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EQUIVARIANT K-THEORY

GRAEME SEGAL, Oxford

§ i. INTRODUCTION AND PRELIMINARIES

The purpose of this paper is to set down the basic facts about equivariant K-theory.

The theory was invented by Professor Atiyah, and most of the results are due to him.

Various applications can be found in [2], [6], [n]. I shall assume the reader has some

acquaintance with ordinary K-theory ([5], [3], [4J, [2]), and shall only sketch the

development ot the equivariant theory when it is parallel to the ordinary case.

The theory is defined on spaces with group action: Let us choose a fixed topo-

logical group G; then a G-space is a topological space X together with a continuous

action G X X ~^X, written {g, x) \->g. x, satisfying the usual conditions g . ( g ' . x) == {gg^x

and i.x==x.

We are going to construct a cohomology theory by considering the equivariant

vector bundles on G-spaces: I shall have to begin with a collection of definitions and

simple facts concerning equivariant vector bundles, modelled precisely on the discussion

in [3]-
If X is a G-space, a G-vector bundle on X is a G-space E together with a G-map

p:E-^X (i.e. p{g^)=g.p{W such that

(i) p : E ->X is a complex vector bundle on X, i.e. the fibres E^=p~
i
{x) for ^eX

are finite-dimensional complex vector spaces, and the situation is locally trivial in a

familiar sense [3] 5 and

(ii) for any geG and A-eX the group action ^:E^-^E^ is a homomorphism

of vector spaces.

If, for example, X is a trivial G-space (i.e. g.x==x for all geG and xe'X) a

G-vector bundle is a family of representations E^ of G parametrized by the points A: of X

and varying continuously with x in a certain sense.

G-vector bundles are fairly common in nature. I shall mention three kinds of

example:

a) If X is a differentiable manifold and G is a Lie group which acts smoothly

on X then the complexified tangent bundle Tx®C of X is a G-vector bundle, and so

are all the associated tensor bundles.

b) IfE is any vector bundle on a space X then the A:-fold tensor product E® . . . ®E
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is in a natural way an S^-vector bundle on X, where S^ is the symmetric group which

permutes the factors of the product, and X is regarded as a trivial S^-space.

c ) Homogeneous vector bundles. Let us determine the G-vector bundles on the space

of cosets G/H, when H is a closed subgroup of G. If TC : E -»G/H is such a G-vector-

bundle then the fibre EQ over the neutral coset is an H-module which, as we shall

see, determines E completely. The action of G on E induces a map GxEo->E,

which can be regarded as a map a.-GXnEo-^E, where GXnEo means the space

of orbits of GxEo under H, when H acts on it by (A, g, ^) l—G^"1, A^). If

G acts on GXnEo by (^, g\ ̂  |-> {gg\ ̂ ) then a is a G-map, and is a homeo-

morphism: for one can construct its inverse as follows. .Consider the homeomorphism

( B : G x E - G x E defined by (B (^, ^) = (g, g-
1 ̂ ). The inverse image under (B of G X EQ

is Gx^E=={{g^)eGxE :^H=^}. The natural map GX^E-^GX^ factorizes

through the projection (g, S) h^S of Gx^E on to E, which is an open map. The

resulting map [B : E—GXnEo is the inverse of a. Thus any G-vector bundle on G/H
it is of the form Gx^jEo for some H-module Eo.

Conversely, ifH is locally compact, and Eo is any H-module, G X^EQ is a G-vector-

bundle on G/H. The only thing in question is local triviality. Now if G->G/H is

locally trivial then GXnEo looks locally like (UxH)XnEo, i.e. UxEo, where U is

an open set of G/H, and so it is also locally trivial. This deals with the case when H

is a Lie group ([13], p. 315). But in general one can write GXHEQ=(G/N)X(H/N)EO,

where N is the kernel of the action ofH on E(). H/N is a Lie group, so we are reduced
to the earlier case.

Of course if M is any G-module (finite-dimensional complex representation space

ofG) and X is any G-space one can form the G-vector bundle X x M on X, which I shall

call trivial, and denote by M when there is no risk of confusion.

The sections of a G-vector bundle E-^X are the maps J :X-^E such that

ps==id. They form a vector space FE. If a section is a G-map it is called equivariant:

the equivariant sections form a vector subspace r°E of FE which is the space of fixed
points of the natural action of G on FE.

If E and F are two G-vector bundles on X one can form their sum E<9F,

a G-vector bundle on X with (E®F)^=E^®F^; and similarly the tensor product E®F,
and a bundle Hom(E; F) with {Hom(E; F))^=Hom(E^ FJ.

A homomorphism /: E^F of G-vector bundles on X is a continuous G-map

which induces a homomorphism of vector spaces j^ :E^->F^ for each ^eX. The

homomorphisms form a vector space isomorphic to F^^HomfE; F).

If cp : Y-^X is a G-map of G-spaces, and E is a vector bundle on X, then one

can form a G-vector bundle cp*E on Y with (<p*E)y==E^, just as in the ordinary case.

More generally, if Y is an H-space, X a G-space, a : H^G a homomorphism, and

9^-^X such that (p(A.^)==a(A) .9(7), then <p*E is an H-vector bundle on Y. If

i ' " Y->X is the inclusion of a subspace, FE is often written E[Y.
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EQUIVARIANT K-THEORY 131

For the rest of this paper I shall assume that G is a compact group, and I shall

continually perform integrations over G with respect to the Haar measure. (One can

integrate any continuous function G-^F with values in a hausdorff, locally convex,

and complete topological vector space ([8], Chap. 3, § 4).) Also, for the most part I shall

confine myself to compact G-spaces X.

Let E be a G-vector bundle on a compact G-space X. If the vector

space FE is given the compact-open topology then G acts continuously on it in

the sense that GxFE->FE is continuous. For the continuity of the G-action

GxMap(X;E)-.Map(X;E) follows from that of the map GxXxMap(X; E) ->E

defined by {g, x, s) }-^g.s(g~~
l
x). It is obvious that FE is hausdorff, locally convex,

and complete. (It becomes a Banach space if one chooses a hermitian metric in E.)

So one can <c average ?? a section of E over the group to obtain an equivariant section.

We need a string of lemmas generalizing those of [3].

Proposition (i. i). — If E is a G-vector bundle on a compact G-space X, and A is a dosed

G-subspace <?/X, then an equivariant section o/}L\A can be extended to an equivariant section ofJL.

One simply extends the section arbitrarily, as in [3], and then averages it over G.

By applying Proposition (1.1) to the G-vector bundle Hom(~E; F) we obtain, just

as in [3] :

Proposition (1 .2) . — In the situation of (i. i), z/'F is another G-vector bundle on X and

f : E | A ->F [ A is an isomorphism then there is a G-neighbourhood U of A in X and an isomorphism

/:E|U—F|U extending/.

And Proposition (1 .2 ) implies in turn [3]:

Proposition (1.3). — If <po, <pi : Y->X are G-homotopic G-maps, and Y is compact,

and E is a G-vector bundle on X, then (p^E^y^E.

Example. -— (1.3) implies that the representations of a compact group are
cc discrete ??. For if X is a path-connected trivial G-space then E is just a continuous

family of G-modules {E^gx? anc^ ( i^) implies that E^Ey for any ^,j^eX.

