EQUIVARIANT KO-RINGS AND J-GROUPS OF SPHERES WHICH HAVE LINEAR PSEUDOFREE S'-ACTIONS

Shin-ichiro KAKUTANI

(Received January 30, 1980)

1. Introduction

In this paper, we consider the equivariant KO-rings and J-groups of spheres which have linear pseudofree circle actions.

Let S^1 be the circle group consisting of complex numbers of absolute value one. For a sequence $p=(p_1, p_2, \dots, p_m)$ of positive integers, we define the S^1 -action φ_p on the complex *m*-dimensional vector space C^m by

$$\varphi_b(s, (z_1, z_2, \dots, z_m)) = (s^{p_1}z_1, s^{p_2}z_2, \dots, s^{p_m}z_m)$$

and denote by

$$S^{2m-1}(p_1, p_2, \dots, p_m)$$

the unit sphere S^{2m-1} in \mathbb{C}^m with this action φ_p . Then the S^1 -action on $S^{2m-1}(p_1, p_2, \dots, p_m)$ is said to be *pseudofree* (resp. *free*) if $(p_i, p_j)=1$ for $i \neq j$ and $p_i > 1$ for some $1 \leq i \leq m$ (resp. $p_1 = p_2 = \dots = p_m = 1$) (see Montgomery-Yang [19], [20]).

The main results of our paper are as follows:

Theorem 4.7. Let p_i $(1 \le i \le m)$ be positive odd integers such that $(p_i, p_j)=1$ for $i \ne j$. Then there is a monomorphism of rings:

$$\Phi \colon KO_{S^1}(S^{2m-1}(p_1, p_2, \cdots, p_m)) \to KO(CP^{m-1}) \oplus \bigoplus_{i=1}^m RO(\mathbf{Z}_{p_i}).$$

(For details see §4.)

Let G_i $(i \ge 1)$ denote the stable homotopy group $\pi_{n+i}(S^n)$ $(n \ge i+2)$. We define $s(k) = \prod_{i=1}^k |G_i|$ for k > 0, where $|G_i|$ denotes the order of the group G_i and put s(-1) = 1.

Theorem 5.4. Let p_i $(1 \le i \le m)$ be positive odd integers such that $(p_i, p_j)=1$ for $i \ne j$ and $(p_i, s(2m-3))=1$ for $1 \le i \le m$. Then there is a monomorphism of groups:

$$\tilde{\Phi}\colon J_{S^1}(S^{2m-1}(p_1,p_2,\cdots,p_m))\to J(CP^{m-1})\oplus \bigoplus_{i=1}^m J_{Z_{p_i}}(*).$$

(For details see §5.)

The paper is organized as follows:

In §§2 and 3, we consider a generalization of the results due to Folkman [9] and Rubinsztein [23] and prove some preliminary results. In §§4 and 5, we study an isomorphism and an S^1 -fiber homotopy equivalence of real S^1 -vector bundles over the pseudofree S^1 -manifold $S^{2m-1}(p_1, p_2, \dots, p_m)$ respectively. In §6, we consider the problem on quasi-equivalence posed by Meyerhoff and Petrie ([18], [21]).

2. Equivariant homotopy

Let n be a positive integer. Denote by Z_n the cyclic group Z/nZ of order If V is a real representation space of Z_n , we denote by S(V) its unit sphere with respect to some \mathbb{Z}_n -invariant inner product. Denote by [X, Y] the set of homotopy classes of maps from X to Y. In this section, we shall prove the following theorem (cf. Folkman [9; Proposition 2.3] and Rubinsztein [23; Corollary 5.3]).

Theorem 2.1. Let V be a complex Z_n -representation space such that Z_n acts freely on S(V) and $\dim_{\mathbb{R}} V = 2m$. Let X be a \mathbb{Z}_n -space which satisfies the following conditions:

- (i) X is path-connected and q-simple for $1 \le q \le 2m-1$,
- (ii) the map of X into itself given by the action of a generator of Z_n is homotopic to the identity,

(iii)
$$\begin{cases} \operatorname{Hom}(\mathbf{Z}_{n}, \pi_{2i-1}(X)) = 0 & \text{for } 1 \leq i \leq m, \\ \operatorname{Ext}(\mathbf{Z}_{n}, \pi_{2i}(X)) = 0 & \text{for } 1 \leq i \leq m-1. \end{cases}$$
If there exist \mathbf{Z}_{n} -maps f_{0} , f_{1} : $S(V) \to X$ such that $[f_{0}] = [f_{1}] \in [S^{2m-1}, X]$, then f_{0}

and f_1 are \mathbf{Z}_n -homotopic.

Before beginning the proof of Theorem 2.1, we require some notations and lemmas.

Let M be a \mathbb{Z}_n -space $S(V) \times [0, 1]$, where [0, 1] is the unit interval with the trivial Z_n -action. Then M is a compact smooth Z_n -manifold with a free Z_n action. Let x_0 be a point of S(V). We put $N=S(V)\times\{0, 1\}\cup\{x_0\}\times[0, 1]$ and $M'=M/\mathbb{Z}_n$. Let $\pi: M \to M'$ be the natural projection. We put $N'=\pi(N)$.

Let R be an arbitrary abelian group. By the universal-coefficient theorem, we have the following lemmas.

Lemma 2.2. There are isomorphisms:

$$H^q(M, N; R) = 0$$
 for $0 \le q \le 2m-1$,
 $H^{2m}(M, N; R) \cong R$.

Lemma 2.3. There are isomorphisms:

$$H^{0}(M', N'; R) = H^{1}(M', N'; R) = 0,$$
 $H^{2q-1}(M', N'; R) \cong \operatorname{Ext}(\mathbf{Z}_{n}, R) \quad \text{for } 2 \leq q \leq m,$
 $H^{2q}(M', N'; R) \cong \operatorname{Hom}(\mathbf{Z}_{n}, R) \quad \text{for } 1 \leq q \leq m-1,$
 $H^{2m}(M', N'; R) \cong R.$

Since the Z_n -action on M is free and orientation-preserving, we have

Lemma 2.4. Assume that $Hom(\mathbf{Z}_n, R) = 0$. Then the homomorphism

$$\pi^*: H^{2m}(M', N'; R) \to H^{2m}(M, N; R)$$

is injective.

Proof of Theorem 2.1. In order to prove Theorem 2.1, it suffices to show that there exists a \mathbb{Z}_n -map $F: M \to X$ such that $F \mid S(V) \times \{0\} = f_0$ and $F \mid S(V) \times \{1\} = f_1$.

Since $[f_0]=[f_1]\in[S^{2m-1},X]$, there exists a continuous map $F'\colon M\to X$ such that $F'\mid S(V)\times\{0\}=f_0$ and $F'\mid S(V)\times\{1\}=f_1$. Since M is a compact smooth \mathbb{Z}_n -manifold and \mathbb{Z}_n acts freely on M, we can consider the fiber bundle \mathcal{B} :

$$X \to M \times X \to M'$$
.

A cross-section s_0 of the part of \mathcal{B} over N' (= $\pi(N)$) is defined by

$$s_0(\pi(z)) = [z, F'(z)] \in M \times X$$
 for $z \in N$.

To prove Theorem 2.1, it suffices to show that the cross-section s_0 defined on N' is extendable to a full cross-section of \mathcal{B} . Because there is a one-to-one correspondence between \mathbf{Z}_n -maps from M to X and cross-sections of \mathcal{B} .

Let K be a simplicial complex. Denote by K^q the q-skelton. Denote by |K| the geometric realization of K in the weak topology. It is easy to see that there exist finite simplicial complexes K_1 and K_2 which satisfy the following: (2.5) $|K_1| = M$ and $|K_2| = M'$,

- (2.6) there exist subcomplexes $L_1 \subset K_1$ and $L_2 \subset K_2$ such that $|L_1| = N$ and $|L_2| = N'$,
- (2.7) there exists a simplicial map $\tau: (K_1, L_1) \to (K_2, L_2)$ such that $|\tau| = \pi: (|K_1|, |L_1|) \to (|K_2|, |L_2|)$.

Let $\mathcal{B}(\pi_{q-1})$ $(1 \leq q \leq 2m)$ be the bundles of coefficients associated with $\pi_{q-1}(X)$ (see Steenrod [27; §30]). By the assumption (ii), $\mathcal{B}(\pi_{q-1})$ $(1 \leq q \leq 2m)$ are product bundles. Therefore the cohomology groups $H^q(M', N'; \mathcal{B}(\pi_{q-1}))$ are isomorphic to the ordinary cohomology groups $H^q(M', N'; \pi_{q-1}(X))$ for $1 \leq q \leq 2m$. By the assumption (iii) and Lemma 2.3, we have

$$H^{q}(M', N'; \pi_{q-1}(X)) = 0$$
 for $1 \le q \le 2m-1$.

