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1. Introduction

In this paper, we consider the equivariant KO-rings and J-groups of spheres
which have linear pseudofree circle actions.

Let S be the circle group consisting of complex numbers of absolute
value one. For a sequence p==(pi, ps, ***, pm) Of positive integers, we define
the S'-action @, on the complex m-dimensional vector space C” by

¢p(sr (zl:zz; s zm)) - (splzl, -"pzzz, Tt spmzm)

and denote by

Szm_l(Pl: PZ: "ty Pm)

the unit sphere S™! in C™ with this action @,. Then the S'-action on
S?=Y Py, Py ***, D) is said to be pseudofree (resp. free) if (p;, p;)=1 for i #j and
pi>1for some 1=i<m (resp. p,=p,=++=p,=1) (see Montgomery-Yang [19],
[20]).

The main results of our paper are as follows:

Theorem 4.7. Let p; (1 =<7 =<m) be positive odd integers such that (p;, p;)=1
for ij. Then there is a monomorphism of rings :

®: KOG(S™(py, pr, > b)) ~ KOCP* )® DRO(Z,,)

(For details see §4.)
Let G; (i=1) denote the stable homotopy group z,.,(S") (n=i42). We

define s(k)=_lj |G;| for k>0, where |G;| denotes the order of the group G; and
put s(—1)=1.

Theorem 5.4. Let p; (1=<i <m) be positive odd integers such that (p;, p;)=1
for i%j and (p;, s2m—3))=1 for 1<i=<m. Then there is a monomorphism of

groups:
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©: (S by, Pos 5 P)) »J(CP”‘I)@i?EJz“(*) .

(For details see §5.)

The paper is organized as follows:

In §§2 and 3, we consider a generalization of the results due to Folkman
[9] and Rubinsztein [23] and prove some preliminary results. In §§4 and 5,
we study an isomorphism and an S*'-fiber homotopy equivalence of real S'-vector
bundles over the pseudofree S'-manifold S*~Y(p,, p,, ***, pn) respectively. In
§6, we consider the problem on quasi-equivalence posed by Meyerhoff and
Petrie ([18], [21]).

2. Equivariant homotopy

Let n be a positive integer. Denote by Z, the cyclic group Z/nZ of order
n. If V is a real representation space of Z,, we denote by S(¥) its unit sphere
with respect to some Z,-invariant inner product. Denote by [X, Y] the set of
homotopy classes of maps from X to Y. In this section, we shall prove the
following theorem (cf. Folkman [9; Proposition 2.3] and Rubinsztein [23;
Corollary 5.3]).

Theorem 2.1. Let V be a complex Z, -representation space such that Z,
acts freely on S(V) and dimp V=2m. Let X be a Z, space which satisfies the
following conditions:

(1) X is path-connected and g-simple for 1=q=<2m—1,

(i1) the map of X into itself given by the action of a generator of Z, is homotopic
to the identity,

Hom(Z,, =y _(X))=0  for 1<i<m,

W) Bxt(Z,, ma(X)=0  for 1<i=m—1.

If there exist Z,-maps f,, fi: S(V)— X such that [f]=[f]€[S™ ", X], then f,
and f, are Z ~homotopic.

Before beginning the proof of Theorem 2.1, we require some notations and
lemmas.

Let M be a Z,-space S(V)x [0, 1], where [0, 1] is the unit interval with the
trivial Z,-action. Then M is a compact smooth Z,-manifold with a free Z,-
action. Let x, be a point of S(V). We put N=S(V)x {0, 1} U {x,} x [0, 1]
and M'=M|Z,. Let z: M— M’ be the natural projection. We put N'=z(N).

Let R be an arbitrary abelian group. By the universal-coefficient theorem,
we have the following lemmas.

Lemma 2.2. There are isomorphisms:
HM,N; R)=0 for 0=2¢=2m—1,
H*(M,N; R)y=R.
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Lemma 2.3. There are isomorphisms:

H(M',N'; R)= H(M', N': R)= 0,

H%(M’', N'; R) = Ext(Z,, R)  for 2<q<m,
H*(M',N’'; R) == Hom(Z,, R) for 1Sq<m—1,
H(M', N'; R) = R .

Since the Z,-action on M is free and orientation-preserving, we have
Lemma 2.4. Assume that Hom(Z,, R)=0. Then the homomorphism
z*: H™(M', N'; R) — H*(M, N; R)
1s injective.

Proof of Theorem 2.1. In order to prove Theorem 2.1, it suffices to
show that there exists a Z,-map F: M— X such that F|S(V)x {0}=f, and
FIS(V)x {1} =,

Since [f,]=[fi]€[S* !, X], there exists a continuous map F’: M —X such
that F'|S(V)x {0}=f, and F'|S(V)x {1}=f,. Since M is a compact smooth
Z,~-manifold and Z, acts freely on M, we can consider the fiber bundle B:

X—->MxX—->M.

Zn

A cross-section s, of the part of B over N' (==(V)) is defined by
so(m(2)) = [2, F'(z)]eMxX  for zEN.
Zn

To prove Theorem 2.1, it suffices to show that the cross-section s, defined on
N’ is extendable to a full cross-section of 4. Because there is a one-to-one
correspondence between Z,-maps from M to X and cross-sections of 4.

