
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 147, Number 11, November 2019, Pages 4687–4695
https://doi.org/10.1090/proc/14608

Article electronically published on June 10, 2019

EQUIVARIANT KAZHDAN-LUSZTIG POLYNOMIALS

OF THAGOMIZER MATROIDS

MATTHEW H. Y. XIE AND PHILIP B. ZHANG

(Communicated by Yuan Xu)

Abstract. The equivariant Kazhdan-Lusztig polynomial of a matroid was in-
troduced by Gedeon, Proudfoot, and Young. Gedeon conjectured an explicit
formula for the equivariant Kazhdan-Lusztig polynomials of thagomizer ma-
troids with an action of symmetric groups. In this paper, we discover a new
formula for these polynomials which is related to the equivariant Kazhdan-
Lusztig polynomials of uniform matroids. Based on our new formula, we con-
firm Gedeon’s conjecture by the Pieri rule.

1. Introduction

Given a matroidM , Elias, Proudfoot, and Wakefield [1] introduced the Kazhdan-
Lusztig polynomial PM (t). If M is equipped with an action of a finite group
W , Gedeon, Proudfoot, and Young [3] defined the W -equivariant Kazhdan-Lusztig
polynomial PW

M (t), whose coefficients are graded virtual representations of W and
from which PM (t) can be recovered by sending virtual representations to their
dimensions. The equivariant Kazhdan-Lusztig polynomials have been computed
for uniform matroids [3] and q-niform matroids [8] and conjectured for thagomizer
matroids [2].

The thagomizer matroidMn is isomorphic to the graphic matroid of the complete
tripartite graph K1,1,n or the graph obtained by adding an edge between the two
distinguished vertices of bipartite graph K2,n. Gedeon [2] computed the polynomial

PMn
(t) and presented a conjecture for the equivariant polynomial PSn

Mn
(t), where

Sn is the symmetric group of order n. Let Υn be the set of partitions of n of the
form (a, n − a − 2i − η, 2i, η), where η ∈ {0, 1}, i ≥ 0, and 1 < a < n. For any
partition λ of n, we let Vλ denote the irreducible representation of Sn indexed by
λ. We also set

κ(λ) =

{
λ1 − 1, λ = (n− 1, 1),
λ1 − λ2 + 1, otherwise,

and

ω(λ) =

{
0, λ�(λ) = 1,
1, otherwise.
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Gedeon [2] conjectured an explicit formula for PSn

Mn
(t).

Conjecture 1.1. For any positive integer n,

PSn

Mn
(t) =

∑
λ∈Υn

κ(λ)Vλt
�(λ)−1(t+ 1)ω(λ) + V(n)((n− 1)t+ 1).

In this paper, we shall confirm Conjecture 1.1. To this end, we find a new
formula for PSn

Mn
(t) which is related to the equivariant Kazhdan-Lusztig polynomials

of uniform matroids. Let U1,n be the uniform matroid of rank n on n+ 1 elements
which is isomorphic to the graphic matroid of the cycle graph with n+ 1 vertices.
One of the main results of this paper is as follows.

Theorem 1.2. For any positive integer n, we have

PSn

Mn
(t) = V(n) + t

n∑
k=2

IndSn

Sn−k×Sk

(
V(n−k) ⊗ PSk

U1,k−1
(t)

)
,(1.1)

where PSk

U1,k−1
(t) =

∑� k
2 �−1

i=0 Vk−2i,2it
i.

Note that for any parition λ of k there holds that

dim IndSn

Sn−k×Sk

(
V(n−k) ⊗ Vλ

)
= |Sn : Sn−k × Sk| × dimV(n−k) × dimVλ

=
n!

(n− k)!k!
dimVλ =

(
n

k

)
dimVλ,(1.2)

where |Sn : Sn−k×Sk| is the index of Sn−k×Sk in Sn in the sense of isomorphism.
Hence, the following formula for the non-equivalent Kazhdan-Lusztig polynomials
which inspires this paper can be derived from Theorem 1.2.

Corollary 1.3. For any positive integer n, we have

PMn
(t) = 1 + t

n∑
k=2

(
n

k

)
PU1,k−1

(t).(1.3)

This paper is organized as follows. Section 2 is dedicated to the proof of Theorem
1.2. The main tools used in our proof of Theorem 1.2 are the Frobenius character-
istic map and the generating functions of symmeric functions. In Section 3, based
on Theorem 1.2, we confirm Conjecture 1.1 by the Pieri rule.

2. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. We first review the definition of
the Frobenius characteristic map and then show in Theorem 2.1 that Theorem 1.2
can be translated into a symmetric function equality. Once Theorem 2.1 is proved,
the proof of Theorem 1.2 is done since they are equivalent under the Frobenius
characteristic map.