It follows from Steenrod [27; 34.2] that there exists a cross-section of \mathcal{B} defined on $|K_2^{2m-1}|(\supset |L_2|)$:

$$s_1: |K_2^{2m-1}| \to M \times X$$

such that $s_1 | |L_2| = s_0$. There exists an obstruction cohomology class

$$\overline{c}(s_1) \in H^{2m}(M', N'; \pi_{2m-1}(X))$$

such that its vanishing is a necessary and sufficient condition for $s_1 | |K_2^{2m-2} \cup L_2|$ to be extendable over M'. Thus we shall show that $\overline{c}(s_1)=0$. Consider the product bundle \mathcal{B}' :

$$X \to M \times X \to M$$
.

Let $\mathcal{B}'(\pi_{q-1})$ ($1 \leq q \leq 2m$) be the bundles of coefficients associated with $\pi_{q-1}(X)$. Since \mathcal{B}' is a product bundle, $\mathcal{B}'(\pi_{q-1})$ ($1 \leq q \leq 2m$) are also product bundles. The natural projection $M \times X \to M \times X$ induces the bundle maps $\overline{\pi} \colon \mathcal{B}' \to \mathcal{B}$ and $\overline{\pi}_{q-1} \colon \mathcal{B}'(\pi_{q-1}) \to \mathcal{B}(\pi_{q-1})$ ($1 \leq q \leq 2m$) covering $\pi \colon (M, N) \to (M', N')$. Let $s_2 \colon |K_1^{2m-1}| \to M \times X$ be the cross-section of \mathcal{B}' induced by s_1 and $\overline{\pi}$. It follows from (2.7) that we have

$$\pi^*(\overline{c}(s_1)) = \overline{c}(s_2) \in H^{2m}(M, N; \pi_{2m-1}(X)).$$

By the assumption (iii) and Lemma 2.4, π^* is a monomorphism. Hence $\overline{c}(s_1)=0$ if and only if $\overline{c}(s_2)=0$. Let $s_3\colon M=|K_1|\to M\times X$ be a cross-section of \mathcal{B}' defined by

$$s_3(z) = (z, F'(z)) \in M \times X$$
 for $z \in M$.

We put

$$s_4 = s_3 ||K_1^{2m-1}|: |K_1^{2m-1}| \to M \times X.$$

Then s_2 and s_4 are cross-sections of \mathcal{B}' defined on $|K_1^{2m-1}|(\supset |L_1|)$ such that $s_2||L_1|=s_4||L_1|$. By Lemma 2.2, we have

$$H^q(M, N; \pi_q(X)) = 0$$
 for $0 \le q \le 2m - 2$.

It follows from Steenrod [27; 35.9] that

$$\overline{c}(s_2) = \overline{c}(s_4) \in H^{2m}(M, N; \pi_{2m-1}(X))$$
.

It is obvious that $\overline{c}(s_2) = \overline{c}(s_4) = 0$. Hence we have $\overline{c}(s_1) = 0$.

Corollary 2.8. Let X and V be as in Theorem 2.1. Suppose that

- (i) $X^{\mathbf{Z}n} \neq \phi$,
- (ii) there exists a \mathbb{Z}_n -map $f: S(V) \to X$ such that $[f] = 0 \in [S^{2m-1}, X]$ $(\cong \pi_{2m-1}(X))$.

Let y_0 be an arbitrary point of X^{Z_n} . Then there exists a Z_n -map

$$F: D(V) \to X$$

such that F | S(V) = f and $F(0) = y_0$. Here D(V) denotes the unit disk.

3. Equivariant maps which are equivariantly homotopic to zero

Let n be a positive integer. Let V and W be real \mathbb{Z}_n -representation spaces with $\dim_R V = \dim_R W = k > 0$. Let

$$\rho_V, \ \rho_W \colon \boldsymbol{Z}_n \to GL(k, \boldsymbol{R})$$

be the Z_n -representations afforded by V, W respectively. Then a Z_n -action on GL(k, R) is given by

$$s \circ A = \rho_W(s) A \rho_V(s)^{-1}$$
 for $s \in \mathbb{Z}_n$, $A \in GL(k, \mathbb{R})$,

and denote by GL(V, W) this \mathbb{Z}_n -space. Remark that $GL(k, \mathbb{R})$ has two connected components $GL^+(k, \mathbb{R})$ and $GL^-(k, \mathbb{R})$. If n is an odd integer, then we have

$$\rho_V(\mathbf{Z}_n), \; \rho_W(\mathbf{Z}_n) \subset GL^+(k, \mathbf{R}) \; .$$

Hence $GL^+(k, \mathbb{R})$ and $GL^-(k, \mathbb{R})$ are \mathbb{Z}_n -subspaces of $GL(V, \mathbb{W})$ and are denoted by $GL^+(V, \mathbb{W})$ and $GL^-(V, \mathbb{W})$ respectively.

Let F(S(V), S(W)) denote the space of homotopy equivalent maps from S(V) to S(W) with the compact-open topology. A \mathbb{Z}_n -action on F(S(V), S(W)) is given by

$$(s \circ f)(v) = sf(s^{-1}v)$$
 for $s \in \mathbb{Z}_n$, $f \in F(S(V), S(W))$, $v \in S(V)$.

It is well-known that F(S(V), S(W)) has two connected components $F^+(S(V), S(W))$ and $F^-(S(V), S(W))$ representing maps of degree +1 and -1 respectively. If n is an odd integer, then $F^+(S(V), S(W))$ and $F^-(S(V), S(W))$ are \mathbb{Z}_n -subspaces of F(S(V), S(W)).

It is well-known that

(3.1) $GL^{\epsilon}(V, W)$ and $F^{\epsilon}(S(V), S(W))$ ($\epsilon = \pm$) are path-connected and q-simple for q > 0.

Moreover it is easy to see that

(3.2) If n is an odd integer, then the maps of $GL^{\epsilon}(V, W)$ and $F^{\epsilon}(S(V), S(W))$ $(\epsilon = \pm)$ into themselves given by the action of a generator of \mathbf{Z}_n are homotopic to to the identity.

Proposition 3.3. Let n be a positive odd integer. Let V and W be real \mathbb{Z}_n -representation spaces with $\dim_{\mathbb{R}} V = \dim_{\mathbb{R}} W = k$. Let U be a complex \mathbb{Z}_n -representation space such that \mathbb{Z}_n acts freely on S(U) and $\dim_{\mathbb{R}} U = 2m$. Assume that

- (i) $k \ge 2m+1$,
- (ii) there exists a \mathbb{Z}_n -map $f: S(U) \rightarrow GL^e(V, W)$ such that $[f] = 0 \in [S^{2m-1}, GL^e(V, W)],$
- (iii) $GL^{\epsilon}(V, W)^{\mathbf{Z}_n} \neq \phi$, where $\epsilon = +or$ —. Then there exists a \mathbf{Z}_n -map $F: D(U) \rightarrow GL^{\epsilon}(V, W)$ such that $F \mid S(U) = f$.

Proof. It is well-known that

$$\pi_{i}(GL^{e}(V, W)) \cong \begin{cases} \mathbf{Z}_{2} & \text{if } i \equiv 0, 1 \mod 8, \\ 0 & \text{if } i \equiv 2, 4, 5, 6 \mod 8, \\ \mathbf{Z} & \text{if } i \equiv 3, 7 \mod 8, \end{cases}$$

for $1 \le i \le k-2$. Since *n* is odd, we have

$$\begin{cases} \operatorname{Hom}(\boldsymbol{Z}_n, \, \pi_{2i-1}(GL^e(V, W))) = 0 & \text{for } 1 \leq i \leq m, \\ \operatorname{Ext}(\boldsymbol{Z}_n, \, \pi_{2i}(GL^e(V, W))) = 0 & \text{for } 1 \leq i \leq m-1. \end{cases}$$

Therefore the result follows from Corollary 2.8.

q.e.d.

