Pub. Mat. UAB
Vol. 28 No 1 Maig 1984

EQUIVARIANT MAPS UP TO HOMOTOPY
AND BOREL SPACES
Martin Fuchs

Equivariant maps between G-spaces induce fiber preserving maps between the associated Borel spaces. We will show that not all fiber preserving maps between Borel spaces are induced that way, not even all fiber homotopy classes of such maps. However there is a one-to-one correspondence between homotopy classes of $G_{\infty}-m a p s$ (i.e. maps equivariant up to homotopy in a way, see section 1 for definitions) between G-spaces and fiber homotopy classes of maps between Borel spaces. This one-to-one correspondence is obtained by a functor equivalence between the respective categories (Theorem 1 and 2 in section 4). As a result equivariant homotopy theory (in a modified sense) is equivalent to the theory of homotopy fibrations.

To prove these theorems we have to include H-spaces into our discussion: In fact, the functor equivalence mentioned above is an extension of the equivalence between the categories of $\mathrm{H}-$ spaces and classifying spaces presented in [2\}. Therefore we need the notion of a Borel space for $\mathrm{H}-\mathrm{spaces}$.

The Borel space we use, is associated with the modified Dold-Lashof construction in [3].

In section seven we present a number of examples of G-spaces with differing fix point sets, such that these diffexences cannot be detacted by studying the cohomology of their Borel spaces, nor by studying the Borel space itself. The groups in most examples are \mathbb{Z}_{p} or s^{1}, but the G-spaces are not all of finite dimension. Thus we illustrate the limits of theorems like the localization theorem by Hsiang ([5], p. 47). All the examples arise from the fact that if $h=\left(h_{n}\right) n=0,1, \ldots$ is a G_{∞}-map between the G-spaces X_{1} and X_{2} and h is an ordinary homotopy eguivalence, then the fiber map induced between the Borel spaces is a fiber homotopy equivalence.

1. Definitions

1.1. The H-spaces H we are using are supposed to be strictly associative and to have a strict unit element e. Furthermore we assume H has a homotopy inverse v (such that $\mathrm{H} \xrightarrow{\Delta} \mathrm{H} \times \mathrm{H} \xrightarrow{l \times V} \mathrm{H} \times \mathrm{H} \xrightarrow{\mu} \mathrm{H}$ is homotopic to $\quad i d_{H}$).
1.2. We say that a topological space X is a G-space, if an $\mathrm{H}-$ space H acts on X from the left continuously and in a strictly associative manner. We assume that $e x=x$ for all $x \in X$.
1.3. As usual, an H_{∞}-map h from H_{1} to H_{2} (of length r) is a sequence of continuous maps
$h_{n}:\left(H_{I} \times I_{r}\right)^{n} \times H_{1} \rightarrow H_{2} \quad(n=0,1,2, \ldots)$ such that

$$
\begin{aligned}
& n_{n}\left(g_{0}, t_{1}, \ldots, t_{n}, g_{n}\right) \\
& \quad=\left\{\begin{array}{l}
n_{n-1}\left(g_{0}, t_{1}, \ldots, g_{i-1} g_{i}, \ldots, t_{n}, g_{n}\right) t_{i}=r \\
n_{j-1}\left(g_{0}, t_{1}, \ldots, g_{i-1}\right) h_{n-i}\left(g_{i}, \ldots, g_{n}\right) ध_{i}=0
\end{array}\right.
\end{aligned}
$$

for $n>0, g_{0}, \ldots . g_{n} \in H_{1}$, and $t_{1} \ldots, t_{n} \in I_{r}=$ $[0, r] \subseteq \mathbb{R}$. If $r=0$, the map h_{0} is a homomorphism in the usual sense.
1.4. If H_{1} acts on X_{1} and H_{2} acts on X_{2} from the left, and if h is an H_{s}-map from H_{1} to H_{2} of length r, then we define $a G_{\infty}-\operatorname{map} f$ from X_{1} to x_{2} of length r associated with h to be a sequence of maps

$$
f_{n}:\left(H_{I} \times I_{r}\right)^{n} \times X_{1}+X_{2} \quad(n=0,1,2 \ldots)
$$

such that for $n>0$

$$
\begin{aligned}
& f_{n}\left(g_{0}, t_{1}, \ldots, g_{n-1}, t_{n}, x\right) \\
& \quad=\left\{\begin{array}{l}
f_{n-1}\left(g_{0}, t_{1}, \ldots, g_{i-1} g_{i}, \ldots i g_{n-1}, t_{n}, x\right) t_{i}=r \\
h_{i-1}\left(g_{0}, \ldots, g_{i-1}\right) f_{n-i}\left(g_{i}, \ldots, g_{n-1}, t_{n}, x\right) t_{i}=0
\end{array}\right.
\end{aligned}
$$

Composition of H_{∞}-maps and G_{∞}-maps is defined as in [3].
1.5. If f is a G_{∞}-map from X_{1} to X_{2} associated to the H_{∞}-map h from H_{1} to H_{2}, then f is called a G_{m}-homotopy equivalence if there exists an H_{∞}-map k from H_{2} to H_{1} and a G_{∞} map g from X_{2} to X_{1}
associated with k such that $g \circ f$ and $f \circ g$ are
 to the H_{∞}-homotopies between $\mathrm{k} \circ \mathrm{h}$ respectively $\mathrm{h} \circ \mathrm{k}$ and $i d_{H_{1}}$ respectively $i d_{H_{2}}$).

