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Abstract In this paper we construct the action of Ding-Iohara and shuffle algebras on
the sum of localized equivariant K-groups of Hilbert schemes of points on C2. We show
that commutative elements Ki of shuffle algebra act through vertex operators over the
positive part {hi }i>0 of the Heisenberg algebra in these K-groups. Hence we get an
action of Heisenberg algebra itself. Finally, we normalize the basis of the structure
sheaves of fixed points in such a way that it corresponds to the basis of Macdonald poly-
nomials in the Fock space C[h1,h2, . . .].

1. Introduction

For any surface X , let X [n] denote the Hilbert scheme of n points on X . The
Heisenberg algebra {hi}i∈Z\0 is known (see [8]) to act through natural correspon-
dences in the sum of cohomology rings

⊕
n H∗(X [n]).

From now on we deal only with the case X = C2. Then one can consider local-
ized equivariant cohomologies instead of usual cohomologies. Let R =⊕

n H2n
T

(X [n]) ⊗HT(pt) Frac(HT(pt)). As shown in [6], R is isomorphic to the
Fock space ΛF := C(�,�′)[h1,h2, . . .], and after certain normalization, there is an
isomorphism Δ : R → ΛF sending the basis of fixed points to Jack polynomials
and {hi}i>0 to operators of multiplication by pi.

In this paper we construct the action of 1+
∑

i>0 K̃iz
i := exp

(∑
i>0((−1)i−1/

i)hiz
i
)

on the sum of localized equivariant K-groups M =
⊕

n KT(X [n]) ⊗KT(pt)

Frac(KT(pt)) in geometric terms. This determines the action of the Heisenberg
algebra itself. We find an isomorphism Θ : M → ΛF which takes the normalized
fixed point basis { 〈λ〉} to Macdonald polynomials {Pλ}. Isomorphism Θ takes
operators K̃i to operators of multiplication by ei acting in the Macdonald poly-
nomials basis through Pieri formulas.

For achieving this result and for its own sake, we construct representations of
two algebras: A and S (called Ding-Iohara and shuffle algebras correspondingly)
on M . In fact, the subalgebra S of shuffle algebra S, generated by S1, is of
particular interest to us. It is a trigonometric analogue of Feigin-Odesskii algebra,
studied in [5].
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The same operators appear in [10], where the action of the Hall algebra of
an elliptic curve is constructed on R. We strongly recommend [10] to the reader
as its results are more complete than ours and contain a completely different
viewpoint.

In Section 2 we define Ding-Iohara and shuffle algebras and remind some
properties of them. In Section 3 we construct the action of Ding-Iohara algebra
A on M . In Section 4 we verify that the constructed operators do give repre-
sentation of A. In Section 5 we define the action of shuffle algebra on M . In
Section 6 we present operators K̃i, normalization of the fixed point basis {〈λ〉 },
and an isomorphism Θ : M → ΛF with the above-mentioned properties. Finally,
in Section 7 we consider a vector v =

∑
n≥0 [OX[n] ]. We prove an analogue of

Proposition 2.31 from [1] for it; that is, we show that this vector is an eigenvec-
tor for the negative half of our Heisenberg algebra.

2. Ding-Iohara and shuffle algebras

Let us fix any parameters q1, q2, q3. Now we define the Ding-Iohara algebra A.
This is an associative algebra generated by ei, fi, ψ

±
j (i ∈ Z, j ∈ Z+) with the

following defining relations:

e(z)e(w)(z − q1w)(z − q2w)(z − q3w)
(1)

= −e(w)e(z)(w − q1z)(w − q2z)(w − q3z),

f(z)f(w)(w − q1z)(w − q2z)(w − q3z)
(2)

= −f(w)f(z)(z − q1w)(z − q2w)(z − q3w),

(3) [e(z), f(w)] =
δ(z/w)

(1 − q1)(1 − q2)(1 − q3)
(
ψ+(w) − ψ−(z)

)
,

ψ±(z)e(w)(z − q1w)(z − q2w)(z − q3w)
(4)

= −e(w)ψ±(z)(w − q1z)(w − q2z)(w − q3z),

ψ±(z)f(w)(w − q1z)(w − q2z)(w − q3z)
(5)

= −f(w)ψ±(z)(z − q1w)(z − q2w)(z − q3w),

where the generating series are defined as follows:

e(z) =
∞∑

i=− ∞
eiz

−i, f(z) =
∞∑

i=− ∞
fiz

−i,

ψ±(z) =
∑
j≥0

ψ±
j z∓j , δ(z) =

∞∑
i=− ∞

zi.

REMARK

These relations are very similar to the relations of quantum affine algebras (except
for Serre relations).
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We denote by A+ (A−) the subalgebra of A generated by ei(fi) correspondingly.
Following [5], we define a shuffle algebra S depending on q1, q2, q3. Fix a

function

λ(x, y) =
(x − q1y)(x − q2y)(x − q3y)

(x − y)3
.

The algebra S is an associative graded algebra S =
⊕

n≥0 Sn. Each graded com-
ponent Sn consists of rational functions of the form F (x1, . . . , xn) = f(x1, . . . ,

xn)/
(∏

1≤i<j≤n (xi − xj)2
)
, where f(x1, . . . , xn) is a symmetric Laurent poly-

nomial. For F ∈ Sm and G ∈ Sn, the product F ∗ G ∈ Sn+m is defined by the
formula

(F ∗ G)(x1, . . . , xn+m)

= Sym
(
F (x1, . . . , xm)G(xm+1, . . . , xm+n)

∏
1≤i≤m<j≤m+n

λ(xi, xj)
)
.

Here the symbol Sym stands for the symmetrization. This endows S with a
structure of an associative algebra.

Now we formulate some known properties of shuffle algebras.

THEOREM 2.1

For general parameters q1, q2, q3, there is a natural isomorphism Ξ : A+ → S,
which takes ea ∈ A+ into xa ∈ S. In particular, the whole algebra S is generated
by S1.

THEOREM 2.2

In the case where q1, q2 are generic and q1q2q3 = 1, the subalgebra S generated
by S1 consists of rational functions of the form F (x1, . . . , xn) = f(x1, . . . , xn)/(∏

1≤i<j≤n (xi − xj)2
)
, where f(x1, . . . , xn) is a symmetric Laurent polynomial

satisfying f(x1, . . . , xn) = 0 if x1/x2 = q1, x2/x3 = qj for j = 2,3.

REMARK 2.1

For any parameters the connection between Ding-Iohara algebra A and shuffle
algebra S can be established in the following way (here algebras A and S are
considered with the same parameters q1, q2, q3). Let Ie be the kernel of the map Ξ
from Theorem 2.1. (This theorem claims that Ie is trivial for generic parameters.)
Denote by If the transposed ideal of A−; that is, If is obtained from Ie by the
change ei �−→ f−i. Then the factor of A by ideals If , Ie is just what we are most
interested in. It may be viewed as a double of the shuffle algebra S.

In fact, the description of the ideal Ie is conjectured in [2] and is recently
proved in [9].
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THEOREM 2.3

For each n ≥ 1, define elements Kn ∈ Sn by

K2(z1, z2) =
(z1 − q1z2)(z2 − q1z1)

(z1 − z2)2
, Kn(z1, . . . , zn) =

∏
1≤i<j≤n

K2(zi, zj).

In particular, K1(z) = 1. If q1q2q3 = 1, elements Kn ∈ Sn commute.

The subalgebra generated by Ki is studied in [4]; in particular, Theorem 2.3 is
proved here.

This work was motivated by [3] and [11].

3. Construction of operators

3.1. Correspondences
We recall that throughout this paper X = C2. In this case the Hilbert scheme
of n points X [n] as a set is identified with the set of all ideals in C[x, y] of codi-
mension n. Let us recall correspondences used by H. Nakajima to construct a
representation of the Heisenberg algebra on

⊕
n H∗(X [n]). This action is con-

structed through the correspondences P [i] ⊂
∐

n X [n] × X [n+i]. Though in the
future we will need only P [1], P [−1], let us mention the general definition of P [i]
for any i. For i > 0, the correspondence P [i] ⊂

∐
n X [n] × X [n+i] consists of all

pairs of ideals (J1, J2) of C[x, y] of codimension n,n + i correspondingly, such
that J2 ⊂ J1 and the factor J1/J2 is supported at a single point. For i = 1 this
condition is automatic. For i < 0, P [i] is transposed to P [−i]. Let L be a tauto-
logical line bundle on P [1] whose fiber at any point (J1, J2) ∈ P [1] equals J1/J2.
There are natural projections p,q from P [1] to X [n] and X [n+1] correspondingly.

