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EQUIVARIANT MINIMAL IMMERSIONS OFS2 INTO S2m(l)

NORIO EJIRI

Abstract. We classify the directrix curves associated with equivariant minimal
immersions of S2 into S2m(l) and obtain some applications.

0. Introduction. Minimal immersions of the 2-sphere S2 into the standard n-
dimensional unit sphere S"(l) in the euclidean space R"+1 were studied by O.
Boruvka [1], E. Calabi [6], S. S. Chern [7], J. L. M. Barbosa [2], and R. L. Bryant [5].
On the other hand, K. Uhlenbeck [16] handled equivariant harmonic maps of S2
into S"(l) as completely integrable systems.

In this paper, we study equivariant minimal immersions of S2 into S"(l) of type
(m(1),..., w(m)) (see §3) by using Chern and Barbosa's method [7, 2]. That is, we
classify directrix curves associated with equivariant (generalized) minimal immer-
sions of S2 into S2m(l) of type (m(X),...,m(m)). We see that the volume of the
generalized minimal immersions is equal to 4ir(w(1) + • • • +m(mf) and the regular-
ity of the generalized minimal immersions is equivalent to w(1) = 1, which gives
another proof of [16]. In particular, examples constructed by Barbosa [2] are
equivariant minimal immersions of type (1,..., m — 1, A:). Furthermore, in §4, we
investigate minimal immersions of the real projective 2-space P2 into the standard
2w-dimensional real projective space 72m(l) and show that there is no full minimal
immersion of P2 into S2'2"1""1^!). We classify equivariant minimal immersions of
P2 into 72m(l) of type (w(1),.. .,m,m)) and prove that an equivariant minimal
immersion of P2 into 72m(l) of type (»i(1),..., m(m)) is unique. Hence we note that
a minimal immersion with volume m(m + T)<n is the standard minimal immersion
P2(2/m(m + 1)) -* P2m(l). Using this fact, we obtain an application to P. Li and
S. T. Yau's inequality [12]. In §5, we show that the minimal cone of a full minimal
immersion of S2 into 52m(l) is stable. The minimal cone of the holomorphic
immersion of S2 into S6(l) with almost complex structure defined by Cayley
numbers has the parallel calibration w [11] and hence is homologically volume
minimizing. Conversely we prove that the full minimal immersion of S2 into 52m(l)
whose minimal cone has a parallel calibration is holomorphic in S6(l). Using this
equivalence, we classify equivariant holomorphic immersion of S2 into 56(1). On the
other hand, it is known that 3-dimensional totally real submanifolds in S6(l) are
minimal [8] and their minimal cones have the parallel calibration *w and hence are
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106 NORIO EJIRI

homologically volume minimizing [13]. In §7, we prove that some tubes in the
direction of the first and second normal bundle of holomorphic curves give ^-dimen-
sional totally real submanifolds in S6(l). Using this fact, we see that circle bundles of
S2 of positive even Chern number (> 4) are minimally immersed in 56(1). In
particular, the minimal immersion of S3(^) into S6(l) is constructed by the above
method as well as the holomorphic immersion of S2(\) into 56(1).

The author is grateful to Professor K. Ogiue for his useful criticism.

1. Higher fundamental forms. Let M"(c) be an «-dimensional Riemannian
manifold of constant curvature c. We denote by ( , > and V the metric and the
covariant differentiation of M"(c), respectively. Let M be an w-dimensional
manifold immersed in M "(c), x the immersion and V the covariant differentiation
of M with respect to the induced metric. Then the second fundamental form a2 of M
is given by

o2(X,Y) = VxY-VxY

and satisfies

a2(X,Y) = o2(Y,X).

Let NX(M) be the normal space at x. We call the subspace A,(x) of NX(M)
spanned by o2(X,Y) for all X, Y e TX(M) the first normal space at x and we
denote Ux e M Nx(x) by A,(M). Let M, be the subset of M defined by

ix e M: dim A,(x) = Max dim A,(x)).

Then, by the definition of Mx, Mx is open in M. Since the restriction A^M,) of
Nf( M) to Mf is a subbundle of N(MX), we can define the third fundamental form a3
by

a3( Xf, X2, X3) = the component of V^a2( X2, X3)

which is orthogonal to Nf(Mf),

where V N is the normal connection of N(M).
It is easy to see that a3 is a 3-symmetric tensor. Continuing this process, we can

define the (s + l)st fundamental form os+l, the sih normal bundle NS(MS) (M0 =
M) and the open set Ms for s > 1. Furthermore we have the fact that os+1 is an
(s + l)-symmetric tensor. We set rs = rank NS(MS). If there is an s0 such that
rSo = 0, then by [10], N(MS(¡) has the Whitney sum decomposition:

Nf(MSQ)+---+NSo_f(Mj+P,

where Nt(Ms ) is the restriction of N¡(M¡) to Ms<¡ and P is the bundle which is
parallel with respect to V N. By J. Erbacher [10], we obtain

x(A/j ) c a totally geodesic submanifold of codimension dim P.

2. Minimal immersions of S2 into S"(l). In this section, we review necessary
results on minimal immersions of S2 into ^"(1) c R" + 1.
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EQUIVARIANT MINIMAL IMMERSIONS OF S2 INTO S2m(l) 107

If S2 is fully immersed in S"(l), then n is an even integer (= 2m). Moreover the
higher fundamental forms as for s = 2,..., m satisfy