We need to know also that G-vector-bundles can be constructed by clutching:

if X is the union of compact G-subspaces X^, Xg with intersection A, and E^, Eg are

G-vector bundles on X^, Xg, and a : E ^ j A — ^ E g j A is an isomorphism, then there is a

unique G-vector bundle E on X with isomorphisms E | X^ ̂  E^, E | Xg ̂  Eg compatible

with a. The group G is irrelevant in the proof of this proposition, so I shall not

repeat it.

Finally, if f : E -^F is a morphism of G-vector bundles on X such that f^ : Ep -^Fa;

is an isomorphism for each ^eX, then^is an isomorphism, i.e. it has an inverse. Again G

is irrelevant.
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§ 2. EQUIVARIANT K-THEORY

Let X be a compact G-space.

The set of isomorphism classes of G-vector bundles on X forms an abelian semi-

group under ©. The associated abelian group is called K(^(X) : its elements are

formal differences Eo—E^ of G-vector bundles on X, modulo the equivalence relation

EO—EI=EO—E^EO®E^©F^EO©EI©F for some G-vector bundle F on X.

The tensor product of G-vector bundles induces a structure of commutative ring

in K^(X).

If <p : Y-^X is a G-map of compact G-spaces the functor E|-><p*E induces a

morphism of rings (p* : K^(X) —K^(Y), so that K^ is a contravariant functor from

compact G-spaces to commutative rings. A homomorphism oc :H-^G induces a

morphism of c < restriction 5? K^(X) ->KH(X); and, more generally, if 9 : Y-^X is a

map from an H-space to a G-space compatible with a, one has cp* : K^(X) -^Kg(Y).

If G==i one writes, of course, K(X) for K^(X).

Examples. — (i) If X is a point then K^(X)^R(G), the representation ring, or

character ring, of G (cf. [5], [16]) — for a G-vector bundle is then just a G-module.

As a group R(G) is the free abelian group generated by the set G of simple G-modules.

In general K^(X) is an algebra over R(G), because any G-space X has a natural map

on to a point. (The morphism R(G) -^K^(X) is just Ml-^M.)

(ii) Ko(G/H) ̂  R(H) when H is a closed subgroup ofG. For we have seen that

the category of G-vector bundles on G/H is equivalent to the category of H-modules.

(iii) More generally, if X is a compact H-space one can form a compact G-space

(GXX)/H=GXHX. There is an embedding cp : X-^Gx^X which identifies X with

the H-subspace HXnX of GXjjX. The restriction 9* is an equivalence between

G-vector bundles on GXnH a^d H-vector bundles on X, inverse to the extension

El-^Gx^E: the argument of § i, ex. c ) applies without change.

For any compact G-space X the projection of X onto its orbit space X/G induces

a morphism pr* : K(X/G) ->K(^(X). Now if G acts freely on X (i.e. g.x==xog==i)

and E is a G-vector bundle on X, then E/G is a vector bundle on X/G. The only

non-trivial point is to show that E/G is locally trivial, which is always the case if G is

a compact Lie group (see [7], Chap. 7). But we shall see presently that a G-vector

bundle on X is always pulled back from a G/N-vector bundle on X/N, where N is some

normal subgroup of G such that G/N is a Lie group, so E/G is locally trivial in any

case. The functor El—^E/G is inverse to the functor pr*, in fact the natural G-maps

E—X, E->E/G induce an isomorphism E ^XXx/GE/G==pr*(E/G); while if F is a

vector bundle on X/G, the projection on to the second factor induces an isomorphism

(XXx/GF)/G=(pr*F)/G^F.

Thus we have proved
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EQUI VARIANT K-THEORY 133

Proposition (2.1).— IfG acts freely on X then pr*: K(X/G) ~^-> K^(X). More gene-

rally, ifN is a normal subgroup ofG which acts freely on X then pr*: K^/^X/N) —^ K^(X).

(Observing that X/N^ (G/N) X^X, one can combine everything said so far

into the statement that a homomorphism oc:G-^G' induces an isomorphism

K^(G'X(,X)-^KG(X) ifker(a) acts freely on X.)

Now let us consider the other extreme case, when G acts trivially on X. Then

we have a homomorphism K(X) -^K^(X) which gives a vector bundle the trivial

G-action. Combining this with the natural map R(G) -^Ko(X) we have a morphism

of rings R(G)®K(X) ^K^(X). In fact

Proposition (2.2). — If X is a trivial G-space the natural map

PL:R(G)OOK(X)->K^(X)

is an isomorphism of rings.

Proof. — I shall prove this by constructing an inverse to [JL. The point is to show that

a G-vector bundle can be decomposed into isotypical pieces which are locally trivial vector

bundles. Because G acts trivially on X, it acts in each fibre of a G-vector bundle E on X,

and there is an operation of averaging over G in each fibre, varying continuously. That

is to say, there is a projection operator (cf. [3]) in E whose image is the subset E° of E

pointwise invariant under G. So ([3], Lemma (i .4)) E° is a vector bundle on X, and

the functor Eh^E0 induces a homomorphism of abelian groups s : K.o(X) ->K(X). And

similarly for any G-module M the functor El—^.HW^M; E)=(^fow(M, E^ induces a

homomorphism 2^ : K^(X) ->K(X). I assert that the map v : K^(X) -^R(G)®K(X)

defined by v(S)= S [M]®£^(S) is the inverse of pi. If E is a G-vector bundle on X
[M]eG

we have a canonical isomorphism (B^ (M^.HW^M; E)) ->E (it is an isomorphism
^ [M]eG

because (B(M®Hom(M; EJ) -^> E^ for each fibre EJ, so [jiov==id. On the other hand

/W^Mi; M^E^TW^M^M^E if G acts trivially on E, and the last bundle

is E or o according as the simple G-modules M^, Mg are isomorphic or not. So vo^==id,

also.

Example. — If E is a vector bundle on a space X, I have mentioned that

E0^ == E® . . . ®E is an S^-vector bundle, where S^ is the symmetric group. The functor

'SL\->E
0k induces a natural transformation K(X)->Kg^(X). We know now that

Ks^X)^R(S^)®K(X), so for each element of R'(S^=Hom(R(S^; Z) we obtain a

natural transformation K(X) -^K(X). It turns out that the operations of this type

generate in a certain sense all the operations in K-theory [i].

Remark. — Proposition (2.2) is one of the few statements in this paper which does

not generalize directly to real equivariant K-theory. If E is a real G-vector bundle on
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a trivial G-space X then it must be decomposed U (M€)^Hom
G
(M', E)) -^> E, where M

runs through the simple real G-modules, D^ is the field of endomorphisms of M

(i.e. D^=R, C, or H), and Hom
G
(M', E) is a G-vector bundle over the field D^.

Thus KRG(X)^(KR(X)(X)R(G; R))©(K(X)®R(G; C))©(KH(X)®R(G; H)), where

R(G; D) is the free abelian group generated by the simple real G-modules M
with D^==D.

I should record also the following consequence of (1.3).

Proposition (2.3). — If <po? ?i :Y->X are G-homotopic G-maps then

<p;-9*i:K,(X)->K,(Y).

Despite the simple results we have obtained we still know very little about the

elements of K^ (X). The following proposition is fundamental for the development of
the theory.