3.2. Fixed points
There is a natural action of T = C∗ × C∗ on each X [n] induced from the one on
X given by the formula (t1, t2)(x, y) = (t1 · x, t2 · y). The set (X [n])T of T-fixed
points in X [n] is finite, and all these fixed points are parameterized by Young
diagrams of size n. Namely, for each diagram λ = (λ1, . . . , λk) we have an ideal
(tλ1

1 , tλ2
1 t2, . . . , t

λk
1 tk−1

2 , tk2) =: Jλ ∈ (X [n])T.

3.3. Equivariant K-groups
We denote by ′M the direct sum of equivariant (complexified) K-groups: ′M =⊕

n KT(X [n]). It is a module over KT(pt) = C[T] = C[t1, t2]. We define M =
′M ⊗KT(pt) Frac(KT(pt)) = ′M ⊗C[t1,t2] C(t1, t2).

We have an evident grading

M =
⊕

n

Mn, Mn = KT(X [n]) ⊗KT(pt) Frac
(
KT(pt)

)
.

According to the Thomason localization theorem, restriction to the T-fixed
point set induces an isomorphism

KT(X [n]) ⊗KT(pt) Frac
(
KT(pt)

)
→ KT

(
(X [n])T

)
⊗KT(pt) Frac

(
KT(pt)

)
.
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The structure sheaves {λ} of the T-fixed points λ (see Section 3.2) form a
basis in

⊕
n KT((X [n])T) ⊗KT(pt) Frac(KT(pt)). The embedding of a point λ into

X [n] is a proper morphism, so the direct image in the equivariant K-theory is
well defined, and we denote by [λ] ∈ Mn the direct image of the structure sheaf
{λ}. The set [λ] forms a basis of M .

3.4. Representation of Ding-Iohara algebra on M

Let us now consider the tautological vector bundle F on X [n], whose fiber at
the point corresponding to an ideal J equals C[x, y]/J . We introduce generating
series a(z),c(z) as follows:

a(z) := Λ−1/z(F) =
∑
i≥0

Λi(F)
( −1

z

)i

,

c(z) := a(zt1)a(zt2)a(zt−1
1 t−1

2 )a(zt−1
1 )−1a(zt−1

2 )−1a(zt1t2)−1.

We also define the operators

ei = q∗(L⊗i ⊗ p∗) : Mn → Mn+1,(6)

fi = p∗(L⊗(i−1) ⊗ q∗) : Mn → Mn−1.(7)

So ei is a composition of pulling back by P [1] → Mn, tensoring by L⊗i, and
finally pushing forward along P [1] → Mn+1, while fi+1 is obtained by the inverse
order of these operations.

We consider the following generating series of operators acting on M :

e(z) =
∞∑

r=− ∞
erz

−r : Mn → Mn+1[[z, z−1]],(8)

f(z) =
∞∑

r=− ∞
frz

−r : Mn → Mn−1[[z, z−1]],(9)

ψ+(z)|Mn =
∞∑

r=0

ψ+
r z−r :=

(
− 1 − t−1

1 t−1
2 z−1

1 − z−1
c(z)

)+

∈ Mn[[z−1]],(10)

ψ−(z)|Mn =
∞∑

r=0

ψ−
r zr :=

(
− 1 − t−1

1 t−1
2 z−1

1 − z−1
c(z)

)−
∈ Mn[[z]],(11)

where ()± denotes the expansion at z = ∞,0, respectively.
Formulas (10) and (11) should be understood as follows: ψ±(z) acts by mul-

tiplication in K-theory by
(

−((1 − t−1
1 t−1

2 z−1)/(1 − z−1))c(z)
)±, and ψ±

r are
defined as the coefficients of these series.

THEOREM 3.1

The operators ei, fi, ψ
±
j satisfy relations (1)–(5) with parameters q1 = t1, q2 =

t2, q3 = t−1
1 t−1

2 ; that is, they give a representation of algebra A on the sum of
localized equivariant K-groups of Hilbert schemes of points on C2.
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This theorem is proven in Section 4.
Now we compute the matrix coefficients of the operators ei, fi and the eigen-

values of ψ±(z) in the fixed point basis. Let us take any diagram λ = (λ1, . . . , λk)
and its box �i,j with the coordinates (i, j) (i.e., it stands in the ith row and
jth column), where 1 ≤ i ≤ k,1 ≤ j ≤ λi. We introduce functions l(�) and a(�),
called legs and arms, correspondingly:

l(�) := λi − j, a(�) := max{k | λk ≥ j} − i.

We also denote by Σ1(�) all boxes of λ with the coordinates (i, k < j) and
by Σ2(�) all boxes of λ with the coordinates (k < i, j). Sometimes we write λ+ j

for the diagram λ+�j,λj+1 if it makes sense (i.e., if it is still a diagram). Finally,
we call box �i,j a corner if j = λi > λi+1 and a hole if j = λi + 1 ≤ λi−1.

LEMMA 3.1

(a) The matrix coefficients of the operators ei, fi in the fixed point basis [λ]
of M are as follows:

ei[λ,λ+k] = (1 − t1)−1(1 − t2)−1(tλk
1 tk−1

2 )i

×
∏

s∈Σ1(�k,λk+1)

1 − t
−l(s)+1
1 t

a(s)+1
2

1 − t
−l(s)
1 t

a(s)+1
2

∏
s∈Σ2(�k,λk+1)

1 − t
l(s)+1
1 t

−a(s)+1
2

1 − t
l(s)+1
1 t

−a(s)
2

,

fi[λ,λ−k] = (tλk −1
1 tk−1

2 )i−1

×
∏

s∈Σ1(�k,λk
)

1 − t
l(s)+1
1 t

−a(s)
2

1 − t
l(s)
1 t

−a(s)
2

∏
s∈Σ2(�k,λk

)

1 − t
−l(s)
1 t

a(s)+1
2

1 − t
−l(s)
1 t

a(s)
2

.

All the other matrix coefficients of ei, fi vanish.
(b) The eigenvalue of ψ±(z) on [λ] equals(

− 1 − t−1
1 t−1

2 z−1

1 − z−1

∏
�∈λ

(1 − t−1
1 χ(�)z−1)(1 − t−1

2 χ(�)z−1)(1 − t1t2χ(�)z−1)
(1 − t1χ(�)z−1)(1 − t2χ(�)z−1)(1 − t−1

1 t−1
2 χ(�)z−1)

)±
,

where χ(�i,j) = tj−1
1 ti−1

2 .

Proof
(a) For (λ,λ′) ∈ P [1], let ρ : Jλ′ ↪→ Jλ, π : k[x, y]/Jλ′ � k[x, y]/Jλ be the natural
maps. The tangent space T(Jλ,Jλ′ )(P [1]) is a kernel of the map Hom(Jλ′ , k[x, y]/
Jλ′ ) ⊕ Hom(Jλ, k[x, y]/Jλ) � Hom(Jλ′ , k[x, y]/Jλ), which sends (α,β) �−→ π ◦ α −
β ◦ ρ. Further, we write simply λ instead of Jλ.

Let us denote by χ(λ,λ′) the character of T in the tangent space T(λ,λ′)(P [1])
and by χ(L)(λ,λ′) the character of T in the fiber of L at the point (λ,λ′). We
write Sχ(λ) (resp., Sχ(λ,λ′)) for the character of T in the symmetric algebra
Sym•

T(λ)X
[n] (resp., Sym•

T(λ,λ′)P [1]).
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According to the Bott-Lefschetz fixed point formula, the matrix coefficient
p∗(L⊗i ⊗ q∗)[λ′,λ] of p∗(L⊗i ⊗ q∗) : Mn+1 → Mn with respect to the basis ele-
ments [λ] ∈ KT(X [n]), [λ′] ∈ KT(X [n+1]) equals χ(L)i

(λ,λ′)Sχ(λ,λ′)/Sχ(λ′). Sim-
ilarly, the matrix coefficient q∗(L⊗i ⊗ p∗)(λ,λ′) of q∗(L⊗i ⊗ p∗) : Mn → Mn+1

with respect to the basis elements [λ] ∈ KT(X [n]), [λ′] ∈ KT(X [n+1]) equals
χ(L)i

(λ,λ′)Sχ(λ,λ′)/Sχ(λ).
Now it is straightforward to check the formulas.
(b) This follows from the exactness of Λz(F ) :=

∑
i≥0 Λi(F )zi on the category

of coherent sheaves and the fact that {χ(�) | � ∈ λ}– is a set of characters of T

at the fiber F|λ. �

Sometimes we use other expressions for the matrix coefficients of operators ei, fi.

