers. The following lemma now completes the proof of Theorem 4.4, and also
provides a method for constructing integral special isometries.

Lemma 4.5. Let m be a finite group of order n. Then there exist mg, m G Z[l/n],
g * e, so that

1 + 2m

(9)

(10)

mg+mt

n — 1 —2w     _
mg + mh-< - mh-¡g +-—-G Z,        g* h,

if and only if there exists \p: m -» Z[l/«]/Z so that \p(g) = \
for all g of order 2.

Proof. Suppose that mg, m exist. Define t//: m -* Z[\/n]/Z by \p(e) = 0,
4>(g) = mg + (n - 1 - 2m)/2n. Then (7a) and (9) show that t// is a homomor-
phism, and if g = g"1, 4>(g) = \.

Conversely, given \¡/, define mg, m as follows: Let m g Z[1/h] be arbitrary. If
g2 = e, mg = (1 + 2m)/2n. If g2 * e, let mg = 4>(g) - (n - 1 - 2m)/2n, where
^(g) is a lift of »//(g) to Z[\/n], and where mg + mg-\ = (1 + 2m)/n. This is
possible since »/'(g) + ^(g-1) g Z.

Finally, note that we can always arrange m = 0. For, given choices w , m as
above, let m'g = mg — m/n, m' = 0. Then m'g, m' satisfy (7a) and (9), and (8) is
unchanged. Thus, every special isometry can be constructed as above, with m = 0.
D

Remark. (1) If m has odd order, integral special isometries exist.
(2) Let m = Z„, generated by g. Take >//: Z„ -► Z[l/n]/Z to be t//(g') = -i/n.

Lift t// as in Lemma 4.5 to obtain mg, = \ + 1/2« - i/n. Retracing through the
proof of Theorem 4.4, we recover the isometry ('_x °) arising from the geometry of
lens spaces.

(3) More generally, we should consider special isometries covering an automor-
phism a g AutîT. In this case, A = / is replaced by the permutation matrix
(8a{g) h). However, composing such a special isometry with the a"^isomorphism

/5«-.(g,J     o
0 S<*-\g).hl
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reduces the problem to isometries covering the identity. Thus, Theorem 4.4 holds in
this more general setting.

We now investigate the curious condition (10) of Lemma 4.5.

Lemma 4.6. Suppose there exists \p: m -* Q/Z with 4>(g) = \ for all g2 = e. Then
each element of order 2 is nontrivial in Hx(m).

Proof. Obvious, since \j/ factors through abelianization.   D
For example, the dihedral group D2m = (x, y\ym = x2 = 1, xyx = y'1), m odd,

satisfies (10), since Hx(D2m) = Z2(x), and all elements of order 2 are conjugate to x.
The implication of Lemma 4.6 cannot be reversed—consider Z2 X Z2. On the other
hand, if m has a unique element g* of order 2, then clearly (10) is equivalent to
g* * 0 G Hx(m).

Now assume that m acts freely on a homotopy sphere 2m. A theorem of Milnor
[20] shows that m has at most one element of order 2.

Proposition 4.7. Let m act freely on 2m, and let g* be the unique element of order
two (if n is even). Then the condition that there exists a map \p: m -> Q/Z with
^(S*) = 2 's equivalent to the condition that all Sylow subgroups of m are cyclic.

Proof. Since m acts freely on the homotopy sphere 2m, m has periodic cohomol-
ogy, so that the odd Sylow subgroups are cyclic, and the 2-Sylow is either cyclic or
generalized quaternion [20]. We write generalized quaternion groups as ô4.2* =
(x, y\x2 = (xy)2 - y2 ), with k = 1 corresponding to the usual eight element
quaternion group.

Notice that ö42* abelianizes to Z2(jc) X Z2(y), but the element of order two, x2,
maps trivially. Therefore, if the 2-Sylow of m is quaternion, \j/ cannot exist.

Conversely, if the 2-Sylow is cyclic, a theorem of Burnside [34, p. 163] shows that
m is metacyclic (type I), m = (A, B\Am = B" = 1, BAB1 = Ar), where r" = 1
(mod m) and ((r — \)n, m) = 1. We assume \m\ = n = mñ is even, since otherwise
the result is obvious. Now m cannot be even, since then r is even, contradicting
r" = 1 (modm). So ñ is even, and now Hx(m) = Zn, generated by B, and the
element of order two goes nontrivially.   D

Finally, consider those m that act freely on a homotopy 3-sphere. All known
examples arise from orthogonal actions on S3, and these give either lens spaces or
Seifert manifolds 2(b;(ax,ßx),(a2,ß2),(a2,ß3)), where b g Z, (a„ß) = 1, 0 < 0,
< a¡, i = 1,2,3, and {ax,a2,a3} is a Platonic triple (2,2,a}, {2,3,3}, {2,3,4}, or
{2,3,5} [25]. The manifolds corresponding to {2,2,a} are the so-called prism
manifolds.

Except for cyclic groups, the only groups with even abelianization are those
corresponding to {2,3,4} and {2,2, a}. The groups corresponding to {2,3,4} and
{2,2,a}, a even, have generalized quaternion 2-Sylow subgroup. If a is odd,
however, m has a cyclic 2-Sylow. Following [25], we write these as

AT« = (x,y\x2 = (xy)2 =ya),       a odd,

D^a= (x,y\x2k = 1 =ya,xyx-1 = y-1),       aodd,k>2,
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together with the product of one of these with a cyclic group of relatively prime
order. Note that D2ka is obviously metacylic, and D4*a can be rewritten as (A, B | Aa
— B4 = 1, BAB'1 = A'1), where A = yx2, B = x. The correspondence between
these groups and Seifert manifolds can be found in [25, p. 112].

Finally, there is a list of groups which might conceivably act on a homotopy
3-sphere [25, p. 113; 16], but they all have generalized quaternion 2-Sylow sub-
groups.

