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Equivariant maps between G-spaces induce fiber

preserving maps between the associated Borel spaces .

We will show that not all fiber preserving maps between

Borel spaces are induced that way, not even all fiber

homotopy classes of such maps . However there is a

one-to-one correspondence between homotopy classes of

G.-maps (i .e . maps equivariant up to homotopy in-á way,

see section 1 for definitions) between G-spaces and fiber

homotopy classes of maps between Borél spaces . This

one-to-one correspondence is obtained by a functor

equivalence between the respective categories (Theorem

1 and 2 in section 4) . As a result equivariant homotopy

theory (in a modified sense) is equivalent to the theory

of homotopy fibrations .

To prove these theorems we have to include H-spaces

into our discussion : In fact, the functor equivalence

mentioned above is an extension of the equivalence between

the categories of H-spaces and classifying spaces presented

in [2) . Therefore we need the notion of a Borel space

for H-spaces .

EQUIVARIANT MAPS UP TO HOMOTOPY
AND BOREL SPACES

Martin Fuchs

The Borel space we use, is associated with the

modified Dold-Lashof construction in [3) .



In section seven we present a number of examples

of G-spaces with differing fix point sets, such that

these differences cannot be detected by studying the

cohomology of their Borel spaces, nor by studying the

Borel space itself . The groups in most examples are Mp

or Sl , but the G-spaces are not all of finite dimension .

Thus we illustrate the limits of theorems like the local-

ization theorem by Hsiang ([5], p . 47) . All the examples

arise from the fact that if

	

h =

	

(hn)

	

n = o,l, . . .

	

is

	

a

G.-map between the G-spaces X1 and X2 and h is an

ordinary homotopy equivalente, then the fiber map induced

between the Borel spaces is a fiber homotopy equivalente .

1 . Definitions

1 .1 . The H-spaces H we are using are supposed to be

strictly associative and to have a strict unit element

e . Furthermore we assume H has a homotopy inverse v

(such that

	

H-=--> H x H lxv~ H xH u> H

	

is homotopic

to

	

idH) .

1 .2 . We say that a topological space X is a G-space,

if an H-space H acts on X from the left continuously

and in a strictly associative manner . We assume that

ex = x for all x E X .

1 .3 . As usual, an Hm-map h from H1 to H 2	(of

length r) is a sequence of continuous maps

hn :

	

(H1 x

	

I r ) n x H1

	

_# H2	(n=

	

0,1 , 2 , . . . )

	

such

	

that



hn(g0 ,t i 1 . . .1tn.gn )

for

	

n

	

>

	

O,

	

g0 . . . .,gn

	

E

	

Hl ,

	

and

	

ti , . . . ,tn

	

E

	

Ir =

[O,r] c 7R .

	

If r = O, the map h0 is a homomorphism

in the usual sense .

11-4 . If H1 acts on X1 and H2 acts on X2 from

the left, and if h is an H -map from H1 to H2 ofa

length

	

r,

	

then we define a G
C7
-map

	

f

	

from

	

X1	to

X2 of length r associated with h to be a seguence of

maps

fn : (H 1 x Ir ) n x X1 -0 X2	(n= 0,1,2 � . .)

such that for n > O

fn(g0 ,tl� . .,gn- l,tn,x)

hn-l (g0,t l� . .,gi-lgi, . . .,tn,gn) ti = r

hi-l(g0,t i , . . .1g i-1)hn-i(gi, . . . . gn )

	

=i = O

fn-1(g0,tl, . . .,gi-1gi, . . .,gn-l,tn,x) t i = r

hi-l(g0, . . .,gi-1 )fn-i(gi, . . .,gn-l,tn,x)

	

ti = 0

Composition of H -maps and G -maps is defined as in [3] .

1 .5 . If f is a G -map from X 1 to X2 associated to

the H -map h from H 1 to H2 , then f is called a
m

G--homotopy equivalence if there exists an H--map k

from H2 to H1 and a G.-map g from X 2 to X1



associated with k such that

	

g of

	

and

	

f og are

G -homotopiC to and
1

	

.. 2
to the Hm-homotopies between

	

k oh

	

respectively

	

h o k

and

	

idH

	

respectively

	

idH ) .
1

	

2

We are going to use the theorem from [4] :

Theorem . If - H1 acts on X1 and H2 acts on X2

and if

	

h :H1 -o H2	isan Hm-map such that

	

h0	is an

ordinary homotopy equivalence, and if f :X1 -4 X2 is

a G.-map associated with h such that f0 is an

ordinary homotopy equivalence, then

	

h

	

is an H
m
-homotopy

equivalence and f is a G -homotopy equivalence associated

to h .