PROPOSITION 3.1

er[λ−i,λ] =
(tλi −1

1 ti−1
2 )r

(1 − tλ1−λi+1
1 t1−i

2 )(1 − t1t2)

∞∏
j=1

1 − t
λj −λi+1
1 tj−i+1

2

1 − t
λj+1−λi+1
1 tj−i+1

2

,

fr[λ+i,λ] =
(tλi

1 ti−1
2 )r−1(1 − tλi −λ1+1

1 ti2)
1 − t1t2

∞∏
j=1

1 − t
λi −λj+1+1
1 ti−j

2

1 − t
λi −λj+1
1 ti−j

2

.

Proof
It is straightforward to get these formulas from Lemma 3.1. �

4. Proof of Theorem 3.1

DEFINITION 4.1

We denote by σ1, σ2, σ3 the elementary symmetric polynomials in q1, q2, q3, that
is, σ1 := q1+q2+q3 = t1+t2+t−1

1 t−1
2 , σ2 := q1q2+q1q3+q2q3 = q−1

1 +q−1
2 +q−1

3 =
t−1
1 + t−1

2 + t1t2, σ3 := q1q2q3 = 1.

CONVENTION 4.1

In this section we check (1)–(5) explicitly in the fixed point basis. While com-
paring expressions of the left-hand side and right-hand side, we denote by Pi the
mutual factor.

First, let us check (1).

Proof
For any integers i, j we have to prove the following equation:

ei+3ej − σ1ei+2ej+1 + σ2ei+1ej+2 − σ3eiej+3

= σ3ejei+3 − σ2ej+1ei+2 + σ1ej+2ei+1 − ej+3ei.
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Let us compare the matrix elements of the left-hand side and right-hand side
on any pair of Young diagrams [λ,λ′ = λ + �i1,j1 + �i2,j2 ].

(a) Suppose i1 = i2; that is, the added two boxes lie in the same row:

(ei+3ej − σ1ei+2ej+1 + σ2ei+1ej+2 − σ3eiej+3)[λ,λ′]

= (. . .)(1 − σ1t
−1
1 + σ2t

−2
1 − σ3t

−3
1 ) = 0

since t−1
1 is a root of 1 − σ1t + σ2t

2 − σ3t
3.

Similarly (σ3ejei+3 − σ2ej+1ei+2 + σ1ej+2ei+1 − ej+3ei)[λ,λ′] = 0.
(b) Suppose j1 = j2; that is, the added two boxes lie in the same column.
This case is entirely similar since t−1

2 is also a root of 1 − σ1t + σ2t
2 − σ3t

3.

(c) Suppose i1 < i2, j1 > j2.
The only difference occurs in the box �i1,j2 .
Let us denote a := j1 − j2, b := i2 − i1, χ1 := tj1−1

1 ti1−1
2 , χ2 := tj2−1

1 ti2−1
2 . Then

(ei+3ej − σ1ei+2ej+1 + σ2ei+1ej+2 − σ3eiej+3)[λ,λ′]

= P1(1 − t−a
1 tb2)

−1(1 − t−a+1
1 tb2)(1 − ta+1

1 t−b
2 )−1(1 − ta+1

1 t−b+1
2 )χj

1χ
i+3
2

×
(

1 − σ1

(χ1

χ2

)
+ σ2

(χ1

χ2

)2

− σ3

(χ1

χ2

)3
)

+ P1(1 − ta1t
−b
2 )−1(1 − ta1t

−b+1
2 )(1 − t−a

1 tb+1
2 )−1(1 − t−a+1

1 tb+1
2 )χi+3

1 χj
2

×
(

1 − σ1

(χ2

χ1

)
+ σ2

(χ2

χ1

)2

− σ3

(χ2

χ1

)3
)

,

(σ3ejei+3 − σ2ej+1ei+2 + σ1ej+2ei+1 − ej+3ei)[λ,λ′]

= P1(1 − ta1t
−b
2 )−1(1 − ta1t

−b+1
2 )(1 − t−a

1 tb+1
2 )−1(1 − t−a+1

1 tb+1
2 )χj

1χ
i+3
2

×
(

σ3 − σ2

(χ1

χ2

)
+ σ1

(χ1

χ2

)2

−
(χ1

χ2

)3
)

+ P1(1 − t−a
1 tb2)

−1(1 − t−a+1
1 tb2)(1 − ta+1

1 t−b
2 )−1(1 − ta+1

1 t−b+1
2 )χi+3

1 χj
2

×
(

σ3 − σ2

(χ2

χ1

)
+ σ1

(χ2

χ1

)2

−
(χ2

χ1

)3
)

.

Denote u := ta1 , v := tb2. Then χ2/χ1 = u−1v. So the first summand of the
left-hand side equals

P1χ
j
1χ

i+3
2 (u − v)−1(u − t1v)(v − t1u)−1(v − t1t2u)

× (v − t1u)(v − t2u)(v − t−1
1 t−1

2 u)v−3

= P1χ
j
1χ

i+3
2 (u − v)−1(u − t1v)(v − t1t2u)(v − t2u)(v − t−1

1 t−1
2 u)v−3,

while the first summand of the right-hand side equals

P1χ
j
1χ

i+3
2 (v − u)−1(v − t2u)(u − t2v)−1(u − t1t2v)

× (u − t1v)(u − t2v)(u − t−1
1 t−1

2 v)(−u3v−3)u−3

= P1χ
j
1χ

i+3
2 (u − v)−1(v − t2u)(u − t1t2v)(u − t1v)(u − t−1

1 t−1
2 v)v−3.
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So we get the same expressions for the first summands of the left-hand side
and right-hand side. In the same way we check the equality of the second sum-
mands. This completes the proof in this case.

(d) Suppose i1 > i2, j1 < j2. This follows from (c). �

Equation (2) is entirely similar to the one above, so we omit it.
Now we compute [e(z), f(w)]. We prove the following proposition at first.

PROPOSITION 4.1

The coefficients of the the series [e(z), f(w)] are diagonalizable in the fixed point
basis [λ].

Proof
We have to check for diagrams [λ,λ′ = λ+�i1,j1 − �i2,j2 ] ((i1, j1) �= (i2, j2)) that
the equality (eifj)[λ,λ′] = (fjei)[λ,λ′] holds.

Let us consider the case i1 < i2, j1 > j2. (The case i1 > i2, j1 < j2 is com-
pletely analogous.) We define a := j1 − j2, b := i2 − i1. Then

(eifj)[λ,λ′] = P2(1 − t1−a
1 tb2)

−1(1 − t1−a
1 tb+1

2 )(1 − t−a
1 tb2)

−1(1 − t1−a
1 tb2)

= P2(1 − t1−a
1 tb+1

2 )(1 − t−a
1 tb2)

−1,

(fjei)[λ,λ′] = P2(1 − t−a
1 tb+1

2 )−1(1 − t1−a
1 tb+1

2 )(1 − t−a
1 tb2)

−1(1 − t−a
1 tb+1

2 )

= P2(1 − t1−a
1 tb+1

2 )(1 − t−a
1 tb2)

−1.

So (eifj)[λ,λ′] = (fjei)[λ,λ′]. �

Now we introduce the operators Φ+(z) =
∑∞

i=0 φ+
i z−i,Φ−(z) =

∑∞
i=0 φ−

i zi diag-
onalizable in the fixed point basis and satisfying the equation

[e(z), f(w)] =
δ(z/w)

(1 − t1)(1 − t2)(1 − t−1
1 t−1

2 )

(
Φ+(w) − Φ−(z)

)
.

We show that φ±
i are determined uniquely by the conditions φ+

0 = −1, φ−
0 =

−1/t1t2. Next we check

φ±(z)e(w)(z − q1w)(z − q2w)(z − q3w)
(12)

= −e(w)φ±(z)(w − q1z)(w − q2z)(w − q3z),

φ±(z)f(w)(w − q1z)(w − q2z)(w − q3z)
(13)

= −f(w)φ±(z)(z − q1w)(z − q2w)(z − q3w).