Combining this discussion with Theorem 4.4 and Proposition 4.7, we have

Corollary 4.8. Suppose m acts freely on a homotopy 3-sphere 2. Then there is a
special isometry m2(sÇ2/m)) -» m2(s'(1,/m)) if and only if all Sylow subgroups of m
are cyclic. The groups which satisfy this condition are Zn, Z)4*a (a odd), D2ka (a odd,
k > 2), and the direct product of one of these with a cyclic group of relatively prime
order.    D

5. Spinning 3-manifolds with no 2-sided projective planes. We now treat the case of
an arbitrary closed 3-manifold M with no 2-sided projective planes. We do not
believe this restriction is necessary, but we have not pursued the question here, since
our main interest is connected sums of aspherical and spherical manifolds (see §6).
By well-known 3-manifold theory [9], M has a connected sum decomposition, with
summands either aspherical, spherical, S2 X S1, or S2 X S1. To describe m2(M0),
we follow the discussion and notation in [10].

Let M = (#¡lxMi)#(#j_xMm+J) be a prime decomposition for M, where A/,,
/ = 1.m, has m2 = 0, and  Mm+J,  j = 1,..., /, is S2 X S1 or S2 X Sl. An
Epstein system for M0 is a disjoint collection of embedded 2-spheres which generate
7T2(M0) as a Zw-module. There are many such Epstein systems; we choose one as in
Figure 2. The 2-spheres Sx,...,Sm + / cut M0 into prime summands, and the
Sm+I+1,..., Sm+2I are 2-sphere fibers of the Mm+X,..., Mm+I.

Sm+l+l

Sm+2l

Figure 2
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Let S = (J,1o2/S/. Let P'- M0 -» M0 be the universal cover, and set 5* = p~\S).
The long exact sequence for (M0, S*) yields an exact sequence

0 - //3(M0, S*) - H2(S*) - 772(M0) - 0.

Letting Jt = {W: W is a connected component of M0 - S, with W - W c S, and
177,1^1 < oo}, we have [10, Lemma, p. 110]

hAM0,S*)=    0 HAp-lW,p-\W-W)).

For instance, W0 is a punctured sphere, so its lifts give relations among the lifts of
S0,...,Sm + /. Similarly, if M¡ is spherical, the lifts of Wi are punctured homotopy
spheres, so give relations among the lifts of S¡, as in §4. And similarly for the Mm+j.

We now describe intersection forms for s(M) and s'(M). On Im, Proposition 2.2
applies, and the forms are obviously zero on tt2M0. On "mixed pieces," the forms
are identical, given as follows: Pick a lift * of *, and let W0 be the lift of W0
containing *, with Slf'o = S0 U ••• USm+/. Also pick the obvious lifts of
Sm+/+i,...,Sm+2l. Orient the S0,...,Sm+l as the boundary of W0, orient the
Sm+/+i, • ■., Sm+2I, and transport these via covering transformations to (S¡) , g g 77.
Now let g = gx • ■ • gn be written in reduced form, with gk g irxM¡, represented by
a path a. Then

Sg-e-(S0)e = -l,    Sg_e-{S0)h = o>{g)8g_h,       h*e.

Also, as a enters and leaves lifts of the W¡, a pierces the lifts of S¡, so intersections
between Sg_e and lifts of S,   are introduced. Finally, if m + 1 < ik < m + I, we
also find intersections with lifts of S¡, m + I + 1 < i < m + 21. We spare the reader
the notation necessary to write this explicitly, since we will not need it.

We can now generalize Theorem 4.4.

Theorem 5.1. Let M3 be a closed 3-manifold with no 2-sided P2's. There is a
special isometry H: (m2(s(M)), ( , )) -» (m2(s'(M)),( , )') if and only if every
summand of M is S2 X Sl, S2 X Sl, or 23/77, where all Sylow subgroups of m are
cyclic.

Proof. Suppose some summand, say Mx, is either aspherical or 2/tt, where 77 has
a generalized quaternion 2-Sylow subgroup. Let g g mx(Mx). Then S has very
simple intersections—namely

Sg-e-(S0)e=-h    Sg_e-(S0)g = cc(g),

and all other intersections with generators of 772(Af0) are zero. This means that, in
computing intersections, we can ignore lifts of all spheres, except S0 and Sx.

More precisely, let N be the Zw-submodule of 772(M0) generated by S2
U • • • USm + 2/. Then m2(M0)/N is naturally isomorphic to a direct sum of copies of
772((M1)0), indexed by the cosets m/mx(Mx),i.e. m2(M0)/N = Z77 ®ZwiWi 772((M1)0).
In fact, since Sg_e only intersects elements from e ® t72(M1)0 (note that S0 = -Sx in
m2(MQ)/N), we may further project to m2((Mx)0). This induces H: Imx(Mx) ©
772((M1)0) -» Imx(Mx) © m2((Mx)Q). Now H may not be a special isometry, but H
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does have the form (£' BD), and H\,^ (M . is an isometry. This contradicts the proof
of either Theorem 3.1 or Theorem 4.4/Proposition 4.7.

Conversely, suppose every summand of M is as in Theorem 5.1. By Case 3, §2,
and Corollary 4.8, each summand admits special isometries. It is straightforward to
put these together to obtain a special isometry for M (see §7).   D

Remark. As stated, Theorem 5.1 applies to special isometries covering the identity
map on mx. With a bit more work, Theorem 5.1 also works for maps covering
automorphisms of mx (see Remark (3) following Lemma 4.5).

6. Knots in S4 with the same complements. We are interested here in fibered knots
in S4 with periodic monodromy. We first recall the twist spun knots of Zeeman [35].
Let K be a. smooth knot in S3, and let Mk be the /c-fold cyclic branched cover of
S3, branched along K, with canonical branched covering transformation a. Then the
k-twist spin of K, Kk, is a fibered knot in S4, with fiber (Mk)0 and monodromy a,
soX(Kk) = (Mk)0x„Sl.