Following Gedeon, Proudfoot, and Young [8], let VRep(Sn) be the Z-module
of isomorphism classes of virtual representations of Sn and set grVRep(W ) :=
VRep(W )⊗Z Z[t]. Consider the Frobenius characteristic map

ch : grVRep(Sn)−→Λn ⊗Z Z[t],

where Λn is the Z-module of symmetric functions of degree n in the variables
x = (x1, x2, . . .); see [7, Section I.7]. We refer the reader to [7, 10] for undefined
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terminology from the theory of symmetric functions. Given two graded virtual
representations V1 ∈ grVRep(Sn1

) and V2 ∈ grVRep(Sn2
), we have

ch
(
Ind

Sn1+n2

Sn1
×Sn2

V1 ⊗ V2

)
= ch(V1) ch(V2).

The image of the irreducible representation Vλ under ch is the Schur function sλ,
and, in particular, the image of the trivial representation V(n) is the complete
symmetric function hn(x). Define Qn(x; t) as

Qn(x; t) =

{
0, n = 0 or 1,∑�n

2 �−1
i=0 sn−2i,2i(x)t

i, n ≥ 2.
(2.1)

When n ≥ 2, Qn(x; t) is the image under the Frobenius map of PSn

U1,n−1
(t); see [9].

Let Pn(x; t) be the image under the Frobenius map of PSn

Mn
(t). Since the Frobenius

characteristic map is an isomorphism between grVRep(Sn) and Λn ⊗Z Z[t], the
following theorem is equivalent to Theorem 1.2.

Theorem 2.1. For any positive integer n, we have

Pn(x; t) = hn(x) + t
n∑

k=2

hn−k(x)Qk(x; t).(2.2)

The rest of this section is dedicated to the proof of Theorem 2.1. It is known
from [2] that the polynomial Pn(x; t) is uniquely determined by the following three
conditions:

(i) P0(x; t)=1,
(ii) the degree of Pn(x; t) is less than (n+ 1)/2 for any positive integer n, and
(iii) for any positive integer n the polynomial Pn(x; t) satisfies that

tn+1Pn(x; t
−1) =(t− 1)

n∑
�=0

h�[(t− 2)X]hn−�(x)

+
∑

i+j+m=n

Pi(x; t)hj [(t− 1)X]hm[(t− 1)X],

where the square bracket denotes the plethystic substitution [5, 6], and it
is a convention that X = x1 + x2 + · · · .

The third condition can also be expressed in terms of its generating function. Let

φ(t, u) =

∞∑
n=0

Pn(x; t)u
n+1.

It is known by Gedeon [2, Proposition 4.7] that the condition (iii) is equivalent to
saying that the function φ(t, u) satisfies

φ(t−1, tu) = (t− 1)uH(u)v(t, u) +
H(tu)2

H(u)2
φ(t, u),(2.3)

where

v(t, u) =

∞∑
n=0

hn[(t− 2)X]un ([4, p. 8]) and H(u) =

∞∑
n=0

hn(x)u
n.

We note that the equation (2.3) can be simplified as follows.
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Lemma 2.2. The function φ(t, u) satisfies

φ(t−1, tu) = (t− 1)u
H(tu)

H(u)
+

H(tu)2

H(u)2
φ(t, u).(2.4)

Proof. It suffices to show that

v(t, u) =
H(tu)

H(u)2
.

By the formula [5, Theorem 1.27]

hn[E + F ] =

n∑
k=0

hk[E]hn−k[F ],(2.5)

where E = E(t1, t2, . . .) and F = F (w1, w2, . . .) are two formal series of rational
terms in their indeterminates, we have

hn[2X] =

n∑
k=0

hk[X]hn−k[X] and hn[tX] =

n∑
k=0

hk[(t− 2)X]hn−k[2X].

Note that hn[X] = hn(x). Hence, it follows that

∞∑
n=0

hn[2X]un =

( ∞∑
n=0

hn[X]un

)2

= H(u)2,

and thus

∞∑
n=0

hn[tX]un =

( ∞∑
n=0

hn[(t− 2)X]un

)( ∞∑
n=0

hn[2X]un

)
= v(t, u)H(u)2.

By the definition of plethysm, we have H(tu) =
∑∞

n=0 hn[tX]un. Thus H(tu) =
v(t, u)H(u)2 as desired. This completes the proof. �

In order to prove Theorem 2.1, we shall prove that for every positive integer n
the polynomial on the right hand side of (2.2) also satisfies the three conditions (i),
(ii), and (iii). For convenience, we define Rn(x; t) as

Rn(x; t) =

{
1, n = 0,

hn(x) + t
∑n

k=2 hn−k(x)Qk(x; t), n ≥ 1.
(2.6)

By (2.6), we know that R0(x; t) = 1 and the degree of Rn(x; t) is �n
2 �. Hence

Rn(x; t) satisfies the first two conditions. For the condition (iii), let us consider the
generating function of Rn(x; t). Denote

ρ(t, u) =

∞∑
n=0

Rn(x; t)u
n+1.