Finally, by showing that ψ±
i = φ±

i , we get equalities (4) and (5) from equal-
ities (12) and (13). And so Theorem 3.1 will be proved.

From Proposition 4.1 and the formulas of Lemma 3.1(a), one gets that [e(z),
f(w)] is diagonalizable in the fixed point basis and, moreover, its eigenvalue on
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[λ] equals ∑
a,b∈Z

z−aw−bγa+b,

where

γi = (1 − t1)−1(1 − t2)−1
∑

�−corner

( ∏
s∈Σ1(�)

[ (1 − t
l(s)+1
1 t

−a(s)
2 )(1 − t

−l(s)+1
1 t

a(s)+1
2 )

(1 − t
l(s)
1 t

−a(s)
2 )(1 − t

−l(s)
1 t

a(s)+1
2 )

]

×
∏

s∈Σ2(�)

[ (1 − t
−l(s)
1 t

a(s)+1
2 )(1 − t

l(s)+1
1 t

−a(s)+1
2 )

(1 − t
−l(s)
1 t

a(s)
2 )(1 − t

l(s)+1
1 t

−a(s)
2 )

])
χi−1(�)

− (1 − t1)−1(1 − t2)−1
∑

�−hole

( ∏
s∈Σ1(�)

[ (1 − t
l(s)+1
1 t

−a(s)
2 )(1 − t

−l(s)+1
1 t

a(s)+1
2 )

(1 − t
l(s)
1 t

−a(s)
2 )(1 − t

−l(s)
1 t

a(s)+1
2 )

]

×
∏

s∈Σ2(�)

[ (1 − t
−l(s)
1 t

a(s)+1
2 )(1 − t

l(s)+1
1 t

−a(s)+1
2 )

(1 − t
−l(s)
1 t

a(s)
2 )(1 − t

l(s)+1
1 t

−a(s)
2 )

])
χi−1(�).

Since we want an equality

[e(z), f (w)]

=
δ
(

z
w

)
(Φ+(w) − Φ−(z))

(1 − t1)(1 − t2)(1 − t−1
1 t−1

2 )

=

(∑
a+b>0 z−aw−bφ+

a+b −
∑

a+b<0 z−aw−bφ−
−a−b +

∑
a+b=0 z−aw−b(φ+

0 − φ−
0 )

)
(1 − t1)(1 − t2)(1 − t−1

1 t−1
2 )

to hold, we determine φ+
s>0, −φ−

s>0, φ
+
s=0 − φ−

s=0 uniquely as they are equal to
the corresponding (1 − t1)(1 − t2)(1 − t−1

1 t−1
2 )γs. So to determine all φ±

i , we need
only to specialize the values φ+

0 , φ−
0 .

The next lemma is crucial.

LEMMA 4.1

We have [e0, f0]|λ = − 1
(1−t1)(1−t2)

, [e0, f1]|λ = − 1
(1−t1)(1−t2)

+
∑

�∈λ χ(�).

COROLLARY 4.1

The operator [e0, f1 − f0] is the operator of multiplication by det(F).

Proof of Lemma 4.1
In the proof below we use another expression for γs = [e0, fs], which is obtained
by using Proposition 3.1 instead of Lemma 3.1(a). With this purpose for any
Young diagram λ = (λ1, λ2, . . .), we define χi := tλi −1

1 ti−1
2 . Let us notice that due

to the finiteness of λ: χi = t−1
1 ti−1

2 for all i � 1, which will be called the stabilizing
condition,

γs = (1 − t1)−2

l(λ)+1∑
i=1

χs−1
i

∞∏
i 
=j

(1 − t
λi −λj

1 ti−j+1
2 )(1 − t

λj −λi+1
1 tj−i+1

2 )

(1 − t
λi −λj

1 ti−j
2 )(1 − t

λj −λi+1
1 tj−i

2 )



Equivariant K-theory of Hilbert schemes via shuffle algebra 841

(14)

− (1 − t1)−2

l(λ)+1∑
i=1

(t1χi)s−1
∞∏

i 
=j

(1 − t
λj −λi

1 tj−i+1
2 )(1 − t

λi −λj+1
1 ti−j+1

2 )

(1 − t
λj −λi

1 tj−i
2 )(1 − t

λi −λj+1
1 ti−j

2 )
.

(a) First, we prove [e0, f0]|λ = −1/((1 − t1)(1 − t2)) for any λ. This is obvious
for an empty diagram (and straightforward for any diagram λ consisting of 1
row). So it is enough to prove that [e0, f0] does not depend on the diagram. Let
λk−1 = 0. (We do not need λk−2 �= 0.) Then for i ≥ k − 1, we have χi = t−1

1 ti−1
2 .

Hence according to formula (14) and the stabilizing condition:

γ0 = (1 − t1)−2
( k∑

i=1

χ−1
i

χi(1 − t1t
2−k
2 χi)

χi − tk−1
2

k−1∏
1≤j 
=i

(χj − t2χi)(χi − t1t2χj)
(χj − χi)(χi − t1χj)

−
k∑

i=1

(t1χi)−1 χi(1 − t21t
2−k
2 χi)

χi − t−1
1 tk−1

2

k−1∏
1≤j 
=i

(χi − t2χj)(χj − t1t2χi)
(χi − χj)(χj − t1χi)

)
.

So we have a rational expression in χi (1 ≤ i ≤ k − 2). Moreover, the degree
of the numerator is not greater than that of the denominator. The possible poles
of this function can occur only at χi = χj , χi = t1χj or at χi = tk−1

2 , t−1
1 tk−1

2 .
However, in cases χi = tk−1

2 , t−1
1 tk−1

2 there are no poles (since the poles coming
from the denominator are compensated by zeros of χi − t1t2χk−1 or χi − t2χk−1

coming from the numerator). All the poles χi = χj , χi = t1χj are simple. But
it is straightforward to see that the residues at these points are in fact zero.
Hence this rational function γ0 is constant. This completes the proof of [e0, f0] =
−1/((1 − t1)(1 − t2)).

(b) Let us check [e0, f1]|λ = −1/((1 − t1)(1 − t2)) +
∑

�∈λ χ(�) for any λ.
By the definition of χi, we have

∑
�∈λ χ(�) =

∑∞
i=1 (ti−1

2 − t1χi)/(1 − t1). So
we have to prove [e0, f1] = −1/((1 − t1)(1 − t2)) +

∑∞
i=1 (ti−1

2 − t1χi)/(1 − t1).
It is obvious for an empty diagram, and it is a straightforward computation
for any diagram λ consisting of 1 row. So it is enough to prove that [e0, f1] −∑∞

i=1 (ti−1
2 − t1χi)/(1 − t1) does not depend on the diagram.

Let λk−1 = 0. Then for i ≥ k − 1 we have χi = t−1
1 ti−1

2 . Hence according to
formula (14),

γ1 = (1 − t1)−2
( k∑

i=1

χi(1 − t1t
2−k
2 χi)

χi − tk−1
2

k−1∏
1≤j 
=i

(χj − t2χi)(χi − t1t2χj)
(χj − χi)(χi − t1χj)

−
k∑

i=1

χi(1 − t21t
2−k
2 χi)

χi − t−1
1 tk−1

2

k−1∏
1≤j 
=i

(χi − t2χj)(χj − t1t2χi)
(χi − χj)(χj − t1χi)

)
.

So we have a rational expression in χi (1 ≤ i ≤ k − 2). Moreover, the degree
of the numerator is not greater than that of the denominator plus 1. The possible
poles of this function can occur only at χi = χj , χi = t1χj or at χi = tk−1

2 , t−1
1 tk−1

2 .
In cases χi = tk−1

2 , t−1
1 tk−1

2 the poles do not really occur (see the argument in
part (a)). All the poles χi = χj , χi = t1χj are simple with vanishing residue.
So γ1 is a linear function in χi (1 ≤ i ≤ k − 2). Finally, one checks that the
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principal part of γ1 equals
∑k−2

i=1 (−t1/(1 − t1))χi. We conclude that [e0, f1] −∑∞
i=1 (ti−1

2 − t1χi)/(1 − t1) is constant. This completes the proof of [e0, f1] =
−1/((1 − t1)(1 − t2)) +

∑
�∈λ χ(�). �

COROLLARY 4.2

It follows from Lemma 4.1 that γ0 ≡ −1/((1 − t1)(1 − t2)). So we can define

φ+
0 := −1, φ−

0 := − 1
t1t2

.