1 .6 . H-spaces and H -maps form the category W and

G-spaces and G_-maps form the category J, .

	

The associated

homotopy categories aré denoted by 1,! and .1 .

2 . Co: ..struction of the Borel Space

In this section we rely heavily on [3J, where many

additional .details can be found .

2 .1 . Let (p,r) be an H-principal fibration

rE xH

	

E

Prl~ ~P

E

	

B

respectively (associated



as described in [3] and let X be a G-space with respect

to

	

H

	

with action

	

s : H xX -+ X .

	

Assume that

	

pX : EX -+ B

is a fibration with fiber X associated to p : E -i B

	

in

the following sense : 1) The two fibrations are fiber

homotopy trivial with respect to the same numerable

covering Z of B and every U E 21 is contractible

in

	

B .

	

2) There is , a map

	

rX : E XX -+ EX

	

such that for

each U F. n! the diagram

is commutative ((a,(3,aX,PX)

maps) .

	

In addition we want

to be commutative .

UxHxX--. 1xs~U,~X

1

	

l(U) xX

	

---~ PXp

	

(U)
rx

E x H x X

E xXrX ->

	

EX

are the obvious coordínate

2 .2 . For the general step of the Borel space construction

we look at the H-principal fibration (p,r) as described

in [3], p . 329-331 .

The base space B of the new fibration is the

mapping cone of p :E -i B with the coordínate topology .

We consider the covering of B consisting of



B1
= (y J, t1t'3]

	

and

	

B2 = (y1 t lt

Let pl : E l
-o B 1	respectively

	

plX : ElX -o B 1	be

the fibrations induced by

	

f(y lt) = p(y),

	

the map

collapsing B1 to the range space B of the mapping

cone B . p1X is associated to pl if we define

r1X
: E l x X -o

	

E1X

	

by

rurthermore let E 2 = B2 xH

	

and

	

E2X = B2 XX .

Define

	

r2X(Y .L t,h,x) = (y .i t,hx) .

	

Obviously these

fibrations are associated .

We recall from [3), p . 330, that the map

F :p-1 (B1(1 B 2 )

	

-o p-1 (B 1 ()

	

B2 )

	

defined by

is a strictly equivariant fiber homotopy equivalence . We

define the associated map FX : p2X(B1 (1 B2 ) p-1 (B1 n B2)

by

Fx is a map over B 1 (1 B2 and a homotopy equivalence on

each fiber (this follows from diagram (1) and the fact

that H has a homotopy inverse) and hence is a fiber

homotopy equivalence according to Theorem 6 .3 in [1] .

2 .3 . As in [3), p . 330 we now form the mapping cylinder

of F and of FX and construct the H-principal fibration

p :É -o B and similarly the associated fibration

84

rl (Y 1t .Yl ,x) = (Y 1t,rx(Yl ,x))

Y (Y l . t,n) = (Y 1 t,YIIi

FX(y .~ t,x) = (y 1 t,rX(Y,x) )



pX : EX -+ BX .

	

With the help of

	

rXl

	

and

	

rX2

	

we

in the obvious manner . NorX :EXXconstruct

problem arises since the diagram

(y
i t,h,x)

	

2X - > (y -, t,hx)

(y 1 t,yh,x)

	

-1 (y 1 t,r (yh,x) )
rlX

	

X

commutes as a consequence of diagram (2) . So it is easy

to see that E and EX are associated .

2 .4 . To construct the Borel space of X we start out

wi th

	

pO : EO - " BO ,

	

where

	

EO = H

	

and

	

BO =

	

[*) = point,

and with poX :EOX -+ BO , where EOX = X . From pn and

pnX we construct pn+1 and pn+l,X by letting

Er.+l = En' Bn+l - Bn and En+1X = EnX. Obviously

p . 333 in [3] we use telescopes to finally get the

universal H-principal fibration pH :EH 4 BH and the

associated fibration pX :EX -+ BH . We call EX the

Borel space of X and pX the Borel fibration . of X .