Let K be a simplicial complex. Denote by K? the ¢g-skelton. Denote by
| K| the geometric realization of K in the weak topology. It is easy to see that
there exist finite simplicial complexes K, and K, which satisfy the following:
(2.5) |K,|=M and |K,|=M,

(2.6) there exist subcomplexes L,C K, and L, C K, such that |L,|=N and
| L[| =N,

(2.7) there exists a simplicial map 7: (K,, L))— (K, L;) such that [7]=
w: (1Ko, L)~ (1Kol 1 La):

Let B(m,.,) (1=¢=2m) be the bundles of coefficients associated with
7,-(X) (see Steenrod [27; §30]). By the assumption (i), B(z,_,) (1=q¢=2m)
are product bundles. Therefore the cohomology groups HY(M’, N'; B(z,_,))
are isomorphic to the ordinary cohomology groups H*(M', N'; =,_(X)) for
1<q=<2m. By the assumption (iii) and Lemma 2.3, we have
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HY(M',N'; z,_(X)) =0 for 1=<q<2m—1.

It follows from Steenrod [27; 34.2] that there exists a cross-section of B defined
on |K3"1|(D]Ly):

50 |[K3 |- MxX
Zn
such that s,| | L,| =s,. There exists an obstruction cohomology class
c(s)eH ™ M', N'; m3m-1(X))

such that its vanishing is a necessary and sufficient condition for s;| |K3" 2 U L,|
to be extendable over M’. Thus we shall show that ¢(s;)=0. Consider the
product bundle B':

X->MxX—->M.

Let B'(z,-,) (1=¢=2m) be the bundles of coefficients associated with 7, ,(X).
Since B’ is a product bundle, B'(z,_,) (1=9=2m) are also product bundles.
The natural projection Mx X —Mx X induces the bundle maps 7z: B'— B

Zn
and 7,_,: B'(m,-)) = B(r,-,) (1 = q = 2m) covering =: (M, N)—(M', N'). Let
5,1 | K"~ =M x X be the cross-section of B’ induced by s, and =. It follows
from (2.7) that we have

7 *(C(s))) = ¢(s,) € H™M, N; 7y, (X)) .

By the assumption (iii) and Lemma 2.4, z* is a monomorphism. Hence
¢(s))=0 if and only if &(s})==0. Let s;: M=|K,|—>MX X be a cross-section
of B’ defined by

53(2) = (2, F'(2))eMx X  forzeM.
We put
so= 8| |KI"7|: |[Ki" - MXX.

Then s, and s, are cross-sections of B’ defined on |Ki"'|(D|L,]) such that
S 1Lyl =s,]|L;]. By Lemma 2.2, we have

H'M,N;z(X))=0  for 0=q<2m—2.
It follows from Steenrod [27; 35.9] that
T(sy) =CT(s)EH™M, N; mym-(X)) .
It is obvious that ¢(s;)=c(s)=0. Hence we have Z(s,)=0. q.e.d.

Corollary 2.8. Let X and V be as in Theorem 2.1. Suppose that
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(i) XZ=¢,
(ii) there exists a Z, map f: S(V)—X such that [f]=0€[S™!, X]
(=2 -1(X)).
Let y, be an arbitrary point of X% . Then there exists a Z,-map
F:DV)—- X

such that F|S(V)=f and F(0)=y, Here D(V) denotes the unit disk.

3. Equivariant maps which are equivariantly homotopic to zero

Let n be a positive integer. Let V and W be real Z,-representation spaces
with dimg V=dimz W=k>0. Let

pvs pw: Z,— GL(k, R)

be the Z,-representations afforded by V, W respectively. Then a Z,-action on
GL(k, R) is given by

sod = py(s)Apy(s)™ for s€Z,, AcGL(k, R),

and denote by GL(V, W) this Z,-space. Remark that GL(k, R) has two connected
components GL*(k, R) and GL™(k, R). If n is an odd integer, then we have

pv(Z,), pw(Z,) GL™(k, R).

Hence GL*(k, R) and GL™(k, R) are Z,-subspaces of GL(V, W) and are de-
noted by GL*(V, W) and GL~(V, W) respectively.

Let F(S(V), S(W)) denote the space of homotopy equivalent maps from
S(V) to S(W) with the compact-open topology. A Z,-action on F(S(V), S(W))
is given by

(sof)(v) = sf(s7'9) for s€Z,, feF(S(V), S(W)), veS(V).

It is well-known that F(S(V), S(W)) has two connected components F*(S(V),
S(W)) and F~(S(V), S(W)) representing maps of degree +1 and —1 respectively.
If n is an odd integer, then F*(S(V), S(W)) and F~(S(V), S(W)) are Z,-sub-
spaces of F(S(V), S(W)).

It is well-known that

(3.1) GLX(V, W) and F*(S(V), S(W)) (=) are path-connected and g-simple
Sfor ¢>0.