Proposition 3.4. Let n be a positive odd integer. Let V and W be real \mathbb{Z}_n -representation spaces with $\dim_{\mathbb{R}} V = \dim_{\mathbb{R}} W = k$. Let U be a complex \mathbb{Z}_n -representation space such that \mathbb{Z}_n acts freely on S(U) and $\dim_{\mathbb{R}} U = 2m$. Assume that

- (i) (n, s(2m-1))=1,
- (ii) $k \ge 2m+2$,
- (iii) there exists a \mathbb{Z}_n -map $f: S(U) \to F^{\circ}(S(V), S(W))$ such that $[f] = 0 \in [S^{2m-1}, F^{\circ}(S(V), S(W))],$
 - (iv) $F^{\epsilon}(S(V), S(W))^{Z_n} \neq \phi$,

where $\varepsilon = +$ or -. Let φ be an arbitrary element of $F^{\varepsilon}(S(V), S(W))^{\mathbb{Z}_n}$. Then there exists a \mathbb{Z}_n -map $F: D(U) \to F^{\varepsilon}(S(V), S(W))$ such that F|S(U) = f and $F(0) = \varphi$.

Proof. It follows from Atiyah [4; p. 294] that there exist isomorphisms

$$\pi_i(F^{\epsilon}(S(V), S(W))) \cong G_i$$
 for $1 \leq i \leq k-3$.

By the assumptions (i) and (ii), we have

$$\begin{cases} \operatorname{Hom}(\boldsymbol{Z}_{n}, \, \pi_{2i-1}(F^{e}(S(V), \, S(W)))) = 0 & \text{for } 1 \leq i \leq m, \\ \operatorname{Ext}(\boldsymbol{Z}_{n}, \, \pi_{2i}(F^{e}(S(V), \, S(W)))) = 0 & \text{for } 1 \leq i \leq m-1. \end{cases}$$

Therefore the result follows from Corollary 2.8.

4. Equivariant KO-rings

In this section, we consider an isomorphism of S^1 -vector bundles over $S^{2m-1}(p_1, p_2, \dots, p_m)$ when the S^1 -action is free or pseudofree.

Let V be a real S^1 -representation space. Let X be a compact S^1 -space. Denote by \underline{V} the trivial S^1 -vector bundle

$$V \to X \times V \to X$$
.

Let ξ and η be real S¹-vector bundles over X with $\dim_{\mathbb{R}} \xi = \dim_{\mathbb{R}} \eta$. Let

$$p: \operatorname{Hom}(\xi, \eta) \to X$$

be the S^1 -vector bundle defined by Atiyah [3; §1.2] and Segal [25; §1]. Let $\operatorname{Iso}(\xi, \eta) \subset \operatorname{Hom}(\xi, \eta)$ be the subspace of all isomorphisms from ξ_x to η_x for $x \in X$, where ξ_x (resp. η_x) denotes the fiber of ξ (resp. η) over x. Clearly, $\operatorname{Iso}(\xi, \eta)$ is an S^1 -subspace of $\operatorname{Hom}(\xi, \eta)$ and

(4.1)
$$q = p | \operatorname{Iso}(\xi, \eta) : \operatorname{Iso}(\xi, \eta) \to X$$

is a surjective S^1 -map. We remark that ξ and η are equivalent as S^1 -vector bundles over X if and only if there exists an S^1 -cross-section of q defined on X.

Let $p = (p_1, p_2, \dots, p_m)$ be a sequence of positive integers. Denote by $D^{2m}(p_1, p_2, \dots, p_m)$ the unit disk in C^m with the S^1 -action φ_p (see §1).

Let m>1 be an integer. We put

$$\begin{split} M_k &= S^{2m-1}(p_1, p_2, \cdots, p_k, 1, \cdots, 1) & \text{for } 1 \leq k \leq m \text{,} \\ S_k &= S^{2m-3}(p_1, p_2, \cdots, p_{k-1}, 1, \cdots, 1) & \text{for } 2 \leq k \leq m \text{,} \\ D_k &= D^{2m-2}(p_1, p_2, \cdots, p_{k-1}, 1, \cdots, 1) & \text{for } 2 \leq k \leq m \text{,} \\ M_0 &= S^{2m-1}(1, 1, \cdots, 1), \\ S_1 &= S^{2m-3}(1, 1, \cdots, 1), \\ D_1 &= D^{2m-2}(1, 1, \cdots, 1). \end{split}$$

Here we remark that $\partial D_k = S_k$ for $1 \le k \le m$.

In the following, for every positive integer n, we always regard the cyclic group Z_n as the subgroup of S^1 and regard an S^1 -space as a Z_n -space in respective context.

We define a Z_{p_k} -map $j_k: D_k \rightarrow M_k$ by

$$j_k(z_1, \, \cdots, \, z_{k-1}, \, z_k, \, \cdots, \, z_{m-1}) = (z_1, \, \cdots, \, z_{k-1}, \, \sqrt{1 - |z_1|^2 - \cdots - |z_{m-1}|^2}, \, z_k, \, \cdots, z_{m-1}).$$

It is easy to see that j_k is a \mathbb{Z}_{p_k} -embedding and $j_k | S_k \colon S_k \to M_k$ is an S^1 -embedding. In the following, D_k and S_k are regarded as a \mathbb{Z}_{p_k} -invariant subspace of M_k and an S^1 -invariant subspace of M_k by j_k respectively. Let e_j $(1 \le j \le m)$ be

S. Kakutani

the j-th unit vector of C^m . Then we see that $e_1, e_2, \dots, e_{k-1} \in S_k$ and $e_k \in D_k$ as the center of the disk.

We define a continuous map $\alpha: S^1 \times D_k \rightarrow M_k$ by

$$\alpha(s, z) = sz$$
 for $s \in S^1$, $z \in D_k$.

Then we have

Lemma 4.2. α is an identification map.

The proof is easy.

Lemma 4.3. Let X be an S¹-space and let $p: X \to M_k$ be a surjective S¹-map. If there exists a \mathbb{Z}_{p_k} -cross-section $t_1: D_k \to X$ of $p \mid p^{-1}(D_k)$ such that $t_1 \mid S_k: S_k \to X$ is an S¹-cross-section of $p \mid p^{-1}(S_k)$, then there exists an S¹-cross-section $t: M_k \to X$ of p such that $t \mid D_k = t_1$.

Proof. By Lemma 4.2, $\alpha: S^1 \times D \to M_k$ is surjective. Thus, given $z \in M_k$, there exists $s \in S^1$ such that $s^{-1}z \in D_k$. Define $t: M_k \to X$ by

$$t(z)=st(s^{-1}z),$$

where $s \in S^1$ is chosen as $s^{-1}z \in D_k$. Then it is easy to see that t is a well-defined S^1 -cross-section of p such that $t \mid D_k = t_1$. q.e.d.

Define S^1 -maps

$$h_k: M_k \to M_{k+1}$$
 for $0 \le k \le m-1$

by

$$h_k(z_1,\,\cdots,\,z_k,\,z_{k+1},\,z_{k+2},\,\cdots,\,z_m) = rac{(z_1,\,\cdots,\,z_k,\,z_{k+1}^{\,p_{k+1}},\,z_{k+2},\,\cdots,\,z_m)}{||(z_1,\,\cdots,\,z_k,\,z_{k+1}^{\,p_{k+1}},\,z_{k+2},\,\cdots,\,z_m)||}$$

and we put $h_m = id: M_m \rightarrow M_m$. Moreover we define

$$\tilde{h}_k = h_m \circ h_{m-1} \circ \cdots \circ h_k \colon M_k \to M_m \quad \text{for } 0 \leq k \leq m.$$

Then it follows that

$$\tilde{h}_k(e_j) = e_j$$
 for $0 \le k \le m$, $1 \le j \le m$.

Let ξ and η be S^1 -vector bundles over M_m with $\dim_R \xi = \dim_R \eta = n$. We put

$$V_k = (\tilde{h}_k^* \xi)_{e_k} = \xi_{e_k}, \ W_k = (\tilde{h}_k^* \eta)_{e_k} = \eta_{e_k} \quad \text{for } 1 \leq k \leq m.$$

Here V_k , W_k $(1 \le k \le m)$ are regarded as \mathbf{Z}_{p_k} -representation spaces. Let q_k : Iso $(\tilde{h}_k^*\xi, \tilde{h}_k^*\eta) \to M_k$ $(0 \le k \le m)$ be S^1 -maps defined by (4.1). Then we have

Lemma 4.4. There are Z_{p_b} -homeomorphisms

$$\varphi_k: q_k^{-1}(D_k) \to D_k \times GL(V_k, W_k)$$
 for $1 \le k \le m$

such that the following diagram commutes:

$$q_k^{-1}(D_k) \xrightarrow{\varphi_k} D_k \times GL(V_k, W_k)$$
 $q_k \mid q_k^{-1}(D_k) \xrightarrow{D_k} \pi_1$

where π_1 denotes the projection on the first factor.