More generally, if 0 < p < k, (k, p) = 1, then the /7-fold cyclic branched cover of
Kk, say Kk , is again a knot in S4, with exterior X(Kk p) = (Mk)Q Xap Sl [27].
The associated knots Kk* are again knots in S4. This was proved by Gordon for
p = 1 [8], and by Pao in general [27]. Pao's description of Kk used the natural Sl
action associated to a bundle over Sl with periodic monodromy, together with
Fintushel's work [5] on S1 actions on 4-manifolds. Together, their work gives

Proposition 6.1. Modulo the 3-dimensional Poincarè conjecture, the class of all
fibered knots in S4 with periodic monodromy is precisely the class of all k-twist spin
knots and their p-fold cyclic branched covers, 0 < p < k,(k, p) = 1.

Proof (sketch). Let (S4,S2) be fibered with periodic monodromy, so that
S4 - S2 X D2 = Y xß S1, ßk = 1. The natural S1 action on Y xß S1 has a
punctured homotopy 3-sphere as orbit space, with a knotted arc as the image of an
annulus of exceptional orbits with stabilizer Zk and slice representation given by
rotation of a normal disk by 2mp/k. Hence, (Y,Fix(ß)) is the punctured k-îo\d
cyclic branched cover of a knot in a homotopy 3-sphere, and ß = ap. If the
homotopy sphere is S3, the knot is Kk , where K is the knot associated to the
knotted arc in the orbit space. See [5, 27] for details.   D

We now give some simple limitations on the possible 3-manifolds which are cyclic
branched covers of knots in homotopy 3-spheres. Let M be such a manifold. Of
course, M is orientable. An easy argument using the equivariant sphere theorem of
Meeks and Yau [19] shows that (i) M has no S2 X Sl summands, and (ii) if M is a
connected sum, M splits equivariantly as the cyclic branched cover of a connected
sum of knots, so we may reduce to irreducible summands [30].

Suppose M = 2/77. We claim 77 cannot be metacyclic, unless 77 is actually cyclic
of odd order. To see this, observe that if 77 is not cyclic, then Hx(m) s Z8, ñ even
(see Proposition 4.7). The action of the monodromy on Hx(m) is multiplication by s,
(s, ñ) = 1, and the Wang sequence of the fibration shows that -(s — 1) is an
isomorphism. But this forces s to be both even and odd. Finally, if 77 is cyclic of odd
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order, -(-1) is the only possible monodromy, and of course this is realized by lens
spaces as 2-fold cyclic branched covers of 2-bridge knots. For a complete description
of monodromies of fibered knots in S4 with punctured spherical space form fibers,
see [32].

Theorem 6.2. Let K be any nontrivial fibered knot in S4 with odd order monodromy.
Then K is not determined by its complement.

Proof. Let K have fiber M0 and monodromy a of odd order k so that

K= (M0 XaSl Uid52X £>2,S2x{0}),

K* = (MqX.,51 UtS2 X D2,S2 X{0}).
If K and K* are equivalent, there is a homeomorphism of M0 Xa Sl extending er
on 3M0 X0 Sl. Lifting to the k-fo\d cyclic cover, and using that k is odd, we find a
homeomorphism of MQ X Sl extending er on 3M0 X S1. As in Proposition 4.3, this
induces a special isometry on 772(.s(M)), possibly covering an automorphism of 77.
But every summand of M is either aspherical or, by the discussion above, spherical
with generalized quaternion 2-Sylow. This contradicts Theorem 5.1 (or the remark
following Theorem 5.1).   D

Remarks. (1) This generalizes [8, Proposition 4.2], where Gordon proves that a
fibered knot in S4 (Sn) with (i) odd order monodromy, and (ii) the unpunctured
fiber has R3 (R"_1) as universal cover, is not determined by its complement. It also
generalizes [32], where the author and A. Suciu handle the spherical fibers not
covered by Gordon's theorem—the binary icosohedral space 53/SL(2,5) and the
quaternion manifold S3/Q%. Both of these obstruction theoretic proofs strongly use
that the universal covers are R3 or S3 (no counterexamples are known). Theorem 6.2
shows that this is irrelevant, and also handles all connected sums.

(2) If the fiber of AT is a punctured aspherical 3-manifold, the proof of Theorem
6.2, and Theorem 3.1, show that not only are K and K* distinct knots with the
same complement, but they have k-îold cyclic branched covers which are not even
homotopy equivalent!

(3) Suppose K is sl fibered knot with even order monodromy. If the order is two,
K is determined by its complement (Litherland [8, p. 595; 22, 31]), but nothing is
known otherwise. If the order has an odd factor k, one might try to mimic the proof
of Theorem 6.2 by lifting to the fc-fold cover. These covers are not as simple as in
Theorem 6.2, where the fibration over S1 becomes a product. Nevertheless, it seems
reasonable to conjecture that K is not determined by its complement. In fact, I
would conjecture that this is the case for all fibered knots in S4 with monodromy of
finite order greater than two.

7. Rotations in 2-spheres. Let M be a closed 3-manifold, and recall the rotation in
3M0, p, as defined in §1. The connection between p and the twist t is given by the
following simple observation.

Lemma 7.1. Ifp = idMo (rel3), then t: 3M0 XS1-» 3A/0 X S1 extends to a (fiber
preserving) homotopy equivalence of Ai0 X S1.
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Proof. Let F: M0 X [-1,0] -* M0 be a homotopy (rel3) with F_x — idMo,
F0 = p. Let G: M0 X [0,1] -» M0 be a homotopy, supported in a collar of 3Ai0,
with G0 = p, Gj = idMo, and G(x,t) = p2„,(x), x G 3M0. Then i7 and G fit
together to give the desired extension of t.   D

Corollary 7.2. If p = id M (rel 3), then every summand of M is either S2 X S1,
S2 X Sl, — P2 X S1, or 2/77, where all Sylow subgroups of m are cyclic.