Moreover it is easy to see that
(3.2) If nis an odd integer, then the maps of GLX(V, W) and F*(S(V), S(W))

(=) into themselves given by the action of a generator of Z, are homotopic to
to the identity.
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Proposition 3.3. Let n be a positive odd integer. Let V and W be real
Z -representation spaces with dimg V=dimp W=Fk. Let U be a complex Z -repre-
sentation space such that Z, acts freely on S(U) and dimg U=2m. Assume that

(i) k=2m+1,

(ii) there exists a Z,-map f: S(U)—>GL(V, W) such that [f]=0&[S*,
GLY(V, W),

()GLY(V, W)?» £¢,
where E=-+or —. Then there exists a Z,-map F: D(U)— GL(V, W) such that
F|S(U)=f.

Proof. It is well-known that

Z, ifi=0, 1 mod 8§,
n(GL}(V,W))=4 0 ifi=2,4,5,6mod 8,
Z if =3, 7mod 8,

for 1<:<k—2. Since nis odd, we have

{ Hom(Z,, 7y (GL*(V, W))) =0 for 1=i<m,
Ext(Z,, nu(GLX(V, W)))=0 for 1<i=m—1.

Therefore the result follows from Corollary 2.8. g.e.d.

Proposition 3.4. Let n be a positive odd integer. Let V and W be real Z,-
representation spaces with dimp V=dimg, W=~k. Let U be a complex Z,-repre-
sentation space such that Z, acts freely on S(U) and dimp U=2m. Assume that

() (n, s@m—1))=1,

(i) k=2m+2,

(iii) there exists a Z,-map f: S(U)—F*(S(V), S(W)) such that [f]=0&
[, F(S(V), S(W)],

(i) F(S(V), SW)™ %9,
where E=—+ or —. Let @ be an arbitrary element of F*(S(V), S(W))?*. Then
there exists a Z,-map F: D(U)—F(S(V), S(W)) such that F|S(U)=f and
F(0)=.

Proof. It follows from Atiyah [4; p. 294] that there exist isomorphisms
z,(F*(S(V), S(W)))=G, for 1Zi<k—3.
By the assumptions (i) and (ii), we have

{ Hom(Z,, zy_(F(S(V), SOV))) =0  for 1<i<m,
Ext(Z,, m,(F*(S(V), S(W)))) = 0 for 1<i<m—1.

Therefore the result follows from Corollary 2.8. q.e.d.
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4. Equivariant KO-rings

In this section, we consider an isomorphism of S*-vector bundles over
S Y py, Pay *+*, Pm) When the S'-action is free or pseudofree.

Let V be a real S'-representation space. Let X be a compact S'-space.
Denote by V the trivial S*-vector bundle

V>XxV->X.
Let £ and 5 be real S'-vector bundles over X with dimg £=dimg 5. Let
p:Hom(§, ) - X

be the S'-vector bundle defined by Atiyah [3; §1.2] and Segal [25; §1]. Let
Iso(, n)cHom(&, n) be the subspace of all isomorphisms from £, to 7, for
xE X, where £, (resp. n,) denotes the fiber of £ (resp.n) over x. Clearly,
Iso(£, 1) is an S*-subspace of Hom(E, ») and

1) g =pITs0(&, n): Tso(&, 7) - X

is a surjective S*-map. We remark that £ and 5 are equivalent as S'-vector
bundles over X if and only if there exists an S*-cross-section of ¢ defined on X.
Let p=(py, P2 ***, Pm) be a sequence of positive integers. Denote by
D?™(p., py, -+, P,) the unit disk in C™ with the S'-action ¢, (see §1).
Let m>1 be an integer. We put

M, = S™ Ypy, po s b1 1, -+, 1) for 1Zk=Zm,
Sy = S™3(py, P2y s Pr-1, 1, -, 1) for 2=k=<m,
D, = D™ 4(p, P3y ***s P15 1, -++, 1) for 2Zk=<m,
M,= S™1,1, ., 1),
S, =831, 1, ..,1),
D, =D"11,1,.,1).

Here we remark that 6D,=S, for 1<k=<m.

In the following, for every positive integer #, we always regard the cyclic
group Z, as the subgroup of S! and regard an S'-space as a Z,-space in respec-
tive context.

We define a Z, -map j,: D,— M, by

jk(zl: 0ty Bp-1 By 0ty zm—l) = (zlv **ty Bp-b \/1— Izllz——"’_ |zm~1|2’ 2 '")zm—l) .

It is easy to see that j, is a Z,,-embedding and j; | Sj: S;—>M, is an S'-embed-
ding. In the following, D, and S, are regarded as a Z, -invariant subspace of
M, and an S'-invariant subspace of M, by j, respectively. Let ¢; (1=j<m) be
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the j-th unit vector of C”. Then we see that e, &, *++, &_,ES; and ¢, €D, as

the center of the disk.
We define a continuous map a: S'X Dy—M,; by

a(s, 3) = sz for s&€ 8", 2z€D,.
Then we have
Lemma 4.2. « is an identification map.

The proof is easy.

Lemma 4.3. Let X be an S'-space and let p: X— M, be a surjective S*-map.
If there exists a Z,-cross-section t,: Dy—X of p| p~'(Dy) such that 1,|S;: S,—X
is an S'-cross-section of p| p~'(S,), then there exists an S'~cross-section t: M,— X of

p such that t| D,=t,.