Proposition (2.4). — If'E is a G-vector bundle on X there is a G-module M and a G-vector

bundle E-1- such that EOE^^M.

Proof. — Observe that it suffices to embed E in some M. For one can choose

a G-invariant hermitian metric in M and can define E1 as the orthogonal complement

ofE in M. Similarly it suffices to find a surjection M —E: one defines E-1- as its kernel.

The proof depends on the following formulation of the Peter-Weyl theorem.

Theorem (2.5) ([i2], p. 31) . — Let T be a topological vector space which is locally convex,

hausdorff, and complete. If G acts continuously on F (i.e. GxF-^F is continuous)^ and I\

is the union of the finite-dimensional invariant subspaces of F, then 1^ is dense in F. (I\ is the

image of the canonical injection © (M®Hom°(M; F)) ->r.)
[MJeG

I apply the theorem when F == FE is the Banach space of sections of E. For

any xeX one can choose a finite set cr^ of sections of E such that {s{x)}^^ spans E^.

Because 1̂  is dense in F, and the evaluation map F ->E^ is continuous, one can suppose

OyCl^. The set {/(^)}se^ spans Ey for allj^ in a neighbourhood U^ of x. Suppose

U^, . . ., U^ cover X. Let cr=Uc^., and let M be the finite-dimensional G-subspace

of r generated by CT. Then the evaluation map XxM->E is the required surjection.

Of numerous consequences of Proposition (2.4) I shall mention two.

(i) Two G-vector bundles E, E' on X are called stably equivalent if there exist

G-modules M, M' such that E^M^E'QM'. Proposition (2.4) implies that the stable

equivalence classes of G-vector bundles on X form an abelian group under ®. This
/^/

group is called K^(X); it can be identified naturally with a quotient group of K^(X).

(ii) Let M be a G-module, and let Gr{n, M) be the G-space of ^-dimensional

subspaces of M, with the usual topology, and let Gr(M) be the topological sum of
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EQUI VARIANT K-THEORY 135

all Gr(72, M). There is a canonical G-vector bundle E^=={(S, A) : ̂ eA}cMxGr(M)

on Gr(M), and Proposition (2.4) can be interpreted as the statement that any E on X

is of the form (p^E^ for some M and some G-map 9 : X-^Gr(M). (This justifies the

reduction principle which I used in proving (2.1) above, because any G-module M

is really a (G/N)-module, where G/N is the image ofG in Aut(M), which is a Lie group.)

Now we can begin the topological study of the functor K^. As the discussion

to follow is unaffected by the presence of the group G, I shall be fairly brief.

To begin with I shall work in the category of compact G-spaces with base point.

(I shall call all base points o; of course g.o==o for all geG.) I fX is such a space I

write GX for the reduced cone on X, i.e. CX is obtained from Xx[o, i] by shrinking

to a point the subspace (Xxo)u(ox[o, i]). ([o, i] is the unit interval in R.) If

h :X-^Y^, ^ : X->Ya are two inclusions of compact G-spaces with base point then

Y^n^Yg means the space obtained from the topological sum Y^nYg by identifying ^ {x)

with i^x) for each xeX. There is an obvious embedding ofX in CX, and CXu^CX

is called the reduced suspension of X, and written SX.

Proposition (2.6). — If'X is a compact G-space with base point, and A is a closed G-sub space

(with the same base point)., then the sequence

K^(Xn^CA) -> K^X) -> K^(A)
is exact,

Proof. — The composition is zero because A -^XlI^CA is null-homotopic. On the

other hand if the bundle E on X represents an element ofK^(X) which vanishes in K^(A)

then E|A©M^N for some M, N. Form a bundle E on XlI^CA by clutching E®M

to N on GA by this isomorphism. Then E represents the desired element of K^(XII^GA).

Let us iterate this proposition: first attach a cone to XlI^CA on the

subspace X to obtain GXn^CA; then attach a cone to CXn^CA on the subspace

Xn^GA to obtain GXnxC(Xn^CA) ^CXnxCXn^C(CA). There is a natural map

SX=CXlIxCX-^GXnx(CXn^CGA), and the diagram

SA —> GXn^GA

SX —> GXnx(CXllcACCA)

commutes up to G-homotopy. In fact on the left-hand GA in SA it commutes trivially;

on the right-hand CA we have the two different natural maps GA-»G(GA), which

are homotopic relative to A. Moreover SA->CXn^CA is a G-homotopy-equivalence;

and so is SX-CXiI^CXiI^CGA), because GX-.CXncAC(CA) is a homotopy-
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equivalence relative to X, because C(CA) collapses to CA leaving CA fixed. So we

have an exact sequence

(*) K^(SX) ->Ke(SA) ̂ (Xl^GA) ^K^(X) -^(A),

where the first map is induced by A->X.

Definition (2.7). — If X zj a compact G-space with base point, and A is a closed

G-subspace, define {for any qeN)

K^(X) ^K^X), where S^X-S^ . .S(SX). . .),

and K^(X, ^^K^S^Xn^CA)).

Thus K^(X,o)=K^(X).

Because S^XII^GA) = S^XlIg^GS^A one has at once by^iterating the sequence (*)

an exact sequence, infinite to the left

... ^K^(X, A) ->K^(X) ^K^(A) -^K^-^X, A) -^...

^(X,A)-^K,(X)->K,(A).

By the device of [10], Chap. 10 one can obtain from a cohomology theory

defined on compact spaces with base point a theory defined on locally compact spaces

without base point. If X is a locally compact G-space which is not compact, let X'1"

denote its one-point compactification, a compact G-space with base point. If X is

already compact, define X'^'^XlIo, the sum of X and a base point.

Definition (2.8). — -yX is a locally compact G-space, and A is a closed sub space, define

K^X^K^X^ and K^(X, A)=K^(X^, A^. Thus K^(X, 0)=K^(X).

Example. — K^X^K^XxR^) and K^(X, A)=KQ(XXRS AxR^) for any

locally compact G-space X and closed G-subspace A, for (XxP^^" ^> S^X4').

The groups so defined should be thought of as " K^ with compact supports 5?.

(They form an cc LC-theory " in the sense of [10].) They are functorial only for proper

G-maps. However i fX is compact the new K^(X) coincides with the original Ko(X):
/^/

there is a homomorphism Kg(X) ->K^(XlIo) defined by extending G-vector bundles

by giving them the fibre zero at the point o; and its inverse is defined by assigning to a

G-vector bundle E on X no the element (E]X)—(EoXX) of K^(X), where Eo is the

fibre of E at o. A G-vector bundle E on X does not define an element of K^(X) unless X

is compact, but, as we shall see, it does define a multiplication i;|—^.[E] in KQ(X).

(X, A) |—^K^(X, A) is a contravariant functor for proper maps. It is also a

covariant functor for open embeddings, for if U is an open G-subspace of a locally compact

G-space X there is a natural G-map X"^ -^U4'. We have the following excision

theorem.
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EQUI VARIANT K-THEORY 137

Proposition (2.9). — If A ^ a closed G-sub space of a locally compact G-space X then

the natural map

K^(X-A) -^K^(X, A)
zj (272 isomorphism.