Proof. Since t extends to M0 X Sl, Proposition 4.3 provides a special isometry of
772, and the result follows from Theorem 5.1 if M has no 2-sided P2 's. Otherwise, we
appeal to Hendriks [10].

We now begin to reverse the implication of Corollary 7.2. The following lemma
will allow us to reduce to the prime summands of M.

Lemma 7.3. Let W0 be a punctured 3-ball, with dW0 = U,"L0S,. Then the rotation p0
in S0 is homotopic (rel 3) to the disjoint union of the rotations in the other boundary
spheres jl ^Lxp¡ [10, Remarque, (iii), p. 182].

Proof. Use the rotational symmetry of W0 to untwist 50, thereby twisting\JfLxS¡.
D

It should be fairly clear that rotations in 2-spheres play an important role in the
description of homotopy equivalences of 3-manifolds. For instance, the (based)
homotopy equivalences of aspherical summands are given by Aut(7r), and the
(based) homotopy equivalences of the spherical summands are given by {a g
Aut(77) | a*: H3(m) -* Hz(m) is +1} [23, 29]. In this sense the pieces of a homotopy
equivalence are understood, and the rotations tell us how the pieces are glued
together.

Now, a complete theory has been worked out by Hendriks [10] (see also the work
of McCullough [18]). We present here an alternative proof of a major component of
that theory: When is p = idMo (rel 3)? Our contribution is to explicitly relate this
problem to the special isometries of §4. As a result, when the homotopy exists, we
can "understand" it, at least to the extent that we can explicitly describe the
homotopy on the 1-cells of M0.

Actually, it seems almost fitting that this question should be answered by
4-dimensional methods. Laudenbach [15, Appendix II] originally showed that a
rotation in a nonseparating sphere is not homotopic to the identity by framing
considerations. (For example, consider S2 X S1, and let p be a rotation in a fiber. If
p = id, then S2 X T2 = (S2 X Sï)Xp S1. But the intersection forms are (? ¿) and
(? 1)0

The first part of our proof follows Hendriks—we analyze the primary and
secondary obstructions which arise as we try to homotop p to idM (rel 3). Thus, we
now briefly outline how the obstructions arise, and which cohomology/homotopy
groups are relevant. We follow Hendriks' discussion and notation.

Let (X, A, x) be a relative CW-complex. Given two maps /, g: (X, x) -* (Y, y)
with f\,x,Af = &\(x,A)k> k > 2, inducing 6: mx(X, x) -* mx(Y, y), one defines a
cohomology class dk+1(f, g; A) G Hk+1(X, A; 0*mk+x(Y)), the primary obstruction
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to deforming / to g (rel A). This is zero precisely when there exists g': X -> Y such
that g' - g (rel(A; A)k~L) and f\(X,A)k+1 ~ g'\(x.A)k+1- Thus, we alter the constant
homotopy from / to g on (X, À)k X I (by tj g Ck(X, A; 6*mk + x(Y)), where
8t] = dk + 1), and the homotopy now extends to ( X, A)k +1 X I.

If dk + l(f,g; A) * 0, we can consider a secondary obstruction by altering the
homotopy on (X, A)k~l. Define a homomorphism

Ak-l(f;A):Hk-1{X,A;6*mk(Y))^ Hk+1(X,A;6*mk + x(Y))

as follows [10, p. 104]: Let [f] g Hk~\X, A; 6*mk(Y)). Construct a homotopy of /
(ve\(X,A)k-2),

G: lx[0,l] -» Y,
so that for each (k - l)-cell a of (X, A),

dk(G\aX[OX],foprx\oX[0l];d(aX[0,\])) = t(a),

and so that GX\(X A), = f\(X A)i. Then A*_1(/; A)([Ç]) = dk+l(f,Gx; A). In other
words, homotop / (to itself) on (X, A)k~L so as to "build in" [f], extend the
homotopy of / (again to itself) to (X,A)k (this is possible since f is a cocycle),
extend the homotopy to (X, A)k + X (using a deformation retraction of ek + l X I to
<?A + 1 X {0} U dek+1 X I), and take the primary obstruction from / to the result of
the homotopy (G,) on (X, A)k+l.

The significance of &k~l(f; A) is the following: Given /, g: (A", x) -» (7, >») with
/U-o* = *U¿>" * > 2' there exists s': *~" 7> *' = S (rel (A,^)*"2), with
f\ix,A)k>< = S'\(x,A)k^> if and only if dk + 1(f, g;A) is in the image of Ak-\f;A).
This is seen by picking Gx, as above, with dk+l(f,Gx; A) = dk + 1(g,f; A). By
additivity, dk + \g,Gx; A) = 0, so

g     =     Gt     =     /.
(A-,/))*-1        (A'./f)'1-2

Thus, we call the class of dk + l(f, g; A) in coker(A*_1(/; A)) the secondary obstruc-
tion to deforming f to g (rel /I ).

If A" is a 3-manifold and k = 2, the secondary obstruction is the complete
obstruction to finding a homotopy, since it allows us to modify the (constant)
homotopy from f\(XA)i to g\(XAf over all (X,A)2 before trying to extend to
(X,A)3.

We will use this obstruction theory in the following situation: X = Y = M0 =
(2/77)0, A = 3M0, /= idMo, g = p, 6 = id. Since p has support in a neighborhood
of 3M0, it is clear that id|(W dM )2 = p|(/V/ 3M )2. Thus, we have a primary obstruc-
tion

¿3(id,p;3A/0) g//3(M0,3;773(M0)),

and a secondary obstruction given by

A'(id; 3M0) = A: ff1^.^ 772(M0)) -» H3(M0,d; m3(M0)).