Notice that

trivial fibration with fiber

through the map

the direct limit of the maps

because we used the telescope construction .

continuity of rH in [3], p . 333) .

-i 2
3 < t < 3

pn+1 - Pn and pn+1,X - pnX are associated . As on

pX is a numerable, locally fiber homotopy

X associated with pH
rX is essentially

rn,X , and it is continuous

(Compare the

rX -EHXX -i



3 . Induced Maps Between Borel-Spaces

3 .1 . Before we can discuss G-Spaces, we have to know

more about H-Spaces . So let h :H1 -+ H2 be an He-map

Between the H-Spaces

	

H1	and

	

H2 .

	

We define a G
m
-map

E0h :E0H1 -+ E0H2	as

	

E0h = h .

	

(Note that all the Spaces

E H have a right action, so the notion of G -map has to
n

	

m

be modified accordingly) .

	

Also we let

	

B0h :B0H1 -+ B0H2

be the trivial map .

Assume that E h has been extended to a G -map
O

	

°'
Enh :EnH1 -+ EnH2	associated with

	

h

	

and

	

B0h

	

has been

extended to B h such that
n

(We will call a G -map with this property fiber preserving) .

On EnlHl we define

and

pn2 0 Enhk(Y .tl .gl . . . . .tk .gk) = Bnh ° pnl(Y) . .

First we extend Bnh from BnH1 to BnH1 by defining

En1h0(Y 1t .Y0 ) = (Enh0(Y) 1t . Enh0(YO ))

En1h
k
(Y 1t,y0 , ti , 91 . . . . .tk . gk)

for k = 1,2, . . .

Bnh(y ~. t) = (Enh0(Y) 1 t)

= (Enh0(Y) 1t, E nhk(Y0 .t1 .91 . . . .,tk.gk )



Recall

	

(from

	

[3],

	

p .

	

330)

	

that

	

En2H1 =

	

(Bn2H1 XH1)

	

U

(Bni

	

n Bn2 X I X H1)

	

and define

Eñ 2 hk(y l t,T,go.t l��tk,gk)

((Enh0(y) lt, hk(g0't l��tk.gk))

(Enh0(y)i.t, 2T,hk(g0.t l��tk .gk)

when O S T S 2 and 3 < t < 3

(Enh0(y) xt, Enhk+l(y,2T - l,g0 .tl . . . . .tk .gk))

when Z S T S 1

	

and 3 < T < 3 '

(when T = 1 we use that Enhk+l(y,l,g0,t1, . . .)
Enhk(yg0,t i . . . .) . Hence Eñ2hk and Enlh together induce

a G_-map

	

Enh

	

from

	

EnH1	to

	

EnH2

	

which satisfies all

the conditions mentioned before and hence we get

En+1h ' En+1H1 -4 En+1H2

	

together with

	

Bn+lh .

	

In the

obvious manner we obtiain the G
0
-map

	

Eh :EH1 -i EH2

associated with h.

Because of our definition of Eñ2hk on the mapping

cylinder part of EnH, . we only get E(h oh') is

G -homotopic to Eh oEh'

	

and similarly B(h oh') y
W

Bh o Bh' .

	

In fact the G -homotopy mentioned is fiber

preserving . We get the



Theorem . The construction of universal fibrations

described in [3) induces a functor (E,B) from the

category Y as described in 1 .6 to the category 41 of

universal fibrations and fiber homotopy classes of

G.-maps (with distinguished fiber) .

3 .2 . Now let X be a topological space on which the

H-space

	

H

	

acts from the left .

	

The map

	

rX :EH X X -+ EX

discussed in section 2 is part of the structure of EX .

A map between two Borel spaces has to preserve this

structure at leadt up to homotopy . This leads to the

following .

Definition . Let Y1 and Y2 be topological spaces

on which H1 and H2 respectively act from the right,

let X1 and X2 be topological spaces on which H1

and H2 respectively act from the left, and 1et

r1 :Y1 X X1 -4 Z1	and

	

r2 :Y2 x X 2	-+Z2	be maps

	

(Z1

	

and

Z2 are topological spaces) such that

Y

	

XH

	

XXi

	

lx~lri	`

	

.
Y.

	

X

1

42ix1

	

ri

Y .