Proof. — (X-^ ^ (X+-A+)+ ^ X+/A4-, so it suffices to show that

S^(X+n^ GA+) == S^ll^. GS^A+ -^(X^A^ ^

S^X+/S^A+ ^ (S^X+lls^CS^A-^/GS^A4-

induces an isomorphism in K^. That follows from

Proposition (2.10). — If A is a closed. G-contractible sub space of a compact G-space X

then KG (X/A) -^> K^(X).

Pn?o/. — Given a G-vector bundle E on X we construct a bundle E on X/A as

follows. Because A is contractible, E | A ^ M for some G-module M. Extend this

isomorphism to an open G-neighbourhood U of A in X. Now X—A ^ X/A—A/A.

Construct E by clutching E|X—A and Mx(U/A) by the isomorphism between

them on (X/A—A/A)n(U/A)^U—A. One must check that the isomorphism class

of E depends only on E; Eh>E is then obviously additive, and defines a map

KQ(X) ->Kg(X/A) inverse to the natural map.

The following continuity property of K^ is often useful.

Proposition ( 2 .11 ) . — If / is a filtering family of pairs of closed G-subspaces of a

locally compact G-space X then

lim K^(Y,B)^>K.( ft Y, ft B).
(Y^ ^B)^ '(Y,^ ^

In particular, if A is a closed G-subspace of X then lim K^(U) -^> K^(A) when U runs

through the closed G-neighbourhoods of A.

[Filtering means that if (Y, B), (Y7, B')ejf then there is (Y", B")e^ such that
(Y'^B^c^YnY^BnB') .)

Proof. — Because ^S(^(Y+)=S<?(^Y+), and

^Y^.CB^^nY+^B^nB^

it suffices to show that lim K^(Y) -^» K^(riY) when all the Y are compact and have
a common base point.

If any bundle on A= DY can be extended to a neighbourhood of A in X then the

last map is surjective, because any neighbourhood contains some Y. On the other hand,

i fE and E' in K^(Y) define the same element ofK^(A), then (E|A)®N^ (E'IA)®^

for some G-modules N and N', and this isomorphism can be extended to some Y', so

that E and E' have the same image in K^Y').
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To prove that a bundle E on a closed subspace A can be extended to a neighbourhood

of A one can, for example, proceed as follows. Express E as the image of a projection

operator in a trivial bundle M. The operator can be identified with a continuous

G-map a : A->Proj(M), where Proj(M) is the set of projection operators in M, regarded

as a closed G-subspace of the vector space End(M) of endomorphisms of M. It suffices

to show that a can be extended to a neighbourhood of A. First extend a to a G-map

(B : X-^End(M). Let V be the open subset of the vector-space End(M) consisting of

endomorphisms with no eigenvalues on the circle ^=^eC: ^ — i | = - ^ Then

i f -
T|-^p(T)==— (^—T)~1^ is an equivariant retraction of V onto Proj(M), and

STriJy
p(B : P"1^) ->Proj(M) is the required extension of a.

Remark. — With a little more effort one can show that lim Ko(XJ —^ Ko(lim XJ

for any directed inverse system of compact G-spaces.

/•^
Corollary (2.12). — If^ is a locally compact G-space, then lim Ko(U) ——^ K^(X),

where U runs through the relatively compact open G-subspaces of X, or, more generally, through

any antifiltering open covering of X.

(A covering^ is antifiltering if for all U, Ve^ there is We^ such that UnVcW.)

§ 3. COMPLEXES, THE THOM HOMOMORPHISM, PEMODICITY

For many purposes it is convenient to know that K^ can be defined by complexes

of G-vector bundles. Once again the group G is not relevant, so I shall simply state

the result here. There is a proof in the compact case in [2]; and a proof for GW-complexes

in [4]. The general case is no more difficult, but nevertheless I shall give in an appendix

to this paper a proof in a slightly different spirit from that of [2] and [4].

A complex on a G-space is a sequence

W :...d>Ei-l^Ei-d>^ld>... (zeZ)

of G-vector bundles on X such that E1
 = o when | i \ is large, and of homomorphisms d

such that d
2
=o. A morphism of complexes f: E* -^F* is a sequence of morphisms

f : E^-^F1 such that fd=df. The complex E* is called acyclic if the sequence E^ of

vector spaces is exact for all x in X.

The support of a complex E' is the closed G-subset of X consisting of the points x

for which E^ is not exact. I shall write it supp(E'). It is closed because if^ is a homo-

morphism of vector spaces depending continuously on x then rank(^) is a lower-semi-

continuous function of x', and dim(ker^) is upper-semi-continuous.

If A is a closed G-subspace of a locally compact G-space X, let L^(X, A) be the

set of isomorphism classes of complexes E* on X such that supp(E') is a compact subset

of X—A. The set L(^(X, A) is a semi-group under direct sum. Two elements E^, E[ of
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^(^ A) are called homotopic, E^ E^ if there is an object E' of L^(X x [o, i], A x [o, i])

such that E^ = E" | (X x o) and E[ = E* | (X x i). Introduce the equivalence relation —
in L^X, A) defined by

E^E^E;®F^E^F;

for some acyclic complexes F^ and F[ on X.

Proposition (3.1). — L^(X, A) //^ z'j- an abelian group naturally isomorphic to K^(X, A).

This is easy when X is compact and A==0. The map Lg(X, 0) ->K^(X) is

simply E'l-^Z^—i)^; it is trivially surjective, and is injective because a complex is

homotopic to the complex obtained by replacing its differential by zero.

If E* and F' are complexes on X one can form their tensor product E'®F',

with (E-®?)^ ©̂  E^F^. One has supp(E-(x)F-)=supp(E-)nsupp(F-). In view

of Proposition (3.1) the tensor product of complexes induces a homomorphism

E^(X, A)(x)K^(X, B) ->K(,(X, AuB),

which, when A==B==0, reduces to the product in the ring K(^(X). This pairing is

associative, and in particular it makes K^(X, A) into a commutative ring, which has

a unit element if and only if X—A is compact. (The product for relative groups can

also be expressed as a product Ke(U)®K^(V) ->K^(UnV) for open G-subsets U, V
of X.)

The product in K^(X) extends to make K^(X) into a graded ring. If ^eK^(X)

(for i== i, 2) is represented by a complex EJ on XxR^ with compact support, then

the product Si.^ in KG-^-^X}, is represented by the complex pr^E^pr^E; on

X x R^ X R^2, which also has compact support, (pr, : X x R^ X R^2 —X x R^' is the

projection.) To relativize this definition is automatic, and in any case unnecessary.

The graded ring K*(X) is anticommutative: to see that one has to look at the effect of

permuting the factors R in K^XxR^), and is immediately reduced to showing that

if 6 : X x R ^ X x R is defined by 6(^, t)=={x, -t) then 6*E'==-E' in K^XxR),

when E" is a complex on X X R with compact support. But it is easy to see that E" © 6* E*
is homotopic to an acyclic complex.

The most important application of Proposition (3.1) is the definition of the Thorn

homomorphism for K^. First observe that if E is a G-vector bundle on X and s is an
equivariant section of E one can form the Kos^ul complex

...^o-^C^E^E-^...

where d is defined by d{^) == ^ A s{x) if ,^eA%. This complex is acyclic at all points x

at which ^(^)=f=o, so its support is the set of zeros of s.

Now, if p : E->X is the projection, the bundle j^E on E has a natural section

which is the diagonal map 8 : E ̂ EXxE ==j&*E. This section S vanishes precisely on
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the zero-section ofE. I shall denote by A^ the Koszul complex on E formed fromj&*E
and 8.