All the operators φ±
s are diagonalizable in the fixed point basis according to

Proposition 4.1.
Now we compute the matrix elements of the left-hand side and right-hand

side of (12) in the fixed point basis. It is enough to check for any Young diagrams
λ,λ′ = λ + i1, the following equality:

(φ+
i+3ej − σ1φ

+
i+2ej+1 + σ2φ

+
i+1ej+2 − σ3φ

+
i ej+3)[λ,λ′]

(15)
= (σ3ejφ

+
i+3 − σ2ej+1φ

+
i+2 + σ1ej+2φ

+
i+1 − ej+3φ

+
i )[λ,λ′].

Let us denote χ1 := tj11 ti1−1
2 , where j1 := λi1 + 1. Taking into account the

equality ej+k [λ,λ′] = χk
1ej [λ,λ′] and the diagonalizability of φi, we reduce the above

equation to the following:

(φ+
i+3 − σ1χ1φ

+
i+2 + σ2χ

2
1φ

+
i+1 − σ3χ

3
1φ

+
i )|λ′

(16)
= (σ3φ

+
i+3 − σ2χ1φ

+
i+2 + σ1χ

2
1φ

+
i+1 − χ3

1φ
+
i )|λ,

where φ+
j = 0 whenever j < 0.

First, we prove the analogous equation for γi:

(γi+3 − σ1χ1γi+2 + σ2χ
2
1γi+1 − σ3χ

3
1γi)|λ′

(17)
= (σ3γi+3 − σ2χ1γi+2 + σ1χ

2
1γi+1 − χ3

1γi)|λ,

Proof of equation (17)
First case. The summand in the expression for γi corresponds to the corner �i2,j2

which appears in both sides of (17).

(a) Suppose i1 < i2, j1 > j2. Let us denote a := j1 − j2, b := i2 − i1, u :=
ta1 , v := tb2, χ2 := tj2−1

1 ti2−1
2 . So χ1/χ2 = uv−1. Then

(γi+3 − σ1χ1γi+2 + σ2χ
2
1γi+1 − σ3χ

3
1γi)|λ′ = P3

(1 − t−a
1 tb+1

2 )(1 − ta+1
1 t−b+1

2 )
(1 − t−a

1 tb2)(1 − ta+1
1 t−b

2 )

×
(

1 − σ1

(χ1

χ2

)
+ σ2

(χ1

χ2

)2

− σ3

(χ1

χ2

)3
)

= P3(u − v)−1(u − t2v)(v − t1t2u)(v − t2u)(v − t−1
1 t−1

2 u)v−3,

(σ3γi+3 − σ2χ1γi+2 + σ1χ
2
1γi+1 − χ3

1γi)|λ = P3
(1 − t−a+1

1 tb+1
2 )(1 − ta1t−b+1

2 )
(1 − t−a+1

1 tb2)(1 − ta1t−b
2 )
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×
(

σ3 − σ2

(χ1

χ2

)
+ σ1

(χ1

χ2

)2

−
(χ1

χ2

)3
)

= P3(u − t1t2v)(u − v)−1(v − t2u)(u − t2v)(u − t−1
1 t−1

2 v)v−3.

We obtained the same expressions.
(b) Suppose i1 > i2, j1 < j2. This case is completely analogous to (a).

Second case. The summand in the expression for γi corresponds to the hole
�i2,j2 which appears in both sides of (17). In this case everything is analogous
as the expression for the summands in γ corresponding to a corner and a hole
differ only by the sign.

Third case. Let us finally consider the summands occurring only in one side
of (17).

In this case the summands corresponding to deleting �i1,j1 in the left-hand
side of (17) and to inserting �i1,j1 in the right-hand side of (17) are equal. All
other summands are zero. (We use the argument that t−1

1 , t−1
2 are roots of the

polynomial 1 − σ1t + σ2t
2 − σ3t

3 again.) �

Now we are ready to verify equation (16).

Proof of equation (16)
If i > 0, then (16) follows directly from (17). So let us consider the remaining
cases: i = −3, −2, −1,0 (in the case i < −3 all summands are zero). According
to (17) and the relation between γi and φ±

i , we have to check only the following
equalities: φ+

0 |λ′ = φ+
0 |λ, φ−

0 |λ′ = φ−
0 |λ, φ+

1 |λ′ = (φ+
1 + (σ1 − σ2)χ1φ

+
0 )|λ, φ−

1 |λ′ =
(φ−

1 + (σ2 − σ1)χ−1
1 φ−

0 )|λ.

The first two are obvious since φ+
0 , φ−

0 are constant. It follows from Lemma 4.1
that γ1|μ = [e0, f1]|μ = −(1/(1 − t1)(1 − t2)) +

∑
�∈μ χ(�). So

φ+
1 |λ′ − φ+

1 |λ = (1 − t1)(1 − t2)(1 − t−1
1 t−1

2 )(γ+
1 |λ′ − γ+

1 |λ) = (σ1 − σ2)χ1φ
+
0

since (σ1 − σ2) = −(1 − t1)(1 − t2)(1 − t−1
1 t−1

2 ) and φ+
0 = −1.

The equation φ−
1 |λ′ = (φ−

1 +(σ2 − σ1)χ−1
1 φ−

0 )|λ is proved in the same way. �

The proof of (13) is entirely similar to that of (12), and so we omit it.
Finally, let us prove Φ+(z) = ψ+(z). From (16) we get

Φ+(z)(1 − σ1χ1z
−1 + σ2χ

2
1z

−2 − σ3χ
3
1z

−3)|λ′

= Φ+(z)(σ3 − σ2χ1z
−1 + σ1χ

2
1z

−2 − χ3
1z

−3)|λ.

Thus

Φ+(z)|λ′ = Φ+(z)|λ · (1 − t−1
1 χ1z

−1)(1 − t−1
2 χ1z

−1)(1 − t1t2χ1z
−1)

(1 − t1χ1z−1)(1 − t2χ1z−1)(1 − t−1
1 t−1

2 χ1z−1)
.
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By induction Φ+(z)|λ = A · c(z), where A is a coefficient of proportionality,
which is equal to A = Φ+(z)|empty (that is, here empty means an empty diagram)

A = φ+
0 − (1 − t−1

1 t−1
2 )

∑
i<0

zi = −1 − (1 − t−1
1 t−1

2 )z−1

1 − z−1
= − 1 − t−1

1 t−1
2 z−1

1 − z−1
.

So Φ+(z) = ψ+(z), and analogously one gets Φ−(z) = ψ−(z). �
Theorem 3.1 is proved. �

5. The action of the shuffle algebra on M

In the previous section we constructed the action of the Ding-Iohara algebra A on
M . Unfortunately, the parameters q1, q2, q3 were not generic (we had q1q2q3 = 1),
so Theorem 2.1 does not give the representation of S automatically. However, if
we write the formulas in the same way we get the representation of S on M .

Namely, we define the action of S on M in the following way. For any F ∈ Sn,
we say that for any Young diagrams λ,λ′ = λ + i1 + · · · + in (i1 ≤ i2 ≤ · · · ≤ in)
the matrix element

(18) F |[λ,λ′] :=
F (χ1, . . . , χn)∏

1≤a<b≤n λ(χia , χib
)

n∏
k=1

e0[λ+i1+···+ik−1,λ+i1+···+ik],

where χik
is the character of the kth added box to λ. All other matrix elements

are zero.
Now we prove the following theorem.

THEOREM 5.1

Formula (18) gives a representation of the shuffle algebra S on M .

First, we note that the following proposition holds.

PROPOSITION 5.1

If λ,λ+j1, λ+j1+j2, . . . , λ
′ = λ+j1+ · · · +jn are Young diagrams, then F |[λ,λ′] =

(F (χ1, . . . , χn)/
∏

1≤a<b≤n λ(χja , χjb
))

∏n
k=1 e0[λ+j1+···+jk−1,λ+j1+···+jk], where

χjk
is the character of the kth added box to λ. (We are adding boxes in the

following order: j1, then j2, and so on.) So the formula for the matrix elements
does not depend on the order of adding the boxes.