2

¿Zos(ei,ei,Xf,X2,...,Xs_2) = 0,
i = i

os(X,..., X, Y) is orthogonal to os(X,..., X),

\\os(X,...,X)\\ = \\os(X,...,X,Y)\\=ls_f,

where (e,,e2} is an orthonormal basis and X, Y are orthonormal vectors of
T(S2_2). Since the immersion is full and analytic, we obtain lf,-.-,lm-f * 0 on any
open subset. For an orthonormal local cross section e3,..., e2m of N(Mm_f) defined
by

e2s-i = 1—os(ex,...,ex),    e2s = -—as(ex,...,ex,e2),
ls-l ls-l

we set Es = e2s_x + ie2s for 2 < s < m. Then we have

(2.1) VES = -Ks_fd>Es_f - iu2s_h2sEs + Ks^Es+f,

«2,-1,2« = '»1.2 + *»-l.      ds = dC 10g(K!, . - • , Ks),

where ks = ls/ls_x (l0 = 1), <f> = ux + /w2 such that <ox, w2 are the dual frames of
{e,, e2}, k0 = 0, dc = i'(3 - 9), and

wl,2(*) = (V^!,e2>, <¿2s-l,2ÁX) =  (VÄ-l.e2s>-

We have the following relations among kx, ..., Km:

(22) k2x=±(1-K),        Km = 0,
iAlog(Kl,...,Kj) + k2 - k2+x - \-(s + 1)K- 0,

where K is the Gauss curvature of M. These results are given in [7]. Moreover we
note the following [3, 7]:

M — Mm _ x consists of isolated points and the sth normal bundle is defined over
isolated points.

Next we review Barbosa's result [2].
Let z be an isothermal coordinate of S2 and ( , ) the symmetrical product of

C2m+l, i.e., the complex linear extension of the euclidean product of R2m+1. Then
we construct vector valued functions G0, Gx, ...,Gm as follows:

Go = X.    G,=8x,
(2 3) - k~1 - m_1

Gk = 9*X - E aft,    Gm = 9"x "  E <Gp
7-1 7-1

where the a{ are chosen in such a way that (Gk, Gy) = 0 for j < A.
Barbosa obtains the following

Lemma 2.1 (Barbosa [2]). (1) dGk = G\+1 + (dlog\Gk\2)Gk,
(2) dGk = -_\Gk\2Gk_f/\Gk_f\2 fork > 0,
(3)9Gm = (91og|GJ2)Gm.
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108 NORIO EJIRI

Note the fact that £ = Gm/|Gm|2 is holomorphic and

(2.2) (€,€)-•■• =(r-1,im-1) = o)
where £* = 9*£. We call £ the associated holomorphic map of x- Furthermore

Lemma 2.2 (Barbosa [2]). £ has only isolated singularities with poles and £ gives a
holomorphic map EofS2 into a 2m-dimensional complexprojective space P2m.

We call the above holomorphic map H the directrix curve of the immersion x- We
define \p by

+ = £ A £* A ■ • • A?™"1 A | Af1 A • • • Af"1"1,
which is a map into f\2mc2m+l and define \p by

- _ ( \p if m is even,
\ -it//    if m is odd.

Regarding A2mC2m+1 as C2m+1, we note that ¿ is parallel to x- Conversely let H be
a holomorphic curve of S2 into P2m which is not contained in any hyperplane of
P2m. Using an isothermal coordinate z and the inhomogeneous coordinates of P2m,
we have a local expression £(z) of E(z) into C2m+1. Assume that £ satisfies (2.2).
Then we can construct i£ as above and we have the following

Proposition 2.1 (Barbosa [2]). The function ip/\4>\ is independent of the particular
local coordinates used, and so it defines a global map x from S2 'nt0 S2m(l).
Furthermore, we have, relative to a local coordinate z, that (9x,9x) = 0, 99x is
parallel to x and

(ax,9x)=|^-iAC_1|2/l^-il4,
where im_f = £ A £'A • • • Af"1.

Proposition 2.1 implies that x is a generalized minimal immersion (see, for
example, [2]). Let E be a holomorphic map of S2 into 72m which is not contained in
a hyperplane and whose local expression £ satisfies (2.2). Then we call E a totally
isotropic curve. Consequently we obtain

Theorem 2.1 (Barbosa [2]). There exists a canonical 1-1 correspondence between
the set of generalized minimal immersions x- S2 ~* S2m(l) which are not contained in
any lower dimensional subspace of R2m + 1 and the set of totally isotropic holomorphic
curves E: S2 -» P2m which are not contained in any complex hyperplane of P2m. The
correspondence is the one that associates with minimal immersion x its directrix curve.

By the definition of G- and Ej, we obtain

Lemma 2.3. G = AV2ki ■ ■ • «,_,£,, where X2 dzdz is the metric tensor.

3. Equivariant minimal immersions of S2 into 52m(l). Let p and p be a circle
action of S2 and a one-parameter subgroup of isometries of S2m(l), respectively. Let
X be an equivariant minimal immersion of S2 into 52m(l) which is not contained in
any hyperplane of R2m+1 and satisfies
(3.1) x(p(0)x) = p(e)x(x).
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EQUIVARIANT MINIMAL IMMERSIONS OF S2 INTO S2m(l) 109

Since p(6) is a circle action and gives a conformai transformation of 52(1), there
exists an isothermal coordinate z defined by the stereographic projection of S2(l)
onto R2 such that

p(B): z^ei6z.
Choosing orthogonal coordinates (x1, y1,...,xm, ym, u) of R2m+1, we have positive
integers 0 < wj(1) < wi(2) < • • • < «i(m) such that

f>(0)(x\y\...,xm,ym,u)

= ( ..., xk cos m(k)9 — yksinm(k)6, xksinmlk)B + ykcosm(k)0,..., u).

The equivariant minimal immersion is said to be of type (m(1),..., m(m)).
X gives the same vector valued functions Gy as (2.1). Let Dj and Fj be the vector

valued functions defined by x • P, P ■ X> respectively. Then we have

Lemma 3.1. D¿ = éT'^G, ■ o and Fj = p ■ Gr

Proof. From the definition of Dp we have
Df = d(x-p) = e-ieGfp(z).