Proof. Since D_k is \mathbf{Z}_{p_k} -contractible, there exist isomorphisms of \mathbf{Z}_{p_k} -vector bundles:

$$\begin{cases} \alpha : (\tilde{h}_k^* \xi) | D_k \to D_k \times V_k, \\ \beta : (\tilde{h}_k^* \eta) | D_k \to D_k \times W_k. \end{cases}$$

Let \tilde{q}_k : Iso $(D_k \times V_k, D_k \times W_k) \rightarrow D_k$ be an S^1 -map defined by (4.1). Then we can define \mathbb{Z}_{p_k} -homeomorphisms

$$\begin{cases} \psi_1 \colon \operatorname{Iso}((\tilde{h}_k^* \xi) | D_k, (\tilde{h}_k^* \eta) | D_k) \to \operatorname{Iso}(D_k \times V_k, D_k \times W_k), \\ \psi_2 \colon \operatorname{Iso}(D_k \times V_k, D_k \times W_k) \to D_k \times \operatorname{GL}(V_k, W_k), \end{cases}$$

by

$$\begin{cases} \psi_1(f_x) = \beta_x \circ f_x \circ \alpha_x^{-1} & \text{for } x \in D_k, f_x \in q_k^{-1}(x), \\ \psi_2(g_x) = (x, g_x) & \text{for } x \in D_k, g_x \in \widetilde{q}_k^{-1}(x), \end{cases}$$

respectively. It is obvious that a Z_{p_k} -homeomorphism

$$\varphi_k = \psi_2 \circ \psi_1 \colon q_k^{-1}(D_k) = \operatorname{Iso}((\tilde{h}_k^* \xi) | D_k, (\tilde{h}_k^* \eta) | D_k) \to D_k \times \operatorname{GL}(V_k, W_k)$$

satisfies our condition.

q.e.d.

Define an S^1 -map $h: M_0 \to M_m$ by

$$h(z_1, z_2, \dots, z_m) = \frac{(z_1^{p_1}, z_2^{p_2}, \dots, z_m^{p_m})}{||(z_1^{p_1}, z_2^{p_2}, \dots, z_m^{p_m})||}.$$

Lemma 4.5. Let m>1 be an integer and let p_i $(1 \le i \le m)$ be positive odd integers with $(p_i, p_j)=1$ for $i \ne j$. Let ξ and η be real S^1 -vector bundles over M_m such that $\dim_R \xi = \dim_R \eta = n \ge 2m-1$ and $\xi \supset \underline{\mathbb{R}}^1$ as an S^1 -vector subbundle. Assume that

- (i) $h^*\xi$ and $h^*\eta$ are equivalent as S^1 -vector bundles over M_0 ,
- (ii) ξ_{e_k} and η_{e_k} are equivalent as \mathbf{Z}_{p_k} -representation spaces for $1 \leq k \leq m$. Then ξ and η are equivalent as S^1 -vector bundles over M_m .

Proof. Let q_k : Iso $(\tilde{h}_k^*\xi, \tilde{h}_k^*\eta) \rightarrow M_k \ (0 \le k \le m)$ be S^1 -maps defined by (4.1). We shall show that there exist S^1 -cross-sections of $q_k \ (0 \le k \le m)$:

$$t_k: M_k \to \operatorname{Iso}(\tilde{h}_k^* \xi, \, \tilde{h}_k^* \eta),$$

by induction. Then the existence of the last S^1 -cross-section t_m shows the result.

It follows from Iberkleid [11; Theorem 3.4] that the S^1 -maps \tilde{h}_0 , $h: M_0 \to M_m$ are S^1 -homotopic. Hence, by the assumption (i), we have

$$\tilde{h}_0^* \xi \simeq h^* \xi \simeq h^* \eta \simeq \tilde{h}_0^* \eta$$

where \approx stands for is equivalent to. Therefore there exists an S^1 -cross-section of q_0 :

$$t_0: M_0 \to \operatorname{Iso}(\tilde{h}_0^* \xi, \tilde{h}_0^* \eta)$$
.

Let k be an integer greater than zero. We now assume that there exists an S^1 -cross-section of q_{k-1} :

$$t_{k-1}: M_{k-1} \to \operatorname{Iso}(\tilde{h}_{k-1}^*\xi, \tilde{h}_{k-1}^*\eta)$$
.

Remark that

$$\widetilde{h}_{k-1} = \widetilde{h}_k \circ h_{k-1} \colon M_{k-1} \to M_m$$
.

It follows that there exist S^1 -vector bundle maps

$$\left\{\begin{array}{l} \overline{h}_{k-1} \colon \widetilde{h}_{k-1}^* \xi \to \widetilde{h}_k^* \xi ,\\ \overline{h}_{k-1}' \colon \widetilde{h}_{k-1}^* \eta \to \widetilde{h}_k^* \eta ,\end{array}\right.$$

covering $h_{k-1}: M_{k-1} \rightarrow M_k$. We define an embedding $j_k': D_k \rightarrow M_{k-1}$ by

$$j'_k(z_1, \dots, z_{k-1}, z_k, \dots, z_{m-1}) = (z_1, \dots, z_{k-1}, \sqrt{1 - |z_1|^2 - \dots - |z_{m-1}|^2}, z_k, \dots, z_{m-1}).$$

Then the restriction $j'_k|S_k:S_k\to M_{k-1}$ is an S^1 -embedding. Thus D_k and S_k are also regarded as a subspace of M_{k-1} and an S^1 -invariant subspace of M_{k-1} by j'_k respectively. We put $D'_k=j'_k(D_k)$ and $S'_k=j'_k(S_k)$. It is easy to see that

$$\left\{\begin{array}{l} h_{k-1}|D_k'\colon D_k'\to D_k\subset M_k,\\ h_{k-1}|S_k'\colon S_k'\to S_k\subset M_k, \end{array}\right.$$

are a homeomorphism and an S^1 -homeomorphism respectively. It follows that the restrictions

$$\left\{ \begin{array}{l} \overline{h}_{k-1} | \left\{ (\widetilde{h}_{k-1}^* \xi) \, | \, D_k' \right\} \colon (\widetilde{h}_{k-1}^* \xi) \, | \, D_k' \to (\widetilde{h}_k^* \xi) \, | \, D_k \, , \\ \overline{h}_{k-1}' | \left\{ (\widetilde{h}_{k-1}^* \eta) \, | \, D_k' \right\} \colon (\widetilde{h}_{k-1}^* \eta) \, | \, D_k' \to (\widetilde{h}_k^* \eta) \, | \, D_k \, , \end{array} \right.$$

are isomorphisms of vector bundles. Moreover the restrictions

$$\left\{ \begin{array}{l} \overline{h}_{k-1} | \left\{ (\widetilde{h}_{k-1}^* \xi) \, | \, S_k' \right\} \colon (\widetilde{h}_{k-1}^* \xi) \, | \, S_k' \to (\widetilde{h}_k^* \xi) \, | \, S_k \, , \\ \overline{h}_{k-1}' | \left\{ (\widetilde{h}_{k-1}^* \eta) \, | \, S_k' \right\} \colon (\widetilde{h}_{k-1}^* \eta) \, | \, S_k' \to (\widetilde{h}_k^* \eta) \, | \, S_k \, , \end{array} \right.$$

are isomorphisms of S^1 -vector bundles. Using the S^1 -cross-section $t_{k-1}: M_{k-1} \to \text{Iso}(\tilde{h}_{k-1}^*\xi, \tilde{h}_{k-1}^*\eta)$, we can define a continuous cross-section of $q_k | q_k^{-1}(D_k)$:

$$u_k: D_k \to q_k^{-1}(D_k) \subset \operatorname{Iso}(\tilde{h}_k^* \xi, \tilde{h}_k^* \eta)$$

by putting $u_k(x) = \{\bar{h}'_{k-1} | (\tilde{h}^*_{k-1}\xi)_x\} \circ t_{k-1} ((h_{k-1}|D'_k)^{-1}(x)) \circ \{h_{k-1}|(\tilde{h}^*_{k-1}\xi)_x\}$ for $x \in D_k \subset M$. Then the restriction

$$v_k = u_k | S_k \colon S_k \to q_k^{-1}(S_k) \subset \operatorname{Iso}(\tilde{h}_k^* \xi, \tilde{h}_k^* \eta)$$

is an S^1 -cross-section of $q_k | q_k^{-1}(S_k)$. Let $\pi_2 \colon D_k \times GL^e(V_k, W_k) \to GL^e(V_k, W_k)$ be the projection on the second factor. It follows from Lemma 4.4 that v_k yields a \mathbb{Z}_{p_k} -map

$$v_k \colon S_k \to GL^{\epsilon}(V_k, W_k)$$

by $v_k(x) = \pi_2(\varphi_k(v_k(x)))$ for $x \in S_k$, where $\varepsilon = +$ or -. Since $v_k = u_k | S_k$, we have

$$[v_k] = 0 \in [S^{2m-3}, GL^{e}(V_k, W_k)]$$

By the assumption (ii), V_k (=($\tilde{h}_k^*\xi$)_{e_k}= ξ_{e_k}) and W_k (=($\tilde{h}_k^*\eta$)_{e_k}= η_{e_k}) are equivalent as \mathbf{Z}_{e_k} -representation spaces and $V_k \supset \mathbf{R}^1$. This shows that

$$GL^{\mathfrak{e}}(V_{k}, W_{k})^{\mathbf{Z}_{p_{k}}} + \phi$$
.