Notice the correspondence between the descriptions of A and of the maps on 772
from §4. Given [f ] g Hl(M0,3; Zm/N), we build J into the homotopy G as follows:
Take a relative cell decomposition for (M0,3) with one 0-cell on 3Af0 so that 1-cells
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a represent elements of 77. Define G to "wrap" the rectangle a X [0,1] around the
element f(a) of 772. If we regard G as a partial map M0X S1 -> M0 X p S1, then, as
in Proposition 4.3, G\{M xsu¡ determines a map 0([f]): If ~* Zm/N.

Conversely, given <p: Im -» Zm/N, define a partial homotopy as follows: If a
1-cell a represents ga g 77, define G: a X [0,1] -» M0 so that 00=0! = id„, and
so that G(a X [0,1]) represents <f>(ga - e). On the product of two 1-cells, say 00, G
represents <¡>(g„ - e) + ga4>(gà -e) = $(gag6 —e), so G extends to a homotopy on
the 2-cells with GX\.M 3)2 = id|(M 3)2. Extend G over the top 3-cell, and take
£/3(id,Gx;d). This is clearly the same procedure used to define A. If we define
*(</>) G Hl(M0, 3; Z77/JV) by ¥(*)(o) = $(g„ - e), and define Ä:
HomZff(/77,Zm/N) -» H3(M0,d; m3) by A((/>) = J3(id,G^ 3), we have a commuta-
tive triangle:

Homz„(/77,Z77/#)     ?     Hl(M0,d;Zm/N)

(H) AN /A
//3(M0,3;t73)

In fact, »// fits nicely into the exact sequences:

(12)
0       -        Homz„(Zir,Zv/N)     -     Homz„(Iir,Zir/N)     -*     Extlz„(Z,Zv/N)        -»       0

<fr <$-
Ztt/N 1* si* ¥1 W2(w)

■§■ , -j.
0       -» //'(W0,3;Zir) -»       Hl(M0,d;Z7t/N)       -> H2(M0,d;Z)   *       -♦       0

From

0     -»     H°(M0;Zm)     -»     H°(dM0;Zm)     -*     H\M0,d;Zm)     -*     0
III III

Z(iV) Ztt

we see that [f] G H1(M0,d;Zm) is given by f(o) = (ga - e)a?, a? g Z77, where
[f] = [?'] <=> <3f = ar (modN). Via ^, such cocycles correspond to maps ./V -»
Zm/N which are the restrictions of maps Z77 -» Zm/N.

We now describe 773(M0). Since M0 - V?ZxlS2, 773 is given by a theorem of Hilton
[11; 10, p. 150]:

Theorem. m3(W^IS2)= ®"Sxm3(S2) © ©(< m3(S3j), where the generator of
the infinite cyclic group m3(S2) (m3(S3j)) corresponds to the Hopf map for S2
( Whiteheadproduct [S2, S2]).   D

Hopf maps and Whitehead products satisfy the following:
(1) [ , ]: 772 X 772 -» 773 is Z-bilinear, symmetric,
(2) Hopf(x + y) = Hopf(jc) + Hopf(y) + [x, y],
(3)[x,x] = 2Hopf(x),
(4) g[x, y] = [gx,gy], Hopf(gx) = gHopf(x), g g mx.
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Therefore, if we let S2772 denote the symmetric 2-tensors of t72 (S27r2 = 772 ®
772/(x ® v - y ® x)), we have the following exact sequence of Z77-modules [10, p.
150]:

,      Wh v
0 -» 52772 -» 773 -» Z2 ® 772 -» 0,

where u(Hopf(x)) = 1 ® x. This coefficient sequence yields, via duality:
- //3(W0,9:S2ir2)        -»        r73(W0,B;7r3)       ^       H}( A/0,3; Z2 8 tt2)     -»     0

II) D III D III D
(13)     -       H0(M0;S\) - rI0(M0;v,)        -        //0(M0; Z2 8 »2)       -     0

Il II II
l»Wh l®i>

- Z ®    S2tt, - Z ®    7T, -» Z, ®„ w, -»     0
7T ¿ 7T .1 ¿ It ¿-

With notation thus established, we now state the main result of this section:

Theorem 7.4 [10, p. 189]. Let M be a closed 3-manifold. Then the rotation p in
3M0 is homotopic to idw (rel3) if and only if every summand of M is either S2 X S1,
S2 X Sl, = P2 X Sl, or 2/t7, where all Sylow subgroups of m are cyclic.

Proof. The only if direction is Corollary 7.2. For the converse, Lemma 7.3 allows
us to argue on the prime summands of M. The discussion in §2, Cases 2,3, can be
easily modified to show p = idWo (rel3) if M is S2 X S1, S2 X S1, P2 X S\ or a
lens space (since such M admit S ̂ actions with fixed points). Hence, we assume M
is a topological spherical space form 2/77, but not a lens space.

If 77 is cyclic, then M is homotopy equivalent to a lens space L = L(n, m). This is
because the homotopy type of M is determined by its fundamental group and its
^-invariant, and all possible /c-invariants (units in H4(Zn; Z) = Zn) are accounted
for by lens spaces (see [3, 17, 24]). Thus, (M0,3) — (L0,3), and the result follows.

If 77 is not cyclic, then 77 is the fundamental group of a prism manifold, as
described at the end of §4. Note that 77 is metacyclic, and is given by a split
extension

1 -» Za X Zß -y 77 ̂ Z2* -» 1,

where a and ß are odd, (a, ß) = 1, k > 2. The generator of Z2* acts by -1 on Za to
give D4*Q or D2ka, and Z2* acts trivially on Zß. Via abelianization, 77 maps onto

Of course, the only known examples are prism manifolds, but this is irrelevant to
the proof, since we pass to the cover determined by the 2-Sylow subgroup, and by
the above discussion it is not necessary that this be a real lens space.