We are going to use the theorem from [4]:

Theorem. If. H_{1} acts on X_{1} and H_{2} acts on X_{2} and if $h: H_{1} \rightarrow H_{2}$ is an H_{∞}-map such that h_{O} is an ordinary homotopy equivalence, and if $f: X_{1} \rightarrow X_{2}$ is a Gemap associated with h such that f_{O} is an ordinary homotopy equivalence, then h is an H_{∞}-homotopy equivalence and f is a G_{∞}-homotopy equivalence associated to h.
1.6. H-spaces and $H_{e s}$-maps form the category i and G-spaces and G_{∞}-maps form the category \&. The associated homotopy categories are denoted by $\underline{4}$ and $\&$.
2. Co:struction of the Borel Space

In this section we rely heavily on [3], where many additional details can be found.
2.1. Let (p, x) be an H-principal fibration

as described in [3] and let X be a G-space with respect to H with action $s=H x X \rightarrow X$. Assume that $P_{X}: E X \rightarrow B$ is a fibration with fiber X associated to $P: E \rightarrow B$ in the following sense: 1) The two fibrations are fiber homotopy trivial with respect to the same numerable covering \because of B and every $U \in 』$ is contractible in B. 2) There is a map $r_{X}: E \times X \rightarrow E X$ such that for each $U \in 9$ the diagram

is commutative $\left(\left(\alpha, \beta, \alpha_{X}, \beta_{X}\right)\right.$ are the obvious coordinate maps). In addition we want
(2)

to be commutative.
2.2. For the general step of the Borel space construction we look at the H-principal fibration $(\tilde{\mathrm{p}}, \tilde{\mathrm{x}}$) as described in [3], p. 329-331.

The base space \bar{B} of the new fibration is the mapping cone of $p: E \rightarrow B$ with the coordinate topology. We consider the covering of \tilde{B} consisting of
$B_{1}=\left(y \perp t \left\lvert\, t \geqslant \frac{1}{3}\right.\right\}$ and $B_{2}=\left\{y \perp t \left\lvert\, t<\frac{2}{3}\right.\right\}$.
Let $p_{1}: E_{1} \rightarrow B_{1}$ respectively $P_{1 X}: E_{1} X \rightarrow B_{1}$ be the fibrations induced by $\left.f(y \perp t)=p^{\prime} y\right)$, the map collapsing B_{1} to the range space B of the mapping cone $\tilde{B} . \quad P_{1 X}$ is associated to P_{1} if we define ${ }^{x}{ }_{1 X}: E_{1} \times X \rightarrow E_{1} X \quad$ by

$$
r_{1}\left(y \perp t, y_{I}, x\right)=\left(y+t, r_{x}\left(y_{1}, x\right)\right) .
$$

Furthermore let $\mathrm{E}_{2}=\mathrm{B}_{2} \times \mathrm{H}$ and $\mathrm{E}_{2} \mathrm{X}=\mathrm{B}_{2} \times \mathrm{X}$. Define $\quad r_{2 x}(y+t, h, x)=(y+t, h x)$. Obviously these fibrations are associated.

We recall from [3], p. 330, that the map $F: p_{2}^{-1}\left(B_{1} \cap B_{2}\right) \rightarrow p_{1}^{-1}\left(B_{1} \cap B_{2}\right)$ defined by

$$
\bar{r}(y+t, h)=\left(y+t, y_{h}\right)
$$

is a strictly equivariant fiber homotopy equivalence. We define the associated map $F_{X}: p_{2 X}^{-1}\left(B_{1} \cap B_{2}\right) \rightarrow p_{1 X}^{-1}\left(B_{1} \cap B_{2}\right)$ by

$$
F_{X}(y+t, x)=\left(y+t, r_{X}(y, x)\right)
$$

F_{x} is a map over $B_{1} \cap B_{2}$ and a homotopy equivalence on each fiber (this follows from diagram (1) and the fact that H has a homotopy inverse) and hence is a fiber homotopy equivalence according to Theorem 6.3 in [1]. 2.3. As in [3], p. 330 we now form the mapping cylinder of F and of F_{X} and construct the H-principal fibration $\tilde{p}: \tilde{E} \rightarrow \tilde{B}$ and similarly the associated fibration
$\tilde{p}_{X}: \tilde{E} X \rightarrow \tilde{B} X$. With the help of $r_{X 1}$ and $r_{X 2}$ we construct $\tilde{r}_{X}: \tilde{E} \times X+\tilde{E} X$ in the obvious manner. No problem arises since the diagram

$$
\begin{aligned}
& (y \perp t, h, x) \rightarrow{ }^{r} 2 X \xrightarrow{(y \perp t, h x)} \\
& \text { Exit } \quad \int_{\mathrm{X}} \quad \frac{1}{3}<\mathrm{t}<\frac{2}{3} \\
& (y+t, y h, x) \longrightarrow r_{1 X}\left(y+t, r_{x}(y h, x)\right)
\end{aligned}
$$

commutes as a consequence of diagram (2). So it is easy to see that \tilde{E} and $\tilde{E} X$ are associated.
2.4. To construct the Bore space of X we start out with $P_{O}: E_{O} \rightarrow B_{O}$, where $E_{O}=H$ and $B_{O}=\{*\}=$ point, and with $P_{O X}: E_{O} X \rightarrow B_{O}$, where $E_{0} X=X$. From P_{n} and $p_{n X}$ we construct p_{n+1} and $p_{n+1, x}$ by letting $E_{n+1}=\tilde{E}_{n}, \quad B_{n+1}=\tilde{B}_{n}$ and $E_{n+1} X=\tilde{E}_{n} X$. obviously $p_{n+1}=\tilde{p}_{n}$ and $p_{n+1, x}=\tilde{p}_{n x}$ are associated. As on p. 333 in [3] we use telescopes to finally get the universal H-principal fibration $P_{H}: E H \rightarrow B H$ and the associated fibration $P_{X}: E X \rightarrow B H$. We call $E X$ the Bore space of X and P_{X} the Bore fibration of X. Notice that p_{X} is a numerable, locally fiber homotopy trivial fibration with fiber X associated with p_{H} through the map $r_{X}: E H \times X \rightarrow E X . r_{X}$ is essentially the direct limit of the maps $r_{n, x}$, and it is continuous because we used the telescope construction. 'Compare the continuity of r_{H} in \{3], p. 333).
3. Induced Maps Between Borel-Spaces
3.1. Before we can discuss G-spaces, we have to know more about H -spaces. So let $\mathrm{h}_{\mathrm{F}}: \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ be an H_{∞}-map between the H-spaces H_{1} and H_{2}. We define a $\mathrm{G}_{\infty} \rightarrow$ map $E_{0} h: E_{0} H_{1} \rightarrow E_{O} H_{2}$ as $E_{0} h=h$. (Note that all the spaces $E_{n} H$ have a right action, so the notion of G_{∞}-map has to be modified accordingly). Also we let $\mathrm{B}_{\mathrm{o}} \mathrm{h}: \mathrm{B}_{\mathrm{O}} \mathrm{H}_{2} \rightarrow \mathrm{~B}_{\mathrm{O}} \mathrm{H}_{2}$ be the trivial map.

Assume that $E_{0}{ }^{h}$ has been extended to a G_{∞}-map $E_{n} h: E_{n} H_{1} \rightarrow E_{n} H_{2}$ associated with h and $B_{o} h$ has been extended to $B_{n} h$ such that

$$
p_{n 2} \circ E_{n} h_{k}\left(y, t_{i}, g_{1}, \ldots, t_{k} \cdot g_{k}\right)=B_{n} h \circ p_{n 1}(y)
$$

(We will call a $G_{\infty}-m a p$ with this property fiber preserving). First we extend $\mathrm{B}_{n} \mathrm{~h}$ from $\mathrm{B}_{n} \mathrm{H}_{1}$ to $\ddot{B}_{n} \mathrm{H}_{1}$ by defining

$$
\tilde{B}_{n} h(y+t)=\left(E_{n} h_{o}(y) \perp t\right)
$$

On $E_{n 1} H_{1}$ we define

$$
E_{n 1} h_{0}\left(y+t, Y_{0}\right)=\left(E_{n} h_{0}(y)+t, E_{n} h_{0}\left(y_{0}\right)\right)
$$

and

$$
\begin{aligned}
& E_{n l} h_{k}\left(y \neq t, y_{0}, t_{1}, g_{1}, \ldots, t_{k}, g_{k}\right) \\
& \\
& =\left(E_{n} h_{0}(y) \perp t_{,}, E_{n} h_{k}\left(y_{0}, t_{1}, g_{1}, \ldots, t_{k}, g_{k}\right)\right.
\end{aligned}
$$

for $k=1,2, \ldots$.

Recall (from [3]. p. 330) that $E_{n 2} H_{1}^{\prime}=\left(B_{n 2} H_{1} \times H_{1}\right) U$ $\left(B_{n 1} \cap B_{n 2} \times I \times H_{1}\right)$ and define

$$
\begin{aligned}
& E_{n 2}^{\prime} h_{k}\left(y \geq t, \tau, g_{O}, t_{1}, \ldots, t_{k}, g_{k}\right) \\
& =\left\{\begin{array}{c}
\left(E_{n} h_{O}(y) \perp t, h_{k}\left(g_{O}, t_{1}, \ldots, t_{k}, g_{k}\right)\right) \\
\tau=0,0 \leq t \leq \frac{1}{3} \\
\left(E_{n} h_{0}(y) \perp t, 2 \tau, h_{k}\left(g_{0}, t_{1}, \ldots, t_{k}, g_{k}\right)\right. \\
\text { when } 0 \leq t \leq \frac{1}{2} \text { and } \frac{1}{3}<t<\frac{2}{3}
\end{array}\right. \\
& \left(\begin{array}{c}
\left(E_{n} h_{0}(y), t, E_{n} h_{k+1}\left(y, 2 \tau-1, g_{0}, t_{1}, \ldots, t_{k}, g_{k}\right)\right) \\
\text { when } \frac{1}{2} \leq \tau \leq 1 \text { and } \frac{1}{3}<\tau<\frac{2}{3} .
\end{array}\right.
\end{aligned}
$$

(When $T=I$ we use that $E_{n} h_{k+1}\left(Y, I, g_{0}, t_{1}, \ldots\right)=$ $E_{n} h_{k}\left(y g_{O}, t_{1}, \ldots\right)$. Hence $E_{n 2}^{\prime} h_{k}$ and $E_{n 1} h$ together induce a $G_{\mu}-\operatorname{map} \tilde{E}_{n} h$ from $\tilde{E}_{n} H_{1}$ to $\bar{E}_{n} H_{2}$ which satisfies all the conditions mentioned before and hence we get $E_{n+1} h: E_{n+1} H_{1} \rightarrow E_{n+1} H_{2}$ together with $B_{n+1} h$. In the obvious manner we obtain the $G_{0}-$ map $E h: E H_{I} \rightarrow \mathrm{EH}_{2}$ associated with h.

Because of our definition of $E_{n}^{\prime} 2^{h_{k}}$ on the mapping cylinder part of $\tilde{E}_{n} H$, we only get $E\left(h \circ h^{\prime}\right)$ is G_{∞}-homotopic to EhoEh' and similarly $B\left(h \circ h^{\prime}\right)=$ $\mathrm{Bh} \circ \mathrm{Bh}^{\prime}$. In fact the G_{∞}-homotopy mentioned is fiber preserving. We get the

Theorem. The construction of universal fibrations described in [3] induces a functor (\underline{E}, B1 from the category $\underset{\text { I }}{\underline{\prime}}$ as described in 1.6 to the category if of universal fibrations and fiber homotopy classes of G_{∞}-maps (with distinguished fiber).
3.2. Now let X be a topological space on which the H-space H acts from the left. The map $r_{X}: E H \times X \rightarrow E X$ discussed in section 2 is part of the structure of $E X$. A map between two Borel spaces has to preserve this structure at least up to homotopy. This leads to the following.

Definition. Let Y_{1} and Y_{2} be topological spaces on which H_{2} and H_{2} respectively act from the right, let X_{1} and X_{2} be topological spaces on which H_{1} and H_{2} respectively act from the left, and let $r_{1}: Y_{1} \times X_{1} \rightarrow Z_{1}$ and $r_{2}: Y_{2} \times X_{2}+Z_{2}$ be maps $\quad\left(Z_{1}\right.$ and Z_{2} are topological spaces) such that

are commutative $(i=1,2)$. Assume $h: H_{1} \rightarrow H_{2}$ is a G_{∞}-map and $k: Y_{1} \rightarrow Y_{2}$ and $£: X_{1}+X_{2}$ are G_{∞}-maps associated with h, then a G_{∞}-map associated with
h, k, and f is a sequence of maps $F_{O_{0}} F_{1} \ldots$ such that

$$
\mathrm{F}_{\mathrm{O}}: \mathrm{Z}_{1} \rightarrow \mathrm{Z}_{2}
$$

and

$$
F_{k}=Y_{1} \times I \times\left(H_{1} \times I\right)^{k-1} \times X_{1}+Z_{2} \quad k=I, 2, \ldots
$$

with

$$
\begin{aligned}
& F_{k}\left(y, t_{1}, g_{1}, \ldots, g_{k-1}, t_{k}, x\right) \\
& = \begin{cases}r_{2}\left(k_{i-1}\left(y, t_{1}, \ldots, g_{i-1}\right), f_{k-i}\left(g_{i}, \ldots, t_{k}, x\right)\right. & t_{i}=0 \\
F_{k-1}\left(y, t_{1}, \ldots, g_{i-1} g_{i}, \ldots, t_{k}, x\right) & t_{i}=1\end{cases}
\end{aligned}
$$

and appropriate modifications in special cases (like $k=1$ or $i=0$ and $i=k$).
3.3. Now we are ready to disucss Borel fibrations. Let X_{1} and x_{2} be topological spaces on which H_{1} and H_{2} respectively act from the left. Assume $f: X_{1} \rightarrow X_{2}$ is a $G_{m}-$ map associated with the $H_{\infty}-\operatorname{map} h: H_{1} \rightarrow H_{2}$. Again we define the $G_{\infty}-\operatorname{map} E_{0} f: E_{0} X_{1} \rightarrow E_{O} X_{2}$ by $E_{0} f=f$. Assume we defined a G_{∞}-map $\quad E_{n} E E_{n} H_{1} \times X_{1}+E_{n} X_{2}$ in the sense of 3.2 , associated with $E_{n} h, f$, and h. Furthermore we assume that all maps in $E_{n} f$ are "fibermaps" over $B_{n} h$ in the obvious manner. Let us extend $E_{n} f$ to $\tilde{E}_{n} f: \tilde{E}_{n} H_{1} \times X_{1} \rightarrow \tilde{E}_{n} X_{2}$. We define $\tilde{E}_{n} f_{0}: \tilde{E}_{n} X_{1} \rightarrow \tilde{E}_{n} X_{2}$ first on

$$
E_{n 1} x_{1}=\left\{\left(y+t, x_{n}\right) \mid\left(y+t \in B_{n} H_{1}, x_{n} \in E_{n} x, p(y)=p_{X}\left(y_{n}\right)\right\}\right.
$$

as

$$
E_{n l} f_{0}\left(y+t, x_{n}\right)=\left(E_{n} h_{0}(y) \perp t, E_{n} f_{0}\left(x_{n}\right)\right)
$$

Then we define for $k=1,2, \ldots$

$$
\begin{aligned}
& E_{n 1} f_{k}\left(y \perp t, Y_{O}, t_{1}, \ldots, g_{k-1}, t_{k}, x\right) \\
& \quad=\left(E_{n} h_{O}(y) \perp t, E_{n} f_{k}\left(y_{O}, t_{1}, \ldots, g_{k-1}, t_{k}, x\right)\right)
\end{aligned}
$$

where $\left(y \perp t, y_{0}\right) \in E_{n 1} H_{1}, x \in x_{1}, g_{i} \in H_{1}$ and $t_{i} \in I$. On $\mathrm{E}_{\mathrm{n} 2} \mathrm{X}_{1}^{\prime}$ we define for $\mathrm{k}=0$

$$
E_{n 2}^{\prime} f_{o}(y+t, \tau, x)
$$

$$
= \begin{cases}\left(E_{n} h_{O}(y) \perp t, f_{0}(x)\right) & 0 \leq t \leq \frac{1}{3}, \tau=0 \\ \left(E_{n} h_{O}(y) \perp t, 2 \tau, f_{O}(x)\right) & \frac{1}{3}<t<\frac{2}{3}, 0 \leq \tau \leq \frac{1}{2} \\ \left(E_{n} h_{O}(y) \perp t, E_{n} f_{1}(y, 2 \tau-1, x)\right. & \frac{1}{3}<t<\frac{2}{3}, \frac{1}{2} \leq \tau \leq 1\end{cases}
$$

and for $k=1,2, \ldots$ we define $E_{n 2}^{\prime} E_{k}$ just like $E_{n 2}^{\prime} h_{k}$ with the following changes: replace h_{k} and h_{k+1} by f_{k} and f_{k+1} respectively and g_{k} by $x . \quad E_{n 2}^{\prime} f_{k}$ and $E_{n 2} f_{k}$ can be pieced together to obtain $\tilde{E}_{n} f_{k}$ for $k=0,1,2, \ldots$. Ultimately we get the G_{σ}-map (Eff): $\mathrm{EH}_{2} \times \mathrm{X}_{1} \rightarrow \mathrm{EX}_{2}$ "over" $\mathrm{Bh}: \mathrm{BH}_{1} \rightarrow \mathrm{BH}_{2}$ associated with Eh, f and h.
3.3. We point out that if $h, k: H_{1} \rightarrow H_{2}$ are H_{∞}-maps which axe H_{∞}-homotopic, then Bh is homotopic to Bk
leaving the base point fixed, and Eh is G_{ω}-fiber homotopic to Ek over the homotopy between Bh and Bk .

Furthermore if $f, g: X_{1} \rightarrow X_{2}$ are G_{s}-maps associated to h and k, and if f, g are G_{m}-homotopic associated to the H_{∞}-homotopy between h and k, then $E f$ and $E g$ are fiber homotopic associated with the G_{m}-fiber homotopy between Eh and Ek etc, and over the homotopy between Bh and Bk .

Definition. Let \mathscr{F} be the category whose objects are fibrations $p: E \rightarrow B$ which are locally fiber homotopy trivial with respect to a numerable covering of sets contractible in B, and whose morphisms are fiber homotopy classes of fiber preserving maps. Let F_{*} be the associated category of fibrations with a distinguished fiber over a basepoint *, and let \mathcal{F} and \mathcal{F}_{*} be the associated homotopy categoxies.

Theorem. The constructions EH, BH, and EX define a functor $B: \underline{z} \rightarrow \underline{F}_{*}$, the Borel functor.
4. The Inverse Functor of B

For every topological space X and subsets $A, B \subseteq X$ we recall that

$$
\begin{aligned}
& L(X ; A, B)=\left\{(w, r) \mid w: \mathbb{R}^{+} \rightarrow X, w(0) \in A\right. \\
&w(t)=w(r) \in B \text { for } t \geq r\}
\end{aligned}
$$

Often we omit r in our notation for the sake of simplicity.

Definition. For every fibration $p: E \rightarrow B$ with distinguished fiber $E_{*}=p^{-1 / *)}$ we define

$$
\left.\vec{E}=\left\{(w, y) \mid y \in E, w \in L(B ; B, B), w(r)=p^{\prime} y\right)\right\}
$$

and $\overline{\mathrm{p}}: \overline{\mathrm{E}} \rightarrow \overline{\mathrm{B}}$ as $\overline{\mathrm{p}}(\omega, Y)=w(O)$.

If the fibration $p: E \rightarrow B$ is an object in ${ }^{5}$ * then the fiber map $\tau: E \rightarrow \bar{E}$ defined by $\tau(y)=\left(\omega_{y}, y\right)$ is a fiber homotopy equivalence, see [1], Theorem 6.3 $\left(w_{Y}: \mathbb{R}^{+} \rightarrow E\right.$ is defined as $w_{Y}(t)=Y$ for all $t \in \mathbb{R}^{+}, r=0$).

Let $W E=\bar{p}^{-1}(*)$ be the distinguished fiber of \bar{p}, then $\tau \mid F_{*}$ is a homotopy equivalence between F_{*} and WE. We observe that the loopspace of $B, \Omega(B, *)$,
 H-space). Furthermore if p, p^{\prime} are two fibrations in \underline{F}_{*} and if (F, f) is a based fiber map from p to p^{\prime}, then WE: WE $\rightarrow \mathrm{WE}^{\prime}$ defined by $W \mathrm{Wf}(\mathrm{w}, \mathrm{y})=$ (Lf(w), $F(y)$) is an equivariant map associated with the induced homomorphism $\Omega f: \Omega(B, *) \rightarrow \Omega\left(B^{\prime} ; *\right)$. We summarize this observation in the

Definition. W induces a functor

$$
\underline{W}: \underline{g}_{*} \rightarrow \underline{g} \text {. }
$$

the inverse functor to \underline{B}, as we shall see in the following

Theorem ?. WB is equivalent to \mathbf{l}_{6}
and

Theorem 2. $B W$ is equivalent to $\underline{l}_{\underline{\sigma_{F}}}$.
5. Proof of Theorem 1

To prove Theorem 1 we have to review the natural transformation $S: H \rightarrow \Omega B H$.
5.1. We need from [3], p. 333 the

Theorem. EH is contractible.

Let $k: E H \times I \rightarrow E H$ be a contraction with
$k(y, 0)=y$ and $k(y, l)=*=k(*, t)$. (For this it is necessary that $* \in H$ is a nondegenerate base point. IE necessary one can switch to $H V I$, see [2], p. 215).

Associated with the contraction k is the map
$K: E H \rightarrow L(E H ; E H, *)$ defined by $K!y)=(k(y, t), I)$.
5.2. Define $\mathrm{S}_{\mathrm{O}}: \mathrm{H} \rightarrow \Omega(\mathrm{BH}, *)$ as

$$
S_{o}(y)=L p_{H} \circ K \mid E_{O} H
$$

with $\mathrm{LP}_{\mathrm{H}}: \mathrm{L}(\mathrm{EH} ; \mathrm{EH}, *) \rightarrow \mathrm{L}(\mathrm{BH} ; \mathrm{BH}, *)$ induced by P_{H}.

Lemma 1. S_{o} is a homotopy equivalence.

Proof: $L(B H ; B H, *)$ is the total space of a numerable fibration over BH , and so is EH . Both total spaces are contractible. S_{o} is the restriction of $L P_{H} \circ K$, which is a fiber map over $i d_{B H}$ and which is also a homotopy equivalence. Theorem 6.1 in [1]
implies that $L p_{\mathrm{H}} \circ \mathrm{K}$ is a fiber homotopy equivalence and hence S_{O} is a homotopy equivalence.

Lemma 2. S_{0} can be extended to an H_{∞}-map.

Proof: Let $K\left|E_{O} H=K\right| H=K_{O}$. Then we have to find maps $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots$ which make $\mathrm{S}_{\mathrm{O}}=\mathrm{L} \mathrm{p}_{\mathrm{H}} \circ \mathrm{K}_{\mathrm{O}}: \mathrm{H} \rightarrow \Omega \mathrm{BH}$ into an H_{m}-map. Assume we already constructed $S_{i}=\operatorname{Lp}_{H} \circ K_{i}(i=0,1, \ldots, n)$. Then S_{n+1} and hence K_{n+1} is defined on $\lambda H(n+1)$ through the maps S_{i} and K_{i} respectively ($\mathrm{i}=0, \ldots, \mathrm{n}$).

Associated with K_{i} are the maps

$$
k_{i}=H(i) \times \mathbb{R}^{+} \rightarrow E H
$$

and

$$
r_{i}: H(i) \rightarrow \mathbb{R}^{+}
$$

with $k_{i}\left(g_{O}, t_{1}, \ldots, t_{i}, g_{i}, 0\right)=* \quad$ and $k_{i}\left(g_{0}, t_{1}, \ldots, t_{i}, g_{i}, \tau\right)=g_{0}, \ldots g_{i}$ for
$T 2 r_{i}\left(g_{0}, t_{1}, \ldots, t_{i} \cdot g_{i}\right)$. These maps define k_{n+1} and r_{n+1} respectively on $\partial H(n+1)$. Since \mathbb{R}^{+}is contractible we can extend r_{n+1} to all of $H(n+1)$. Then we can extend k_{n+1} to all of $H(n+1)$ such that $k_{n+1}\left(g_{0}, t_{1}, \ldots, t_{n+1}, g_{n+1}, 0\right)=*$ and
$k_{n+1}\left(g_{0}, t_{1}, \ldots, t_{n+1}, g_{n+1}, r_{n+1}(\ldots)\right)=g_{0} \ldots g_{n+1}$.
since $E H$ is contractible.

Define

$$
K_{n+1}=\left(k_{n+1}, r_{n+1}\right) \text { and } s_{n+1}=L p_{H} \circ K_{n+1}
$$

For further details compare [2], p. 214-215. (Note the addition of paths on p. 213 should be reversed.)
5.2. proposition. s is a natural transformation between

$$
l_{\|} \text {and } \Omega \mathrm{B} \text {. }
$$

ProoE: In the diagram

the lower portion commutes for all the maps of LEh. To see that the upper portion commes up to an $\mathrm{H}_{\mathrm{m}}-$ homotopy, one has to look again at the associated maps into EI'. Since EH' is contractible, all extensions necessary to construct the H_{∞} homotopy between LEh of and. $K \circ h$ can be carried out. Further details in [2]. IIn [2] the G_{∞}-map $E h$ was not discussed. Instead the notion of a "regular" H-homomorphism had to be used.

Now EH provides the homotopy between formula 2 and $2 a$ on p. 217 in 2 , translated from right to left actions.)
5.3. With S out of the way we define for any G-space X :

$$
T_{O}: X \rightarrow W E \text { as } T_{O}=\tau \| X
$$

We already know that $T_{0}(y)=(*, y)$ is a homotopy equivalence. We define $T_{n}:(H \times I)^{n} \times X+W E$ as

$$
\begin{aligned}
& T_{n}\left(g_{0} ; t_{1}, \ldots, t_{n}, x\right) \\
& =\left(p k_{n-1}\left(g_{0}, \ldots, t_{n-1}, g_{n-1}\right)\left(t_{n}+0\right),\right. \\
& \left.\quad \dot{r}_{X}\left(k_{n-1}\left(g_{0}, \ldots, t_{n-1}, g_{n-1}\right)\left(t_{n}\right), x\right)\right)
\end{aligned}
$$

with $0 \leq t_{n} \leq r_{n-1}\left\{g_{0}, \ldots, t_{n-1} \cdot g_{n-1}\right\}$ and $0 \leq \sigma \leq r_{n-1}-t_{n}$. Recall $r_{x}: E H \times X \rightarrow E X$. We have

$$
\begin{aligned}
& T_{n}\left(g_{0}, t_{1}, \ldots, g_{n-1}, t_{n}, x\right) \\
& \quad= \begin{cases}\left(s_{n-1}\left(g_{0}, t_{1}, \ldots, g_{n-1}\right), x\right) & t_{n}=0 \\
\left(*, g_{0} g_{1} \ldots g_{n-1}, x\right) & t_{n}=r .\end{cases}
\end{aligned}
$$

The "Gohomotopy" between LEh。K and $K \circ h$ implies that T is a natural transformation between ${\underset{f}{f}}$ and WB.
6. Proof of Theorem 2
6.1. Let J_{*} be the category of based topological spaces X, which have a numerable covering \mathcal{U} such that every $U \in \mathscr{Q}$ is contractible in X, and based continuous maps. Let ${\underset{\sim}{J}}_{*}$ be the associated homotopy category.

Remark. It is easy to see that for every H in A the classifying space BH is in \mathcal{J}_{*}.

In preparation for the proof of Theorem 2 we list three universal fibrations with fiber $\Omega(x, *)$ for $X \in \mathcal{I}_{*}$
a) Application of the modified Dold-Lashof construction to the trivial fibration $\Omega(X, *) \rightarrow *$ leads to

$$
P_{\Omega X}: E \Omega X+B ? X
$$

b) It is well-known that

$$
P_{L}: L(X ; X, *) \rightarrow X
$$

also classifies numerable $\Omega(X, *) \rightarrow f i b r a t i o n s$.
c) If we apply the modified Dold-Lashof construction to p_{Σ} of b), we get again a universal fibration

$$
p_{E L}: E L X \rightarrow B L X .
$$

All three constructions induce functors from ${\underset{J}{*}}^{J_{*}}$ to $\underline{\underline{F}}_{*}$.
6.2. The inclusion of $\Omega(X, *)$ as distinguished fiber of $P_{I} L(X ; X, *) \rightarrow X$ can be interpreted as a principal map of principal fibrations and hence it induces the fiber map (f, $\bar{f})$:

Which is a principal fiber homotopy equivalence; (f, \bar{f}) is an inclusion, hence $\mathrm{P}_{\Omega \mathrm{X}}$ is principal fiber homotopy equivalent to the pullpack of $\mathrm{p}_{\text {LX }}$. For universal fibrations this implies \bar{f} is a homotopy equivalence. Let \vec{g} be a homotopy inverse of \mathcal{F}. As a result, (f, \bar{f}) represents a functor equivalence between the functors from \underline{J}_{*} to \mathscr{F}_{*} induced by a) and c).
6.3. The inclusion

is a fiber homotopy equivalence by the same reasoning as described in 6.2. So (k, \bar{k}) represents a functor equivalence between the functors arising from b) and c).
6.4. Now consider a fibration $P: E \rightarrow X$ from the category \mathscr{F}_{\star}. The associated Hurewicz-fibration $\overline{\mathrm{p}}: \overline{\mathrm{E}} \rightarrow \mathrm{X}$ admits a map

$$
r_{O}: L(X ; X, *) \times W E \rightarrow \bar{E}
$$

defined through the addition of paths, which makes \bar{E} a look alike of a Bore space associated to wE.

Assigning to p the Hurewicz fibration \bar{p} induces a functor H_{r} on F_{*} which is obviously equivalent to id $_{\text {F }}$. We are now going to show EW -Hr . Consider the diagram of Bore spaces:

K is induced by applying the Bored space construction to \bar{p} (an obvious modification) and G is induced by 9. the homotopy inverse of f from 6.2.
($\mathrm{K}, \overline{\mathrm{k}}$) and ($\mathrm{G}, \overline{\mathrm{g}}$) represent functor equivalences associated to the equivalences (k, \bar{k}) and (g, \bar{g})
discussed in 6.2 and 6.3. Since the right side of the diagram represents $B W$ and the left side represents ${ }^{H} r^{\prime}$, the proof is complete.
7. Two Applications
7.1. Let $G=\mathbb{R}^{\mathbb{1}}$ and $X=\mathbb{R}^{2}$. Consider the two \mathbb{R}^{1}-spaces X_{1} and X_{2} defined by the two actions

$$
\begin{aligned}
& \mu_{1}=\mathbb{R}^{1} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \mu_{1}\left(t, r e^{i \varphi}\right)=r e^{i(\varphi+t)}, \\
& \mu_{2}=\mathbb{R}^{1} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \mu_{2}\left(t, r e^{i \varphi}\right)=r e^{i(\varphi+t(l-r))}
\end{aligned}
$$

The fix point set of μ_{1} is just the origin of \mathbb{R}^{2} and the fix point set of μ_{2} is the origin and the unit circle. Obviously we could define actions with more complicated fix point sets.

The constant map from one of these spaces to the origin of the other is an equivariant map which is also an ordinary homotopy equivalence. It induces (according to section four) a homotopy equivalence between the Borel spaces of the two spaces.
7.2. a) Let \dot{p} be an acyclic finite polyhedron with nontrivial fundamental group. Then the suspension $\sum p$ is a contractible \mathbb{Z}_{2}-space with fix point set P, and the join $P * S^{l}$ is a constractible S^{1} or \mathbb{Z}_{p}-space ($p \neq 2$) with fix point set P in the obvious manner (notice $P * S^{2} \simeq \Sigma^{2} P$).
b) Let P be any finite polyhedron. The obvious \mathbb{Z}_{2}-action on ΣP can be extended to $\Sigma^{2} P$ etc. so that $\lim _{n \rightarrow \infty} \Sigma^{n} P$ is a contractible \mathbb{Z}_{2}-space with fix point set P.

For $G=\mathbb{Z}_{p}(p \neq 2)$ and $G=S^{1}$ we can do the same by reiterating the join with S^{1}. 7.3. Let G be either \mathbb{Z}_{p} or S^{l} and let x be a G-space with fix points. Let Y be a contractible G-space with nonempty fix point set F, e.g. let Y be one of the spaces mentioned above. The one point union W of X and Y formed by identifying two
fix points is a new G-space in the obvious manner and the inclusion of X into W is an equivariant map and also an ordinary homotopy equivalence.

By the theorem in $[4]$ the inclusion represents an isomorphism in s and induces a fiber homotopy equivalence between $B X$ and $B N$ by section 4 . Hence the cohomology of these Borel spaces carries no information about F.
7.4. Assume G is either \mathbb{Z}_{p}^{k} or $\left(S^{i}\right)^{k}$ and X_{1}, X_{2} are G-spaces which satisfy the assumptions for Borel's theorem as described in Proposition 1 of Chapter IV in [5], i.e., let X_{1}, X_{2} be paracompact G-spaces with finite conomology dimension. Let $£: X_{1} \rightarrow X_{2}$ be an equivariant map which is also an ordinary homotopy equivalence. Again $E f: E X_{1} \rightarrow \mathrm{EX}_{2}$ is a fiber homotopy equivalence between Borel spaces. Ef induces isomorphisms between $H_{G}^{*}\left(X_{2}\right)$ and $H_{G}^{*}\left(X_{1}\right)$ as $H^{*}(B G)$ moduies. Hence Proposition I on $p .45$ in [5] tells us, that $f \|_{1}=F_{1} \Rightarrow F_{2}$ induces an isomorphism of the cohomology rings $H^{*}\left(F_{2}\right) \beta_{k} R_{O}$ and $H^{*}\left(F_{1}\right) \theta_{k} R_{O}$ of the fix point sets F_{1} and F_{2}.
T. Petrie in [7] and elsewhere, Ch. N. Lee and A. Wasserman in $\{6\}$ have constructed examples of such maps which do not have equivariant homotopy inverses. Hence the fiber homotopy inverse of $E f$ is not induced by an equivariant map from X_{2} to X_{1}. This answers the opening statement of the introduction of this paper.

1. Dold, A., Partitions of unity in the theory of fibrations, Ann. of Math. 78, 223-255 (1963).
2. Fuchs, M., Verallgemeinerte Homotopie-Homomorphismen und klassifizierende Räume, Math. Ann. 161, 197-230 (1965).
3. Fuchs, M., A modified Dold-Lashof construction that does classify H-principal fibrations, Math. Ann. 192, 328-34C (1971).
4. Fuchs, M., Homotopy equivalences in equivariant topology, Proc. Amer. Math. Soc. 58, 347-352 (1976).
5. Hsiang, w.Y., Cohomology theory of topological transformation groups, Springer-Verlag 1975.
6. Lee, Ch. N. and Wasserman, A.G., on the groups Jo(G), Memoirs Amer. Math. Soc. 159 (1975).
7. Petrie, T., Smooth S^{L} actions and bilinear forms, Buli. Amer. Math. Soc. 79, 1056-1059 (1973).

Reout el 15 de setembre del 1983

Department of Mathematics
Michigan State University
East Lansing, MI 48824
USA