Moreover we remark that p_k is an odd integer and Z_{p_k} acts freely on S_k . Therefore it follows from Proposition 3.3 that there exists a Z_{p_k} -map

$$\overline{w}_k \colon D_k \to GL^{\epsilon}(V_k, W_k)$$

such that $\overline{w}_k | S_k = \overline{v}_k$. By Lemma 4.4, we can define a $Z_{\bar{v}_k}$ -cross-section of $q_k | q_k^{-1}(D_k)$:

$$w_k \colon D_k \to q_k^{-1}(D_k) \subset \operatorname{Iso}(\tilde{h}_k^* \xi, \tilde{h}_k^* \eta)$$

by $w_k(x) = \varphi_k^{-1}(x, \overline{w}_k(x))$ for $x \in D_k$. Since $w_k | S_k = v_k$, it follows from Lemma 4.3 that there exists an S^1 -cross-section of q_k :

$$t_k \colon M_k \to \operatorname{Iso}(\tilde{h}_k^* \xi, \, \tilde{h}_k^* \eta)$$
.

In this way, we obtain S^1 -cross-sections t_0, t_1, \dots, t_m . q.e.d.

The following lemma is due to Segal (see [25; Proposition 2.1]).

Lemma 4.6. Let G be a compact Lie group and let X be a compact Hausdorff G-space such that G acts freely on X. Then the projection $pr: X \rightarrow X/G$ induces

an isomorphism of rings

$$pr^*: KO(X/G) \to KO_G(X)$$
.

We put

$$\mu = (pr^*)^{-1} \colon KO_{S^1}(M_0) \xrightarrow{\cong} KO(CP^{m-1}).$$

Denote by RO(G) the real representation ring of G. We define a homomorphism of rings

$$\Phi \colon KO_{S^1}(S^{2m-1}(p_1, p_2, \cdots, p_m)) \to KO(CP^{m-1}) \oplus \bigoplus_{i=1}^m RO(\mathbf{Z}_{p_i})$$

by putting

$$\Phi(\xi-\eta) = \mu(h^*\xi-h^*\eta) \oplus \bigoplus_{i=1}^m (\xi_{\epsilon_i}-\eta_{\epsilon_i}).$$

Then we have

Theorem 4.7. Let p_i $(1 \le i \le m)$ be positive odd integers such that $(p_i, p_j)=1$ for $i \ne j$. Then the homomorphism Φ is injective.

Proof. If m=1, then $KO_{S^1}(S^1(p_1))=KO_{S^1}(S^1/\mathbf{Z}_{p_1})\cong RO(\mathbf{Z}_{p_1})$. Therefore we assume that m>1. If $\Phi(\xi-\eta)=0$, then $h^*\xi-h^*\eta=0$ in $KO_{S^1}(M_0)$ and $\xi_{e_i}-\eta_{e_i}=0$ in $RO(\mathbf{Z}_{p_i})$ for $1\leq i\leq m$. Thus there exists an S^1 -representation space U such that $h^*(\xi\oplus\underline{U})$ is equivalent to $h^*(\eta\oplus\underline{U})$. Then we put

$$\xi' = \xi \oplus \underline{R}^{2m} \oplus \underline{U}$$
 and $\eta' = \eta \oplus \underline{R}^{2m} \oplus \underline{U}$.

Since ξ' and η' satisfy the assumption of Lemma 4.5, ξ' is equivalent to η' . It follows that

$$\xi - \eta = \xi' - \eta' = 0$$
 in $KO_{S^1}(M_m)$.

Hence Φ is injective.

q.e.d.

Next we consider the condition (i) of Lemma 4.5. Let ES^1 (resp. BS^1) be a universal S^1 -space (resp. a classifying space for S^1). Let $\pi_k : ES^1 \times M_k \to BS^1$ $(0 \le k \le m)$ be the natural projection.

Lemma 4.8. The homomorphism

$$\pi_k^* : H^q(BS^1; \mathbf{Z}) \to H^q(ES^1 \underset{S^1}{\times} M_k; \mathbf{Z})$$

is an isomorphism for $0 \le q \le 2m-2$. Moreover the integral cohomology ring of $ES^1 \times M_k$ is

$$H^*(ES^1 \times M_k; \mathbf{Z}) = \mathbf{Z}[c]/(qc^m)$$
,

where deg c=2 and $q=\prod_{i=1}^{k} p_i$.

Proof. The map π_k is a projection of a sphere bundle associated with the complex *m*-plane bundle $\eta^{p_1} \oplus \cdots \oplus \eta^{p_k} \oplus \eta \oplus \cdots \oplus \eta$, where η is the canonical complex line bundle over BS1. Then the result follows from the Thom-Gysin exact sequence. q.e.d.

Lemma 4.9. Let $\tau: ES^1 \times M_0 \to M_0/S^1 = CP^{m-1}$ be the natural projection. Then

$$\tau^*: H^*(\mathbb{C}P^{m-1}; \mathbb{Z}) \to H^*(\mathbb{E}S^1 \underset{s_1}{\times} M_0; \mathbb{Z})$$

is an isomorphism.

Proof. The result follows from the Vietoris-Begle Mapping Theorem (see Bredon [6; p. 371], Spanier [26; p. 344]).

Lemma 4.10. The homomorphism

$$(1 \times h)^* : H^q(ES^1 \times M_m; \mathbf{Z}) \to H^q(ES^1 \times M_0; \mathbf{Z})$$

is an isomorphism for $0 \le q \le 2m-2$.

Proof. Consider the following commutative diagram:

$$H^{q}(BS^{1}) \xrightarrow{id} H^{q}(BS^{1})$$

$$\downarrow_{\pi_{m}^{*}} (1 \times h)^{*} \qquad \downarrow_{\pi_{0}^{*}}$$

$$H^{q}(ES^{1} \times M_{m}) \xrightarrow{s_{1}} H^{q}(ES^{1} \times M_{0}).$$

Since π_m^* and π_0^* are isomorphisms for $0 \le q \le 2m-2$, $(1 \times h)^*$ is an isomorphism for $0 \leq q \leq 2m-2$.

Lemma 4.11. Let ξ and η be real S^1 -vector bundles over M_m with $\dim_R \xi$ = $\dim_{\mathbf{R}} \eta = k$. Assume that $m \equiv 2 \mod 4$. Then the following two conditions are equivalent:

- (i) $\mu(h^*\xi) = \mu(h^*\eta)$ in $KO(CP^{m-1})$, (ii) $p_i(ES^1 \times \xi) = p_i(ES^1 \times \eta)$ in $H^{4i}(ES^1 \times M_m; \mathbf{Z})$ for $1 \le i \le \min([k/2], 1 \le i \le i \le m]$ [(m-1)/2]). Here $p_i(ES^1 \times \xi)$ (resp. $p_i(ES^1 \times \eta)$) denotes the i-th Pontrjagin class of the bundle

 $ES^{1}\underset{S^{1}}{\times}\xi\rightarrow\tilde{ES^{1}}\underset{S^{1}}{\times}M_{m}\;(resp.\;ES^{1}\underset{S^{1}}{\overset{S^{1}}{\times}}\eta\rightarrow ES^{1}\underset{S^{1}}{\times}M_{m}).$

Proof. Remark that $\tau^*(\mu(h^*\xi)) = ES^1 \times h^*\xi$, where $\tau: ES^1 \times M_0 \rightarrow M_0/S^1 = S^1 \times M_0 \rightarrow M_0/S^1$ $\mathbb{C}P^{m-1}$ is the natural projection. Then we have

$$\tau^*(p_i(\mu(h^*\xi))) = p_i(ES^1 \times h^*\xi)$$

and

$$(1 \underset{S^1}{\times} h)^* (p_i(ES^1 \underset{S^1}{\times} \xi)) = p_i(ES^1 \underset{S^1}{\times} h^* \xi).$$