	

XXi

	

Z .
i

	

ri	i

are commutative

	

(i = 1,2) .

	

Assume

	

h :H1 -+ H2	is a

G.-map

	

and

	

k :Y1 -+ Y2	and

	

f. : X1 -+ X 2	areG_-maps

associated with h, then a G -map associated with



h,k, and f is a sequence of maps F0,F 1 . . . . such that

and

with

F0 : Z 1 -+ Z2

Fk : yl X I X (H1 X I ) k-1 X X1 -+ Z2	k =

	

1,2, . . .

Fk(y .t l .gl . . . . .gk-1.tk.x)

r2(ki-1(y.t1, . . . . g i-1Mk-¡ (gi . . . .0tk .x)

	

ti = O

F.k-1(y .tl��gi-lgi��tk.x)

	

ti = 1

and appropriate modifications in special cases (like

k = 1 or i = O and i = k) .

3 .3 .

	

Now we are ready to disucss Borel fibrations .

	

Let

X1 and X2 be topological spaces on which H1 and

H 2	respectively act from the left .

	

Assume

	

f :X1 -+ X2

is a G.-map associated with the Hm-map h : H1 -+ H2 .

Again we define the G -map

	

E0f :E0X1 -i E0
X2	by

	

E0f = f.m

Assume we defined a G.-map

	

Enf :EnH,X X1 -+ EnX2

in the sense of 3 .2, associated with Enh, f, and h .

Furthermore we assume that all maps in Enf are "fiber-

maps" over

	

Bnh

	

in the obvious manner .

	

Let us extend

Enf

	

to

	

Enf :EnH1x X1	E nX2 .

	

We define

En f0 :EnX1 -# EnX2	first on



EniX1 =

	

{ (Y 1 t.xn )

	

(y s t

	

E

	

BnH1 ,

	

xn E Edx,

	

p (y) = PX(Y,) )

as

Then we define for k = 1,2, . . .

where

	

(Y it,y0 ) F EnlHl, x E X l , gi E Hl

On
En2X1 we define for k = O

Eñ 2 fO(y a t,T,x)

EnifO (Y Lt,xn ) = (Enh0(y) j. t, Enf0(xn))

Eni fk(Y lt,y0,ti , . . .,gk-l ,tk 'x)

= (Enh0(y) i t, Enfk(YO " tl �`gk-l .tk,x))

(EnhO(y) it,2T,f0 (x))

(Enh0 (y) .Lt,Enf1 (Y,2T-l,x)

and t i E I .

((EnhO(Y) l t,f0(x))

	

O S t S 3 .

	

'i = O

3 < t < 3'

	

0 S T < 2

3 < t < 3 .

	

2 S T S 1

and for k = 1,2, . . . we define Ern2fk just like Eñ2hk
with the following changes : replace hk and hk+l by
fk and

fk+1 respectively and gk by x . Eñ 2fk and

Enlfk can be pieced together to obtain Enfk for

k = 0,1,2, . . . . Ultimately we get the G -mapa
(Ef) : EH1 x X1 -+ EX 2

	

"over"

	

Bh : BH1 -+ BH2	associated

with Eh, f and h .

3 .3 . We point out that if h,k :Hl -+ H2 are Hm-maps

which are H -homotopic, then Bh is homotopic to Bk

90



leaving the base point fixed, and Eh is G--fiber

homotopic to Ek over the homotopy between Bh and Bk .

Furthermore if f,g :X1 -9 X 2 are G.-maps associated

to h and k, and if f, g are GP-homotopic associated

to the H -homotopy between h and k, then Ef and EgP

are fiber homotopic associated with the G.-fiber homotopy

between Eh and Ek etc . and over the homotopy between

Bh and Bk .

Definition .

	

Let Y

	

be the category whose objects

are fibrations p :E -+ B which are locally fiber homotopy

trivial with respect to a numerable covering of sets

contractable in B, and whose morphisms are fiber

homotopy classes of fiber preserving maps . Let Y *

be the associated category of fibrations with a distin-

guished fiber over a basepoint *, and let y and s*
be the associated homotopy categories .

Theorem . The constructions EH, BH, and EX define

a functor

	

B : & -+ 57 * ,

	

the Borel functor .

4 . The Inverse Functor of B

For every topological space X and subsets

	

A, B c X

we recall that

L(X;A,B)

	

_

	

{ (w,r)

	

1 w

	

: M+ -+

	

X,

	

w(O)

	

E

	

A,

w(t) = w(r) E B for t > rJ

Often we omit r in our notation for the sake of simplicity .



Definition .

	

For every fibration p : E -+ B with

distinguished fiber

	

F* = p1(*)

	

we define

E = ((w,y) ly E E, w F L(B ;B,B), w(r) = p(y)]

and p :E -* B as p(w,y) = w(O) .

then the fiber map

	

T : E -# -E	defined by

	

T (y) =

	

(wy,y)

is a fiber homotopy equivalence, see [1], Theorem 6.3

(wy : IR+

	

4 E

	

is defined as

	

wy(t)

	

= y

	

for all

t E 7R+ , r = 0) . .

Let WE = p-1 (*) be the distinguished fiber of

p, then TIF * is a homotopy equivalence between F*

arid WE . We observe that the loopspace of B, Q(B,*),

acts on WE from the left (i,(B, * ) = L(B ;*,*) is an

H-space) . Furthermore if p, p' are two fibrations

in 51* and if (F,f) is a based fiber map from p to

p',

	

then

	

Wf : WE -0 WE'

	

defined by

	

Wf(w,y) _

(Lf(w),F(y))

	

is an equivariant map associated with

the induced homomorphism Of :Q(B,*) a Q(B' :* ) . We

summarize this observation in the

the inverse functor to B, as we shall see in the

following

If the fibration p :E -+ B is an object in 5 *

Definition . W induces a functor

W :á* -+& .

Theorem i .	WB

	

is equivalent to

	

1&-



and

Theorem 2 . BW is equivalent to 1y .

5 . Proof of Theorem 1

To prove Theorem 1 we have to review the natural

transformation

	

S : H -4 C)BH .

5 .1 . We need from [3), p . 333 the

Theorem .

	

EH is contractible .

Let

	

k : EH x I -+ EH

	

be a contraction with

k(y,O) = y and k(y,l) = * = k(*,t) . (For this it is

necessary that * E H is a nondegenerate base point .

If nocessary one can switch to

	

H VI,

	

see [2], p . 215) .

Associated with the contraction k is the map

K :EFI-+ L(EH ;EH,*)

	

defined by K(y) = (k(y,t),1) .

5 .2 .

	

Define

	

SO : H -+ O(BH,*)

	

as

SO(y) = LpH ° KlEOH

with

	

Lp1I : L(EH ;EH,*) -+ L(BH ;BH,*)

	

induced by PH .

Lemma 1 . SO is a homotopy equivalence .

Proof : L(BH ;BH,*) is the total space of a

numerable fibration over BH, and so is EH . Both

total spaces are contractible . SO is the restriction

of

	

LpH a K,

	

which is a fiber map over

	

idBH

	

and which

is also a homotopy equivalence . Theorem 6.1 in [1]



implies that LpH oK is a fiber homotopy equivalence

and hence SO is a homotopy equivalence .

Lemma 2 . SO can be extended to an H -map .
m

Proof :

	

Let K ¡E0H = K IH = K0 .

	

Then we have to

find maps

	

S1 , S2 , . . .

	

which make

	

SO = LpH o KO : H -+ nBH

into an H -map .

	

Assume we already constructed
m

Si = LpH o Ki (i = O,l, . . .,n) .

	

Then

	

Sn+l

	

and hence

Kn+ 1

	

is defined on

	

~H(n + 1)

	

through the maps

	

S i

	

and

Ki respectively (i = 0, . . .,n) .

and

Associated with Ki are the maps

Define

ki

	

: H(i)

	

X 7R+

	

-4

	

EH

T4( ; 1 .. io+
y ].

with

	

ki	(g0,tl, . . . . ti,g i ~0)

	

= *

	

and

ki (g0 " ti, . . .,t,,g,,,) = g0 . . . g i for

Z ri(g0,tl, . . .,ti'gi) . These maps define kn+l and

rn+1

	

respectively on

	

-3H(n + 1) .

	

Since

	

]R+	is

contractible we can extend

	

rn+l

	

to all of

	

H(n+ 1) .

Then we can extend

	

kn+l

	

to all of

	

H(n+ 1)

	

such that

kn+l(g0'tl " .. 'tn+l'gn+l'0)
_ and

kn+1(g0'ti, . . . .tn+1,gn+1'rn+l( . . .)) = g0 . . . gn+l'

Since EH is .contractible .

Kn+l

	

(kn+l'rn+l)

	

and Sn+l = LPH oKn+ 1



For furthér details compare [2J, p . 214-215 . (Note the

addition of paths on p . 213 should be reversed .)

5 .2 . ProQos ition . S is a natural transformation

between

1y and QB .

Proof : In the diagram

S L(EH ;EH,*)

LPH

h

LEh

H'

v
K

L(EH' ;EH',*)

LPH'

íé(BH,*)

	

nBh ) C(BH' .*)

the lower portion commutes for all the maps of LEh .

To see that the upper portion commutes up to an Hm-

homotopy, one has to look again at the associated maps

into EFI' . Since EH' is contractible, all extensions

necessary to construct the H
m
-homotopy between

	

LEh o K

and Koh can be carried out . Further details in [2] .

(In [2) the G -map Eh was not discussed . Instead

the notion of a "regular" H-homomorphism had to be used .

Now EH provides the homotopy between formula 2 and

2a on p . 217 in 2 , translated from right to left

actions .)

5 . 3 . With S out of the way we define for any G-space X:



We already know that

	

T0(y) _ (*,y)

	

is a homotopy

equivalence .

	

We define

	

Tn : (H x I) n x X -+ WE

	

as

with

	

O S tn S r
n-1(go l . ., 'tn-1,gn-1 )

	

and

O S 6 S rn-l - tn .

	

Recall

	

rX : EH x X -+ EX .

	

We have

WB .

Tn(g0;ti, . . . .tn .x)

=

	

(pKn-1(go , . . . .tn-1 'gn-1)(tn + a),

-1(go, . . . . tn-1'gn-1)(tn),x))

Tn(go,t1, . . . . gn-l,tn,x)

T0 : X -+ WE

	

as

	

T0 = T I X

6 . Proof of Theorem 2

I( Sn-1(g0 .tV . . . . gn_ 1 ) .x)

	

tn = O

* .9091

	

. . .

	

gn-l, x)

	

tn =

	

r

The "G.-homotopy" between

	

LEh oK

	

and

	

K oh

	

implies

that T is a natural transformation between 12( and

66-1 . Let .T* be the category of based topological

spaces X, which have a numerable covering 2I such

that every U E 2I is contractable in X, and based

continuous maps . Let T* be the associated homotopy

category .



Remark . It is easy to see that for every H in

Al the classifying space BH is in T* . .

In preparation for the proofof Theorem 2 we list

three universal fibrations with fiber n(X,*) for

X E a* .

a) Application of the modified Dold-Lashof

construction to the trivial fibration (2(X,*) -+

leads to

pC2X : ESZX -i B2X

b) It is well-known that

PI, : L(X;X,*) -0 X

also classifies numerable n(X,*)-fibrations .

c) If we apply the modified Dold-Lashof

construction to pL of b), we get again a universal

fibration

PEL : ELX -4 BLX

All three constructions induce functors from 7* to

6 .2 . The inclusion of C(X,*) as distinguished fiber

of pL L(X;X,*) 4 X can be interpreted as a principal

map of principal fibrations and hence it induces the

fiber map

T *, .



E(QX)

pOX

B(CIX)

	

B(LX)

Let g be a homotopy inverse of T.

which is a principal fiber homotopy equivalence ; (f,f)

is an inclusion, hence POX is principal fiber homotopy

equivalent to the pullpack of pLX . For universal

fibrations this implies f is a homotopy equivalence .

As a result, (f,f) represents a functor equivalence

between the functors from T* to 91* induced by a) and

c) .

6 .3 . The inclusion

L(X ;X,*) k-j ELX

k j BLX

is a fiber homotopy equivalence by the same reasoning as

described in 6.2 . So (k,k) represents a functor

equivalence between the functors arising from b) and c) .

6 .4 . Now consider a fibration p :E -4 X from the

category 7* .

	

The associated Hurewicz-fibration p :E-+X

admits a map

r0 : L(X ;X,*) ;c WE

	

E



defined through the addition of paths, which makes E

a look alike of a Borel space associated to WE .

Assigning to p the Hurewicz fibration p induces

a functor H

	

on ;r

	

which is obviously equivalent tor
id~.

	

.

	

We are now going to show

	

BW -.Hr .

	

Consider the,, *

	

_-

diagram of Borel spaces :

K is irduced by applying the Borel space construction

to p (an obvious modification) and G is induced,by

L(X ;X,*) xWE

	

k

	

ELX xWE

	

gxl ~E,-?X xWE

p

g, the homotopy inverse of f from 6.2 .

(K,k) and (G,g) represent functor equivalences

associated to the equivalences (k,k) and (g,g)

discussed in 6 .2 and 6 .3 . Since the right side of the

diagram represents BW and the left side represents

Hr ,

	

the proof is complete .

7 . Two Applications

K ~ GE

	

--j EL(WE) --~ E(WE)

g

7 .1 .

	

Let

	

G =

	

IR1	and

	

X = IR2 .

	

Cons ider the two

IR1 -spaces

	

X1	and

	

X2	defined by the two actions

pl : IRl x IR2

	

-~

	

IR 2 ,

	

p1 (t,re lcp )

	

=

	

rel (g+t)

~ 2 : IRl x IR2 -+ IR2 ,

	

P2 (t,re
lqp )

	

= rel (9+t (1-r) )



The fix point set of

	

pl

	

is just the origin of

	

IR2

and the fix point set of p2 is the origin and the

unit circle . Obviously we could define actions with

more complicated fix point sets .

The constant map from one of these spaces to the

origin of the other is an equivariant map which is also

an ordinary homotopy equivalente . It induces (according

to section four) a homotopy equivalente between the

Borel spaces of the two spaces .

7 .2 . a)

	

Let P be an acyclic finite polyhedron with

nontrivial fundamental group .

	

Then the suspension

	

EP

is a contractible 2Z2 -space with fix point set

	

P,

	

and

the join

	

P * S1	isa constractible

	

S1	or Z?p -space

(p y 2) with fix point set P in the obvious manner

(notice

	

P *S1 - E2 p) .

b) Let P be any finite polyhedron . The obvious

2Z2 -action on

	

E P

	

can be extended to

	

E 2 P

	

etc .

	

so

that

	

lim En P

	

is a contractible 2Z2 -space with fix
n~

point set P .

same by reiterating the join with

	

S1 .

G-space with nonempty fix point set F, e .g . let Y

be one of the spaces mentioned above . The one point

union Id of X and - Y formed by identifying two

For

	

G = 2ZP

	

(p T 2)

	

and

	

G = S1	we can do the

7 .3 . Let G be either 2Z

	

or S1 and let X be a
P

G-space with fix points . Let Y be a contractible



fix points is a new G-space in the obvious manner and

the inclusion of X into I^1 is an equivariant map

and also an ordinary homotopy equivalence .

By the theorem in [4] the inclusion represents

an isomorphism in .1 and induces a fiber homotopy

equivalence between BX and BW by section 4 .

Hence the cohomology of these Borel spaces carries

no information about F .

7 .4 .

	

Assume

	

G

	

is either

	

2Zkk	or

	

(S1) k	and

	

X1
,X2

are G-spaces which satisfy the assumptions for Borel's

theorem as described in Proposition 1 of Chapter IV in

[5J, i .e ., let Xl ,X 2 be paracompact G-spaces with

finite cohomology dimension . Let f :X1 -# X2 be an

equivariant map which is also an ordinary homotopy

equivalence .

	

Again

	

Ef :EX1 i EX 2

	

is a fiber homotopy

equivalence between Borel spaces . Ef induces isomor-

phisms between HG (X2 ) and HG (X1 ) as H (BG) modules .

Hence Proposition 1 on p .45 in [5] tells us, that

fIF 1 :F .1 =# F 2 induces an isomorphism of the cohomology

rings

	

H* (F 2 ) (9k RG	and

	

H* (F 1 ) ®k RG	of the fix

point sets F1 and F2 .

T . Petrie in [7] and elsewhere, Ch . N . Lee and

A . Wasserman in [6] Nave constructed examples of such

maps which do not have equivariant homotopy inverses .

Hence the fiber homotopy inverse of Ef

	

is not

induced by an equivariant map from X2 to X1 . This

answers the opening statement of the introduction of

this paper .
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