Proof
As the symmetric group is generated by transpositions, it is enough to check the
statement only for them. But the case of transpositions follows from relation (1).
This completes the proof of proposition. �

Now we prove the theorem.

Proof of Theorem 5.1
Let F ∈ Sm,G ∈ Sn, and let λ,λ′ = λ + j1 + · · · + jm+n be the Young diagrams.
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Then by Proposition 5.1,

(F ◦ G)|[λ,λ′] = Sym
( G(χ1, . . . , χn)∏

1≤a<b≤n λ(χja , χjb
)

n∏
k=1

e0[λ+j1+···+jk−1,λ+j1+···+jk]

× F (χn+1, . . . , χn+m)∏
n+1≤a<b≤n+m λ(χja , χjb

)

n+m∏
k=n+1

e0[λ+j1+···+jk−1,λ+j1+···+jk]

)

= Sym
(G(χ1, . . . , χn)F (χn+1, . . . , χn+m)

∏n+m
k=1 e0[λ+j1+···+jk−1,λ+j1+···+jk]∏

1≤a<b≤n λ(χja , χjb
)
∏

n+1≤a<b≤n+m λ(χja , χjb
)

)
.

On the other hand,

(G ∗ F )(χ1, . . . , χn+m)

= Sym
(
G(χ1, . . . , χn)F (χn+1, . . . , χn+m)

∏
1≤a≤n<b≤n+m

λ(χia , χib
)
)
.

Thus applying Proposition 5.1, we get

(F ◦ G)|[λ,λ′] = (G ∗ F )|[λ,λ′].

This completes the proof of the theorem. �

Let us recall the definition of operators Ki ∈ Si (i ∈ N) from Theorem 2.3:

K2(z1, z2) =
(z1 − q1z2)(z2 − q1z1)

(z1 − z2)2
, Kn(z1, . . . , zn) =

∏
1≤i<j≤n

K2(zi, zj),

with the specialization q1 = t1. Then we have the following.

COROLLARY 5.1

If i1 < i2 < · · · < in and λ + i1 + · · · + in is a Young diagram the matrix element

Kn|[λ,λ′=λ+i1+···+in]

=
∏

1≤a<b≤n

(χa − χb)(χb − t1χa)
(χa − t2χb)(χa − t−1

1 t−1
2 χb)

∏
1≤r≤n

e0[λ+i1+···+ir−1,λ+i1+···+ir],

where χa = t
λia
1 tia −1

2 .

All other matrix elements are zero.

REMARK 5.1

We have constructed the actions of Ding-Iohara and shuffle algebras on M . While
the action of the Ding-Iohara algebra is purely geometric (it is given by operators
ei, fi, ψ

±
i ), the action of the shuffle algebra unfortunately is algebraic. Neverthe-

less, according to the criteria of Theorem 2.2, elements Ki belong to the subalge-
bra generated by S1, and so they are geometrically represented since S1 ⊂ Ξ(A+)
(see Theorem 2.1).
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6. Macdonald polynomials. Heisenberg algebra and vertex operators over it

6.1. Macdonald polynomials
In this subsection, we review basic facts about Macdonald polynomials. Our basic
reference is Macdonald’s book [7].

Recall that the algebra ΛF of symmetric functions over F = Q(q, t) is freely
generated by the power-sum symmetric functions pk, where k ∈ N; that is,

Λ = F [p1, p2, . . .].

For any diagram λ = (λ1, . . . , λk) = (1m12m2 · · · ), we define

pλ := pλ1 · · · pλk
, zλ :=

∏
r≥1

rmrmr!.

Consider the Macdonald inner product (·, ·)q,t, s.t.

(pλ, pμ)q,t = δλ,μzλ

∏
1≤i≤k

(1 − qλi)/(1 − tλi).

DEFINITION 6.1

Macdonald polynomials Pλ are characterized by two conditions:

(a) Pλ = mλ + lower terms;
(b) (Pλ, Pμ)q,t = 0 if λ �= μ.

Here by lower terms we mean mμ for μ ≺ λ.
Let er be the rth elementary symmetric function. The following result, called

the Pieri formula, is proved in [7, Section VI.6].

LEMMA 6.1

We have Pμer =
∑

λ ψλ/μPλ, where the sum is taken over λ such that λ/μ is a
vertical r-strip. Here

(19) ψλ/μ =
∏ (1 − qμi −μj tj−i−1)(1 − qλi −λj tj−i+1)

(1 − qμi −μj tj−i)(1 − qλi −λj tj−i)
,

where the product is taken over all pairs (i, j) such that i < j and λi = μi, λj =
μj + 1.

In particular,

(20) ψμ+j/μ =
j−1∏
i=1

(1 − qμi −μj tj−i−1)(1 − qμi −μj −1tj−i+1)
(1 − qμi −μj tj−i)(1 − qμi −μj −1tj−i)

.

6.2. Fixed points via Macdonald polynomials
Now we prove that the basis [λ] of M can be normalized in such a way that
normalized Ki ∈ Si acts as ei in the basis of Macdonald polynomials in ΛF . The
normalization is found by comparing the matrix elements of K1 with the matrix
elements of e1 in the basis of Macdonald polynomials.
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We define the normalized vectors 〈λ〉 := cλ · [λ], where

(21) cλ :=
(

−(1 − t2)−1t2
)− |λ|

t
∑

i (λi(λi −1))/2
1

∏
�∈λ

(1 − t
l(�)
1 t

−a(�)−1
2 )

−1
.

First, we check the following lemma.

LEMMA 6.2

Let λ = (λ1, . . . , λk). Then (1 − t1)(1 − t2)K1〈λ,λ+j〉 = ψλ+j/λ|q:=t1,t:=t−1
2

.

REMARK 6.1

This lemma means that (1 − t1)(1 − t2)K1 = (1 − t1)(1 − t2)Ξ(e0) acts in a nor-
malized basis like an operator of multiplication by e1 in the basis of Macdonald
polynomials. Moreover, this condition defines a normalization uniquely up to a
mutual factor.

Proof of Lemma 6.2

cλ+j

cλ
= −t

λj

1 t−1
2 (1 − t2)

∏
�∈Σ1(�j,λj+1)

1 − t
l(�)
1 t

−a(�)−1
2

1 − t
l(�)+1
1 t

−a(�)−1
2

×
∏

�∈Σ2(�j,λj+1)

1 − t
l(�)
1 t

−a(�)−1
2

1 − t
l(�)
1 t

−a(�)−2
2

(1 − t−1
2 )−1.

Now we compute the products above:

∏
�∈Σ2(�j,λj+1)

1 − t
l(�)
1 t

−a(�)−1
2

1 − t
l(�)
1 t

−a(�)−2
2

=
∏
i<j

1 − t
λi −λj −1
1 ti−j

2

1 − t
λi −λj −1
1 ti−j−1

2

,

∏
�∈Σ1(�j,λj+1)

1 − t
l(�)
1 t

−a(�)−1
2

1 − t
l(�)+1
1 t

−a(�)−1
2

=
(1 − t−1

2 )

(1 − t
λj

1 tj−k−1
2 )

k∏
i>j

1 − t
λj −λi

1 tj−i−1
2

1 − t
λj −λi

1 tj−i
2

= −(1 − t−1
2 )

∞∏
i>j

1 − t
λi −λj

1 ti−j+1
2

1 − t
λi −λj

1 ti−j
2

t2t
−λj

1 .

Thus

cλ+j

cλ
= (1 − t2)

∞∏
i>j

1 − t
λi −λj

1 ti−j+1
2

1 − t
λi −λj

1 ti−j
2

∏
i<j

1 − t
λi −λj −1
1 ti−j

2

1 − t
λi −λj −1
1 ti−j−1

2

.

On the other hand, it follows from Proposition 3.1 that

e0[λ,λ+j] = (1 − t1)−1
∞∏

1≤i 
=j

1 − t
λi −λj

1 ti−j+1
2

1 − t
λi −λj

1 ti−j
2

.
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After the specializing of formula (20) for parameters q := t1, t := t−1
2 , we have

ψλ+j/λ =
j−1∏
i=1

(1 − t
λi −λj

1 ti−j+1
2 )(1 − t

λi −λj −1
1 ti−j−1

2 )

(1 − t
λi −λj

1 ti−j
2 )(1 − t

λi −λj −1
1 ti−j

2 )
.