Hence it follows from Lemmas 4.9 and 4.10 that the condition (ii) is equivalent to the following:

$$p_i(\mu(h^*\xi)) = p_i(\mu(h^*\eta)) \text{ in } H^{4i}(CP^{m-1}; \mathbf{Z})$$

for $1 \le i \le \min(\lfloor k/2 \rfloor, \lfloor (m-1)/2 \rfloor)$. Since $m \ne 2 \mod 4$, $KO(\mathbb{C}P^{m-1})$ is a free abelian group (see Sanderson [24; Theorem 3.9]). It follows from Hsiang [10; §3] that

$$p_i(\mu(h^*\xi)) = p_i(\mu(h^*\eta))$$
 for $1 \le i \le \min([k/2], [(m-1)/2])$

if and only if

$$\mu(h^*\xi) = \mu(h^*\eta) \quad \text{in } KO(CP^{m-1}). \quad \text{q.e.d.}$$

By Theorem 4.7 and Lemma 4.11, we have

Theorem 4.12. Let m be a positive integer such that $m \not\equiv 2 \mod 4$. Let p_i $(1 \le i \le m)$ be positive odd integers with $(p_i, p_j) = 1$ for $i \ne j$. Let ξ and η be real S^1 -vector bundles over $S^{2m-1}(p_1, p_2, \dots, p_m)$ with $\dim_{\mathbf{R}} \xi = \dim_{\mathbf{R}} \eta = k$. Then $\xi = \eta$ in $KO_{S^1}(S^{2m-1}(p_1, p_2, \dots, p_m))$ if and only if the following two conditions are satisfied:

- (i) $\xi_{e_i} = \eta_{e_i}$ in $RO(\mathbf{Z}_{p_i})$ for $1 \le i \le m$, (ii) $p_i(ES^1 \times \xi) = p_i(ES^1 \times \eta)$ for $1 \le i \le \min(\lfloor k/2 \rfloor, \lfloor (m-1)/2 \rfloor)$.

REMARK 4.13. Let G be a compact Lie group and let X be a finite G-CWcomplex in the sense of Matumoto [17]. Let ξ and η be G-vector bundles over X such that they are stably equivalent. But, in general, ξ and η are not equivalent even if dim $\xi = \dim \eta > \dim X$ (cf. Sanderson [24; Lemma 1.2]). For example, for an arbitrary integer $n \ge 0$, we put

$$\left\{ \begin{array}{l} \xi = S^3(7, 11) \times t^2 \oplus t \oplus nt, \\ \eta = S^3(7, 11) \times t^9 \oplus t^{78} \oplus nt, \end{array} \right.$$

where t^d $(d \in \mathbb{Z})$ denotes the complex one-dimensional S^1 -representation space defined by $t^d(s)z=s^dz$ for $s \in S^1$, $z \in C^1$. It follows from Lemma 4.5 that

$$\xi \oplus \underline{R}^1 \simeq \eta \oplus \underline{R}^1$$
.

Now we assume that there exists an isomorphism of S^1 -vector bundles:

$$\omega: \xi \to \eta$$
.

Since ξ (resp. η) is a complex vector bundle, ξ (resp. η) has a canonical orien-Then the isomorphism of Z_7 -representation spaces ω_{e_1} : $\xi_{e_1} \rightarrow \eta_{e_1}$ is orientation-preserving, but the isomorphism of Z_{11} -representation spaces ω_{e_2} : $\xi_{e_2} \rightarrow \eta_{e_2}$ is orientation-reversing. Since S^3 (7, 11) is connected, this is a contradiction. Therefore ξ and η are not equivalent.

5. Equivariant J-groups

In [12] and [14], Kawakubo has defined the notion of the equivariant J-group as follows:

Let G be a compact Lie group and let X be a compact G-space. Let ξ and η be real G-vector bundles over X. Denote by $S(\xi)$ (resp. $S(\eta)$) the unit sphere bundle associated with ξ (resp. η) with respect to some S^1 -invariant metric. $S(\xi)$ and $S(\eta)$ are said to be G-fiber homotopy equivalent if $S(\xi)$ and $S(\eta)$ are homotopy equivalent by fiber-preserving G-maps and G-homotopies. Let $T_G(X)$ be the additive subgroup of $KO_G(X)$ generated by elements of the form $\xi - \eta$, where ξ and η are G-vector bundles over X whose associated sphere bundles are G-fiber homotopy equivalent. We define the equivariant J-group $J_G(X)$ by

$$J_G(X) = KO_G(X)/T_G(X)$$

and define the equivariant J-homomorphism J_G by the natural epimorphism

$$J_G: KO_G(X) \to J_G(X)$$
.

When X is a point, $J_G(X)$ is denoted by $J_G(*)$.

In this section, we shall consider the equivariant J-group of $S^{2m-1}(p_1, p_2, \dots, p_m)$ when the S^1 -action is free or pseudofree. We shall use freely the notations in §§3 and 4.

Let X be a compact S^1 -space. Let ξ and η be real S^1 -vector bundles over X with $\dim_R \xi = \dim_R \eta$. Let $E(S(\xi), S(\eta))$ denote the disjoint union of the function spaces $F(S(\xi_x), S(\eta_x))$ (see §3) and define

$$(5.1) q': E(S(\xi), S(\eta)) \to X$$

by

$$q'(F(S(\xi_x)), S(\eta_x))) = x$$
.

Then there exists a canonical topology for $E(S(\xi), S(\eta))$ so that $E(S(\xi), S(\eta))$ is the total space of a fiber bundle with projection q' and with fibers $F(S(\xi_x), S(\eta_x))$. An S^1 -action

$$\rho: S^1 \times E(S(\xi), S(\eta)) \to E(S(\xi), S(\eta)),$$

is given by $\rho(s,f)(v)=sf(s^{-1}v)$ for $s\in S^1$, $f\in F(S(\xi_x), S(\eta_x))$, $v\in S(\xi_{sx})$. Then $q': E(S(\xi), S(\eta))\to X$ is an S^1 -map.

548 S. Kakutani

Let p_i $(1 \le i \le m)$ be positive integers. Let ξ and η be real S^1 -vector bundles over M_m $(=S^{2m-1}(p_1, p_2, \dots, p_m))$ with $\dim_R \xi = \dim_R \eta$. We choose and fix some S^1 -invariant metrics on ξ and η . Then the S^1 -vector bundles $h^*\xi$, $h^*\eta$, $\tilde{h}_k^*\xi$ and $\tilde{h}_k^*\eta$ $(0 \le k \le m)$ have canonical S^1 -invariant metrics induced by the S^1 -invariant metrics on ξ and η . We put

$$V_k = (\tilde{h}_k^* \xi)_{e_k} = \xi_{e_k}, \ W_k = (\tilde{h}_k^* \eta)_{e_k} = \eta_{e_k} \quad \text{for } 1 \leq k \leq m.$$

Here V_k and W_k $(1 \le k \le m)$ are regarded as orthogonal \mathbf{Z}_{ℓ_k} -representation spaces. Let $q'_k : E(S(\tilde{h}_k^*\xi), S(\tilde{h}_k^*\eta)) \to M_k$ $(0 \le k \le m)$ be S^1 -maps defined by (5.1). Then we have

Lemma 5.2. There are Z_{p_b} -homeomorphisms

$$\varphi_k': q_k'^{-1}(D_k) \to D_k \times F(S(V_k), S(W_k))$$
 for $1 \le k \le m$

such that the following diagram commutes:

$$q'_{k}^{-1}(D_{k}) \xrightarrow{\varphi'_{k}} D_{k} \times F_{k}(S(V_{k}), S(W_{k}))$$

$$q'_{k}|q'_{k}^{-1}(D_{k}) \xrightarrow{D_{k}} \pi_{1}$$

where π_1 denotes the projection on the first factor and the restriction

$$arphi_k' | {q'_k}^{-1}(e_k) \colon {q'_k}^{-1}(e_k) = F(S(V_k), S(W_k))
ightarrow \{e_k\} imes F(S(V_k), \ S(W_k)) \subset D_k imes F(S(V_k), \ S(W_k))$$

is the identity.

The proof is parallel to that of Lemma 4.4, so we omit it.

Lemma 5.3. Let m>1 be an integer and let p_i $(1 \le i \le m)$ be positive odd integers such that $(p_i, p_j)=1$ for $i \ne j$ and $(p_i, s(2m-3))=1$ for $1 \le i \le m$. Let ξ and η be real S^1 -vector bundles over M_m such that $\dim_R \xi = \dim_R \eta = n \ge 2m$ and $\xi \supset \underline{R}^1$ as an S^1 -vector subbundle. Assume that

- (i) $S(h^*\xi)$ and $S(h^*\eta)$ are S^1 -fiber homotopy equivalent,
- (ii) $S(\xi_{ei})$ and $S(\eta_{ei})$ are \mathbf{Z}_{p_i} -homotopy equivalent for $1 \leq i \leq m$. Then $S(\xi)$ and $S(\eta)$ are S^1 -fiber homotopy equivalent.