Proof. By Lemma4.2, a: S*x D—>M, is surjective. Thus, given z€M,,

there exists s&S" such that s"'2D,. Define ¢: M,—X by

H(2) = st(s™'2),

where s& .S is chosen as s7'2&D,. Then it is easy to see that ¢ is a well-defined

S'-cross-section of p such that #|D,=1,.
Define S'-maps

hk: Mk —> Mk+l f0r Oékém_l
by

. zm)

hk(zn s Ry Brt1r Sty

and we put k,—id: M,,—M,. Moreover we define

ﬁkzhmohm_lo"'ohk: Mk_)Mm f0r ngém.

Then it follows that

Ti(e;) = e; for 0Zk=m, 1<j<m.

Let & and 5 be S'-vector bundles over M,, with dimg £=dimg n=n.

put

Zy) = (21 **y 2 zfi’il, Reta "
m
”(zlx % zk; z{iil) zk+2: b

s zm)“

Vk = (ii;ek‘f)ek = ‘Eek) Wk = (;;fﬂ)e,, = ey for 1<k=m.

Here V,, W, (1=<k=m) are regarded as Z, -representation spaces.

q.e.d.

We

Let

q: Iso(BEE, B¥n)—>M, (0=k=<m) be S-maps defined by (4.1). Then we have
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Lemma 4.4. There are Z,, -homeomorphisms
@i @7 (Dy) > DyXGL(V,,, W) for 1Sk=m

such that the following diagram commutes:

g7 (Dw) ——— DX GL(V,, W))

Pr
| qk‘l(D,,)\‘ / 3!
ky

D

where 7, denotes the projection on the first factor.

Proof. Since D, is Z,-contractible, there exist isomorphisms of Z, -
vector bundles:

{ a: (ﬁff)le — D, xV,,
B: (hfn) | Dy — Dyx W,
Let §.: Iso(D,xV,, DyX W)= D, be an S'-map defined by (4.1). Then we

can define Z, -homeomorphisms

{ Yt Tso((BFE) | Dy, (Bin)| Dy) — Iso(Dy X V,, DX W),
1[/‘2: ISO(DkX Vk: Dk X Wk) - Dk X GL(V],, Wk) ,

{ 1l,‘l(f") = Bx°fx°a;l for x€D,, fng;I(x) ’
Yig) =(%,8)  for x€Dy, g€ (x),

respectively. It is obvious that a Z,,-homeomorphism
P = Yot g (Dy) = Iso((RFE) | Dy, (hfn)| Dy) — DX GL(V,, W)
satisfies our condition. q.e.d.

Define an S*-map k: M,— M,, by

b, g2, oo, 2 hm)
h e z,) = BT BB e, 2Rm)
A TP T ]

Lemma 4.5. Let m>1 be an integer and let p; (1=<i=m) be positive odd
integers with (p;, p;)=1 for i &j. Let & and 7 be real S'-vector bundles over M,,
such that dimgp E=dimpp=n=2m—1 and EDOR' as an S'-vector subbundle.
Assume that

(i) A*E and h*y are equivalent as S'-vector bundles over M,

(i) &, and n,, are equivalent as Z, -representation spaces for 1<k=<m.
Then & and v are equivalent as S'-vector bundles over M,
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Proof. Let g,: Iso(h}E, hifn)—M, (0=<k=m) be S'-maps defined by (4.1).
We shall show that there exist S'-cross-sections of g; (0=k=m):
ty: M, — Iso(BFE, hifn),

by induction. Then the existence of the last S'-cross-section ¢, shows the
result.

It follows from Iberkleid [11; Theorem 3.4] that the S'-maps 7, k: My—>M,,
are S'-homotopic. Hence, by the assumption (i), we have

RYEeh*E=h*y=hify ,
where = stands for is equivalent to. Therefore there exists an S'-cross-section
of q,:

t,: M, — Tso(RXE, hiky).

Let & be an integer greater than zero. We now assume that there exists an
S'-cross-section of q,_;:

ty1: My, — Iso(B¥ &, 7% 1) .
Remark that
By = hyohy_: M, — M,, .
It follows that there exist S'-vector bundle maps
RBi-s: zik—n’f g iﬁff ’
{ Bis: /;Zk—m - ﬁ;zkﬂ ’

covering A, : M, ,— M, We define an embedding ji: D,—M,_, by

ji(zh 2t Bpo1 By 00, zm—-l) = (zly **ty Bp-1y \/1— lzl|2—-—---~ Izm_llz, ks "',zm—l)-

Then the restriction j;|S,: Sp—>M,_, is an S'-embedding, Thus D, and S,
are also regarded as a subspace of M,_, and an S'-invariant subspace of M,_,
by ji respectively. We put Di==ji(D,) and S;=ji(S,). It is easy to see that
{ hy_1| Di: D — D,cM,,
b 1| Si: St — S,CM,,

are a homeomorphism and an S'-homeomorphism respectively. It follows
that the restrictions

{ B | {(BE1E) | D} : (BEE)| D} — (BFE)| Dy,
Bi_i| {(A¥1m) | D} : (B¥_1n)| Dt — (Bi¥y)| Dy,

are isomorphisms of vector bundles. Moreover the restrictions
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1§)lS£ - (ﬁff)lsk;