We have the following result.

Lemma 2.3. The function ρ(t, u) satisfies

ρ(t−1, tu) = (t− 1)u
H(tu)

H(u)
+

H(tu)2

H(u)2
ρ(t, u).
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Proof. Let ψ(t, u) =
∑∞

n=2 Qn(x; t)u
n−1. Since Q0(x; t) = Q1(x; t) = 0, it follows

from (2.6) that

ρ(t, u) = uH(u) + tu2H(u)ψ(t, u)

= uH(u) (1 + tu ψ(t, u)) .(2.7)

Hence ρ(t−1, tu) turns out to be

ρ(t−1, tu) = tuH(tu)
(
1 + uψ(t−1, tu)

)
.(2.8)

On the other hand, taking the coefficient of x in [3, equation (4)], the function
ψ(t, u) satisfies(
1

u
+ ψ(t−1, tu)

)
H(u)−

(
1

u
+ h1(x)

)
=

(
1

tu
+ ψ(t, u)

)
H(tu)−

(
1

tu
+ h1(x)

)
.

Hence, we have that the function ψ(t, u) satisfies the equation

ψ(t−1, tu) = − 1

u
+

t− 1

tuH(u)
+

H(tu)

H(u)

(
ψ(t, u) +

1

tu

)
,

and thus it follows from (2.7) that

ψ(t−1, tu) = − 1

u
+

t− 1

tuH(u)
+

H(tu)

tu2H(u)2
ρ(t, u).(2.9)

Substituting (2.9) into the right hand side of (2.8), we have that the function ρ(t, u)
satisfies that

ρ(t−1, tu) = tuH(tu) + tu2H(tu)

(
− 1

u
+

t− 1

tuH(u)
+

H(tu)

tu2H(u)2
ρ(t, u)

)

= (t− 1)u
H(tu)

H(u)
+

H(tu)2

H(u)2
ρ(t, u).

This completes the proof. �

We are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. As shown previously, the polynomial Rn(x; t) satisfies the
first two conditions (i) and (ii). By Lemma 2.2, the condition (iii) is equivalent
to the generating function φ(t, u) of Pn(x; t) satisfying (2.4). Compared with
Lemma 2.3, the generating function ψ(t, u) of Rn(x; t) satisfies the same func-
tion. Thus, we obtain that the condition (iii) is true for Rn(x; t) as well. Since
these three conditions uniquely determine a polynomial sequence, we get that
Pn(x; t) = Rn(x; t) for every positive integer n. This completes the proof of Theo-
rem 2.1. �

3. Proof of Conjecture 1.1

In this section, we shall prove the following theorem, which is equivalent to
Conjecture 1.1 in the sense of Frobenius map. Our proof is based on the Pieri rule.

Theorem 3.1. For any positive integer n, we have

Pn(x; t) =
∑
λ∈Υn

κ(λ)sλ(x)t
�(λ)−1(t+ 1)ω(λ) + hn (x)((n− 1)t+ 1) .(3.1)
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Proof. By Theorem 2.1 we need to prove that Rn(x; t) is equal to the right side of
(3.1), namely,

∑
λ∈Υn

κ(λ)sλ(x)t
�(λ)−1(t+ 1)ω(λ) + hn(x)((n− 1)t+ 1)

= hn(x) + t
n∑

k=2

hn−k(x)Qk(x; t).

Recall that Qn(x; t) =
∑�n

2 �−1
i=0 sn−2i,2i(x)t

i for n ≥ 2. It suffices to prove that

∑
λ∈Υn

κ(λ)sλ(x)t
�(λ)−1(t+ 1)ω(λ) + hn(x)(n− 1)t(3.2)

=
n∑

k=2

hn−k(x)

�k
2 �−1∑
i=0

sk−2i,2i(x)t
i+1.

For convenience, we denote by An(x; t) and Bn(x; t) the left side and the right side
of (3.2), respectively.