Now it is straightforward to check that

ψλ+j/λ = (1 − t1)(1 − t2)e0[λ,λ+j] · cλ

cλ+j
. �

We denote dn := (−t1)n−1/((1 − t1)(1 − t2)).

THEOREM 6.1

For any Young diagrams μ ⊂ λ such that λ/μ is a vertical n-strip with the boxes
located in the rows j1 < · · · < jn, we have: 1

d1···dn
Kn〈μ,λ〉 = ψλ/μ|q:=t1,t:=t−1

2
.

Proof
According to Corollary 5.1,

Kn[μ,λ] =
∏

1≤a<b≤n

(χa − χb)(χb − t1χa)
(χa − t2χb)(χa − t−1

1 t−1
2 χb)

∏
1≤r≤n

e0[λ−jr −···−jn,λ−jr+1−···−jn],

where χa = t
λja −1
1 tja −1

2 . Hence in the normalized basis,

Kn〈μ,λ〉

=
∏

1≤a<b≤n

(χa − χb)(χb − t1χa)
(χa − t2χb)(χa − t−1

1 t−1
2 χb)

∏
1≤r≤n

e0〈λ−jr − · · · −jn,λ−jr+1−···−jn 〉.

After specializing q := t1, t := t−1
2 the coefficients in the formula (19) look as

follows:

(22) ψλ/μ =
∏ (1 − t

μi −μj

1 ti−j+1
2 )(1 − t

λi −λj

1 ti−j−1
2 )

(1 − t
μi −μj

1 ti−j
2 )(1 − t

λi −λj

1 ti−j
2 )

,

where the product is taken over all pairs (i, j) such that j = jb for some 1 ≤ b ≤ n

and j > i �= ja for any a.
Applying Lemma 6.2 we get that the right-hand side of (22) is equal to

∏
j1,...,jb−1 
=i<jb

(1 − t
μi −μjb
1 ti−jb+1

2 )(1 − t
λi −λjb
1 ti−jb −1

2 )

(1 − t
μi −μjb
1 ti−jb

2 )(1 − t
λi −λjb
1 ti−jb

2 )

=
∏
a<b

(1 − t
λja −λjb

+1

1 tja −jb

2 )(1 − t
λja −λjb
1 tja −jb

2 )

(1 − t
λja −λjb

+1

1 tja −jb+1
2 )(1 − t

λja −λjb
1 tja −jb −1

2 )

·
e0〈λ−jb −···−jn,λ−jb+1−···−jn 〉

d1
.

Finally,

∏
a<b

(1 − t
λja −λjb

+1

1 tja −jb

2 )(1 − t
λja −λjb
1 tja −jb

2 )

(1 − t
λja −λjb

+1

1 tja −jb+1
2 )(1 − t

λja −λjb
1 tja −jb −1

2 )
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=
∏
a<b

(χb − t1χa)(χb − χa)
(χb − t1t2χa)(χb − t−1

2 χa)
=

∏
1≤a<b≤n

(χa − χb)(χb − t1χa)
(χa − t2χb)(χa − t−1

1 t−1
2 χb)

(−t1)1−b.

This completes the proof of Theorem 6.1. �

6.3. Heisenberg action on M through vertex operators
The results of Section 6.2 provide us with an isomorphism Θ : M → ΛF which
takes the normalized fixed point basis 〈λ〉 to Macdonald polynomial Pλ and which
sends operators K̃i := (1/d1 · · · di)Ki to operators of multiplication by ei.

On the other hand, there is a well-known identity of generalized functions:

1 +
∑
i>0

eiz
i = exp

(∑
i>0

(−1)i−1

i
piz

i
)
.

Hence the operators K̃i acting on M , which may be viewed as a Fock space
over pi, are vertex operators over half of the Heisenberg algebra {hi}i>0. The iso-
morphism Θ takes hi to operators of multiplication by pi (for i > 0). As a result,
an action of the positive part of the Heisenberg algebra is obtained. Obviously
starting from fi instead of ei we get in the analogous way the vertex opera-
tors over the negative half of the Heisenberg algebra. This provides Heisenberg
algebra action on M .

REMARK 6.2

The disadvantage of our approach is that we do not know explicit formulas for
Ki in terms of xj1 ∗ xj2 ∗ · · · ∗ xji .

6.4. Specialization: q = tα, t → 1
In [6] the authors studied the action of the Heisenberg algebra on the sum of local-
ized equivariant cohomologies R :=

⊕
n H2n

T
(X [n]) ⊗HT(pt) Frac(HT(pt)). They

proved that under certain normalizations of the fixed point basis there is an
isomorphism Δ : M → ΛF , which sends the basis of fixed points to Jack polyno-
mials, and {hi}i>0 are sent to operators of multiplication by pi. It is also known
(see [7]) that Jack polynomials J

(α)
λ can be obtained from the Macdonald poly-

nomials P
(q,t)
λ by specializing q := tα, t → 1. Considering the above-mentioned

specialization of our normalization (21) we get the same formulas for normal-
ization as those of [6] multiplied by some scalar∗ (see formulas (2.12), (2.14) of
[6], and note that l(�), a(�) are interchanged with our notations). So as the
formulas in the fixed point basis in H• are additive analogues of the formulas for
K•, our approach gives the same action of the Heisenberg algebra on R as the
approach using higher correspondences P [i]i∈Z.

∗This scalar comes from the fact that we used slightly different correspondences from Naka-

jima’s construction. While we use the whole P [1] (resp., P [−1]), Nakajima used only part of it,
consisting of those (J1, J2) ∈ P [1], such that the quotient is supported at a single point (which

is automatic) with zero y-coordinate (resp., x-coordinate).
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7. Whittaker vector

Let us consider the element v =
∑

n≥0 [OX[n] ] from a completion of our space M .
In the sequel we call this element the Whittaker vector. This term is justified by
the following theorem and [1, Section 2.30].

THEOREM 7.1

Consider K̃−n := (1/d1 · · · dn)K−n in the analogy with K̃n from Section 6.3. Then
for any n ≥ 1 we have K̃−n(v) = C̃n · v with C̃n = (1 − t2)n/((1 − t2)(1 − t22) · · ·
(1 − tn2 )).

Before proving this theorem we will need a technical result.

PROPOSITION 7.1

In the basis [λ] the vector v is decomposed as follows:

v =
⊕

λ

aλ · [λ], aλ =
∏
�∈λ

(
(1 − t

l(�)+1
1 t

−a(�)
2 )(1 − t

−l(�)
1 t

a(�)+1
2 )

)−1
.

Proof
This follows from the Bott-Lefschetz fixed point formula. �

Proof of Theorem 7.1
The theorem is proved in two steps.

Step 1: Case n = 1.
In this case the statement follows from K−1(v) = C1 · v with C1 = 1/((1 −

t1)(1 − t2)) (indeed, then C̃1 = d−1
1 · C1 = 1). Since K−1 = f0, to prove K−1(v) =

C1 · v it is enough to check for any Young diagram λ the following identity: C1 ·
aλ =

∑
j≤k+1 f0[λ+j,λ] · aλ+j , where k is a height of a diagram λ. Using Lemma 3.1

this is equivalent to
(23)

C1 =
∑

j≤k+1

aλ+j

χ · aλ

∏
s∈Σ1(�j,λj+1)

1 − t
l(s)+1
1 t

−a(s)
2

1 − t
l(s)
1 t

−a(s)
2

∏
s∈Σ2(�j,λj+1)

1 − t
−l(s)
1 t

a(s)+1
2

1 − t
−l(s)
1 t

a(s)
2

,

where χ = t
λj

1 tj−1
2 . Applying Proposition 7.1 for computing aλ and aλ+j , we see

that (23) is equivalent to
(24)

1 =
∑

j≤k+1

χ−1
∏

s∈Σ1(�j,λj+1)

1 − t
−l(s)+1
1 t

a(s)+1
2

1 − t
−l(s)
1 t

a(s)+1
2

∏
s∈Σ2(�j,λj+1)

1 − t
l(s)+1
1 t

−a(s)+1
2

1 − t
l(s)+1
1 t

−a(s)
2

.