If F is a complex with compact support on X then j&*F' is a complex on E with

support Jr'l(supp(F>)), and A^^F" is a complex with compact support on E. The

assignment F'I^AE^F" induces an additive homomorphism 9 : K(^(X) ->K^(E)

which is called the Thorn homomorphism. (It is a homomorphism of K^(X) -modules in
the obvious sense.)

If 9 : X->E is the zero-section, then <p*y^(F') is just the alternating sum of the

complexes A^E^F", i.e. (p*(p^)==S.X_iE for any ^eK^X).

If X is compact, Ag has compact support and defines the Thorn class 9 ( I ) = = X E
in K^(E).

By replacing X and E by X X R^ and E x R
7 one obtains a Thorn homomorphism

cp^K^X^K^E) for each ?eN.

The most important theorem in equi variant K-theory is

Proposition (3.2). — The Thorn hornornorphisrn 9^ : K^(X) ->Ko(E) is an isomorphism

for any G-vector bundle E on a locally compact G-space X.

I shall not prove this theorem here, as the proof for a general group G uses families

of elliptic differential operators. But I shall perform some reductions, and in particular
prove it when G is abelian.

First observe that it suffices to prove

Proposition (3.3). — The Thorn hornornorphisrn 9^ : K^(X) -^Kg(E) is an isomorphism

for any G-vector bundle on a compact G-space X.

Proof that (3.3)^(3.2). — By the continuity (2.12) of K^ it suffices to show

9^ : Ko(U) —
=
-> K^(E|U) when U is a relatively compact open G-subspace ofX. Then

by the exact sequence for the pair (U, U—U) one is reduced to the case of a compact

base space. Finally because of the diagram

o —^ K^(E) —> Ke(Ex^) —> K(,(E) —^ o

(P* CP*

o —> K^(X) —> K^XxS^) -^ K^(X) -^ o,

where the rows are split exact sequences, one is reduced to the case of (3.3).

When E is a G-line bundle, Proposition (3.3) is a generalization of the Bott

periodicity theorem, and is proved in [3]. (The equivariant case is not considered
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in [3], but the argument applies without change.) To be precise, in [3] it is proved

that K^(P(E©C)) is a free K^(X)-module generated by the unit element i and the

class of the Hopf bundle H. (IfE is a G-vector bundle on X, P(E) denotes the associated

bundle of projective spaces, whose points are lines in E. There is a canonical G-line

bundle H*={(^, ^)eP(E)xE : Xe^} on P(E). The Hopf bundle H is the dual ofH*.)

Now E can be identified with P(E©C)—P(E), so K^(E) is the kernel of the restric-

tion Ke(P(E®C))->K^(.P(E))=K^(X), and is generated by H*-TT*E or C-7r*E®H,

where TT : P(E©C)-»X is the projection. Because H* is a sub-bundle of TT^EQC),

there is a canonical morphism H* ->TT*E or C-^TT*E®H. Restricted to EcP(E<9C)

the last thing becomes the complex Ag: observe that H [ E is canonically trivial. So K^(E)

is the free Ko(X)-module generated by Xg, as desired.

If (3.3) is known for line bundles then so is (3.2). And hence (3.2) is true

whenever E is a sum of line bundles, because the Thorn hornomorphism is transitive:

Proposition (3.4). — If E and F are bundles on X, and p : E®F—E, q : E®F^F

are the projections^ then A^p ^^A^^Ap, and the diagram

K^(X) ———^——^(E®F)

<v* <p*

Kc(E)

commutes.

Proof, — The first statement is trivial; the second follows from Ag^p ^ p* A^® A^p

(where n : E ->X), which is true because A^*p ̂  <7*Ap.

Applying (3.3) to the trivial bundle C one finds

Proposition (3.5). — K(^(X) is naturally isomorphic to KQ^'^X), the map being

multiplication by a certain element of K^2 (point).

Proposition (3.5) suggests that one should define K^(X) for positive q as K^ ^X),

where 72^(7/2. Then one has cohomological exact sequences extending infinitely in both

directions, which are very much more powerful tools than the semi-infinite ones which

exist not only for K^ but for any < c half-exact functor " (
1
) For example they permit

one to prove the following:

Proposition (3.6). — (3-2) ls ^rue when E is locally a sum of G-line bundles. (^Locally

means " in a neighbourhood of each orbit ".)

(1) But nevertheless it is usually convenient to regard K^(X) as graded modulo two. In the sequel K^(X)
will mean K^(X) ©K^X).
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Proof. — One reduces oneself very simply to showing that if Y is a closed G-subspace

ofX such that E|(X—Y) is a sum of line bundles, and ^ : K^Y) ->K^(E|Y) is an

isomorphism, then 9^ : K^(X) -^K^(E) is an isomorphism. Because

9, : K,(X-Y) ^> K^(E[(X-Y)),

that follows on applying the 5-lemma to the exact sequences for the pairs (X, Y)
and (E,E|Y).

In particular (3.2) is true when G is abelian, because

Proposition (3.7). — If G is abelian then any G-vector bundle E on X is locally a sum

of G-line bundles.

Given xeVi, let G^ be its stabilizer or isotropy group. The fibre E^ is a G^-module,

but one can extend the G^-action to make it a G-module, because an inclusion G^->G

of abelian groups induces a surjection G-^Gr,. Then E Gx^Gx^E^^ (G/GJxE^.

So E and X X Kp are isomorphic on the orbit Gx, and hence in a neighbourhood of it.

But XxE^ is a sum of G-line bundles, because E^ is a sum of one-dimensional modules.

As to the proof of (3.2) or (3.3) in the general case, it depends on the following

proposition, whose proof involves families of elliptic differential operators.

Proposition (3.8). — If G is a compact connected Lie group, and i : T ->G is the inclusion

of a maximal torus, then for each locally compact G-space X there is a natural homomorphism of

K^(X) -modules ^ : K^(X) —K^X) such that ^ ( i )=i , and hence i^ == identity.

Observe that by considering U X g X instead ofX, and using Example (iii) o f§2 ,

one need prove (3.8) only when G is a unitary group U.

If one allows (3.8) the proof of (3.3) is very simple. For (3.3) is stable under

the operation of extending the group, and any compact Lie group can be embedded in

a unitary group, so if G is a Lie group one reduces oneself first to a unitary group, and

then to a torus, and then applies (3.7). In fact one can even avoid (3.7), for the

G-bundle E on X can be lifted to a trivial (G x U(yz))-bundle M on its principal bundle P,

so one can reduce oneself to the case K^(X) -^K(^(XX M) when G is abelian; and the M

is a sum of one-dimensional modules. The case when G is not a Lie group follows by
a simple continuity argument.

To conclude this section I should point out that by standard arguments [2]

using (3.2) and (3.8) one can calculate K^(P) in terms of K^(X) when P is a bundle

of projective spaces, Grassmannians, Stiefel manifolds, flag manifolds, or lens spaces

associated to a G-vector bundle on X. For example

Proposition (3.9). — If E is a G-vector bundle on X then K^(P(E)) is generated as

K^{X)-algebra by the Hop/bundle H, modulo the relation S^—i^E.H^o.
k

First proof. — I shall confine myself to the case when E is a sum of line

bundles, E==Li®. . .<9L^. Then one can proceed by induction on n. Let

142



EQUIVARIANT K-THEORY i43

Then EQ ̂  P(E)—P(Eo). The Hopf bundle on P(E) satisfies the

relation S (—i^E.H^o over K^X), because the bundle TT*E®H on P(E) has a

Eo=L,©.. .©L,_, .