According to Hendriks [10, p. 172], d3(id,p; 3M0) is represented by the cocycle
whose value on the top 3-cell is Hopf(3M0), the natural generator of t73(3M0). This
class is mapped by (1 ® v)D to the nontrivial element of Z2 ®w 772 = Z2 ®„ Zm/N
s Z(2 n) = Z2, since n is even.

To study A, Hendriks calculates tj (see (12)). These correspond to homotopies
with support in a neighborhood of 3A/0, so the calculation is "universal". He shows
[10, Corollaire, p. 162, and Proposition 1, p. 167] that, given </> g Zm/N s
H\M0,d;Zm), At(«f>) g H3(M0,d; m3) takes the value [3M0,<#>] on the 3-cell of
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(M0,3). In other words, if we view A, via (11)-(13) as DM*: HornZv(Zm, Zm/N)
-» Z ®„ 773, then DAi*(tj>) = 1 ® [e, <j>]. It is easy to see that the elements 1 ® [e, <f>],
<í> G 772, generate Z ®„. S2m2. Thus, we have an induced map

coker(i)       -»     coker(l ® Wh)
II II

H2(m;Z)      * Z2

and we need to show 4> is onto.
Until now, we have given Hendriks' proof. At this point our argument diverges

from his, and is motivated by the construction of special isometries in §4. Recall
from Lemma 4.5 that a special isometry is constructed by lifting \p: m -* Z[l/n]/Z,
tig*) = h to \p(g) G Z[1/h], and choosing mg = ip(g) - (n - l)/2n, with mg
+ mg_x = \/n. Thus, for 77' £ tt, \¡/\n, will produce a special isometry of 77'. In
terms of HomZir(/77,Z77//V), this means that we first restrict Im to V77', and then
project p: Zm/N -» Zm'/N', by forgetting the elements in 77 \ 77'. (See proof of
Theorem 4.4. Notice that the mg change, since n is replaced by |77'|, but the
coefficients of (8) do not change.)

The effect of this procedure on the right-hand side of (12), and hence on 0, is
given by:

<J>      G        HomZw{Im,Zm/N)       ->       H\m;Zm/N)       s      H2{m;Z)
i* i i* i i* i

Uomz„,(lm',Zm/N)      ->      HL(m';Zm/N)      =     H2(m';Z)
P*i P*l — II

</>'     g     Homz„,(/77',Z777Af')     -♦     Hl(m'; Zm'/N')     =     H2(m';Z)

The isomorphism pm: Hl(m'; Zm/N) -* Hl(m'; Zm'/N') arises in the following
way: As a left Z77'-module, Zm/N = (®Zm')/N, the sum being taken over the
cosets 77' \ 77. Also, p(N) = N'. Hence we find:

0 =  ®Hl(m';Zm') -> Hl{m';Zm/N) - H2(m';Z) - @H2(m';Zm') = 0

7/1(77,;Z777Af')^^2(77';Z)

Thus, the process of passing from <f> to <f>, measured on H1, is just given by /*:
H2(m)^ H2(m').

— a
This has a nice geometric interpretation. Let M -» M0 be the cover of M0

corresponding to 77', with a lift * of * g 3M0. Note that M has [77:77'] boundary
2-spheres, each one a natural generator of a Z77' component in m2(M) = Zm/N =
( © Zm')/N. Now (¡> g HomZw(/77, Zm/N) determines a homotopy on the 1-cells of
M0. The lift of this homotopy corresponds to /*(</>). Add [tt : 77'] - 1 copies of D3 to
M, capping off all boundary components except the one containing *, and let M'
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be the result. Then m2(M') = Zm'/N', the natural map m2(M) -» m2(M') is the
projection p, and the homotopy on the 1-cells of M' corresponds to <£'.

On cohomology, this corresponds to the composition

o _ excision
T: Hl(M0,d;Zm/N)^H1(M,d;Zm/N)    a    Hl(M',d U disks; Zm/N)

= HL(M',d;Zm/N) ^ Hl(M',d;Zm'/N'),

where the unlabelled isomorphism arises from the triple (M',3 U disks,3). Simi-
larly, we have the composition

-. / ,        x ̂    Q*       -, í — \ excision      . , ,        , \
T:  //3(M0,3;773(M0))^//3(M,3;t73)    =    H3(M',d U disks; m3(M0))

= //3(M',3;773(M0))^//3(M',3;t73(M'))

where p: m2(M0) -* m2(M') induces p: m3(M0) -» m3(M').
Now let 77' be the 2-Sylow subgroup of 77, Z2*, so that q: M -» M0 is an odd

cover and M' is a punctured (homotopy) lens space. From the naturality of A, we
have the following commutative diagram:

0
t

H2(n; Z)

H2(m; Z)

Hl(Af, dj, Zm'/N)
r

H3(M,b;m')

Hl(Af, 3; Ztt')

S
H3(M',d;S2m2)

H'(M0, d; Ztt)

0 0
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Since F is induced by a map of odd degree, T = 1. Hence, we find:

H2(m;Z)       *      Z2

H2(m';Z)      ^      Z2

Since p = idM- (rel3), 0' is onto. Also, since /': 77' «■* 77 splits, /'* is onto. Thus we
conclude 0 is onto, and the proof of Theorem 7.4 is complete.   D

At this point, the proof is not completely satisfying, since it merely shows that
A([£]) = d3(id, p; 3M0) for some [f ] g Hl(M0, 3; Zm/N), but we have no explicit f.
Via 6, [f] corresponds to -<J> G ~Homz„(Im,Zm/N), where we know from §4 that </>
is a special isometry. Understanding which -</> satisfy A(-^>) = d3(id, p; 3M0) is the
same as understanding what the homotopy from idMo to p (rel3) looks like on the
l-cellsof(M0,3M0).