{ By | {(ﬁf—l E)|Si}: (ii;zk—
(¥ )| St — (B¥n)| S,

By | {(BEm) | S1}:

are isomorphisms of S'-vector bundles. Using the S'-cross-section t,_;: M,_,—
Iso(#¥_.E, h¥_1n), we can define a continuous cross-section of ¢, gz *(D,):

uy: Dy — g (D) C Iso (BXE Biky)

by putting u,(x) = {Ai_1|(FE18).} otios((Bam| DR ()0 {humy | (BEAE)} for xE
D,c M. Then the restriction

V= | Sp: Sy — q;‘(Sk)CIso(ﬁ;kE, ﬁf)y)

is an S'-cross-section of ¢,|¢x'(S;). Let @2 DX GLY(V,, W,)— GL}(V,, W)
be the projection on the second factor. It follows from Lemma 4.4 that v,
yields a Z, -map

Dyt Sk — GLE(Vk, Wk)
by 0,(x)=my(@i(vi(x))) for xES,, where =+ or —. Since v,=u,|.S,, we have
[2:] = 0[S™73, GLX(V3, W))].

By the assumption (ii), V, (:(it'ff),szek) and W, (:(ﬁfn)ekz 7,,) are
equivalent as Z, -representation spaces and V;DR'. This shows that

GLH(Vy, W) oni%¢p .

Moreover we remark that p, is an odd integer and Z,, acts freely on .S,.
Therefore it follows from Proposition 3.3 that there exists a Z, ~map

wk: Dk - GLE(Vk, Wk)

such that @,|S,=?,. By Lemma 4.4, we can define a Z, -cross-section of
0195 (Ds):
wy: Dy — gi(Dy) CIso (BXE, B¥y)

by wy(x)=@5 (%, Wi(x)) for x&D,. Since w,|S,=v,, it follows from Lemma
4.3 that there exists an S'-cross-section of ¢;:

ty: M, — Iso(BEE, Bify) .
In this way, we obtain S'-cross-sections Z, 2, ***, f,,. g.e.d.
The following lemma is due to Segal (see [25; Proposition 2.1]).

Lemma 4.6. Let G be a compact Lie group and let X be a compact Hausdorff
G-space such that G acts freely on X. Then the projection pr: X —X|G induces
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an isomorphism of rings
pr¥: KO(X|G) — KOy (X).
We put
= (pr*): KOg(M,)—> KO(CP"™Y).
Denote by RO(G) the real representation ring of G. We define a homomor-
phism of rings
®: KOA(S™(py, b+, ) — KO(CP")® D RO(Z,,)
by putting
D(E—n) = s E—10)D D (Eu—a) -
Then we have

Theorem 4.7. Let p; (1=i=m) be positive odd integers such that (p;, p;)=1
for i 5. Then the homomorphism @ is injective.

Proof. If m=1, then KOg(S'(p))=KOs(S'/Z;)=RO(Z,). Therefore
we assume that m>1. If ®(E—%)=0, then A*(—h*3=0 in KOgx(M,) and
E,—n,=0 in RO(Z,) for 1=i<m. Thus there exists an S'-representation
space U such that A¥(EDU) is equivalent to A*(»DU). Then we put

£ =E(DR"OU and y'=OR"QU.

Since £’ and %’ satisfy the assumption of Lemma 4.5, £’ is equivalent to »’. It
follows that

E—n=§-9"=0 inKOx(M,).
Hence @ is injective. q.e.d.

Next we consider the condition (i) of Lemma 4.5. Let ES? (resp. BS") be a
universal S'-space (resp. a classifying space for S'). Let z,: ES'X M,— BS!
(0=k=m) be the natural projection. .

Lemma 4.8. The homomorphism
n¥: H(BS'; Z)—> HY(ES*xX M,; Z)
g1

is an isomorphism for 0=qg=<2m—2. Moreover the integral cohomology ring of
ES'X M, is
81
H¥*ES'XM,; Z) = Z[c]/(¢c"),
1

k
where deg c=2 and q=11 p;.
i=1
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Proof. 'The map =, is a projection of a sphere bundle associated with the
complex m-plane bundle 1P+ Dyp?eDyP+-- By, where 5 is the canonical com-
plex line bundle over BS'. Then the result follows from the Thom-Gysin
exact sequence. q.e.d.

Lemma 4.9. Let 7: ES' X My,— M,/S*=CP"* be the natural projection.
Then s

*: H¥(CP*'; Z) —> H¥(ES'xX M,; Z)
81
1s an isomorphism.

Proof. The result follows from the Vietoris-Begle Mapping Theorem (see
Bredon [6; p. 371], Spanier [26; p. 344]).

Lemma 4.10. The homomorphism
(Ixh)*: H(ES'XM,,; Z) — H“(ESI>§M0; z)
S1 51 8
1s an isomorphism for 0<q=<2m—2.

Proof. Consider the following commutative diagram:

d
HY(BS") i > HY(BS")
I (1% hy* |t
HYES'X M) ——— > HY(ES'x M,) .
81 S

Since z¥ and #z¥ are isomorphisms for 0=<¢=<2m—2, (1 X h)* is an isomorphism
1
for 0<¢=<2m—2. s q.e.d.