/£

natural non-vanishing section, and so its Koszul complex is acyclic. Also, H restricts

to the Hopf bundle on P(E()), and is trivial on E(). Write A==K^(X), and consider

the diagram

o —————> A -"-> A(H)/(/J -^ A(H)/C/^) —> o

e»-i

... -^ K*(,(Eo) —> K*a(P(E)) -^ K'(;(P(E(,)) -̂  . . .

Here ^=S (-1)"^. A^E, /„_,=S(-I)'EHfc.AkEo, so that ^=(i-L^.H) ./„_!;
A; fe

a is defined by a( i)==/n-i? making the top line exact; <p is the Thorn isomorphism.

The diagram commutes. We suppose Q^-i
 ls an isomorphism, and want to prove Q

n

is one, too. Because (B and Q^-i
 are surjective, p is surjective, so one can add o at each

end of the lower line. Then 6^ is an isomorphism by the 5-lemma.

Second proof. — P(E) is the quotient by the group T of complex numbers of

modulus i of S(E), the sphere bundle of E. Because T acts freely on S(E) one has

KQ(P(E))=K^T(S(E))• Let ^K) be the disc bundle associated to E, so that S(E)
is the ( e boundary 5? of D(E), and D(E)—S(E)==E. Then D(E) is contractible to X,

so K^T(D(E))^K^T(X)^KG(X)®R(T)^A[H,H-1], where A=K^(X). The

group KQ x T(E) is the same, by (3.2), and the map K*̂  ^ ^CX) -^K^ ^ r(X) corresponding

to the inclusion E^D(E) is the multiplication by X_^E, where E is regarded as a

(GxT)-bundle. That means ^,E=2; (—i^E.H^^eAtH, H-1].
k

One has an exact sequence

.. . ^K^(E) ->K^(D(E)) ->K, ,,(S(E)) -> . . . ,

and can identify it with
xfn^

. . . -^ A[H,H-1] A[H, H-1] —> K,(P(E))

The multiplication by f^ is injective, so one can add o at each end of the sequence,

so KG(P(E)) can be identified with A[H, H-^/^J^A^]/^), as desired. I leave

it to the reader to check that the H in this proof is the same as the earlier one.

§ 4. LOCALIZATION

I have pointed out that K^(X) is an algebra over R(G). It turns out that localizing

it at a prime ideal of R(G) corresponds to restricting one's attention to the set of fixed

points of a conjugacy class of elements of G associated to the ideal.
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An obvious prime of R(G) consists of all the elements whose characters vanish

at a certain element g of G. This prime depends only on the conjugacy class of the

closed subgroup ofG generated by g. In [16] I described all the prime ideals ofR(G),

and showed that to each prime p is associated a cyclic (1) subgroup S of G determined

up to conjugation, which I called the support of p. The subgroup S is characterized as

minimal among the subgroups of G such that p is the inverse image of a prime of R(S).

If p is the ideal of characters vanishing at g, then S is the cyclic subgroup generated by g.

I proved in [16] that, if H is any subgroup of G, then R(H)p, i.e. R(H) regarded as

an R(G)-module and localized at p, is non-zero if and only if S is conjugate to a subgroup

ofH.

I shall write G^ for the stabilizer or isotropy group of a point A: of a G-space X,

and, if S is a cyclic subgroup of G, I shall write X^ for the closed G-subset of X consisting

of points x for which S is conjugate to a subgroup of G^;. That means X^^G.X8,

where Xs is the set of points left fixed by S.

The localization theorem is

Proposition (4.1). — If X is a locally compact G-space, and p is a prime of R(G) with

support S, then the restriction

K^X^K^Xt8'),,

is an isomorphism,

Remark. — In view of the preceding remarks, X^ is precisely the union of the

orbits T of X such that K^T^+o, for Ke(G^R(GJ.

Proof of (4.1). — Because of the cohomological exact sequence it suffices to show

that Ko(X—X(s))p=o, i.e. one can suppose X^^o. So one has to show that

Ke(X)p==o if K^(T)p==o for each orbit T in X. By the continuity of K^ (2.11)

it suffices to show that Ko(U)p==o for all relatively compact open G-subspaces of X.

Then by the exact sequence for the pair (U, U—U) one reduces oneself to the case

of a compact G-space.

If X is a compact G-space then there exists a slice at each point x of X, i.e. a

G^-subspace S of X containing x such that the natural map GX(^S-^X is an open

embedding ([7], Chap. 7). The projection GX(^S ->G/G^ is an equivariant retraction

of a neighbourhood of the orbit Gx on to Gx. In view of this one can choose a finite

number of points x^y . . ., x^ of X with compact G-neighbourhoods X^, . . ., X^ which

cover X and are such that X .̂ admits a G-retraction onto the orbit T^ of ^. Now,

assuming that each Ko(T,)p is zero, I want to prove K^(X)p=o. It suffices to show

that if Y is a G-subspace of X such that K^(Y)p=o then K^(YuX,)p=o. So it

(1) S is cyclic if it contains an element g whose powers are dense in S, i.e. if it is the product of a torus and
a finite cyclic group.
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suffices to show K^(YuX,, Y)^=o. But this is K^(X,, X,nY)p, which is a unitary

module over the ring K^(X,)p. The projection X,^T, induces a homomorphism of

rings K^TJp-^K^X^; as the first ring is zero so is the second, and so therefore is
the module K^(X,,X,nY^.

Some interesting applications of the localization theorem can be found in [6]
and [n].

§ 5. THE FILTRATION AND THE SPECTRAL SEQUENCE

If X is a CW-complex, which is filtered by its skeletons {X29}, it is customary to

define [5] a filtration ofK*(X) by setting K;(X)= kernel (K*(X) -.K^X^-1)). Then

K*(X)=K;(X)DK:(X)DK;(X)D ...,

and K*(X) is a filtered ring in the sense that K;(X) .K^(X) cK^(X).

In the equivariant theory there are several quite different nitrations of Ke(X).

The one I am going to discuss corresponds to filtering X by the G-subspaces TC'^Y^)

when the orbit space Y=X/G is a GW-complex. {n:'X-^Y is the projection.)

But to avoid making assumptions about the orbit space I shall define the filtration by

a Cech method. For a fuller and more sophisticated discussion of the construction I refer
the reader to [15].

To each finite covering U={Uj^ of a compact G-space X by G-stable closed

sets I am going to associate a compact G-space Wy with a G-map w : Wy->X and a

filtration by G-subspaces W^cW^jC. . . CWy, so that the following conditions are
satisfied:

(i) w * : Ko(X) -^K^Wy) is an isomorphism, and

(ii) when V is a refinement of U there is a G-map Wy->Wy, defined up to

G-homotopy, respecting the nitrations and the projections on to X.

Then I shall say that an element ofK^(X) is in K*^p(X) if, for some finite covering U,

it is in the kernel of ^ : K*(,(X) ^K^WF'). Thus K^(X) is an ideal in K^(X).