Recall that a special isometry begins with \p: m -> Z[l/«]/Z, such that $(g*) = \.
If 77 is even order cyclic, write m = Z2kß, ß odd, generated by g. Then the map
ty(s') — Ü/2kß will satisfy <Ká?*) = 2 provided j is odd. If 77 is noncyclic, then
Hx(m) = Z2kß. Since ip must factor through Hx(m), the result is the same. So in
either case there are 2k~1ß possible i^'s. Our first result is that DA is constant on
special isometries arising from a given ip.

Proposition 7.5. Let <j>x, <j>2 g HornZw(Im,Zm/N) be special isometries arising
from two lifts of 4>: m -* Z[l/n]/Z. Then DA(<t>x) = DA(<j>2).

Proof. From (8), <j>x - <j>2 is given by

h-e-*-   £   {(mg-m2g) +{m\-i - m2h-i) + (m\-i g - m2h-ig)}g,
g*e.h

where m'g g Z[l/n] is given by i//(g) - (n - l)/2n, $' is a lift of xp, and mg +
m'g-\ = \/n, i = 1,2. Note that m\ - m2g G Z and mg - m2g = -(mg-i - m2g-,).

Now, it is easy to compute that if </> g Homz„(Z77,Z77//V) is given by 4>(e) =
Eg*engg, ng g Z, then its restriction i*(<j>) is given by

£   (ng+ nh-i- nh-lg)g+(nh + nh-i)h
g*e.h

Letting ng = m\ - m2g, we have <f>x - ¡f>2 - /*(<>), and ng = -ng-\. Hence

DÄUi - <í»2) = DÄi*^) = 1 ® [e,4>(e)] = 1 ®   £ ng(e ® g) = 0,
g±e

since e ® g = e ® g"1.    D
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We interpret this as follows. Consider the diagram:

0 0
î Î

H2(m) -i Z

î

2

DK
(14) Homz„{lm,Zm/N) -+ Z ®„ 773

î /• î 1 8 Wh

HomZir(Zw,Zir/AO -»       Z®,52772

T
o

Clearly \p determines the class in H2(m) of $x, <f>2, so <f>x - 4>2 = i*($). Since
Z)A/'*(<#>) = 0, we see that the special isometries associated to a given \p lie in an
affine subspace of HomZw(Im, Zm/N).

Now look at the terms on the right. Up to elements of 77, every generator of 52772
can be written ase®g = g®e = e®g_1, and we see that

Z®„S2m2 = Zm/(N,g-g-1),

a free abelian group rank n/2, and DA/* corresponds to the natural map Zm/N -*
Zm/(N, g - g-1), with rank (kernel) = n/2 - 1.

The generators of 773 are either Hopf(g) or [g, h] = [h, g], g * h. Up to elements
of 77, [g, h] = [e, g~lh]. Furthermore,

[«,*]- -EM
h*e

= -[*.*]-    E   [A,g] = -2Hopf(g)-    £   [e,h],
h^e.g h*e,g

so that 2Hopf(g) = EA#e[e, h]. Thus, the terms [g,h] contribute terms [e, g] =
[e, g'1], g * e, the terms Hopf(g) contribute another Z factor, generated, say, by a,
and we see that

Z ®, 773 = (Z(77 - e)/(g - g"1) © Z{a))/[la + £ g).

(Note that we have another relation given by

g-'Hopfig) = Hopf(e) = Hopfi- £ h) = Hopfi £ h)
\    h*e   ' ^h*e   '

= £ HoPf(g,)+ Lig^gjl
;-l i<j

using Hopf(x + y) = Hopf(x) + Hopf(>>) + [x, y]. But it is easy to see this gives a
multiple of the previous relation.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT INTERSECTION FORMS 571

Order the elements of 77 so that e = g0,  g, l = g„_„  g„/2 = g*, the unique
element of order 2. We now have

Z®„773       =     Z(a,gx,...,gn/2)/(2a + 2g, + ••• +2g„/2_1 + gn/2)

1 8 Wh

Z®„S2772     =      Z(g0,...,g„/2)/(g0 + 2gl + •   • +2g„/2_1 + g„/2),

n/2)/\iu T ¿Si T -T'-gn/l-l T gn/2)

la g,

1 Î
a> a

so   1 ® Wh   is   an   injection,   with   coker(l ® Wh) = Z2(a).   Of  course,   a =
D(d3(id,p;W0)).

We now know that both DA and DA/* are surjective, with kernels of rank
n/2 — 1. The kernel of DA/* is easily understood, as in the proof of Proposition 7.5.
The map DA is not so well understood, but at least its kernel has rank n/2 - 1,
large enough to accommodate the affine subspaces of special isometries from
Propositon 7.5. This proposition was the first step in deciding which special
isometries <i> satisfy DA(-<j>) = a. In fact, we now prove that all special isometries
have this property:

Theorem 7.6. Let § be a special isometry. Then DA(-<f>) = a. In other words, there
is a homotopy id M = p (rel 3) which represents -<¡> on the 1-cells of (M0,3M0).

Proof. First consider the cyclic case 77 = Z2*/8 = Z„. We can readily understand
(14) via polynomials, as in the example of §4, and we find:

0 0

T -» Î
Z„ Z2
î î

Z[x] DJ Z(a)®{axx+ ••• + a„/2x"/2}
tx"-\ \ (2a + 2x+ ■■■ +2x"/2~l + xn/1)
\1 + x + ■■■ x"-1!