Lemma4.11, Let £ and v be real S*-vector bundles over M,, with dimp &=
dimp n=Fk. Assume that m=2mod 4. Then the following two conditions are
equivalent:

() w(h*E)=u(h*y) in KO(CP"),

(i) p(ES'X}E)=pES*Xn) in H¥(ES'XM,; Z) for 1=<i=min([k/2],
[mn—1)2). i i
Here p,—(ES‘;fE) (resp. p;(ESlgfn)) denotes the i-th Pontrjagin class of the bundle

ES' x £—ES'X M, (resp. ES' X n— ES'x M,,).
81 s1 st st

Proof. Remark that *(u(h*E))=ES' X h*E, where 7: ES" 2( M—M,/S'=
st 1
CP™"! is the natural projection. Then we have
TH(pi((h*E))) = PUES" X K*E)

and
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(1 XY (P ES' X £)) = p{(ES* X b*E).
81 S1 51

Hence it follows from Lemmas 4.9 and 4.10 that the condition (ii) is equivalent
to the following:

piu(h*E)) = pi(u(k*y)) in H¥(CP"™; Z)

for 1 <{<min([k/2], [(m—1)/2]). Since m=Z=2mod 4, KO(CP™™")is a free abelian
group (see Sanderson [24; Theorem 3.9]). It follows from Hsiang [10; §3]
that

pi((h*E)) = pi(u(k*n))  for 1=i<min([%/2], [(m—1)/2])
if and only if
w(h*E) = w(h*n) in KO(CP™™1). g.e.d.
By Theorem 4.7 and Lemma 4.11, we have

Theorem 4.12. Let m be a positive integer such that m=%E2mod 4. Let
pi (1=i<m) be positive odd integers with (p;, p;)=1 for i=j. Let & and  be
real S*'-vector bundles over S™ (P, Py, -+, p,) with dimg E=dimzn=~k. Then
E=n in KOa(S*™ (P, Po ***, w)) tf and only if the following two conditions are
satisfied:

() &,=n., in RO(Z,) for 1<i<m,

(i) PAES'XE)=pi(ES"X7) for 1<imin([k[2], [(m—1)/2]).

Sl

RemARK 4.13. Let G be a compact Lie group and let X be a finite G-CW-
complex in the sense of Matumoto [17]. Let & and % be G-vector bundles
over X such that they are stably equivalent. But, in general, £ and 5 are not
equivalent even if dim &=dim7>dim X (cf. Sanderson [24; Lemma 1.2]).
For example, for an arbitrary integer n=0, we put

{ g = S%7, 1) x*DtDnt ,
7= S¥7, 1) X *Pt"*Dnt ,

where t* (d =Z) denotes the complex one-dimensional S'-representation space
defined by #(s)z=s%2 for s&S', zeC*. It follows from Lemma 4.5 that

EDR'=nOR' .
Now we assume that there exists an isomorphism of S'-vector bundles:
w: &E—7y.

Since & (resp.7) is a complex vector bundle, £ (resp. 7) has a canonical orien-

tation. Then the isomorphism of Z;-representation spaces o,: §, =7,
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is orientation-preserving, but the isomorphism of Z-representation spaces
@, E.,~>7,, is orientation-reversing. Since S® (7, 11) is connected, this is a
contradiction. Therefore £ and 7 are not equivalent.

5. Equivariant J-groups

In [12] and [14], Kawakubo has defined the notion of the equivariant J-
group as follows:

Let G be a compact Lie group and let X be a compact G-space. Let £ and
n be real G-vector bundles over X. Denote by S(&) (resp. S(3)) the unit
sphere bundle associated with £ (resp. %) with respect to some S'-invariant
metric. S(£) and S(y) are said to be G-fiber homotopy equivalent if S(£) and
S(n) are homotopy equivalent by fiber-preserving G-maps and G-homotopies.
Let T¢(X) be the additive subgroup of KOy(X) generated by elements of the
form & —17, where £ and 5 are G-vector bundles over X whose associated sphere
bundles are G-fiber homotopy equivalent. We define the equivariant J-group

Jo(X) by
Jo(X) = KOx(X)/Te(X)

and define the equivariant J-homomorphism J; by the natural epimorphism
Je: KO(X) — Jo(X) -

When X is a point, J;(X) is denoted by Jg(*).

In this section, we shall consider the equivariant J-group of S*7'(p,, p,, **+,
Pm) When the S'-action is free or pseudofree. We shall use freely the notations
in §83 and 4.

Let X be a compact S*-space. Let £ and 7 be real S'-vector bundles
over X with dimp E=dimyg». Let E(S(£), S(3)) denote the disjoint union of
the function spaces F(S(£,), S(7,)) (see §3) and define

G.1) g': E(SE), S@) > X
by
¢'(F(SE.)), S(r.) = .

Then there exists a canonical topology for E(S(£), S(%)) so that E(S(£), S(n))
is the total space of a fiber bundle with projection ¢’ and with fibers F(S(,),
S(n,)). An S'-action

p: S*XE(S(E), S(n)) = E(S), S(m)),

is given by p(s, f) (v)=sf(s"'0) for s&S", feF(S(.), S(n.)), vES(E.). Then
q': E(S(), S())— X is an S'-map.
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Let p; (1=i=m) be positive integers. Let & and » be real S'-vector
bundles over M, (=S**~Y(p,, ps, ***, pn)) With dimgE=dimg». We choose and
fix some S'-invariant metrics on & and 5. Then the S'-vector bundles A*E,
k*y, B¥E and 717}‘77 (0=<k=<m) have canonical S’-invariant metrics induced by
the S'-invariant metrics on £ and ». We put

Vk = (ﬁtg)ek == ge,,) Wk == (iitn)ek = 778; fOl‘ lékém .