To see that K^ ̂ (X) .K^ ̂ (X)cK^ ,p+^(X) one needs a further property ofWy:

(iii) the diagonal map Wy-^WyXWy is G-homotopic to a filtration preserving

map, when the filtration of WuXWy is defined by (WuXWy)^ U W^xW^.

The definition of Wy is as follows. Let Ny be the nerve of U, a finite simplicial

complex whose simplexes are the finite subsets a of A such that Vy == D U^ is non-empty.
(X£ 0

Let |NJ be the geometrical realization of Ny, a compact space. Then W\j is the closed

subspace U (U^ X | or [) of the product X x [ Ny|, and w : W^ -^X is the projection onto

the first factor. Define Wg= U (U-x|<7|), i.e. it is the inverse image of the ̂ -skeleton
dim(o)^p v " i / o r

of Nu|.
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To prove (i) above, define X^ as the subset of points of X which are

contained in at least k+ i of the sets U^. Thus X^XoDX^DXp . . . Define also

W^^^-^X^cWy. Consider the diagram

n((u.-u,)x|a|) -> w,-w^

U(U,-U,) -^ X,-X^,,

where a runs through the j&-simplexes of Ny, and U^=U^nX^. The horizontal

arrows are homeomorphisms, and the vertical arrow on the left is a proper homotopy-

equivalence, so w ' : K^(X^-X^) -> K^(W^-W^) is an isomorphism. As this is

true for all k, it follows from the cohomology exact sequence that VD : K*(X) =
> K^(Wu).

I shall not give here the proofs of the statements (ii) and (iii). They are obtained

in the same way as the analogous ones for [Ny], and the details can be found in [15].

I should record the following simple facts about the filtration of K^(X).

Proposition (5.1) . — IfX is a compact G-space, then

(i) an element ofK^{~K) is in K^ ^(X) if and only if its restriction to each orbit is ^ero, i.e.
K*^(X)=kernel (K^(X) -^ IT[R(GJ);

XG A

(ii) the elements of K^^(X) are nilpotent.

Proof. — (i) Because W^=^U^ an element ^ belongs to K^i(X) if there is

a finite G-stable covering U such that ^ restricts to zero in each K*c(UJ. This is equi-
valent to (i) because KQ is continuous.

(ii) If ^K*^ i(X), choose U so that ^ vanishes in K^(W^). The covering U has

some finite dimension n, so that W^=Wu. Then ^n+l vanishes in K^(WU)=KG(X),
so ^ is nilpotent.

This proposition implies the localization theorem of § 4, at least in the form that
lf ^GJp^o for all ^eX then K^(X)p==o. For by localizing the exact sequence
0
 -

> ̂ iC^ -> ̂ (^ - nR(GJ at p one finds that every element of K*^(X)p, including
the unit element, is nilpotent.

To the filtration of the space Wy there corresponds a spectral sequence,

defined by the method of [9], p. 333, terminating in K^Wu) ^K^(X), and

with Ef^K^^W^-W^-1). There is a homeomorphism II(U,X o) ^W^-W^-S

where a runs through the j^-simplexes of Ny, and o- is the interior of a\. So

Ef^ nK^(U,X^) ̂  nK^(UJ. One can verify that the differential d : Ef-^Ef+^

corresponds to the differential of the complex of cochains of Ny with coefficients in the

system (7l—K^(UJ. That is :
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Proposition (5.2). — If U is a finite closed G-stable covering of a compact G-space X,

there is a spectral sequence H^Ny; K^(U))=>K^(X), where K^(U) means the coefficient

system ah^K^(UJ.

If one lets U run through the directed family of closures of the finite open G-stable

coverings ofX, and takes the direct limit of the family of spectral sequences corresponding,

then, because G-stable coverings of X can be identified with coverings of X/G, one

obtains

Proposition (5.3). — If X is a compact G-space there is a spectral sequence

IP(X/G; Jf^) -=> Ke(X), where ̂  is the sheaf on X/G associated to thepresheaf V ̂ K^-^V).

(n : X—X/G is the projection.) The stalk of Jf§ at an orbit Gx=GjG^ is R(GJ if q is

even, and Jf^ = o if q is odd.

For the details I refer again to [15]. The assertion about the stalk follows from

the continuity ofK^. (Prop (2 .11) ) .

Remark. — More generally, i f ^ : X — Y is a map of compact G-spaces and G acts

trivially on Y, the argument shows there is a spectral sequence ]:P(Y; jf^/)=>K^(X),

where ^^f is a sheaf on Y whose stalk at_^ is Vi'^(f~
l
y).

One application of the spectral sequence (5.3) is to prove the following useful

finiteness theorem.

Let us call a G-space X locally G-contractible if each point xeX has arbitrarily

small G^-stable neighbourhoods which are G^-contractible in themselves to x, or, what

is the same thing, if each orbit has arbitrarily small G-neighbourhoods of which it is

a G-deformation retract. For example, a differentiable manifold X on which a compact

Lie group G acts smoothly is locally G-contractible. Then one has

Proposition (5.4). — If X is a locally G-contractible compact G-space such that X/G has

finite covering dimension, then K^(X) is a finite R(G) -module.

To prove this one observes first that because X/G has finite dimension the spectral

sequence H*(X/G; Jf^^K^X) is convergent, and so it suffices to show that

H*(X/G;Jf^) is finite over R(G). (R(G) is noetherian [16].) Because X is locally

G-contractible one can show that each point Gx of X/G has arbitrarily small

neighbourhoods U such that JT^U) ^R(GJ, which is finite over R(G). This implies,

after a little manipulation, that H*(X/G; jf^) is finite over R(G); but I shall not give

the details here.

The hypothesis that X/G has finite dimension is satisfied in the case of a

smooth G-manifold, because X/G is then a finite union of open manifolds (cf. [13],

( 1 . 7 . 3 1 ) ) .

147



148 G R A E M E S E G A L

APPENDIX

Proof of Proposition (3. i)

I shall begin with some definitions.

A complex E" is elementary if E^o except for two values z==72, T Z + I ) ^d

d : En->En+l is an isomorphism; it is trivial if it is elementary with trivial bundles.

Because exact sequences of G-vector bundles split, any acyclic complex is a sum of

elementary complexes.

Two morphisms f^yf^ '' E" ->F* are equivalent if there is a sequence of homomor-

phisms A^E^F1"1 such that f^—fQ=dh-{-hd. Complexes on X and equivalence

classes of morphisms form a category denoted by Co(X). To avoid confusion I shall

use the word equivalence for an isomorphism in this category. An elementary complex

is equivalent to o, and hence so is any acyclic complex.

If A is a subspace of X, I shall write Co(X, A) for the full subcategory of Co(X)

whose objects are the complexes E* such that E* A is equivalent to zero, or, what is

the same, acyclic.

Two objects E^, E[ of C^(X, A) are homotopic if there is an object E' of

G^(Xx[o, i],Ax[o, i]) with equivalences EJ->E'[(Xxz) for z=o, i.

Proposition (3.1) can be reformulated in the following way, which seems to me

more appealing.

Proposition (A.i). — -yX is a compact G-space and A a closed G-sub space., then the set

of homotopy classes of objects of C^X, A) forms an abelian group Q^(X, A) under ®. This

group is naturally isomorphic to K^X, A).