î /• î Wh

_Z[x]_      D5/' [a0 + axx+ ■■■ +an/2xn^2}

¡x"-\ \ (1 + 2x+ ■■■ +2x"/2-1 + xn/2)
\1 + x + ••• +x"~l

î T
0 0

From §4, i*(q(x)) = (x — l)q(x), and </> g HomZw(Im,Zm/N) is determined by
</>(g — e) = p(x). Note that the value of p(x) in Z„ is given by its augmentation
/>(!)•

Now, we know from the geometry of lens space (using the S'-action) that there is
a homotopy idL = p (rel 3), inducing X g Homz„(Im,Zm/N). The special isome-
try -X is determined by -X(g — e) = -x (see §4), so we have DA(x) = a.
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In Remark (2) following Lemma 4.5, we claimed that -X corresponds to Z„ -*
Z[l/«]/Z, g -» -l/n. More generally, consider tfi,: Zn -» Z[l/n]/Z given by
ïjig') = ij/n> J °dd. It is easy to see that if we pick lifts ^j(g') = ij/n - (j - l)/2,
then mg, — \pj(g') — (n - \)/2n = ij/n + 1/2« — j/2 will give a special isometry,
say -Xj. The (g')th coefficient, / > 1, of -Xj(g - e) is given, from (8), by mg¡ +
mg„-¡ - mg,\ + (n - \)/2n = (j + l)/2. This means that the polynomial associ-
ated to Xj is

Pj(x) = x+ J^-(x2+ ••• +x-1).

To compute DA(/>.(•*))> observe />-(l) = 1 + (_/ + l)(n — 2)/2, so we can write

Pj(x) -Pj{1)= - Í±±(x2+...+x^)

= (x-l)qj(x).

To find q¡(x), we calculate

-J-±±[(n-2)x-(x2 + ••• +x"1)}

7 + 1

.7 + 1
2

y + i

[(1-*) + «]

[(1 - x) -(1 - x)(x2 + 2x3 + 3x4 +•••+(« - 1)*")]

(jc - 1)(« -2 + x2 + 2x3 + ■■■ +(n- 2)x"-1)

mod
1 + x + + xr

Hence, we find

DÄ{Pj(x)) = Dl{pj{x) -Pj(l)x)+DÄ{Pj(l)x)

= DM* -J4±(n - 2 + x2 + 2x3 + ••• +(n-2)x"~l)

+ a 1 +

_I±i
2

+ a|l +

O+ l)(n-2)
2

Wh (ii-2) l + x+ •■• +x"/2"1+ ^-x"/2

+ X"/2'1 + \xn/1

(j+l)(n-2)

LL±Ml^l(2a + x +

+ a\l +
(j + l)(n - 2)

= _0 + D^-2)(2a) + a|1 + 0+lX-2)| . fl.
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This computation, together with Proposition 7.5, proves the theorem in the cyclic
case.

In fact, there is a simple geometric explanation for the above calculation, arising
from the "belt trick," reflecting the kernel of mx(SO(2)) -* t71(SO(3)). Given j odd,
let Sl act on the lens space by (-j) times the original action. This provides a
homotopy idL() = p~J (rel 3), corresponding to the polynomial -jx. But p2 = idLo.
This homotopy is supported in a collar of 3L0, and alters arcs emanating from 3L0
by the belt trick, i.e., wraps the arcs once around 3L0. Then the closed curve g
(Figure 1) will be wrapped around e - g, corresponding to the polynomial -2x -
x2- ■ ■ ■ -x"~l. Thus, following our homotopy id¿o = p~J (rel3) by -(1 + j)/2 belt
tricks, we find a homotopy idLo = p (rel 3) with polynomial Pj(x), so that
DA(Pj(x)) = a.

Note that we started with x, multiplied it to -jx, and then "corrected" it by the
belt trick to Pj(x). Thus, we see that once a special isometry, corresponding to one
t//: 77 -» Z[l/n]/Z, provides a homotopy id¿ = p, then the special isometries
corresponding to all \p also provide homotopies.

This observation now gives the proof when 77 is noncyclic. If a special isometry
4> g Homz„(Im, Zm/N), corresponding to one \p: m -» Z[l/n]/Z, provides a ho-
motopy id M — p (rel 3) (by Theorem 7.4, <j> exists), then -j4>, corrected by -(1 + j)/2
belt tricks, also gives a homotopy. Since the belt trick arises from
HomZ7r(Z77, Zm/N), it is not detected in H2(m), and we see that special isometries
corresponding to all odd multiples of the generator of H2(m) provide homotopies.
This finally proves Theorem 7.6.   D

Example. The smallest noncyclic group here is D%2 = (A,B\A3 = B4 = 1,
BABl=Al), where HX(D{*2) = Z4(J9). Let f: D[*2-> Z[$]/Z be given by
ip(ÄBj) = -j/A, j = 0,1,2,3. Pick lifts $(A'BJ) as follows:

g
2Ar

B B' B3

13
AB AB1

1
AB3

-11
A2B 2r2A¿B

1
A2B3

One easily computes that the negative of the special isometry is given by
B-e^B + A+AB,        A-e^A-A2.

Note that the restriction/projection procedure of Theorem 7.4 gives the standard
map (B - e -> B) on L(4,l).

The prism manifold with mx = Df2 is the Seifert manifold (-1; (2,1), (2,1), (3,1)),
and can also be described by glueing a solid torus to a twisted /-bundle over the
Klein bottle K so as to kill the loop a3b2, where a, b2 are standard generators of T2
corresponding to the standard presentation (a, b \ bab'x = a'1) of mx(K).

Prism manifolds are quite well understood. In particular, Rubinstein has com-
puted their mapping class groups [33]. Nevertheless, even for this example it seems
rather difficult to "see" the homotopy id = p (rel3) whose effect on the 1-cells is
given above. For larger groups, it is presumably more difficult. In fact, Friedman
and Witt have recently shown why the homotopy is difficult to see:

Theorem [6]. The rotation p is not isotopic to the identity for the prism manifolds
S3/D'2ka, S3/(D'2ka X Zß), andS3/(DA*a X Zß).
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Their theorem is based on work of Ivanov [12], which does not include the case
S3/D4*a. Using these manifolds in forming connected sums, one can construct (the
only known examples of) homeomorphisms of closed 3-manifolds which are homo-
topic but not isotopic to the identity [6],
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