Here V, and W, (1<k=<m) are regarded as orthogonal Z, -representation
spaces. Let gi: E(S(%}E), S(hifn)) — M, (0=k=<m) be S'-maps defined by (5.1).

Then we have
Lemma 5.2. There are Z, -homeomorphisms
P4 i (D) = Dyx F(S(V.), SWy)  for 1<ksm

such that the following diagram commutes :

’

g4~ (Dy) P s DX E(S(V), S(WY)

qilqi"‘(DN / -

Dk:

where 7, denotes the projection on the first factor and the restriction
Pilgi " (e): i (es) = F(S(V),S(W)) —
{e.} X F(S(V), S(WW))TDy X F(S(V3), S(Wh))
is the identity.
The proof is parallel to that of Lemma 4.4, so we omit it.

Lemma 5.3. Let m>1 be an integer and let p; (1=<i=<m) be positive odd
integers such that (p;, p;)=1 for i=+j and (p;, sCm—3))=1 for 1<i=m. Let§
and 7 be real S*-vector bundles over M, such tnht dimg E=dimgn=n=2m and
EDR! as an S'-vector subbundle. Assume that

(1) S(H*E) and S(h*y) are S'-fiber homotopy equivalent,

(i) S(&,) and S(y,;) are Z,-homotopy equivalent for 1 <i=m.

Then S(E) and S(x) are S*-fiber homotopy equivalent.

Proof. We put
Vi=(W®)., =&, and W, = (hfn),=n, for 1<i<m.
By the assumption (ii), there exist Z,-homotopy equivalences

fir SV)—S(W;) for1<i=m.
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Since £ D R, there exist Z;-homeomorphisms
70 S(Vi)— S(V) for 1<i<m

such that deg 7;=—1. Remark that fior;: S(V;)— S(W)) is also a Z,-homo-
topy equivalence.

First we shall show that, for each 0=<k=<m, there exists an S'-cross-section
of g}:

th: M, — E(S(B¥E), S(h¥n))

such that t{(e;)=f; or f; o7, for 1< j<k.
Since &y, h: M;—>M,, are S'-homotopic, it follows from the assumption (i)
that

S(EE)~S(H*E)~S(h*n)~S(hi7)

where ~ stands for is S'-fiber homotopy equivalent to. Thus there exists an
S'-cross-section of g4:

th: M, — E(S(FE), S(hin)) .

Let % be an integer greater than zero. Suppose that we are given an S'-
cross-section of gf.:

thoat My_, — E(S(FE.E), S(hE-1n))

such that #;_,(e;)=f; or f;or; for 1=<i<k—1. Then there exist a continuous
cross-section of g gt ' (Dy):

uh: Dy — ¢ (D) CE(S(REE), S(hin))
and an S'-cross-section of ¢/|g. '(Sy):
vh: Sy~ gi (S CE(S(RFE), S(hitn))

such that vf=u}|S, and wul(e;,)=f; or fior; for 1=I<k—1. This is proved
similarly as Lemma 4.6, but we need give care to the condition vi(e;)=f; or
fior; for 1< j<k—1. Let my: Dy X F(S(V), S(W,))— F*(S(V4), S(W,)) denote
the projection on the second factor. By Lemma 5.2, v} yields a Z,,-map

04: S, = F(S(Vy), S(W))

by putting 94(x)=r,(pi(vi(x))) for xES,, where E=-- or —. Since vi=u;|S,,
we have

[0i] = 0 [S*7% F(S(Vi), S(WW))] -
Moreover f,&€F(S(V3), S(W))22 or fiet, € FY(S(Vy), S(Wy))?2. It follows
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from Proposition 3.4 that there exists a Z,,-map

Wi D, — F(S(V3), S(W))
such that @}|S,=o} and wi(e,)=f, or fioT;,. Using Lemma 5.2, we define a
Z, ~cross-section of gf|gt ' (Dy):

wi: Dy — qb (D) CE(S(YE), S(htn))

by putting wj(x)=@} '(x, W(x)) for x&D,. Since w}|S,=v} and wi(e)= fi or
fro7h, it follows from Lemma 4.3 that there exists an S'-cross-section of g:

th: M, — E(S(h¥E), S(h¥n))

such that #{(e;)=wi(e;)= f; or fjor; for 1=<j=<k.
By induction, we obtain S'-cross-sections 5, ¢/, ---, th. 'The last S'-cross-
section ?;, gives a fiber-preserving S'-map

o: SE) - S(y)

such that o, = f; or for; for 1<j<m. It iseasy to see that, for every xEM,,
w,: S(E,)—S(x,) is an S}-homotopy equivalence, where S denotes the isotropy
group at x&€M,. Therefore it follows from the equivariant Dold theorem
that » gives an S’-fiber homotopy equivalence (cf. Kawakubo [12; Theorem 2.1]
and [24; Theorem 2.1]). q.e.d.

By the same argument as in §2 of Segal [25], we obtain an isomorphism
of groups:

pr: JICP™™) — Jo(My)

and the following diagram commutes:
%

N4
KO(CP™Y £ KOg(M,)

]l prt ]s‘l
JCP™™) = Js(M))

(cf. Lemma 4.6). We define
= (pr*)™: Js(My) — J(CP*™).
Now we define a homomorphism of groups
&: Jo(S™ N py, pay b)) — JCP™)D B ]z, (4)
by putting
BJa(E—)) = BISE DD D Tz, (Eunc)
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Then we have

Theorem 5.4. Let p; (1=<i=<m) be positive odd integers such that (p;, p;)=1
forixjand (p;, s(2m—3))=1 for 1<i<m. Then the homomorphism & is injective.

Proof. We see easily that Js(S'/Z,)== ]z, (+). Hence Theorem 5.4 will
follow from Lemma 5.3 by the same argument as in the proof of Theorem 4.7.

Let 4* denote the Adams operation on equivariant KO-theory.

Corollary 5.5. (cf. [18; Theorem 6.8).) Let a and b be integers wiht (a, b)=
(ab, p.)=1 for 1 <i<m. For an arbitrary element a of KOa(S™ (p1, Pz, ***s Pm))s
we have

Js(F* =D’ —1)(@)) = 0 in Jo(S* 7Py, pa 5 P) -

Proof. By tom Dieck [7; Theorem 1] and tom Dieck-Petrie [8; Theorem
5], we have

Jo, (W=D —1D)(@,) =0 in Jp,(+)  for 1Si<m.

On the other hand, by the solution of the Adams conjecture ([1], [22]), we sce
that

E(Js(B* (" =)' —1)(e))) = J(¥* =)' — D) (u(h*(@))) = 0 in J(CP").
Therefore the result follows from Theorem 5.4. g.e.d.

ReMARK 5.7. 1) The ring structure of KO(CP"™") and the group structure
of J(CP™ ') have been determined by Sanderson [24; Theorem 3.9] and Adams-
Walker [2] (see also Suter [28]). ii) The group structure of J, (*) has been
determined by Kawakubo [13] and [15].

6. Quasi-equivalence

Let G be a compact Lie group and let X be a compact G-space. Let &
and 7 be real G-vector bundles of the same dimension over X. In [18] and
[21], a G-map w: E—x which is proper, fiber-preserving and degree one on
fibers is called a quasi-equivalence. Let a=7n—EEKO0y(X) and define =0
to mean there exist a G-vector bundle ¢ over X and a quasi-equivalence
w: EPI— DI

Problem 6.1. ([18], [21].) Given a&€KO(X), given necessary and suffi-
cient conditions for a@=0.

In this section, we consider the above problem when G=S'and X=S8*"!
(P1s Po» ***» Pw) with a free or pseudofree S'-action.

We have
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Theorem 6.2. Let p; (11 =<m) be positive odd integers such that (p;, p;)=1
for i==j and (p;, s2m—3))=1 for 1<i<m. Let & and n be real S-vector
bundles of the same dimension over S™ Y(py, Py, ***, Pm). Then a=n—E20 if and
only if £ and v satisfy the following two conditions:

(i) J(uhE)=J () in JCP™),

(i) a,=n,—&,=0for 1=<i<m,
where we regard a,, as an element of KOZ”(*)_&_RO(Z,,,.) for 1<i=m.

Proof. It is obvious that ¢ =0 if and only if there exist an S*-vector bundle
6 over S™ Y p,, ps, ++, pn) and a fiber-preserving S'-map ¢: S(£PBg)— S(»D0)
such that deg{,=1 for x&S™ Y(p,, ps ***, Pw)- Then the proof is parallel to
that of Lemma 5.3. _ g.e.d.

Corollary 6.3. (cf. [21; Corollary 1.13].) Let « be an arbitrary element of
KOg(S*™ Y py, pay s D)) such that o, =0 for 1=1=<m. Then there exists a
non-negative integer n so that

no=0.

Proof. Remark that p(k*a)EIZb/(CP’”‘I). It is well-known that J(CP"™Y)
is a finite abelian group. Hence there exists an integer # such that

J(u(k*(na))) = nf(u(h*a)) =0  in J(CP"™).
Thus the result follows from Theorem 6.2. q.e.d.

Corollary 6.4. Let k be an integer with (k, p;)=1 for 1<i<m. Let ot be
an arbitrary element of KOg(S* Y(py, -+, pn)). Then there exists a non-negative
integer e=e(k, o) such that

E (W —1)(c) 20.

Proof. By the solution of the Adams conjecture (see [1], [22]), there exists
a non-negative integer ¢ such that

J(u(B*EW 1)) = JE@ =) () =0 in J(CP"T).

On the other hand, by Lee-Wasserman [16; Corollaries 3.3 and 4.8] and
Atiyah-~Tall [5; V. Theorem 2.8], we have

F@t—1)a,)=0 for I=i<m.
Therefore the result follows from Theorem 6.2. q.e.d.

ReMARK 6.5. When X is a point and a€K;(X)==R(G), Problem 6.1 is
solved by the main theorem of [18; Theorem 5.1] (see also Atiyah-Tall [5] and
Lee-Wasserman [16]).
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