Proof. We put

$$V_i = (\tilde{h}_i^* \xi)_{e_i} = \xi_{e_i}$$
 and $W_i = (\tilde{h}_i^* \eta)_{e_i} = \eta_{e_i}$ for $1 \leq i \leq m$.

By the assumption (ii), there exist Z_{p_i} -homotopy equivalences

$$f_i: S(V_i) \to S(W_i)$$
 for $1 \le i \le m$.

Since $\xi \supseteq \underline{R}^1$, there exist Z_{p_i} -homeomorphisms

$$\tau_i : S(V_i) \to S(V_i)$$
 for $1 \le i \le m$

such that deg $\tau_i = -1$. Remark that $f_i \circ \tau_i : S(V_i) \to S(W_i)$ is also a \mathbf{Z}_{p_i} -homotopy equivalence.

First we shall show that, for each $0 \le k \le m$, there exists an S^1 -cross-section of q'_k :

$$t'_k: M_k \to E(S(\tilde{h}_k^*\xi), S(\tilde{h}_k^*\eta))$$

such that $t'_k(e_j) = f_j$ or $f_j \circ \tau_j$ for $1 \le j \le k$.

Since \tilde{h}_0 , $h: M_0 \rightarrow M_m$ are S^1 -homotopic, it follows from the assumption (i) that

$$S(\tilde{h}_0^*\xi) \sim S(h^*\xi) \sim S(h^*\eta) \sim S(\tilde{h}_0^*\eta)$$
,

where \sim stands for is S^1 -fiber homotopy equivalent to. Thus there exists an S^1 -cross-section of q_0' :

$$t_0': M_0 \to E(S(\tilde{h}_0^*\xi), S(\tilde{h}_0^*\eta))$$
.

Let k be an integer greater than zero. Suppose that we are given an S^1 -cross-section of q'_{k-1} :

$$t'_{k-1}: M_{k-1} \to E(S(\widetilde{h}_{k-1}^*\xi), S(\widetilde{h}_{k-1}^*\eta))$$

such that $t'_{k-1}(e_j) = f_j$ or $f_j \circ \tau_j$ for $1 \le j \le k-1$. Then there exist a continuous cross-section of $q'_k | q'_k^{-1}(D_k)$:

$$u'_k: D_k \to q'_k^{-1}(D_k) \subset E(S(\widetilde{h}_k^*\xi), S(\widetilde{h}_k^*\eta))$$

and an S^1 -cross-section of $q'_k | q'_k^{-1}(S_k)$:

$$v_k': S_k \to q_k'^{-1}(S_k) \subset E(S(\tilde{h}_k^*\xi), S(\tilde{h}_k^*\eta))$$

such that $v_k'=u_k'|S_k$ and $u_k'(e_j)=f_j$ or $f_j\circ\tau_j$ for $1\leq l\leq k-1$. This is proved similarly as Lemma 4.6, but we need give care to the condition $v_k'(e_j)=f_j$ or $f_j\circ\tau_j$ for $1\leq j\leq k-1$. Let $\pi_2\colon D_k\times F^e(S(V_k),S(W_k))\to F^e(S(V_k),S(W_k))$ denote the projection on the second factor. By Lemma 5.2, v_k' yields a \mathbf{Z}_{p_k} -map

$$v_k': S_k \to F^{\epsilon}(S(V_k), S(W_k))$$

by putting $v'_k(x) = \pi_2(\varphi'_k(v'_k(x)))$ for $x \in S_k$, where $\varepsilon = +$ or -. Since $v'_k = u'_k | S_k$, we have

$$[v'_k] = 0 \in [S^{2m-3}, F^s(S(V_k), S(W_k))].$$

Moreover $f_k \in F^{\epsilon}(S(V_k), S(W_k))^{\mathbb{Z}_{p_k}}$ or $f_k \circ \tau_k \in F^{\epsilon}(S(V_k), S(W_k))^{\mathbb{Z}_{p_k}}$. It follows

550 S. Kakutani

from Proposition 3.4 that there exists a Z_{p_k} -map

$$\overline{w}_k' \colon D_k \to F^{\mathfrak{e}}(S(V_k), S(W_k))$$

such that $\overline{w}_k'|S_k=\overline{v}_k'$ and $\overline{w}_k'(e_k)=f_k$ or $f_k\circ\tau_k$. Using Lemma 5.2, we define a \mathbb{Z}_{b_k} -cross-section of $q_k'|q_k'^{-1}(D_k)$:

$$w'_k: D_k \to {q'_k}^{-1}(D_k) \subset E(S(\tilde{h}_k^*\xi), S(\tilde{h}_k^*\eta))$$

by putting $w'_k(x) = \varphi'_k^{-1}(x, \overline{w}'_k(x))$ for $x \in D_k$. Since $w'_k | S_k = v'_k$ and $w'_k(e_k) = f_k$ or $f_k \circ \tau_k$, it follows from Lemma 4.3 that there exists an S^1 -cross-section of q'_k :

$$t'_k: M_k \to E(S(\tilde{h}_k^* \xi), S(\tilde{h}_k^* \eta))$$

such that $t'_k(e_j) = w'_k(e_j) = f_j$ or $f_j \circ \tau_j$ for $1 \le j \le k$.

By induction, we obtain S^1 -cross-sections t'_0, t'_1, \dots, t'_m . The last S^1 -cross-section t'_m gives a fiber-preserving S^1 -map

$$\omega \colon S(\xi) \to S(\eta)$$

such that $\omega_{e_j} = f_j$ or $f_j \circ \tau_j$ for $1 \le j \le m$. It is easy to see that, for every $x \in M_m$, ω_x : $S(\xi_x) \to S(\eta_x)$ is an S_x^1 -homotopy equivalence, where S_x^1 denotes the isotropy group at $x \in M_m$. Therefore it follows from the equivariant Dold theorem that ω gives an S^1 -fiber homotopy equivalence (cf. Kawakubo [12; Theorem 2.1] and [24; Theorem 2.1]).

By the same argument as in §2 of Segal [25], we obtain an isomorphism of groups:

$$pr^*: J(CP^{m-1}) \rightarrow J_{S^1}(M_0)$$

and the following diagram commutes:

$$KO(CP^{m-1}) \xrightarrow{pr^*} KO_{S^1}(M_0)$$

$$J \downarrow \qquad \qquad J_{S^1} \downarrow$$

$$J(CP^{m-1}) \xrightarrow{pr^*} J_{S^1}(M_0)$$

(cf. Lemma 4.6). We define

$$\widetilde{\mu} = (pr^*)^{-1} : J_{S^1}(M_0) \xrightarrow{\cong} J(CP^{m-1}).$$

Now we define a homomorphism of groups

$$\tilde{\Phi}\colon J_{S^1}(S^{2m-1}(p_1,p_2,\cdots,p_m))\to J(CP^{m-1})\oplus\bigoplus_{i=1}^m J_{Z_{p_i}}(*)$$

by putting

$$\tilde{\Phi}(J_{\mathcal{S}^{1}}(\xi-\eta)) = \tilde{\mu}(J_{\mathcal{S}^{1}}(h^{*}\xi-h^{*}\eta)) \oplus \bigoplus_{i=1}^{m} J_{\boldsymbol{Z}_{p_{i}}}(\xi_{e_{i}}-\eta_{e_{i}}).$$

q.e.d.

Then we have

Theorem 5.4. Let p_i $(1 \le i \le m)$ be positive odd integers such that $(p_i, p_j) = 1$ for $i \ne j$ and $(p_i, s(2m-3)) = 1$ for $1 \le i \le m$. Then the homomorphism Φ is injective.

Proof. We see easily that $J_{S^1}(S^1/\mathbb{Z}_{p_1}) \cong J_{\mathbb{Z}_{p_1}}(*)$. Hence Theorem 5.4 will follow from Lemma 5.3 by the same argument as in the proof of Theorem 4.7.

Let ψ^k denote the Adams operation on equivariant KO-theory.

Corollary 5.5. (cf. [18; Theorem 6.8].) Let a and b be integers with $(a, b) = (ab, p_i) = 1$ for $1 \le i \le m$. For an arbitrary element α of $KO_{S^1}(S^{2m-1}(p_1, p_2, \dots, p_m))$, we have

$$J_{S^1}((\psi^a-1)(\psi^b-1)(\alpha))=0$$
 in $J_{S^1}(S^{2m-1}(p_1,p_2,\dots,p_m))$.