Denote xj = t
λj

1 tj2. Let us rewrite the right-hand side of (24):

∏
s∈Σ2(�j,λj+1)

1 − t
l(s)+1
1 t

−a(s)+1
2

1 − t
l(s)+1
1 t

−a(s)
2

=
∏
i<j

1 − t
λi −λj

1 t1+i−j
2

1 − t
λi −λj

1 ti−j
2

=
∏
i<j

xj − t2xi

xj − xi
,



Equivariant K-theory of Hilbert schemes via shuffle algebra 851

∏
s∈Σ1(�j,λj+1)

1 − t
−l(s)+1
1 t

a(s)+1
2

1 − t
−l(s)
1 t

a(s)+1
2

=
1 − t2

1 − t
−λj

1 tk−j+1
2

∏
k≥i>j

1 − t
λi −λj

1 t1+i−j
2

1 − t
λi −λj

1 ti−j
2

=
∏

k≥i>j

xj − t2xi

xj − xi
· (1 − t2)xj

xj − tk+1
2

.

Hence equality (24) is equivalent to the following identity:

(25) 1 =
∑

j≤k+1

χ−1
∏

k≥i 
=j

xj − t2xi

xj − xi
· (1 − t2)xj

xj − tk+1
2

.

Using xk+1 = tk+1
2 , we have ((1 − t2)xj)/(xj − tk+1

2 ) = (xj − t2xk+1)/(xj −
xk+1) · ((1 − t2)xj)/(xj − tk+2

2 ). From this observation and χ−1 = t2/xj we are
reduced to proving

(26) 1 =
∑

j≤k+1

∏
k+1≥i 
=j

xj − t2xi

xj − xi
· t2(1 − t2)
xj − tk+2

2

.

Let us denote the right-hand side of (26) by F (x1, . . . , xk+1), where x1 =
tλ1
1 t2, . . . , xk = tλk

1 tk2 , xk+1 = tk+1
2 . If we set λ1 = · · · = λk = 0, then it is easy to see

that F (x1, . . . , xk+1) = 1. Since F is a rational function in x1, . . . , xk, xk+1 = tk+1
2

the degree of whose numerator is not bigger then the degree of the denominator,
to prove identity (26) it is enough to show that F does not have poles. The only
possible poles can occur at xj = tk+2

2 and diagonals xi = xj . In the first case,
xj − t2xk+1 = 0, and hence there is no pole in fact. It is also obvious that on the
diagonals xi = xj there are no poles as well. So (26) is proved. This finishes the
proof of Step 1.

Step 2: Case n ≥ 2.

Let Cn = (−t1)n(n−1)/2/((1 − t1)n(1 − t2) · · · (1 − tn2 )). We want to prove
K−n(v) = Cn · v. This implies the statement of the theorem since K̃−n := 1/(d1 · · ·
dn)K−n.

To prove K−n(v) = Cn · v it is enough to check for any Young diagram λ the
following identity: Cn =

∑
K−n[λ+i1+···+in,λ] · aλ+i1+···+in/aλ, where the sum is

over all sets of indices i1 ≤ · · · ≤ in, such that λ+ i1 + · · · + in is a Young diagram.
The matrix elements K−n[λ+i1+···+in,λ] are computed similarly to Corollary 5.1.
Namely,

K−n[λ+i1+···+in,λ]

=
∏

1≤a<b≤n

(χa − χb)(χb − t1χa)
(χa − t2χb)(χa − t−1

1 t−1
2 χb)

∏
1≤r≤n

f0[λ+i1+···+ir,λ+i1+···+ir−1],

where χa = t
λia
1 tia −1

2 .

Hence

K−n[λ+i1+···+in,λ] · aλ+i1+···+in

aλ
=

∏
1≤a<b≤n

(χa − χb)(χb − t1χa)
(χa − t2χb)(χa − t−1

1 t−1
2 χb)

(27)
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×
∏

1≤r≤n

f0[λ+i1+···+ir,λ+i1+···+ir−1]
aλ+i1+···+ir

aλ+i1+···+ir−1

.

Using the computations from the Case 1, we see

f0[λ+i1+···+ir,λ+i1+···+ir−1]
aλ+i1+···+ir

aλ+i1+···+ir−1

=
∏

kr ≥i 
=ir

xir − t2xi

xir − xi
· t2(1 − t2)
xir − tkr+1

2

× (1 − t1)−1(1 − t2)−1 =
∏

k+n≥i 
=ir

xir − t2xi

xir − xi
· t2

(1 − t1)(xir − tk+n+1
2 )

,

where kr denotes the height of a diagram λ + i1 + · · · + ir−1.
So the right-hand side of (27) is equal to∏

1≤a<b≤n

(χa − χb)(χb − t1χa)
(χa − t2χb)(χa − t−1

1 t−1
2 χb)

×
∏

1≤r≤n

( t2
1 − t1

1
xir − tk+n+1

2

∏
k+n≥i 
=ir

xir − t2xi

xir − xi

)

=
∏

1≤r≤n

(
(−t1t2)r−1 t2

1 − t1

1
(xir − tk+n+1

2 )

∏
k+n≥j 
=i1,...,in

xir − t2xj

xir − xj

)
.

Define

G(x1, . . . , xk+n)

:=
∑

i1<···<in

∏
1≤r≤n

(
(−t1t2)r−1 t2

1 − t1

1
(xir − tk+n+1

2 )

∏
k+n≥j 
=i1,...,in

xir − t2xj

xir − xj

)
.

It is a rational function in variables x1, . . . , xk, xk+1 = tk+1
2 , . . . , xk+n = tk+n

2

with the degree of the numerator not bigger than the degree of the denominator.
Moreover, we claim that it does not have poles. Indeed, the poles can occur only at
xis = tk+n+1 or on diagonals xi − xj . But arguments similar to those from Case 1
show that there are no poles in fact. (It is crucial that xk+1 = tk+1

2 , . . . , xk+n =
tk+n
2 .)

Thus G(x1, . . . , xk+n) is constant. Let us calculate its value at xm = tm2 1 ≤
m ≤ k + n. In the expression for G survives only a summand corresponding to
i1 = 1, . . . , in = n. (All others are zero.) Hence

G = (−t1t2)n(n−1)/2 tn2
(1 − t1)n

1
(t2 − tk+n+1

2 ) · · · (tn2 − tk+n+1
2 )

×
∏

n+1≤j≤n+k

(t2 − tj+1
2 ) · · · (tn2 − tj+1

2 )
(t2 − tj2) · · · (tn2 − tj2)

= (−t1t2)n(n−1)/2 tn2
(1 − t1)n

t
−n(n+1)/2
2

1
(1 − t2) · · · (1 − tn2 )

= Cn.

This finishes the proof of the theorem. �
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Since the action of the negative half of the Heisenberg algebra was constructed
using

(28) 1 +
∑
i>0

K̃−iz
i = exp

(∑
i>0

(−1)i−1

i
h−iz

i
)
,

we get the following corollary.

COROLLARY 7.1

We have h−i(v) = αi · v, where αi = (−1)i−1((1 − t2)i/(1 − ti2)).

Proof
The fact that the vector v is an eigenvector for all h−i immediately follows from
Theorem 7.1 and (28). Now we compute the eigenvalues αi explicitly. Using
the well-known formula

∑
i≥0

zi

(1−t)(1−t2)···(1−ti) =
∏

i≥0(1/(1 − tiz)) and Theo-
rem 7.1, we get∑

i>0

(−1)i−1

i
αiz

i = ln
(∑

i≥0

(1 − t2)i

(1 − t2)(1 − t22) · · · (1 − ti2)
zi

)

= − ln
(∏

i≥0

(
1 − ti2(1 − t2)z

))
=

∑
i≥0

∑
j≥1

tij2 (1 − t2)jzj

j
=

∑
j≥1

(1 − t2)j

1 − tj2
· zj

j
.

Thus we get αi = (−1)i−1((1 − t2)i/(1 − ti2)). �

Let [h−i,hi] = γi, and let v0 = [OX[0] ] ∈ M . Then we get the following exponential
expression for the Whittaker vector v.

PROPOSITION 7.2

We have v = exp(
∑

i>0 (αi/γi)hi)v0.

Proof
Since our representation is isomorphic to a representation of the Heisenberg alge-
bra in a Fock space, it boils down to a standard fact. �

REMARK 7.1

Completely analogously we can consider the Whittaker vector u in R :=⊕
n H2n

T
(X [n]) ⊗HT(pt)Frac(HT(pt)). It is even easier to see u = exp((1/��′)h1)u0,

and hence u is also an eigenvector with respect to the negative half of the Heisen-
berg algebra.
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