Assume 77, = e~iiß)Gj ■ p for / < A. Then

9* + 1 v / 9*+1 ~\   Di
gjt + l k    !   gfc + i _ \

Dk+f--^-x(x- p)- L[zzp^(x- P), Dj HAH2

e,'*,"G»*i ' (>(»)■       Q-E.D.
Since p • x = X ' P> we obtain

77 7

P>JI2     PÜI2'
which implies
(3.2) e-tai£(p(z)) = p(ö)£(z).

Conversely, we have the following

Lemma 3.2. Let x be a full minimal immersion of S2 into S2m(l) and E the
directrix curve. Let z be an isothermal coordinate of S2 defined by the stereographic
projection of S2(l) onto R2 and £(z) the expression of E. // £(p(f?)z) is parallel to
p(0)£(z), then x is on equivariant minimal immersion.

Proof. From the definition of \p, we get
t(p(í)i)-í(p(í)0A-A{-l(p(*)x)

A£(p(0)z) A ••• Aèm-1(p(6)z)

It follows from (3.2) that
^(p(ö)z) = p(Ö)£(z)A-.. AHOn-^z)

Ap(0)£(z) A -A^n:).
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110 NORIO EJIRI

Since p acts on A2mC2m+1, we have ^(p(6)z) = p(0)\¡/(z). This, together with
X = «Ml$11, implies that x is an equivariant minimal immersion of S2 into 52m(l).
Q.E.D.

Hence, by Theorem 2.1, the study of equivariant minimal immersions of type
(m(1),..., m(m)) reduces to that of totally isotropic curves whose expression £
satisfies (3.2). Then, since £ has no essential singularity at z = 0, it can be written in
some neighborhood of 0 as

a = k

where aa e c2m+1 and A is the degree of poles at z = 0. Setting £7(z) = HaAJaza,
we obtain

ei(a-m)A2j-i = A2aJ-icosm(j)0 - A2ajsw.m(])6,

ei{a-m)»A2j = AlJ-hmmU)e + A2aJcosmU)0.

We note that A2J~l, A2J * 0 holds if and only if

(cosmo)0 - e,("-m)e)2 + sin2mU)0 = 0.

Then a = m - m(j) or a = m + m(j) and A2J_m(j) = iA2Jz^n, A2J+ni(j) =
- M2J+mu>- We denote A%I*u) and Ajjy^ by A¡ and B}, respectively. By (£, £) = 0,
we obtain

em+i(zf+Uzajb\z2'» = q

and hence

em+l(z) = iJAZCjZm,

where C, = AJBJ. Setting « = y^EJ^C,, we have
(3.3)    £(z) = (..., AjZm-mw + BjZm+mw,iAjZm-mw - iBjZm+mift,...,iKzm).

By (3.3), w(1) < ••• < w(m) holds, because £(z) is not contained in any subspace
of C2m+1. Let ap b¡ be the vectors of C2m+1 defined by

Oj = AJ(e2j_x + ie2j)    and    b}. = B\e2j_x - ie2j),

where e¿ = (0,..., 0,1,0,...,0) (one in the Ath position). Then (a,, ¿>y) = 2C, for
1 <j<m clearly holds, and £ can be written as

/ m-l
£(z) = z~m+m<""lam + bmz2m-+   E ajzm"-m^

I 7-1
m-l

+  E bJzm" + m^ + iKe2m + fZm>
7 = 1
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EQUIVARIANT MINIMAL IMMERSIONS OF S2 INTO S2m(l) 111

Let Tj(z) be the terms in { • • • }. Then £(z) is totally isotropic if and only if tj(z) is.
tj'( z ) is given by

L {■cm(m)°mz ^\m{m)       W(m-l)7"m-l

+ (»<«) + m(m_ff)bm_fZ2m^^ +(m(m) - mU))aJzm<->-mv>

+ («(«) + «<») V"<"-1)+m,y) + («<«) - w(1))a1z",<->»-'"<'.

+ (m(m) + m(1))f71z'",'"-,, + m", + '^(m)^+i^m,'^1)}-

We denote the terms in { • • • } by 17,. Then

Oh, 111) = ••• = Oir2.ir2) = o
holds.   Continuing  this  process,  we   obtain   holomorphic  curves   t)(z), tj(1)(z),
•••.^(™-i)(^) such that

U,l?)= (l(l),1(l))=   ••■   = ('J(m-l).1»(m-l)) = °.
which is equivalent to the fact that £ is totally isotropic. Thus we get

Lemma 3.3. £ « totally isotropic if and only if

(i) Cf + ---+cm = W,
(2)
(m(m) - mU)) ■ ■ ■ (W(7+D - W(7))C7 +   ^ (m(-) - mw) ' ' ' (m(7 + l> - mU))Ck

k<j

= W™\m)  ■ ■ •  mU+l)      f°r eachJ < m - 1-

We can solve the equations (1) and (2), that is, we get

Lemma 3.4. The unique solutions C 0/ (1) anJ (2) are g/ue/i by
Cj = (-iy~l

x_k2w2^>--- m2j+i)mu-D ■■■ mW_

4(W(m) - "üJ ■ • • (W(7+D - W(7))(m(7) - m(7-l)) ' ' • (mU) - mm)

Proof. It is easy to see that the solutions C,,...,Cm are unique. We prove that the
above C satisfy (1) and (2). (2) holds if and only if
(3.4)

¿_(-ir1_
*-i (w?m) - «<))) ■ • • irfk) - m2k+i))m2k){m2k) - m\k-i)) ■ ■ ■ (™2(k) - w2d)

mu) ■ • ' mm
For each k > I,

(">U) - '"In) ■ ■ ■ {mW - f"\k + lf)m\k){m\k) - m2k_l)) ■ ■ ■ (m2k) - m2{l)) ■ ■ ■ (m2k) - m2u)

_1_
(m(„ - m0)) ••• (m{l) - m(k)) ■■■ (m{l) - m(/+1))m(/)(m(/1 - m{l_l)) ■■■ (m{l) - m)
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112 NORIO EJIRI

converges to some value if m,k)
converges to some value even if m(k) —^ m,r
we note that the numerator has the divisor:

(mU) - m(J_X)) ■ ■ ■ (m(j) - m(1))(m0_1) -

•■• (mu_X)-m

Thus the left-hand side of (3.3) is given by

m(iy Therefore the left-hand side of (3.4)
m(l). Choosing the common denominator,

"1(7-2)7

(i)) ••• (m (2) m (i) )•

mU) •■• mm

up to a real number L. We can easily prove L = (-l)jl by induction and
m(1) -* oo. Since (3.3) holds for j = m, we have (1).    Q.E.D.

Lemma 3.5. Let x be an equivariant minimal immersion of S2 fully into S2m(l) of
type (m(l),..., m(m)). Then mm,..., m(m) and the associated holomorphic map £ of
X is given by

£(z) = (..., AjZm-mu) + BjZm+m<», iA]zm~m^ - iBjZm + mu),..., iKZm),

where AjBj( = Cj) are given by Lemma 3.4.

Choose an arbitrary pair of antipodal points over S2, say /?, and p2, and take
isothermal coordinates z and w defined by the stereographic projections at these
points. Consider the holomorphic curve E: S2 -» 72m defined by £(z) and Ç(w),
where f(w) = w2m£(l/w) and each of the local functions is supposed to represent E
in the corresponding coordinate neighborhood. Then Theorem 2.1 and Lemma 3.2
imply that E is the directrix curve for an equivariant minimal immersion of certain
type (m(1),..., m,m)). We remark that the example constructed in [2, p. 101] is an
equivariant minimal immersion of type (1,2,...,m — 1, A), because the directrix
curve is given by 17 (z).

Next we study the volume and regularity of the minimal surface x defined by £ in
Lemma 3.5.

Let S be a unitary matrix of degree 2m + 1 given by
2j - 1        2/

2/-1
2/

I'-.. 'i/ñ    t/n
-i/fi     -1/72

1/
Then <j> = S ■ £ is given by

<#,(z)
2/-1
2/

fiBjZ"
-fiiAji

IKZ !

and hence £TO_](z) = S  l<i>m-f(z). Considering <bm_f a holomorphic curve in P(2.1+1)
with holomorphic sectional curvature 2, by Proposition 2.1, we see that

volume( </>„,_,) = volume(x)
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EQUIVARIANT MINIMAL IMMERSIONS OF S2 INTO S2m(l) 113

and that <f>m _, is regular if and only if x is. We need the following lemma to decide
the regularity of 4>m_f.

Lemma 3.6. For real numbers I, If,..., lm, we have

jth
I      (l-lJ)---{l-lJ-(k-l))      \

(3-5)      deH(/-/,)-(/-/,-((--i))-i)J
= 0i-/2) ■•■Oí -O--- (L-i-iJ-

Proof. The result follows from the fact that the left-hand side of (3.5) has
common divisors (/. — lk).   Q.E.D.

Let {eh A ■■■ AeJm,l <¡jl<j2< ■'• <jm <2m + l) be the basis of AmC2m+1.
Then there are polynomial functions A,,..., Ajm such that

(3-6) **-i(*) = E^2 ...Jmeh A th A • • • AeJm.

It is clear that

min     [de%Ah...Jm(z)} > m2 - m2m)- ••• -m(X)-\m(m- 1),
7*1 <   ' ' '  <Jm

max     (deg^   ... (z)] < m2 + m(m) + ■ ■ ■ +m(X) - \m(m - 1).
71 <   ■ ■ •  <7m

By Lemma 3.6, the equalities hold. Thus we see that

volume(x) = 4ir(m0) + • • • +m(m)).

It is easy to see that the regularity oí <pm_x is equivalent to

(3.7) K-iA^-xl^Q
I*—il

(see, for example, [2]). By Lemma 3.6,

<í>m-i(z) = (-\/2/)m^i • • • Am(m{1) - m(2)) • • - m(m)

Xzm2-mw m(M)-m{m-l)/2p2 A <?4 A   • • •   Ae2J A   • • •   Ae2m

+ (-VÏi)m_1iK^2 ••• Am(m(2)- w(3)) ■•• (m(2)- m(m))m2

(m(3) - m{4)) • • • (m{3) - m(m))m(3) ■ ■ ■ m(m)

Xzm2-m(2, m(m)-m(m-l)/2e4 A  ^ A   ...   Ae^ A   ...   A É>2m A  É?2m + 1  +   • • • .

Since we note that

L-(m2-m(1,-m(m)-m(m-l)/2)^(2) I ,i 0.

(3.7) is equivalent to

(3.8) z-2(m2-m(,»-m<*-m<m-1V2><l>m_1(z) A <i>'m_f(z) * 0.
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114 NORIO EJIRI

By the calculation of <i>m_i(^) A <f>'m-X(z), we see that 4>m-i is regular if and only if
w(1) = 1. That is, <¡>m_f has two poles at 0 and oo of degree m(1).

Theorem 3.1. Let x be an equivariant generalized minimal immersion of S2 fully
into S2m(l) of type (m(l),..., m(m)). Then

(i) the directrix curve for x is given by

£(z) = (..., Azm~m<ji + Bzm+m'>\ iAzm~mw - iBzm+m<J\...,izm),
■a \    / \ ,       j j ,        j j , > /,

where

AjBj-i-iy-1

x_mU ••• m2j+i)mU-i) ••' W(D_

4(m2m) - m2y)) • • • (m2u+l) - m2w)(m2(J) - m2j_X)) ■ ■ ■ (m2(j) - m2(l)) '

(ii) its volume is 4w(/n(1) + • • • +m(m)),
(iii) x is an immersion if and only ifm(1)= 1.

Remark. (1) In the case that m(l)= 1,...,»i(m_1) = m — 1, m(m) = A, Barbosa
[2] shows that volume(x) = 2tr(2k + m(m - 1)) and x is an immersion.

(2) The regularity condition m(l) = 1 is proved in [16].
Let A be the element of 50(2 m + 1, C) given by

/-.
~-a7< bJ

~bP       aj.
\ *-l

where a2 + bj = 1. Then t1£(z) also gives a directrix curve of a certain minimal
immersion of S2 into 52m(l) [2]. Hence the coefficients A'j, Bj of A£(z) are given
by

A'J=(aj+ibJ)AJ,        B; = (aJ-ibJ)BJ.

This implies that this action on equivariant minimal immersions of type
(m(1),..., m(m)) is transitive and hence the class of equivariant minimal immersions
of type (m(1),..., m(m)) is equal to (R+)m.

4. Minimal immersions of 72 into 72m(l). The deck transformation of S2 which
gives P2 is given by w,

w: z -> -1/z.

Let x be a minimal immersion of 72 fully into 72m(l). Then there exists a minimal
immersion x of S2 fully into 52m(l) such that

S2      -      S2m(l)

I w i ir

pi *.        p2m(-y)

is commutative and x(u(z)) = x(z) or _x(z)-
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Case 1: x(u(z)) = x(z)- This case implies that there exists a minimal immersion
of P2 into S2m(l).

By the same method as in (2.1), we construct vector-valued functions Gj and Fj
from x and x • w, respectively. It is easy to show that

Fk(z)=Gk(-l/z)/z2k.

It follows that £ = Gm/|GJ2 satisfies

(4.1) £(z) = z2-£(-l/z).

Case 2: x(w(z))= -x(z). Similarly we obtain

(4.2) £(z)= -z2-£(-l/z-).

In both cases, we get

^(z) = £(z)A ••• Ar'WM(z) A ••• AÍ"-1(*)

= |z|W£ÜOAir£7(¡OA  ...A-^r'MAiW
Z2%V    ' Z2

A^£'(«)A ... AÍ€-_1(«)
z2

= \z\Mm -m+1\-l)m £(w) A •   • A{--'(«) A £(<o) A ••■ A r-Hto)

= |z|4(m2-m + 1)(-l)mVí     1

Using Proposition 2.1, we obtain x(z) = -x(-l/z) if m is odd, x(z) = X(~l/Z)
if m is even, which implies

Proposition 4.1. Let x be a minimal immersion of P2 fully into P2m(l). Then Case
2 occurs if m is odd and Case 1 occurs if m is even.

Next we study equivariant minimal immersions of P2 into 72m(l) of type
(m(X),...,mtm)). _

Case 1. By Theorem 3.1, we have B), = (-l)"1_m<7>J4/ and hence C, =
( — l)m+m<7i|y4.|2. Furthermore we see that if / is even, then so is m + m(j) and if j
is odd, then so is m + m(j). Let x be another equivariant minimal immersion of
type (m(1),..., w(m)) with the directrix curve given by £ whose coefficients are Äj
and Bj. By Theorem 3.1, there exist nonzero complex numbers a for 1 ^j^m
such that

A¡ = a¡A¡   and    B,■ = —B¡.
J J J J (V J

J

Since Bj = (-l)'"~m''>Äj, we have «y«y = 1> which together with Theorem 3.1
implies that x is congruent to x-

Case 2. Similarly, we see that if j is even, then m + m(j) is odd, and if j is odd,
then m + m{j) is even, and the same result holds as for Case 1.

Proposition 4.2. Let x be an equivariant minimal 'immersion of P2 fully into
P2m(l) of type (w(1),..., mlm)) with the directrix curve given by £ as in Theorem 3.1.
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If m is even, then
j: even -* m + m(jy even,

j: odd -* m + m(Jy odd.

Conversely, for (m(1), ...,/n(m)) as above, there exists a unique equivariant full
minimal immersion of P2 into S2m(l) and hence into P2m(T) of type (mm,..., m(m)).
If m is odd, then

j: even -> m + m,¡y. odd,

j: odd -» m + m^y even.

Conversely, for (w(1),..., m(m)) as above, there exists a unique equivariant full
minimal immersion of P2 into P2m(l) of type (m(1),..., w(m)).

By Calabi [6], the volume of 72 minimally and fully immersed in 72m(l) exceeds
m(m + l)w. Next we study a minimal immersion x of 72 into 72m such that the
volume is equal to m(m + l)tr.

The directrix curve E of x is given by the associated holomorphic map £:

_ iz2m£(-l/z) if mis even,

\ -z2m£(-l/z)     if mis odd.

£ is one expression of the directrix curve E and it is a meromorphic function in
C2m + 1. Following Barbosa [2], we have another expression tj of E such that

71(z) = a0 + a1z+ ••• +a2mz2'"*0,

because the volume is equal to m(m + l)ir. Then we note that ij(z) is proportional
to tj ( — 1/z ) and hence there exists a nonzero constant 8 such that

8(a0 + afZ+ ••• +a2mz2'») = (-l)2mâ2m+ ••• + ^z2"\

Since Tj is totally isotropic, we get (a -, ak) = (aj,ak) for j < k and j + k = 2m.
Put

ak + 07 ak - ak , (am if m is even,
bk=    * ,    ck=    *  .    *     and    dm = { ..     .     ..* 2 * 2 m     \-iam    if m is odd.

Then {bx,...,bm, cx,...,cm, dm) is a basis of R2m+l and the planes spanned by
{bk, ck} and dm are orthogonal to each other. Let ex,..., e2m+l be an orthonormal
basis of R2m + 1 suchthat

bk = ake2k-l  + ßke2k,      Ck = y^2k-l + 8ke2k      and      e2m + l = àj\dm\.

Therefore we get
m

V(z)=   E {(ak + iyk)zk-' +(-l)k-\ak- nk)z2">-k-'}e2k_f
k = \

m

+  E {(ßk + iS)zk-1+(-l)k-1(ßk-iok)z2"'-k}e2k + Xz'"e2m + f,
k = l

where X = \dm\ if m is even and X = i\dm\ if m is odd. Since (17, tj) = 0, we get

(ak + i8k)2+(ßk + iyk)2 = 0.
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We may assume ßk + i8k = i(ak + iyk) so that tj gives an equivariant minimal
immersion of S2 into S2m(l) of type (1,2,..., m) by Theorem 3.1. It follows from
Proposition 4.1 that x is unique. It is clear that the standard minimal immersion of
P2(2/m(m + 1)) into P2m(l) has volume m(m + l)ir.

Corollary 4.1. Let x be a full minimal immersion of P2 into P2m(l) with volume
m(m + 1)77. Then x is the standard minimal immersion.

P. Li and S. T. Yau prove the following

Proposition A [12]. For any metric ds2 on P2, Xx • Vol < 12vr, where Xf is the
first eigenvalue of the Laplacian of ds2. Equality implies there exists a subspace of the
first eigenspace of ds2 which gives an isometric minimal immersion of P2 into 54(1) //
Xf = 2.

Proposition B [12]. If M is a compact surface in R" homeomorphic to P2, then
/ |tT7|2 > 6 it, where H is the mean curvature vector of M. The equality holds only when
M is the image of a stereographic projection of some minimal surface in S4(l) such that
the first eigenvalue of the Laplacian of M is equal to 2.

Normalizing A, = 2, we know that the volume < 6it. If the equahty holds, then
the metric is standard by Corollary 4.1, because the real projective space of
volume = 6tt is minimally immersed in S"*(l). Thus we get the following

Corollary 4.2. For P2, if Xx ■ volume = 12w, then the metric is standard.

Corollary 4.3. /// \H\2 = 6ir holds for P2 immersed in R", then the surface is the
image of a Veronese surface by a stereographic projection.

5. Minimal cones of minimal immersions of Sz into S2m(l). Let x De a full
minimal immersion of S2 into S2m(l). Then the cone Cx is given by

{sX(x) e R2m+1: s e [0,1] and x e S2}.

It is well known that Cx is minimal in R2m+1 and hence is called a minimal cone.
Using the fact [8] that the first eigenvalue of the Jacobi operator of minimal

immersions of S2 fully into S2m(l) is equal to — 2, by the method of J. Simons [15],
we see that Cx is stable for variations which fix the boundary of Cx-

It is interesting to consider whether Cx is homologically volume minimizing. With
respect to this problem, an interesting result is known that the cones of the
holomorphic curves in S6 with the almost complex structure constructed by Cayley
numbers are homologically volume minimizing. The proof is given as follows.

Let (S6(l), J, ( , )) be the Tachibana space (nearly Kaehler manifold) con-
structed by using Cayley numbers and u(X,Y,Z) the parallel 3-form defined by
( X, Y • Z) on R7, where • is the product on R7 defined by Cayley numbers. Then

w(any 3-plane) < 1
holds. For the cone Cx of a holomorphic curve S2 in S6(l), we get w(7(Cx)) = 1,
where 7(Cx) is the tangent bundle (see, for example, [4, 13]). It follows from Stokes'
formula that Cx is homologically area minimizing. It is known that there exist many
holomorphic curves of S2 in S6(l) [4, 14].
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Therefore it is natural to pose a problem:
Classify minimal immersions of S2 into S'2m(l) with the property such that there

exist a parallel 3-form W which satisfies

(5.1) W(T(Cx)) = 1    and    W(any 3-plane) < 1.
We give the answer to this problem.

Theorem 5.1. A full minimal immersion of S2 into S2m(l) satisfies (5.1) if and only
if m = 3 and k2= \. If this is the case, there is an orthogonal transformation T of R1
such that T ■ x is a holomorphic curve and W is T*u.

Proof. We use the notations in §2. Let {x,e1,e2,...,e2m_l,e2m} be an orthogo-
nal basis. Then {x,ex,e2) spans the tangent space of Cx- Since u attains its
maximum at {jc,e,,e2}, that is, W(x, e,, e2) = 1 and W(any 3-plane) < 1, we
obtain

W(ea,ef,e2) = 0,    W(x,ei,ea) = 0    and    W(x,ea,e2) = 0    for a > 3.

We rewrite these in terms of x, Ej, Ek, etc., as follows:

(5.2) W(x,Ef,Ëf) = -2i,

(5.3) w(Ea,Ef,Ef) = 0    for a > 2,

(5.4) W(X,Ef,Ea) = 0    for a > 2,

(5.5) W(x,Ef,Ea) = 0    for a > 2.

Differentiating (5.3) by 7,, 7, and using (2.1), we obtain

(5.6) W(E2,Ef,Ea) = 0   íora>2,

(5.7) W(Ef,Ë2,Ea) = 0   for a > 2.
For (5.4), we have
(5.8) W(x,E2,Ea) = 0    for a ^ 2.

Differentiating (5.5) by 7, and using (2.1), we have

(5.9) H^(x,72,72) = -2/\

(5.10) W(x,E2,Ea) = 0    for a > 3.

For (5.6), we get

(5.11) W(E3,E~f,Ea) = 0    iora>2,

(5.12) W(E2,E2,Ea) = 0    for a > 2.

Differentiating (5.7) by £,, we obtain

(5.13) W(Ef,E3,E2) = 2i/K2,

(5.14) w(E1,E3,Ea) = 0   for a > 3.
If m = 2, (5.13) implies that there exists no W which satisfies (5.1). Hence assume
that m > 3. Differentiating (5.8) by £,, we get
(5.15) »T(71,72,7a) + 2K2lT(x,73,£a) = 0    for a > 3.
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For (5.10) differentiated by £,, the case a = 3 implies

(5.16) W(x,E3,E3) = ,/(k2)2-2í.

Differentiating (5.11) by 7,, we obtain

(5.17) W(E2,E3,Ea) = 0    for a > 4,

(5.18) - W(X, E3, Ea) + K3W{Ef, E4, Ea) = 0    for a > 3.

Differentiating (5.12) and (5.13) by 7,, we have

(5.19) W(E2,E3,Ea) = 0    for a > 3,

—TI^lK2 =   — («S^l) - "3,4(^1) - »1.2(^1)) + 2k3W(EU E2, Ea)-
(K2) «2

Since, by (2.1), we have w56 - w34 - w12 = i71og/c2,

(5.20) W(EX, E2,E4) = 2/7iK2/(k2)2k3

holds. Differentiating (5.4) by 7,, we get

(5.21) W(Ef,E4,E3) = (-í/(k2)2 + 4/)/k3,

(5.22) - W(X,Ë3,Ea) + K3W(Ef,É~4,Ea) = 0    for a > 4.

Differentiate (5.16) by 7j and (5.17) by Ev 7,, respectively. Then we get

(5-23) W{x, 74, F3) = - —^-(£lK2),
(k2) k3

(5.24) iT(£3, £3, £j = 0   for a > 4,

(5.25) iT(72,£4,7a) = 0    for a > 4.

Differentiating (5.19) by 7,, we have

(5.26) ^(72, 74, 7«) = 0    for a > 3.

When we differentiate (5.21) by Ex, using (5.26), we get

Ef
•l'

\  ("2r
+ 4/ '(U7,8(£l) - w5,é(£l) - w12(£l)}

-72Ti+4/l/+2K3W/(£l^4,£4).
\     (k2)

which, together with (2.1), implies

4t- m2
+4/ = i{uiAEi) + i'71logK3}

xlj-{-j-^2+4ij\+2K3W{Ef,E4,E4).
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If 7 = (-í/(k2)2 + 4/)/k3 = 0, then

ui.2ÍEi)= ~Jz{EiL~ 2^3^(7,, 74,74)} +/771logK3.

The right-hand side is determined by the value of 7,, 74 at each point. Let ëx, ë2 be
other orthonormal vector fields tangent to S2 such that ej(x) = ëj(x) at a fixed
point x. Then we obtain

<V^i,e2> = <V^è,ê2>    atjc

and hence u12 = 0. This implies that S2 is flat, which contradicts (2.2) or [7]. Thus
we obtain 7 = 0. If m > 4, then A2 = \. Differentiating (5.20) by £,, we get
k3 = 0, which contradicts the fact that the immersion is full. Therefore m = 3, and
(5.21) implies k2 = \. Furthermore, we know values of W for a basis [x,ex,...,e6},
i.e.,

W(X,ef,e2) = W(x,e3,eA) = W(X,e6,e5) = W(ei,e3,e6)

= W(ei,e5,e4) = W(e2,e5,e3) = W(e2,e6,e4) = 1

and other values are zero. For x e S2, 7t(R7) has a product defined by

(5.27)

-e-,

-e.

-e.

-et.

-e.

-e-.

This product is the same as the product "•". Under an appropriate orthogonal
transformation, the two products are equal. Consequently we obtain W = ( , • ) at
x. Since W is parallel, W = ( , • ) on S2.

Conversely let x be a minimal immersion of S2 into S6(l) with k2 = {-. For
x e S2, there is a 3-form Won TX(R.7) which satisfies (5.27). (2.1) implies that W is
a parallel form on S2 and hence we may consider W = ( , •) and that 52 is a
holomorphic curve in 56(1).    Q.E.D.

6. Equivariant minimal immersions of S2 into S6(l) with k2 = \. Let x be an
equivariant minimal immersion of S2 into S6(l) of type (mx, m2, m3) and £ =
G3/|G3|2 which gives the directrix curve of x- Then by the definition of G,, G2, G3,
Ef, E2, 73, we have

Gi - 2£i'    G2
A2
2 K1^2> 3 _    2 KlK2-^3
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and hence

(S3. ET)    _ X2K2
-\    — A K2"

{G2,G2)
Since £ = G3/|G3|2, we get

|£|2|G3|2 = 1   and    |9G3|2 = ^(|£|2|9£|2 - |(9£, £) |2).

It  follows  from  Lemma 2.1   that   9G3 = -|G3|2G2/|G2|2   and  hence   |9G3|2 =
|G3|4/|G2|2. Consequently we obtain

\2k¡= ^4(\i\W -m,i)\) = mog\è\2.
On the other hand, Proposition 2.1 yields X2 = 299 log |£2|2. Thus

(6.1) k2=\   if and only if    991og|£|4 = 99 log |£2|2.
Note that  |£|4 = |^>|4 and  |£2|2 = |<#>2|2  for <i> constructed in §3.  By a simple
calculation, we get
/^ ~\ i     i2        «i   .   |2.    .6 — 2m.,,       Ä. „   .2.    .6 + 2m(11
(6.2) |</>|   = 2\Af\ \z\       "' + 2|R,| |z|       l)

4-Tl  A    \2\T\6~2mm    ,    TlR   |2l|6 + 2m(2>+ ¿\A3 | \z | + L\ü3 | \z I
_,        .2,    ,6-2m„i       _.       |2.    |6 + 2m(3,       .    ,2,    ,6

+ 2|y45| |z|        " + 2|t35| |z|        " +|k| |z| .
By using Lemma 3.6, the coefficients Ajkl of (3.6) are functions of |z|2. Furthermore
we have

Min {deg Ajkl with respect to |z|} = 6 - mm — m(2) — m(3),
j<k<ll ;

Max {degAJkl with respect to |z| j = 6 + m(1) + m(2) + m(3).

Comparing |</>|4 with |<i>2|2 for degrees of  |z|2 and using (6.1) and Liouville's
theorem for harmonic functions on a complex plane, we get
(6.3) w(3) = w(1) + m,2)

and hence a positive real number e such that

(6.4) e|(/>|4=|<i>2|2.
By a simple but long calculation, we see that (6.4) is equivalent to

l¿il2|l2|2 = \Af\2\A2\2

\B3\2 \A3\2     '

1      2   2        \B^\B£ 2
4 IM   W(3)= .g .2       (m(l)-m(2))  .

1        2     2 M,|2|R3|2 ,2
4|k|     (2)=     \B2\2    (m<1> + m<3>) '

1.   .2   , \A2\2\B3\2 . ,2
4|K|     ü)=      \Bf\2     im^ + m^]'
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which gives the following

Theorem 6.1. Let x be an equivariant minimal immersion of S2 fully into S6(l) of
type (w(1), w(2), m(3)). Then k2= \ is equivalent to the following:

(1) m(3) = m(l) + m(2V
(2) there exist real numbers a > 0, ß < 0, y > 0 such that a ■ ß = — y and

,A   ,2 =   _*2M(2)™(3)_
1 4o(m(2) - m(1))(m(1) + w(3)) '

■ ,2=_«2W(l)^(3)_

2 4/3(m(2) - m(X))(m(2) + w(3)) '

■ ,2 = _«2m q)W(2)_

3 4Y(w(1) + w(3))(m(2) + m(3))'

Proof. Setting Bx = a/1,, fi2 = ßA2 and R3 = yA3 for complex numbers a, ß,
and y, we have Theorem 6.1.   Q.E.D.

Corollary 6.1. For positive integers w(1) < m(2), there exists an equivariant
holomorphic immersion ofS2 fully into S6(l) of type (w(1), m(2), m(1) + w(2)).

7. Totally real submanifolds in S6(l). Let x be a full holomorphic immersion of S2
into S6(l). Note that the first and normal bundles are well defined on S2. Therefore
we can construct the tubes of radius y (0 < y < it) in the direction of the first and
normal bundles. Except at isolated points of S2 where an s0 exists such that I = 0,
points of S2 each have an open neighborhood U where an orthonormal basis
ex,..., e6 can be constructed by the method described in §2. Using this basis, the
tube of radius y (0 < y < ir) in the direction of the second normal bundle on U is
given by

Fy: U X Sl(l) -» 56(1),

(x,0) -> (cosy)x(.x) +(siny)((cosf?)e5 +(sin6)e6).

By (2.1), we obtain

Fy.(ef) = (cosy)e, - K2(sinY)(cosf?)e3 - K2(siny)(sinö)e4

-(sinY)(sine)w56(e1)e5+(siny)(cosö)w56(e1)e6,

and Fy.(e2) = ■■■ , 7y.(9/9f?) = ■ • • . It follows from (5.27) that

JFy.(ei) = F ■ Fy.(ef)

= -(siny)2io56(e1)x +[(cosy)2 - «2(siny)2]e2

+ (k2 + l)(siny)(cosY)(sin0)e3

-(k2 + l)(siny)(cosY)(cosf?)e4

+ (sinY)(cosY)(cosf?)w56(e1)e5

+ (sinY)(cosY)(sinf?)w56(e1)e6,    etc.
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The condition that F gives a totally real submanifold is equivalent to (tany)2 = f,
because k2 = \.

Next, let x be the holomorphic immersion of S2(\) into S6(l). Then kx = \fS/Y2 .
By the same calculation, we see that the tube of radius y in the direction of the first
normal space of x gives a totally real submanifold if and only if y satisfies

(7.1) 27(cosy)3 + 5(cosy)2 - 15(cosy) -5 = 0.

Consequently we obtain

Theorem 7.1. Let x be a full holomorphic immersion of S2 into 5'6(1). Then the tube
of radius y such that (tany)2 = f in the direction of the second normal space of x
gives a totally real submanifold in 56(1).

Theorem 7.2. Let x be the holomorphic immersion of S2(l) into S6(l). Then the
tube of radius y which satisfies (7.1) in the direction of the first normal space of x gives
a totally real submanifold S6(l).

We can calculate the Chern number c, of the second normal bundle of a full
holomorphic immersion of S2 into S6(l). By (2.1),

do356 = 3dul2 + d02    and    d02 = A(logK1)<o1 A u2.

Therefore the curvature of the second normal bundle of x is given by \ which
implies

Cf = — volume(52).

Using Corollary 6.1 and Theorem 3.1, we obtain a full holomorphic immersion S2
into S6(l) with c, = 2A for a positive integer A > 3. Similarly, we see that the Chern
number of the first normal bundle of S2(l) -* S6(l) is 4.

Corollary 7.1. There exists a minimal (totally real) immersion of the circle bundle
of S2 with positive even Chern number > 4 into S6(l).

Bryant [4] gives a holomorphic map of any Riemann surface into S6(l). Since they
have the same properties as a full holomorphic map of S2 into 5'6(1), we obtain
many 3-dimensional totally real submanifolds in 56(1) with singularities.

In [8], we construct the totally real (minimal) immersion of S6(tV) into S6(l).
Calculating the curvature tensor of the tube in the direction of the second normal
bundle of the holomorphic immersion of S2(¿) into 56(1), we obtain the minimal
immersion S3(tV) into S6(l).

Remark. Let Ty be the tube of radius y (0 < y < rr) in the direction of the
second normal bundle of a full holomorphic immersion of S2 into S6(l). We denote
by JÇ  the mean curvature vector of 7y. Then we easily see

(1)

(siny)(cosy)((cotany)   - 5/4)
I       Y    I     "" 2 ? '

(cosy)   -r-(siny) /4

(2) 3~y  is not parallel for the normal connection.
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(3) yy is the scalar multiple of the variation vector field in the direction of y.
(4) Ty (not minimal) are Chen submanifolds [17] in S6(l).
(5) Let V be the 4-dimensional submanifold defined by attaching the totally

geodesic submanifold S2(l) for each point of the holomorphic immersion of S2 into
S6(l), where the tangent space of 52(1) is spanned by the second normal space of
the holomorphic immersion. Then V is minimal in 56(1) and contains Ty.

(6) We obtain the analogous result for some holomorphic curve in the 3-dimen-
sional complex projective space (in preparation).
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