I shall prove the equivalence of (3. i) and (A. i) after proving (A. i ) $ and before

proving (A.i) I need a few more definitions, and a lemma.

If E* is a complex, TE* denotes the complex with the grading translated:

(TE^E^-1.

A morphism /: E* -^F* of complexes has a mapping cone Cp which is the complex

obtained by regarding the double complex . . . ->o ->E* -^F* ->o -^. . . as a single

complex; G^ is acyclic if and only if^is an equivalence, for a family of splitting maps

for G^ is the same thing as an inverse equivalence to f.

If f, g : E' -^F" are two morphisms then the complexes Gp G^ are obviously

homotopic. In particular, taking E"==F', the complexes G^ and C^=E*®TE' are

homotopic. G^ is equivalent to zero, so E*==—TE* in C^X, A). This proves

that Q^(X, A) is an abelian group.

Lemma (A. 2). — If a G-space is the union of two compact G-subspaces X and Y
/^

with intersection A, and if E" is a complex of Go(X, A), then there is a complex E' of
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G^(Xn^Y, Y) such that E'[X is equivalent to E\ The complex E* is unique up to equivalence.

That is, the categories Co(X, A) and GQ(XII^Y, Y) are equivalent.

y^/

Proof. — To see E" exists it suffices to show that one can add an acyclic complex

to E' so that E* | A becomes isomorphic to a sum of trivial complexes, for the latter can

be extended over Y. First add elementary complexes to E' so as to make all the bundles

trivial except the first, say E". Then ^{—I)
k
{'E

k
\A)=o in K^(A) because E'|A is

k

acyclic. E^A represents zero in K^(A) for k^a, and hence also for k==a, i.e. E^A

is stably trivial. One sees inductively that when E"|A is expressed as a sum of

elementary complexes all the bundles occurring are stably trivial, and so by adding trivial

complexes one can make E* [ A into a sum of trivial complexes.

As to the uniqueness ofE", ifE[ is another candidate, then one has an equivalence

/ : E'|X-^E^|X and would like to extend it over Y. But/] A is equivalent to the zero-
/^

morphism (because E^ | A is equivalent to o), so one can write V|A == dh + hd for suitable h

defined on A. Then any extension of h over Y defines an extension of f by the

formula dh + hd.

Now I can prove (A.i) . By excision K^(X, A)==Ko(Xn^X, X), where the

subspace is the second summand, and by (A. 2) Q^(X, A) == Q^(XII^ X, X), so it suffices

to show that Q^(XII^X, X) is naturally isomorphic to K^Xn^X, X). This is more

convenient because K.o(Xu^X, X) can be identified with the kernel of the split restric-

tion ^ : Ko(Xn^X) -^K^(X) onto the second summand. In fact one is reduced to

proving the following:

Proposition (A. 3). — IfA is a closed G-sub space of a compact G-space X, and is a retract

of X by a map p : X ->A, then the sequence

o -> Q^(X, A) ̂  K^X) -> K,(A) -> o,

where a is E'i->S(—i^E^, is split exact.
k

Proof. — If E is a bundle on X then E[A and (j^*z*E)|A, where i : A-^X is the

inclusion, are isomorphic. Form a complex . . . -^o->E -^TE-^O ->. . . on X by

extending arbitrarily this isomorphism. Because different extensions lead to homotopic

complexes this construction defines a homomorphism (B : Ko(X) ->Q^(X, A). It remains

to see that j&Y+a[B=i and that a(B=i. The first is trivial. As to the second: if E*

is a complex of Go(X, A), choose a morphism f: E* ->j&*z*E* which extends the canonical

isomorphism on A. (That is possible because ^*z*E* is acyclic and hence a sum of

elementary complexes.) The mapping cone C* is equivalent to E', and on the other

hand is homotopic in Go(X, A) to the mapping cone of f : E^->j&TE^, where E^ is

obtained from E* by replacing the differential by zero. This last mapping cone, however,

represents (Ba(E*).
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It remains to show that Q^(X, A) is the same as the semi-group LQ(X,A)/^

introduced in § 3. There is an obvious surjection L^(X, A)/^->Q^(X, A), and one

has only to show that, if/: E^—E^ is an equivalence, then E^E^, i.e. E^®F^ E^©F^

for some acyclic complexes F^, F[. But in fact TE^OQ'^TE^OG^, where I means

the identity morphism of E^, for TE^Cy' is the mapping cone of o©/: E^->E^®E^,

and TE[@C[ is the mapping cone of I®o : E^->E^®E^.

So far in this appendix I have confined myself to compact G-spaces. The genera-

lization to locally compact spaces amounts to the proof of the following lemma.

Proposition (^.4). — Q^C^? A) —> Q^(X-A) when X and A are compact G-spaces.

(Q^(X-A) is formed, of course, from the category of complexes with compact support

on X-A.)

Proof. — In fact the categories C^(X, A) and Co(X—A) are equivalent. I shall

define a functor CQ(X—A)->G^(X,A). Let E* be a complex of Go(X—A), and

let K be a compact G-neighbourhood of its support. Apply (A. 2) to E'|K, which is

acyclic on K—K, and extend it to E' defined on X. Then E'[(X—A) is canonically
.̂

equivalent to E*, for if 6 : E* ] K ->E* | K is the canonical equivalence and 9 : X—A -^R-;-

is a function vanishing outside K and equal to i on supp(E') then 96 is an equivalence

between E' and E*[(X—A) and does not depend on the choice of 9. If one chooses

such an E' for each E', one can clearly define a functor s : G^(X-A) -^C^(X, A) with

£(E')==E' which is inverse to the restriction, and is the required equivalence of

categories. By (A. 2) the composition C^(X, A) ->C^(X—A) ->Co(X, A) is the " iden-

tity 5?. As to the composition in the other order, let 6 : E' K-^E'[K be the canonical

equivalence, and let 9 :X—A-^R^. be a function equal to i on supp(E'), and with

supp(9)cK. Then 96 is a canonical equivalence between E' and E'[(X—A).

To conclude this appendix I would like to point out that the lemma (A. 2) is just

a special case of the following clutching property of complexes, which illustrates the

naturalness of the categories Co(X).

Proposition (A.^). — If a G-space X is the union of compact G-sub spaces X^, Xg; with

intersection A, and if JL[, E^ are complexes on X^, Xg, and a : E^ A -> E^ | A is an equivalence,

then there is a complex E' on X with equivalences ^ : E [ X .̂ -> E^ such that ((Bg | A) == a. ((B^ | A).

The complex E' is unique up to canonical equivalence.

Proof. — First replace the situation by an equivalent one in which each

of : E^|A->E^[A is surjective — for example by adding trivial complexes to E[. Then,

as in (A. 2), add an acyclic complex to E^ so that K'=ker(a) becomes a sum of

trivial complexes. Now whenever one has a short exact sequence of complexes

o->F^->F^->F^->o one can identify Fj with F^®Fj for each q, and this identifies F^
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with the mapping-cone of a map f : F^ ->F[. Extend K" over Xg and extend the corres-

ponding/to /: E^K'. Then CJ is a complex on Xg canonically equivalent to E^,

and such that Gf A can be identified with E[ A. So form E" by joining together E[

and C^. This proves the existence of E'.

One can prove the uniqueness of E* just as in (A. 2).
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