We first show that Bn(x; t) is of the form

∑
λ∈Υn

sλ(x)aλ(t) + hn(x)an(t),

where aλ(t) and an(t) are polynomials of t with non-negative integer coefficients.
In fact, by the Pieri rule we have that for 2 ≤ k ≤ n,

hn−k(x)hk(x) =

n−k∑
p=max(0,n−2k)

sk+p,n−k−p(x),

and for 2 ≤ k ≤ n and 1 ≤ i ≤ �k
2 � − 1,

hn−k(x)sk−2i,2i(x) =

n−k∑
p=max(0,n−2k+2i+2)

sk+p−2i,n−k−p+2,2i−1(x)

+

n−k−1∑
p=max(0,n−2k+2i+1)

sk+p−2i,n−k−p+1,2i−1,1(x)

+
n−k−2∑

p=max(0,n−2k+2i)

sk+p−2i,n−k−p,2i(x).
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Set

B〈1〉
n (x; t) :=

n∑
k=2

n−k∑
p=max(0,n−2k)

sk+p,n−k−p(x) t,

B〈2〉
n (x; t) :=

n∑
k=2

� k
2 �−1∑
i=1

n−k∑
p=max(0,n−2k+2i+2)

sk+p−2i,n−k−p+2,2i−1(x) ti+1,

B〈3〉
n (x; t) :=

n−1∑
k=2

� k
2 �−1∑
i=1

n−k−1∑
p=max(0,n−2k+2i+1)

sk+p−2i,n−k−p+1,2i−1,1(x) t
i+1,

B〈4〉
n (x; t) :=

n−2∑
k=2

� k
2 �−1∑
i=1

n−k−2∑
p=max(0,n−2k+2i)

sk+p−2i,n−k−p,2i(x) t
i+1.

Hence,

Bn(x; t) = B〈1〉
n (x; t) +B〈2〉

n (x; t) +B〈3〉
n (x; t) +B〈4〉

n (x; t).

We proceed to prove that aλ(t) and an(t) agree with the corresponding polyno-

mials of t appearing in An(x; t). Since hn(x) can be obtained only from B
〈1〉
n (x; t),

where k ranges from 2 to n, we obtain that an(t) = (n − 1)t. We shall prove
aλ(t) = κ(λ)t�(λ)−1(t+1)ω(λ) for λ ∈ Υn. To this end, we divide the proof into the
following three cases according to the definitions of κ(λ) and ω(λ):

Case 1. λ = (n−1, 1). In this case, sn−1,1(x) can be obtained only from B
〈1〉
n (x; t),

where k ranges from 2 to n− 1. Thus we have

an−1,1(t) = (n− 2)t = κ(λ)t�(λ)−1(t+ 1)ω(λ).

Case 2. λ�(λ) = 1 and λ 	= (n − 1, 1). In this case, λ must be of the form

(λ1, λ2, 2
i−1, 1), where i = 	(λ) − 2 ≥ 1. Hence, we get that sλ(x) can be ob-

tained only from B
〈3〉
n (x; t). We next compute the coefficient of sλ1,λ2,2i−1,1(x) in

B
〈3〉
n (x; t). From the betweenness condition of the Pieri rule, we know that

λ2 ≤ k − 2i ≤ λ1,

and thus

2 < λ2 + 2i ≤ k ≤ λ1 + 2i = n− λ2 + 1 ≤ n.

When i and k are fixed, p is uniquely determined, since p = λ1 + 2i − k. Since
λ1 ≥ λ2 ≥ 2 and λ1 + λ2 = n− 2i+ 1, we have⌈

n+ 1

2

⌉
− i ≤ λ1 ≤ n− 2i− 1,

and thus ⌈
n+ 1

2

⌉
− k + i ≤ p = λ1 + 2i− k ≤ n− k − 1.

Hence when λ is fixed, k is bounded by the inequality

λ2 + 2i ≤ k ≤ λ1 + 2i,
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and any possible integer k in this interval makes an occurrence of sλ(x). Since
ω(λ) = 0 and i = 	(λ)− 2, we have that

aλ(t) = (λ1 − λ2 + 1)ti+1 = κ(λ)t�(λ)−1(t+ 1)ω(λ).

Case 3. λ�(λ) 	= 1. In this case, we have that λ is of the form (λ1, λ2, 2
j), where

j = 	(λ)− 2 ≥ 0.

When j = 0, sλ(x) can be obtained only from B
〈2〉
n (x; t) and B

〈1〉
n (x; t). When

j ≥ 1, sλ(x) can be obtained only from B
〈2〉
n (x; t) and B

〈4〉
n (x; t). Note that when

sλ(x) is obtained from B
〈2〉
n (x; t), i should be j + 1, and thus ti+1 will be tj+2.

Along similar lines with Case 2, we have that

aλ(t) = (λ1 − λ2 + 1) tj+2 + (λ1 − λ2 + 1) tj+1

= (λ1 − λ2 + 1) t�(λ) + (λ1 − λ2 + 1) t�(λ)−1

= (λ1 − λ2 + 1) t�(λ)−1(t+ 1)

= κ(λ) t�(λ)−1(t+ 1)ω(λ).

Therefore, we have shown that for each partition λ of n, the coefficients of sλ
in An(x; t) and Bn(x; t) are equal. Thus An(x; t) = Bn(x; t), which completes the
proof. �
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