Proof. By tom Dieck [7; Theorem 1] and tom Dieck-Petrie [8; Theorem 5], we have

$$J_{Z_{bi}}((\psi^a-1)(\psi^b-1)(\alpha)_{ei})=0 \text{ in } J_{Z_{bi}}(*) \quad \text{ for } 1 \leq i \leq m.$$

On the other hand, by the solution of the Adams conjecture ([1], [22]), we see that

$$\widetilde{\mu}(J_{S^1}(h^*(\psi^a-1)(\psi^b-1)(\alpha)))=J((\psi^a-1)(\psi^b-1)(\mu(h^*(\alpha)))=0 \text{ in } J(CP^{m-1}).$$

Therefore the result follows from Theorem 5.4.

REMARK 5.7. i) The ring structure of $KO(CP^{m-1})$ and the group structure of $J(CP^{m-1})$ have been determined by Sanderson [24; Theorem 3.9] and Adams-Walker [2] (see also Suter [28]). ii) The group structure of $J_{Z_n}(*)$ has been determined by Kawakubo [13] and [15].

6. Quasi-equivalence

Let G be a compact Lie group and let X be a compact G-space. Let ξ and η be real G-vector bundles of the same dimension over X. In [18] and [21], a G-map $\omega: \xi \to \eta$ which is proper, fiber-preserving and degree one on fibers is called a quasi-equivalence. Let $\alpha = \eta - \xi \in KO_G(X)$ and define $\alpha \ge 0$ to mean there exist a G-vector bundle θ over X and a quasi-equivalence $\omega: \xi \oplus \theta \to \eta \oplus \theta$.

Problem 6.1. ([18], [21].) Given $\alpha \in KO_G(X)$, given necessary and sufficient conditions for $\alpha \ge 0$.

In this section, we consider the above problem when $G = S^1$ and $X = S^{2m-1}$ (p_1, p_2, \dots, p_m) with a free or pseudofree S^1 -action.

We have

S. Kakutani

552

Theorem 6.2. Let p_i $(1 \le i \le m)$ be positive odd integers such that $(p_i, p_j)=1$ for $i \ne j$ and $(p_i, s(2m-3))=1$ for $1 \le i \le m$. Let ξ and η be real S^1 -vector bundles of the same dimension over $S^{2m-1}(p_1, p_2, \dots, p_m)$. Then $\alpha = \eta - \xi \ge 0$ if and only if ξ and η satisfy the following two conditions:

- (i) $J(\mu(h^*\xi)) = J(\mu(h^*\eta)) \text{ in } J(CP^{m-1})$
- (ii) $\alpha_{e_i} = \eta_{e_i} \xi_{e_i} \ge 0$ for $1 \le i \le m$, where we regard α_{e_i} as an element of $KO_{\mathbf{Z}_{b_i}}(*) \cong RO(\mathbf{Z}_{b_i})$ for $1 \le i \le m$.

Proof. It is obvious that $\alpha \ge 0$ if and only if there exist an S^1 -vector bundle θ over $S^{2m-1}(p_1, p_2, \dots, p_m)$ and a fiber-preserving S^1 -map $\zeta: S(\xi \oplus \theta) \to S(\eta \oplus \theta)$ such that $\deg \zeta_x = 1$ for $x \in S^{2m-1}(p_1, p_2, \dots, p_m)$. Then the proof is parallel to that of Lemma 5.3.

Corollary 6.3. (cf. [21; Corollary 1.13].) Let α be an arbitrary element of $KO_{S^1}(S^{2m-1}(p_1, p_2, \dots, p_m))$ such that $\alpha_{e_i} \ge 0$ for $1 \le i \le m$. Then there exists a non-negative integer n so that

$$n\alpha \ge 0$$
.

Proof. Remark that $\mu(h^*\alpha) \in \widetilde{KO}(CP^{m-1})$. It is well-known that $\widetilde{J}(CP^{m-1})$ is a finite abelian group. Hence there exists an integer n such that

$$J(\mu(h^*(n\alpha))) = nJ(\mu(h^*\alpha)) = 0 \quad \text{in } J(CP^{m-1}).$$

Thus the result follows from Theorem 6.2.

q.e.d.

Corollary 6.4. Let k be an integer with $(k, p_i) = 1$ for $1 \le i \le m$. Let α be an arbitrary element of $KO_{S^1}(S^{2m-1}(p_1, \dots, p_m))$. Then there exists a non-negative integer $e = e(k, \alpha)$ such that

$$k^e(\psi^k-1)(\alpha) \geq 0$$
.

Proof. By the solution of the Adams conjecture (see [1], [22]), there exists a non-negative integer e such that

$$J(\mu(h^*(k^e(\psi^k-1)(\alpha)))) = J(k^e(\psi^k-1)(\mu(h^*\alpha))) = 0$$
 in $J(CP^{m-1})$.

On the other hand, by Lee-Wasserman [16; Corollaries 3.3 and 4.8] and Atiyah-Tall [5; V. Theorem 2.8], we have

$$k^{e}(\psi^{k}-1)(\alpha_{e_{i}})\geq 0$$
 for $1\leq i\leq m$.

Therefore the result follows from Theorem 6.2.

q.e.d.

REMARK 6.5. When X is a point and $\alpha \in K_G(X) \cong R(G)$, Problem 6.1 is solved by the main theorem of [18; Theorem 5.1] (see also Atiyah-Tall [5] and Lee-Wasserman [16]).

References

- [1] J.F. Adams: On the groups J(X)-I, Topology 2 (1963), 181-195.
- [2] J.F. Adams and G. Walker: On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 61 (1965), 81-103.
- [3] M.F. Atiyah: K-theory, Benjamin, 1967.
- [4] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
- [5] M.F. Atiyah and D.O. Tall: Group representations, λ-rings and the J-homomorphism, Topology 8 (1969), 253-297.
- [6] G.E. Bredon: Introduction to compact transformation groups, Academic Press, 1972.
- [7] T. tom Dieck: Homotopy-equivalent group representations, J. Reine Angew. Math. 298 (1978), 182-195.
- [8] T. tom Dieck and T. Petrie: Geometric modules over the Burnside ring, Invent. Math. 47 (1978), 273-287.
- [9] J. Folkman: Equivariant maps of spheres into the classical groups, Mem. Amer. Math. Soc. 95, 1971.
- [10] W.C. Hsiang: A note on free differentiable actions of S¹ and S³ on homotopy spheres, Ann. of Math. 83 (1966), 266-272.
- [11] W. Iberkleid: Pseudo-linear spheres, Michigan Math. J. 25 (1978), 359-370.
- [12] K. Kawakubo: Compact Lie group actions and fiber homotopy type, J. Math. Soc. Japan 33 (1981), 295-321.
- [13] K. Kawakubo: Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), 105-118.
- [14] K. Kawakubo: G-homotopy equivalent manifolds and J_G-homomorphism, Proc. Japan Acad. 54 (1978), 104-106.
- [15] K. Kawakubo: The groups $J_G(*)$ for compact abelian topological groups G, Proc. Japan Acad. 54 (1978), 76–78.
- [16] C.N. Lee and A.G. Wasserman: On the groups JO(G), Mem. Amer. Math. Soc. 159, 1976.
- [17] T. Matumoto: On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363-374.
- [18] A. Meyerhoff and T. Petrie: Quasi-equivalence of G modules, Topology 15 (1976), 69-75.
- [19] D. Montgomery and C.T. Yang: Differentiable pseudo-free circle actions on homotopy seven spheres, Proc. of the Second Conf. on Compact Transformation Groups, Amherst, Springer Lecture Note 298 (1971), 41-101.
- [20] D. Montgomery and C.T. Yang: Differentiable pseudo-free circle actions, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 894-896.
- [21] T. Petrie: Pseudoequivalences of G-manifolds, Proc. Sympos. Pure Math. 32 (1978), 169-210.
- [22] D. Quillen: The Adams conjecture, Topology 10 (1971), 67-80.
- [23] R.L. Rubinsztein: On the equivariant homotopy of spheres, Dissertations Math., Warszawa (1976).
- [24] B.J. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. 14 (1964), 137-153.

- [25] G. Segal: Equivariant K-theory, Inst. Hautes Etudes Sci. Publ. Math. Paris 34 (1968), 129-151.
- [26] E.H. Spanier: Algebraic topology, McGraw-Hill Book Company, 1966.
- [27] N. Steenrod: The topology of fibre bundles, Princeton University Press, 1951.
- [28] U. Suter: On the groups $J(CP^m)$ and $J(HP^n)$, Bol. Soc. Brasil. Mat. 5 (1974), 221-231.

Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan