EQUIVARIANT MINIMAL IMMERSIONS OF S^{2} INTO $S^{2 m}(1)$

NORIO EJIRI

Abstract

We classify the directrix curves associated with equivariant minimal immersions of S^{2} into $S^{2 m}(1)$ and obtain some applications.

0. Introduction. Minimal immersions of the 2 -sphere S^{2} into the standard n dimensional unit sphere $S^{n}(1)$ in the euclidean space R^{n+1} were studied by 0 . Boruvka [1], E. Calabi [6], S. S. Chern [7], J. L. M. Barbosa [2], and R. L. Bryant [5]. On the other hand, K. Uhlenbeck [16] handled equivariant harmonic maps of S^{2} into $S^{n}(1)$ as completely integrable systems.

In this paper, we study equivariant minimal immersions of S^{2} into $S^{n}(1)$ of type ($m_{(1)}, \ldots, m_{(m)}$) (see §3) by using Chern and Barbosa's method [7, 2]. That is, we classify directrix curves associated with equivariant (generalized) minimal immersions of S^{2} into $S^{2 m}(1)$ of type $\left(m_{(1)}, \ldots, m_{(m)}\right)$. We see that the volume of the generalized minimal immersions is equal to $4 \pi\left(m_{(1)}+\cdots+m_{(m)}\right)$ and the regularity of the generalized minimal immersions is equivalent to $m_{(1)}=1$, which gives another proof of [16]. In particular, examples constructed by Barbosa [2] are equivariant minimal immersions of type ($1, \ldots, m-1, k$). Furthermore, in $\S 4$, we investigate minimal immersions of the real projective 2 -space P^{2} into the standard $2 m$-dimensional real projective space $P^{2 m}(1)$ and show that there is no full minimal immersion of P^{2} into $S^{2(2 m-1)}(1)$. We classify equivariant minimal immersions of P^{2} into $P^{2 m}(1)$ of type ($m_{(1)}, \ldots, m_{(m)}$) and prove that an equivariant minimal immersion of P^{2} into $P^{2 m}(1)$ of type $\left(m_{(1)}, \ldots, m_{(m)}\right)$ is unique. Hence we note that a minimal immersion with volume $m(m+1) \pi$ is the standard minimal immersion $P^{2}(2 / m(m+1)) \rightarrow P^{2 m}(1)$. Using this fact, we obtain an application to $\mathrm{P} . \mathrm{Li}$ and S. T. Yau's inequality [12]. In §5, we show that the minimal cone of a full minimal immersion of S^{2} into $S^{2 m}(1)$ is stable. The minimal cone of the holomorphic immersion of S^{2} into $S^{6}(1)$ with almost complex structure defined by Cayley numbers has the parallel calibration ω [11] and hence is homologically volume minimizing. Conversely we prove that the full minimal immersion of S^{2} into $S^{2 m}(1)$ whose minimal cone has a parallel calibration is holomorphic in $S^{6}(1)$. Using this equivalence, we classify equivariant holomorphic immersion of S^{2} into $S^{6}(1)$. On the other hand, it is known that 3-dimensional totally real submanifolds in $S^{6}(1)$ are minimal [8] and their minimal cones have the parallel calibration ${ }^{*} \omega$ and hence are

[^0]homologically volume minimizing [13]. In §7, we prove that some tubes in the direction of the first and second normal bundle of holomorphic curves give 3-dimensional totally real submanifolds in $S^{6}(1)$. Using this fact, we see that circle bundles of S^{2} of positive even Chern number ($\geqslant 4$) are minimally immersed in $S^{6}(1)$. In particular, the minimal immersion of $S^{3}\left(\frac{1}{16}\right)$ into $S^{6}(1)$ is constructed by the above method as well as the holomorphic immersion of $S^{2}\left(\frac{1}{6}\right)$ into $S^{6}(1)$.

The author is grateful to Professor K. Ogiue for his useful criticism.

1. Higher fundamental forms. Let $\bar{M}^{n}(c)$ be an n-dimensional Riemannian manifold of constant curvature c. We denote by \langle,$\rangle and \bar{\nabla}$ the metric and the covariant differentiation of $\bar{M}^{n}(c)$, respectively. Let M be an m-dimensional manifold immersed in $\bar{M}^{n}(c), \chi$ the immersion and ∇ the covariant differentiation of M with respect to the induced metric. Then the second fundamental form σ_{2} of M is given by

$$
\sigma_{2}(X, Y)=\bar{\nabla}_{X} Y-\nabla_{X} Y
$$

and satisfies

$$
\sigma_{2}(X, Y)=\sigma_{2}(Y, X)
$$

Let $N_{x}(M)$ be the normal space at x. We call the subspace $N_{1}(x)$ of $N_{x}(M)$ spanned by $\sigma_{2}(X, Y)$ for all $X, Y \in T_{x}(M)$ the first normal space at x and we denote $U_{x \in M} N_{1}(x)$ by $N_{1}(M)$. Let M_{1} be the subset of M defined by

$$
\left\{x \in M: \operatorname{dim} N_{1}(x)=\operatorname{Max}_{x \in M} \operatorname{dim} N_{1}(x)\right\} .
$$

Then, by the definition of M_{1}, M_{1} is open in M. Since the restriction $N_{1}\left(M_{1}\right)$ of $N_{1}(M)$ to M_{1} is a subbundle of $N\left(M_{1}\right)$, we can define the third fundamental form σ_{3} by

$$
\begin{aligned}
\sigma_{3}\left(X_{1}, X_{2}, X_{3}\right)= & \text { the component of } \nabla_{X_{1}}^{N} \sigma_{2}\left(X_{2}, X_{3}\right) \\
& \text { which is orthogonal to } N_{1}\left(M_{1}\right),
\end{aligned}
$$

where ∇^{N} is the normal connection of $N(M)$.
It is easy to see that σ_{3} is a 3 -symmetric tensor. Continuing this process, we can define the $(s+1)$ st fundamental form σ_{s+1}, the s th normal bundle $N_{s}\left(M_{s}\right)\left(M_{0}=\right.$ M) and the open set M_{s} for $s \geqslant 1$. Furthermore we have the fact that σ_{s+1} is an $(s+1)$-symmetric tensor. We set $r_{s}=\operatorname{rank} N_{s}\left(M_{s}\right)$. If there is an s_{0} such that $r_{s_{0}}=0$, then by [10], $N\left(M_{s_{0}}\right)$ has the Whitney sum decomposition:

$$
N_{\mathbf{1}}\left(M_{s_{0}}\right)+\cdots+N_{s_{0}-1}\left(M_{s_{0}}\right)+P
$$

where $N_{i}\left(M_{s_{0}}\right)$ is the restriction of $N_{i}\left(M_{i}\right)$ to $M_{s_{0}}$ and P is the bundle which is parallel with respect to ∇^{N}. By J. Erbacher [10], we obtain

$$
\chi\left(M_{s_{0}}\right) \subset a \text { totally geodesic submanifold of codimension } \operatorname{dim} P .
$$

2. Minimal immersions of S^{2} into $S^{n}(1)$. In this section, we review necessary results on minimal immersions of S^{2} into $S^{n}(1) \subset R^{n+1}$.

If S^{2} is fully immersed in $S^{n}(1)$, then n is an even integer ($=2 m$). Moreover the higher fundamental forms σ_{s} for $s=2, \ldots, m$ satisfy

$$
\begin{gathered}
\sum_{i=1}^{2} \sigma_{s}\left(e_{i}, e_{i}, X_{1}, X_{2}, \ldots, X_{s-2}\right)=0 \\
\sigma_{s}(X, \ldots, X, Y) \text { is orthogonal to } \sigma_{s}(X, \ldots, X), \\
\left\|\sigma_{s}(X, \ldots, X)\right\|=\left\|\sigma_{s}(X, \ldots, X, Y)\right\|=l_{s-1}
\end{gathered}
$$

where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis and X, Y are orthonormal vectors of $T\left(S_{s-2}^{2}\right)$. Since the immersion is full and analytic, we obtain $l_{1}, \ldots, l_{m-1} \neq 0$ on any open subset. For an orthonormal local cross section $e_{3}, \ldots, e_{2 m}$ of $N\left(M_{m-1}\right)$ defined by

$$
e_{2 s-1}=\frac{1}{l_{s-1}} \sigma_{s}\left(e_{1}, \ldots, e_{1}\right), \quad e_{2 s}=\frac{1}{l_{s-1}} \sigma_{s}\left(e_{1}, \ldots, e_{1}, e_{2}\right)
$$

we set $E_{s}=e_{2 s-1}+i e_{2 s}$ for $2 \leqslant s \leqslant m$. Then we have

$$
\begin{gather*}
\bar{\nabla} E_{s}=-\kappa_{s-1} \phi E_{s-1}-i \omega_{2 s-1,2 s} E_{s}+\kappa_{s} \bar{\phi} E_{s+1} \tag{2.1}\\
\omega_{2 s-1,2 s}=s \omega_{1,2}+\theta_{s-1}, \quad \theta_{s}=d^{c} \log \left(\kappa_{1}, \ldots, \kappa_{s}\right)
\end{gather*}
$$

where $\kappa_{s}=l_{s} / l_{s-1}\left(l_{0}=1\right), \phi=\omega_{1}+i \omega_{2}$ such that ω_{1}, ω_{2} are the dual frames of $\left\{e_{1}, e_{2}\right\}, \kappa_{0}=0, d^{c}=i(\bar{\partial}-\partial)$, and

$$
\omega_{1,2}(X)=\left\langle\nabla_{X} e_{1}, e_{2}\right\rangle, \quad \omega_{2 s-1,2 s}(X)=\left\langle\bar{\nabla}_{X} e_{2 s-1}, e_{2 s}\right\rangle
$$

We have the following relations among $\kappa_{1}, \ldots, \kappa_{m}$:

$$
\begin{gather*}
\kappa_{1}^{2}=\frac{1}{2}(1-K), \quad \kappa_{m}=0 \\
\frac{1}{2} \Delta \log \left(\kappa_{1}, \ldots, \kappa_{s}\right)+\kappa_{s}^{2}-\kappa_{s+1}^{2}-\frac{1}{2}(s+1) K=0 \tag{2.2}
\end{gather*}
$$

where K is the Gauss curvature of M. These results are given in [7]. Moreover we note the following [3, 7]:
$M-M_{m-1}$ consists of isolated points and the sth normal bundle is defined over isolated points.

Next we review Barbosa's result [2].
Let z be an isothermal coordinate of S^{2} and (,) the symmetrical product of $C^{2 m+1}$, i.e., the complex linear extension of the euclidean product of $R^{2 m+1}$. Then we construct vector valued functions $G_{0}, G_{1}, \ldots, G_{m}$ as follows:

$$
\begin{align*}
G_{0}=\chi, \quad G_{1}=\bar{\partial} \chi \tag{2.3}\\
G_{k}=\bar{\partial}^{k} \chi-\sum_{j=1}^{k-1} a_{k}^{j} G_{j}, \quad G_{m}=\bar{\partial}^{m} \chi-\sum_{j=1}^{m-1} a_{m}^{j} G_{j}
\end{align*}
$$

where the a_{k}^{j} are chosen in such a way that $\left(G_{k}, \bar{G}_{j}\right)=0$ for $j<k$.
Barbosa obtains the following
Lemma 2.1 (Barbosa [2]). (1) $\bar{\partial} G_{k}=G_{k+1}+\left(\bar{\partial} \log \left|G_{k}\right|^{2}\right) G_{k}$,
(2) $\partial G_{k}=-\left|G_{k}\right|^{2} G_{k-1} /\left|G_{k-1}\right|^{2}$ for $k>0$,
(3) $\bar{\partial} G_{m}=\left(\bar{\partial} \log \left|G_{m}\right|^{2}\right) G_{m}$.

Note the fact that $\xi=G_{m} /\left|G_{m}\right|^{2}$ is holomorphic and

$$
\begin{equation*}
(\xi, \xi)=\cdots=\left(\xi^{m-1}, \xi^{m-1}\right)=0 \tag{2.2}
\end{equation*}
$$

where $\xi^{k}=\partial^{k} \xi$. We call ξ the associated holomorphic map of χ. Furthermore
Lemma 2.2 (Barbosa [2]). ξ has only isolated singularities with poles and ξ gives a holomorphic map Ξ of S^{2} into a $2 m$-dimensional complex projective space $P_{2 m}$.

We call the above holomorphic map Ξ the directrix curve of the immersion χ. We define ψ by

$$
\psi=\xi \wedge \xi^{1} \wedge \cdots \wedge \xi^{m-1} \wedge \bar{\xi} \wedge \bar{\xi}^{1} \wedge \cdots \wedge \bar{\xi}^{m-1}
$$

which is a map into $\Lambda^{2 m} C^{2 m+1}$ and define $\tilde{\psi}$ by

$$
\tilde{\psi}= \begin{cases}\psi & \text { if } m \text { is even } \\ -i \psi & \text { if } m \text { is odd }\end{cases}
$$

Regarding $\wedge^{2 m} C^{2 m+1}$ as $C^{2 m+1}$, we note that $\tilde{\psi}$ is parallel to χ. Conversely let Ξ be a holomorphic curve of S^{2} into $P_{2 m}$ which is not contained in any hyperplane of $P_{2 m}$. Using an isothermal coordinate z and the inhomogeneous coordinates of $P_{2 m}$, we have a local expression $\xi(z)$ of $\Xi(z)$ into $C^{2 m+1}$. Assume that ξ satisfies (2.2). Then we can construct $\tilde{\psi}$ as above and we have the following

Proposition 2.1 (Barbosa [2]). The function $\tilde{\psi} /|\tilde{\psi}|$ is independent of the particular local coordinates used, and so it defines a global map χ from S^{2} into $S^{2 m}(1)$. Furthermore, we have, relative to a local coordinate z, that $(\partial \chi, \partial \chi)=0, \partial \bar{\partial} \chi$ is parallel to χ and

$$
(\partial \chi, \bar{\partial} \chi)=\left|\xi_{m-1} \wedge \xi_{m-1}^{\prime}\right|^{2} /\left|\xi_{m-1}\right|^{4}
$$

where $\xi_{m-1}=\xi \wedge \xi^{\prime} \wedge \cdots \wedge \xi^{m-1}$.
Proposition 2.1 implies that χ is a generalized minimal immersion (see, for example, [2]). Let Ξ be a holomorphic map of S^{2} into $P_{2 m}$ which is not contained in a hyperplane and whose local expression ξ satisfies (2.2). Then we call Ξ a totally isotropic curve. Consequently we obtain

Theorem 2.1 (Barbosa [2]). There exists a canonical 1-1 correspondence between the set of generalized minimal immersions $\chi: S^{2} \rightarrow S^{2 m}(1)$ which are not contained in any lower dimensional subspace of $R^{2 m+1}$ and the set of totally isotropic holomorphic curves $\Xi: S^{2} \rightarrow P_{2 m}$ which are not contained in any complex hyperplane of $P_{2 m}$. The correspondence is the one that associates with minimal immersion χ its directrix curve.

By the definition of G_{j} and E_{j}, we obtain
Lemma 2.3. $G_{j}=\lambda^{j} / 2 \kappa_{1} \cdots \kappa_{j-1} E_{j}$, where $\lambda^{2} d z d \bar{z}$ is the metric tensor.
3. Equivariant minimal immersions of S^{2} into $S^{2 m}(1)$. Let ρ and $\tilde{\rho}$ be a circle action of S^{2} and a one-parameter subgroup of isometries of $S^{2 m}(1)$, respectively. Let χ be an equivariant minimal immersion of S^{2} into $S^{2 m}(1)$ which is not contained in any hyperplane of $R^{2 m+1}$ and satisfies

$$
\begin{equation*}
\chi(\rho(\theta) x)=\bar{\rho}(\theta) \chi(x) \tag{3.1}
\end{equation*}
$$

Since $\rho(\theta)$ is a circle action and gives a conformal transformation of $S^{2}(1)$, there exists an isothermal coordinate z defined by the stereographic projection of $S^{2}(1)$ onto R^{2} such that

$$
\rho(\theta): z \rightarrow e^{i \theta} z .
$$

Choosing orthogonal coordinates ($x^{1}, y^{1}, \ldots, x^{m}, y^{m}, u$) of $R^{2 m+1}$, we have positive integers $0 \leqslant m_{(1)} \leqslant m_{(2)} \leqslant \cdots \leqslant m_{(m)}$ such that

$$
\begin{aligned}
& \tilde{\rho}(\theta)\left(x^{1}, y^{1}, \ldots, x^{m}, y^{m}, u\right) \\
& \quad=\left(\ldots, x^{k} \cos m_{(k)} \theta-y^{k} \sin m_{(k)} \theta, x^{k} \sin m_{(k)} \theta+y^{k} \cos m_{(k)} \theta, \ldots, u\right) .
\end{aligned}
$$

The equivariant minimal immersion is said to be of type ($m_{(1)}, \ldots, m_{(m)}$).
χ gives the same vector valued functions G_{j} as (2.1). Let D_{j} and F_{j} be the vector valued functions defined by $\chi \cdot \rho, \tilde{\rho} \cdot \chi$, respectively. Then we have
Lemma 3.1. $D_{j}=e^{-i(j \theta)} G_{j} \cdot \rho$ and $F_{j}=\tilde{\rho} \cdot G_{j}$.
Proof. From the definition of D_{j}, we have

$$
D_{1}=\bar{\partial}(\chi \cdot \rho)=e^{-i \theta} G_{1} \cdot \rho(z) .
$$

Assume $D_{j}=e^{-i(j \theta)} G_{j} \cdot \rho$ for $j \leqslant k$. Then

$$
\begin{aligned}
D_{k+1} & =\frac{\partial^{k+1}}{\partial \bar{z}^{k+1}}(\chi \cdot \rho)-\sum_{l=1}^{k}\left(\frac{\partial^{k+1}}{\partial \bar{z}^{k+1}}(\chi \cdot \rho), \bar{D}_{l}\right) \frac{D_{l}}{\left\|D_{l}\right\|^{2}} \\
& =\frac{\partial^{k+1}}{\partial \bar{z}^{k+1}}(\chi \cdot \rho)-\sum_{l=1}^{k}\left(e^{-(k+1) \theta}\left(\frac{\partial^{k+1}}{\partial \bar{z}^{k+1}}\right)\left(e^{i \theta} z\right), \overline{e^{-i(l \theta)} G_{l} \cdot \rho}\right) \frac{e^{-i(l(\theta)} G_{l} \cdot \rho}{\left\|G_{l} \cdot \rho\right\|^{2}} \\
& =e^{-(k+1) \theta} G_{k+1} \cdot \rho(z) . \quad \text { Q.E.D. }
\end{aligned}
$$

Since $\tilde{\rho} \cdot \chi=\chi \cdot \rho$, we obtain

$$
\frac{D_{m}}{\left\|D_{m}\right\|^{2}}=\frac{F_{m}}{\left\|F_{m}\right\|^{2}}
$$

which implies

$$
\begin{equation*}
e^{-\mathrm{im} \theta} \xi(\rho(z))=\tilde{\rho}(\theta) \xi(z) \tag{3.2}
\end{equation*}
$$

Conversely, we have the following
Lemma 3.2. Let χ be a full minimal immersion of S^{2} into $S^{2 m}(1)$ and Ξ the directrix curve. Let z be an isothermal coordinate of S^{2} defined by the stereographic projection of $S^{2}(1)$ onto R^{2} and $\xi(z)$ the expression of Ξ. If $\xi(\rho(\theta) z)$ is parallel to $\tilde{\rho}(\theta) \xi(z)$, then χ is an equivariant minimal immersion.
Proof. From the definition of ψ, we get

$$
\begin{aligned}
\psi(\rho(\theta) z)= & \xi(\rho(\theta) z) \wedge \cdots \wedge \xi^{m-1}(\rho(\theta) z) \\
& \wedge \overline{\xi(\rho(\theta) z)} \wedge \cdots \wedge \overline{\xi^{m-1}(\rho(\theta) z)} .
\end{aligned}
$$

It follows from (3.2) that

$$
\begin{aligned}
\psi(\rho(\theta) z)= & \tilde{\rho}(\theta) \xi(z) \wedge \cdots \wedge \tilde{\rho}(\theta) \xi^{m-1}(z) \\
& \wedge \tilde{\tilde{\rho}(\theta) \xi(z)} \wedge \cdots \wedge \tilde{\tilde{\rho}(\theta) \xi^{m-1}(z)} .
\end{aligned}
$$

Since $\tilde{\rho}$ acts on $\Lambda^{2 m} C^{2 m+1}$, we have $\psi(\rho(\theta) z)=\tilde{\rho}(\theta) \psi(z)$. This, together with $\chi=\tilde{\psi} /\|\tilde{\psi}\|$, implies that χ is an equivariant minimal immersion of S^{2} into $S^{2 m}(1)$. Q.E.D.

Hence, by Theorem 2.1, the study of equivariant minimal immersions of type ($m_{(1)}, \ldots, m_{(m)}$) reduces to that of totally isotropic curves whose expression ξ satisfies (3.2). Then, since ξ has no essential singularity at $z=0$, it can be written in some neighborhood of 0 as

$$
\xi(z)=\sum_{\alpha=k}^{\prime} a_{\alpha^{2}} z^{\alpha}
$$

where $a_{\alpha} \in C^{2 m+1}$ and k is the degree of poles at $z=0$. Setting $\xi^{j}(z)=\sum_{\alpha} A_{\alpha}^{j} z^{\alpha}$, we obtain

$$
\begin{aligned}
e^{i(\alpha-m)} A_{\alpha}^{2 j-1} & =A_{\alpha}^{2 j-1} \cos m_{(j)} \theta-A_{\alpha}^{2 j} \sin m_{(j)} \theta, \\
e^{i(\alpha-m) \theta} A_{\alpha}^{2 j} & =A_{\alpha}^{2 j-1} \sin m_{(j)} \theta+A_{\alpha}^{2 j} \cos m_{(j)} \theta
\end{aligned}
$$

We note that $A_{\alpha}^{2 j-1}, A_{\alpha}^{2 j} \neq 0$ holds if and only if

$$
\left(\cos m_{(j)} \theta-e^{i(\alpha-m) \theta}\right)^{2}+\sin ^{2} m_{(j)} \theta=0
$$

Then $\alpha=m-m_{(j)}$ or $\alpha=m+m_{(j)}$ and $A_{m-m_{(j)}}^{2 j}=i A_{m-m_{(j)},}^{2 j-1} \quad A_{m+m_{(j)}}^{2 j}=$ $-i A_{m+m_{(j)}}^{2 j-1}$. We denote $A_{m-m_{(j)}}^{2 j-1}$ and $A_{m+m_{(j)}}^{2 j-1}$ by A_{j} and B_{j}, respectively. By $(\xi, \xi)=0$, we obtain

$$
\xi^{2 m+1}(z)^{2}+\left(4 \sum_{j=1}^{m} A_{j} B_{j}\right) z^{2 m}=0
$$

and hence

$$
\xi^{2 m+1}(z)=i \sqrt{4 \sum_{j=1}^{m} C_{j} z^{m}}
$$

where $C_{j}=A^{j} B^{j}$. Setting $\kappa=\sqrt{4 \sum_{j=1}^{m} C_{j}}$, we have

$$
\begin{equation*}
\xi(z)=\left(\ldots, A_{j} z^{m-m_{(\jmath)}}+B_{j} z^{m+m_{(\prime)}}, i A_{j} z^{m-m_{(\jmath)}}-i B_{j} z^{m+m_{(\jmath)}}, \ldots, i \kappa z^{m}\right) \tag{3.3}
\end{equation*}
$$

By (3.3), $m_{(1)}<\cdots<m_{(m)}$ holds, because $\xi(z)$ is not contained in any subspace of $C^{2 m+1}$. Let a_{j}, b_{j} be the vectors of $C^{2 m+1}$ defined by

$$
a_{j}=A^{j}\left(e_{2 j-1}+i e_{2 j}\right) \quad \text { and } \quad b_{j}=B^{j}\left(e_{2 j-1}-i e_{2 j}\right)
$$

where $e_{k}=(0, \ldots, 0,1,0, \ldots, 0)$ (one in the k th position). Then $\left(a_{j}, b_{j}\right)=2 C_{j}$ for $1 \leqslant j \leqslant m$ clearly holds, and ξ can be written as

$$
\begin{aligned}
& \xi(z)=z^{-m+m_{(m)}}\left\{a_{m}+b_{m} z^{2 m_{m}}+\sum_{j=1}^{m-1} a_{j} z^{m_{m}-m_{(j)}}\right. \\
&\left.+\sum_{j=1}^{m-1} b_{j} z^{m_{m}+m_{(j)}}+i \kappa e_{2 m+1} z^{m_{(m)}}\right\}
\end{aligned}
$$

Let $\eta(z)$ be the terms in $\{\cdots\}$. Then $\xi(z)$ is totally isotropic if and only if $\eta(z)$ is. $\eta^{\prime}(z)$ is given by

$$
\begin{aligned}
z^{m_{(m)}-m_{(m-1)}-1}\{ & 2 m_{(m)} b_{m} z^{m_{(m)}+m_{(m)}-1}+\left(m_{(m)}-m_{(m-1)}\right) a_{m-1} \\
& +\left(m_{(m)}+m_{(m-1)}\right) b_{m-1} z^{2 m_{(m-1)}}+\left(m_{(m)}-m_{(j)}\right) a_{j} z^{m_{(m)}-m_{(j)}} \\
& +\left(m_{(m)}+m_{(j)}\right) b_{j} z^{m_{(m-1)}+m_{(j)}}+\left(m_{(m)}-m_{(1)}\right) a_{1} z^{m_{(m-1)}-m_{(1)}} \\
& \left.\quad+\left(m_{(m)}+m_{(1)}\right) b_{1} z^{m_{(m-1)}+m_{(1)}}+i \kappa m_{(m)} e_{2 m+1} z^{m_{(m-1)}}\right\} .
\end{aligned}
$$

We denote the terms in $\{\cdots\}$ by η_{1}. Then

$$
\left(\eta_{1}, \eta_{1}\right)=\cdots=\left(\eta_{1}^{m-2}, \eta_{1}^{m-2}\right)=0
$$

holds. Continuing this process, we obtain holomorphic curves $\eta(z), \eta_{(1)}(z)$, $\ldots, \eta_{(m-1)}(z)$ such that

$$
(\eta, \eta)=\left(\eta_{(1)}, \eta_{(1)}\right)=\cdots=\left(\eta_{(m-1)}, \eta_{(m-1)}\right)=0
$$

which is equivalent to the fact that ξ is totally isotropic. Thus we get
Lemma 3.3. ξ is totally isotropic if and only if

$$
\begin{equation*}
C_{1}+\cdots+C_{m}=\frac{1}{4} \kappa^{2} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\left(m_{(m)}^{2}-m_{(j)}^{2}\right) \cdots\left(m_{(j+1)}^{2}-m_{(j)}^{2}\right) C_{j}+\sum_{k<j}\left(m_{(m)}^{2}-m_{(k)}^{2}\right) \cdots\left(m_{(j+1)}^{2}-m_{(j)}^{2}\right) C_{k} \tag{2}\\
=\frac{1}{4} \kappa^{2} m_{(m)}^{2} \cdots m_{(j+1)}^{2} \quad \text { for each } j \leqslant m-1
\end{gather*}
$$

We can solve the equations (1) and (2), that is, we get
Lemma 3.4. The unique solutions C_{j} of (1) and (2) are given by
$C_{j}=(-1)^{j-1}$

$$
\times \frac{\kappa^{2} m_{(m)}^{2} \cdots m_{(j+1)}^{2} m_{(j-1)}^{2} \cdots m_{(1)}^{2}}{4\left(m_{(m)}^{2}-m_{(j)}^{2}\right) \cdots\left(m_{(j+1)}^{2}-m_{(j)}^{2}\right)\left(m_{(j)}^{2}-m_{(j-1)}^{2}\right) \cdots\left(m_{(j)}^{2}-m_{(1)}^{2}\right)} .
$$

Proof. It is easy to see that the solutions C_{1}, \ldots, C_{m} are unique. We prove that the above C_{j} satisfy (1) and (2). (2) holds if and only if

$$
\begin{gather*}
\sum_{k=1}^{j} \frac{(-1)^{j-1}}{\left(m_{(m)}^{2}-m_{(j)}^{2}\right) \cdots\left(m_{(k)}^{2}-m_{(k+1)}^{2}\right) m_{(k)}^{2}\left(m_{(k)}^{2}-m_{(k-1)}^{2}\right) \cdots\left(m_{(k)}^{2}-m_{(1)}^{2}\right)} \tag{3.4}\\
=\frac{1}{m_{(j)}^{2} \cdots m_{(1)}^{2}} .
\end{gather*}
$$

For each $k>l$,

$$
\begin{gathered}
\frac{1}{\left(m_{(k)}^{2}-m_{(j)}^{2}\right) \cdots\left(m_{(k)}^{2}-m_{(k+1)}^{2}\right) m_{(k)}^{2}\left(m_{(k)}^{2}-m_{(k-1)}^{2}\right) \cdots\left(m_{(k)}^{2}-m_{(l)}^{2}\right) \cdots\left(m_{(k)}^{2}-m_{(l)}^{2}\right)} \\
\quad+\frac{1}{\left(m_{(l)}-m_{(j)}\right) \cdots\left(m_{(l)}-m_{(k)}\right) \cdots\left(m_{(l)}-m_{(l+1)}\right) m_{(l)}\left(m_{(l)}-m_{(l-1)}\right) \cdots\left(m_{(l)}-m\right)}
\end{gathered}
$$

converges to some value if $m_{(k)} \rightarrow m_{(l)}$. Therefore the left-hand side of (3.4) converges to some value even if $m_{(k)} \rightarrow m_{(l)}$. Choosing the common denominator, we note that the numerator has the divisor:

$$
\begin{aligned}
\left(m_{(j)}-m_{(j-1)}\right) \cdots\left(m_{(j)}-\right. & \left.m_{(1)}\right)\left(m_{(j-1)}-m_{(j-2)}\right) \\
& \cdots\left(m_{(j-1)}-m_{(1)}\right) \cdots\left(m_{(2)}-m_{(1)}\right) .
\end{aligned}
$$

Thus the left-hand side of (3.3) is given by

$$
\frac{L}{m_{(j)}^{2} \cdots m_{(1)}^{2}}
$$

up to a real number L. We can easily prove $L=(-1)^{j-1}$ by induction and $m_{(1)} \rightarrow \infty$. Since (3.3) holds for $j=m$, we have (1). Q.E.D.

Lemma 3.5. Let χ be an equivariant minimal immersion of S^{2} fully into $S^{2 m}(1)$ of type $\left(m_{(1)}, \ldots, m_{(m)}\right)$. Then $m_{(1)}, \ldots, m_{(m)}$ and the associated holomorphic map ξ of χ is given by

$$
\xi(z)=\left(\ldots, A_{j} z^{m-m_{(j)}}+B_{j} z^{m+m_{(j)}}, i A_{j} z^{m-m_{(j)}}-i B_{j} z^{m+m_{(j)}}, \ldots, i \kappa z^{m}\right)
$$

where $A_{j} B_{j}\left(=C_{j}\right)$ are given by Lemma 3.4.
Choose an arbitrary pair of antipodal points over S^{2}, say p_{1} and p_{2}, and take isothermal coordinates z and w defined by the stereographic projections at these points. Consider the holomorphic curve $\Xi: S^{2} \rightarrow P_{2 m}$ defined by $\xi(z)$ and $\zeta(w)$, where $\zeta(w)=w^{2 m} \xi(1 / w)$ and each of the local functions is supposed to represent \bar{E} in the corresponding coordinate neighborhood. Then Theorem 2.1 and Lemma 3.2 imply that Ξ is the directrix curve for an equivariant minimal immersion of certain type $\left(m_{(1)}, \ldots, m_{(m)}\right)$. We remark that the example constructed in [2, p. 101] is an equivariant minimal immersion of type $(1,2, \ldots, m-1, k)$, because the directrix curve is given by $\eta(z)$.

Next we study the volume and regularity of the minimal surface χ defined by ξ in Lemma 3.5.

Let S be a unitary matrix of degree $2 m+1$ given by

$$
S=\begin{gathered}
2 j-1 \\
2 j-1 \\
2 j
\end{gathered}\left(\begin{array}{ccc}
\because \ddots & 2 j \\
1 / \sqrt{2} & i / \sqrt{2} & \vdots \\
-i / \sqrt{2} & -1 / \sqrt{2} & \vdots \\
\cdots \cdots \cdots & \cdots & \cdots
\end{array}\right) \cdot \cdots \cdot 1 .
$$

Then $\phi=S \cdot \xi$ is given by

$$
\phi(z)=\begin{aligned}
& 2 j-1 \\
& 2 j
\end{aligned}\left(\begin{array}{c}
\sqrt{2} B_{j} z^{m+m_{(j)}} \\
-\sqrt{2} i A_{j} z^{m-m_{(j)}} \\
\vdots \\
i \kappa z^{m}
\end{array}\right)
$$

and hence $\xi_{m-1}(z)=S^{-1} \phi_{m-1}(z)$. Considering ϕ_{m-1} a holomorphic curve in $P_{\left({ }_{(2 m+1}\right)}$ with holomorphic sectional curvature 2, by Proposition 2.1, we see that

$$
\operatorname{volume}\left(\phi_{m-1}\right)=\operatorname{volume}(\chi)
$$

and that ϕ_{m-1} is regular if and only if χ is. We need the following lemma to decide the regularity of ϕ_{m-1}.

Lemma 3.6. For real numbers l, l_{1}, \ldots, l_{m}, we have

$$
\operatorname{det}\left(\begin{array}{c}
j t h \\
\left(l-l_{j}\right) \cdots\left(l-l_{j}-(k-1)\right) \tag{3.5}\\
\left(l-l_{j}\right) \cdots\left(l-l_{j}-((m-1))-1\right)
\end{array}\right) .
$$

Proof. The result follows from the fact that the left-hand side of (3.5) has common divisors $\left(l_{j}-l_{k}\right)$. Q.E.D.

Let $\left\{e_{j_{1}} \wedge \cdots \wedge e_{j_{m}}, 1 \leqslant j_{1}<j_{2}<\cdots<j_{m} \leqslant 2 m+1\right\}$ be the basis of $\wedge^{m} C^{2 m+1}$. Then there are polynomial functions $A_{j_{1}}, \ldots, A_{j_{m}}$ such that

$$
\begin{equation*}
\phi_{m-1}(z)=\sum A_{j_{j_{2}} \cdots j_{m}} e_{j_{1}} \wedge e_{j_{2}} \wedge \cdots \wedge e_{j_{m}} \tag{3.6}
\end{equation*}
$$

It is clear that

$$
\begin{aligned}
& \min _{j_{1}<\cdots<j_{m}}\left\{\operatorname{deg} A_{j_{1} \cdots j_{m}}(z)\right\} \geqslant m^{2}-m_{(m)}^{2}-\cdots-m_{(1)}-\frac{1}{2} m(m-1), \\
& \max _{j_{1}<\cdots<j_{m}}\left\{\operatorname{deg} A_{j_{1} \cdots j_{m}}(z)\right\} \leqslant m^{2}+m_{(m)}+\cdots+m_{(1)}-\frac{1}{2} m(m-1) .
\end{aligned}
$$

By Lemma 3.6, the equalities hold. Thus we see that

$$
\operatorname{volume}(\chi)=4 \pi\left(m_{(1)}+\cdots+m_{(m)}\right)
$$

It is easy to see that the regularity of ϕ_{m-1} is equivalent to

$$
\begin{equation*}
\frac{\left|\phi_{m-1} \wedge \phi_{m-1}^{\prime}\right|^{2}}{\left|\phi_{m-1}\right|^{4}} \neq 0 \tag{3.7}
\end{equation*}
$$

(see, for example, [2]). By Lemma 3.6,

$$
\begin{aligned}
& \phi_{m-1}(z)=(-\sqrt{2} i)^{m} A_{1} \cdots A_{m}\left(m_{(1)}-m_{(2)}\right) \cdots m_{(m)} \\
& \quad \times z^{m^{2}-m_{(1)}-\cdots-m_{(m)}-m(m-1) / 2} e_{2} \wedge e_{4} \wedge \cdots \wedge e_{2 k} \wedge \cdots \wedge e_{2 m} \\
& +(-\sqrt{2} i)^{m-1} i \kappa A_{2} \cdots A_{m}\left(m_{(2)}-m_{(3)}\right) \cdots\left(m_{(2)}-m_{(m)}\right) m_{2} \\
& \quad\left(m_{(3)}-m_{(4)}\right) \cdots\left(m_{(3)}-m_{(m)}\right) m_{(3)} \cdots m_{(m)} \\
& \quad \times z^{m^{2}-m_{(2)}-\cdots-m_{(m)}-m(m-1) / 2} e_{4} \wedge e_{6} \wedge \cdots \wedge e_{2 k} \wedge \cdots \wedge e_{2 m} \wedge e_{2 m+1}+\cdots .
\end{aligned}
$$

Since we note that
(3.7) is equivalent to

$$
\begin{equation*}
z^{-2\left(m^{2}-m_{(1)}-\cdots-m_{(m)}-m(m-1) / 2\right)} \phi_{m-1}(z) \wedge \phi_{m-1}^{\prime}(z) \neq 0 . \tag{3.8}
\end{equation*}
$$

By the calculation of $\phi_{m-1}(z) \wedge \phi_{m-1}^{\prime}(z)$, we see that ϕ_{m-1} is regular if and only if $m_{(1)}=1$. That is, ϕ_{m-1} has two poles at 0 and ∞ of degree $m_{(1)}$.

Theorem 3.1. Let χ be an equivariant generalized minimal immersion of S^{2} fully into $S^{2 m}(1)$ of type $\left(m_{(1)}, \ldots, m_{(m)}\right)$. Then
(i) the directrix curve for χ is given by

$$
\xi(z)=\left(\ldots, A_{j} z^{m-m_{(j)}}+B_{j} z^{m+m_{(\prime)}}, i A_{j} z^{m-m_{(1)}}-i B_{j} z^{m+m_{(j)}}, \ldots, i z^{m}\right)
$$

where

$$
\begin{aligned}
A_{j} B_{j}= & (-1)^{j-1} \\
& \times \frac{m_{(m)}^{2} \cdots m_{(j+1)}^{2} m_{(j-1)}^{2} \cdots m_{(1)}^{2}}{4\left(m_{(m)}^{2}-m_{(j)}^{2}\right) \cdots\left(m_{(j+1)}^{2}-m_{(j)}^{2}\right)\left(m_{(j)}^{2}-m_{(j-1)}^{2}\right) \cdots\left(m_{(j)}^{2}-m_{(1)}^{2}\right)},
\end{aligned}
$$

(ii) its volume is $4 \pi\left(m_{(1)}+\cdots+m_{(m)}\right)$,
(iii) χ is an immersion if and only if $m_{(1)}=1$.

Remark. (1) In the case that $m_{(1)}=1, \ldots, m_{(m-1)}=m-1, m_{(m)}=k$, Barbosa [2] shows that volume $(\chi)=2 \pi(2 k+m(m-1))$ and χ is an immersion.
(2) The regularity condition $m_{(1)}=1$ is proved in [16].

Let A be the element of $S O(2 m+1, C)$ given by

$$
\left(\begin{array}{rrr}
\ddots & a_{j}, & b_{j} \\
& -b_{j}, & a_{j} \\
& & \\
&
\end{array}\right)
$$

where $a_{j}^{2}+b_{j}^{2}=1$. Then $A \xi(z)$ also gives a directrix curve of a certain minimal immersion of S^{2} into $S^{2 m}(1)$ [2]. Hence the coefficients $A_{j}^{\prime}, B_{j}^{\prime}$ of $A \xi(z)$ are given by

$$
A_{j}^{\prime}=\left(a_{j}+i b_{j}\right) A_{j}, \quad B_{j}^{\prime}=\left(a_{j}-i b_{j}\right) B_{j} .
$$

This implies that this action on equivariant minimal immersions of type ($\left.m_{(1)}, \ldots, m_{(m)}\right)$ is transitive and hence the class of equivariant minimal immersions of type ($\left.m_{(1)}, \ldots, m_{(m)}\right)$ is equal to $\left(R_{+}\right)^{m}$.
4. Minimal immersions of P^{2} into $P^{2 m}(1)$. The deck transformation of S^{2} which gives P^{2} is given by ω,

$$
\omega: z \rightarrow-1 / \bar{z}
$$

Let $\tilde{\chi}$ be a minimal immersion of P^{2} fully into $P^{2 m}(1)$. Then there exists a minimal immersion χ of S^{2} fully into $S^{2 m}(1)$ such that

$$
\begin{array}{llc}
S^{2} & \xrightarrow{\chi} & S^{2 m}(1) \\
\downarrow \pi & & \downarrow \pi \\
P^{2} & \xrightarrow{\dot{x}} & P^{2 m}(1)
\end{array}
$$

is commutative and $\chi(\omega(z))=\chi(z)$ or $-\chi(z)$.

Case 1: $\chi(\omega(z))=\chi(z)$. This case implies that there exists a minimal immersion of P^{2} into $S^{2 m}(1)$.

By the same method as in (2.1), we construct vector-valued functions G_{j} and F_{j} from χ and $\chi \cdot \omega$, respectively. It is easy to show that

$$
F_{k}(z)=\overline{G_{k}(-1 / \bar{z})} / \bar{z}^{2 k}
$$

It follows that $\xi=G_{m} /\left|G_{m}\right|^{2}$ satisfies

$$
\begin{equation*}
\xi(z)=z^{2 m} \overline{\xi(-1 / \bar{z})} \tag{4.1}
\end{equation*}
$$

Case 2: $\chi(\omega(z))=-\chi(z)$. Similarly we obtain

$$
\begin{equation*}
\xi(z)=-z^{2 m} \overline{\xi(-1 / \bar{z})} \tag{4.2}
\end{equation*}
$$

In both cases, we get

$$
\begin{aligned}
\psi(z)= & \xi(z) \wedge \cdots \wedge \xi^{m-1}(z) \wedge \overline{\xi(z)} \wedge \cdots \wedge \overline{\xi^{m-1}(z)} \\
= & |z|^{4 m^{2}} \overline{\xi(\omega)} \wedge \frac{1}{z^{2}} \overline{\xi^{\prime}(\omega)} \wedge \cdots \wedge \frac{1}{z^{2}} \overline{\xi^{m-1}(\omega)} \wedge \xi(\omega) \\
& \wedge \frac{1}{\bar{z}^{2}} \xi^{\prime}(\omega) \wedge \cdots \wedge \frac{1}{\bar{z}^{2}} \xi^{m-1}(\omega) \\
= & |z|^{4\left(m^{2}-m+1\right)}(-1)^{m^{2}} \xi(\omega) \wedge \cdots \wedge \xi^{m-1}(\omega) \wedge \overline{\xi(\omega)} \wedge \cdots \wedge \overline{\xi^{m-1}(\omega)} \\
= & |z|^{4\left(m^{2}-m+1\right)}(-1)^{m^{2}} \psi\left(-\frac{1}{\bar{z}}\right)
\end{aligned}
$$

Using Proposition 2.1, we obtain $\chi(z)=-\chi(-1 / \bar{z})$ if m is odd, $\chi(z)=\chi(-1 / \bar{z})$ if m is even, which implies

Proposition 4.1. Let $\tilde{\chi}$ be a minimal immersion of P^{2} fully into $P^{2 m}(1)$. Then Case 2 occurs if m is odd and Case 1 occurs if m is even.

Next we study equivariant minimal immersions of P^{2} into $P^{2 m}(1)$ of type ($\left.m_{(1)}, \ldots, m_{(m)}\right)$.

Case 1. By Theorem 3.1, we have $B_{j}=(-1)^{m-m_{(j)}} \bar{A}_{j}$ and hence $C_{j}=$ $(-1)^{m+m_{(j)}}\left|A_{j}\right|^{2}$. Furthermore we see that if j is even, then so is $m+m_{(j)}$ and if j is odd, then so is $m+m_{(j)}$. Let $\bar{\chi}$ be another equivariant minimal immersion of type ($m_{(1)}, \ldots, m_{(m)}$) with the directrix curve given by $\tilde{\xi}$ whose coefficients are \tilde{A}_{j} and \tilde{B}_{j}. By Theorem 3.1, there exist nonzero complex numbers α_{j} for $1 \leqslant j \leqslant m$ such that

$$
\tilde{A}_{j}=\alpha_{j} A_{j} \quad \text { and } \quad \tilde{B}_{j}=\frac{1}{\alpha_{j}} B_{j}
$$

Since $\tilde{B}_{j}=(-1)^{m-m_{(j)}} \overline{\tilde{A}_{j}}$, we have $\alpha_{j} \overline{\alpha_{j}}=1$, which together with Theorem 3.1 implies that $\bar{\chi}$ is congruent to χ.

Case 2. Similarly, we see that if j is even, then $m+m_{(j)}$ is odd, and if j is odd, then $m+m_{(j)}$ is even, and the same result holds as for Case 1.

Proposition 4.2. Let χ be an equivariant minimal immersion of P^{2} fully into $P^{2 m}(1)$ of type $\left(m_{(1)}, \ldots, m_{(m)}\right)$ with the directrix curve given by ξ as in Theorem 3.1.

If m is even, then

$$
\begin{aligned}
& j: \text { even } \rightarrow m+m_{(j)}: \text { even }, \\
& j: \text { odd } \rightarrow m+m_{(j)}: \text { odd } .
\end{aligned}
$$

Conversely, for $\left(m_{(1)}, \ldots, m_{(m)}\right)$ as above, there exists a unique equivariant full minimal immersion of P^{2} into $S^{2 m}(1)$ and hence into $P^{2 m}(1)$ of type $\left(m_{(1)}, \ldots, m_{(m)}\right)$. If m is odd, then

$$
\begin{aligned}
& j: \text { even } \rightarrow m+m_{(j)}: \text { odd }, \\
& j: \text { odd } \rightarrow m+m_{(j)}: \text { even } .
\end{aligned}
$$

Conversely, for $\left(m_{(1)}, \ldots, m_{(m)}\right)$ as above, there exists a unique equivariant full minimal immersion of P^{2} into $P^{2 m}(1)$ of type $\left(m_{(1)}, \ldots, m_{(m)}\right)$.

By Calabi [6], the volume of P^{2} minimally and fully immersed in $P^{2 m}(1)$ exceeds $m(m+1) \pi$. Next we study a minimal immersion χ of P^{2} into $P^{2 m}$ such that the volume is equal to $m(m+1) \pi$.

The directrix curve Ξ of χ is given by the associated holomorphic map ξ :

$$
\xi(z)= \begin{cases}z^{2 m} \overline{\xi(-1 / \bar{z})} & \text { if } m \text { is even } \\ -z^{2 m} \overline{\xi(-1 / \bar{z})} & \text { if } m \text { is odd }\end{cases}
$$

ξ is one expression of the directrix curve Ξ and it is a meromorphic function in $C^{2 m+1}$. Following Barbosa [2], we have another expression η of Ξ such that

$$
\eta(z)=a_{0}+a_{1} z+\cdots+a_{2 m} z^{2 m} \neq 0
$$

because the volume is equal to $m(m+1) \pi$. Then we note that $\eta(z)$ is proportional to $\overline{\eta(-1 / \bar{z})}$ and hence there exists a nonzero constant δ such that

$$
\delta\left(a_{0}+a_{1} z+\cdots+a_{2 m} z^{2 m}\right)=(-1)^{2 m} \bar{a}_{2 m}+\cdots+\bar{a}_{0} z^{2 m}
$$

Since η is totally isotropic, we get $\left(a_{j}, a_{k}\right)=\left(a_{j}, \overline{a_{k}}\right)$ for $j<k$ and $j+k=2 m$. Put

$$
b_{k}=\frac{a_{k}+\overline{a_{k}}}{2}, \quad c_{k}=\frac{a_{k}-\overline{a_{k}}}{2} \quad \text { and } \quad d_{m}= \begin{cases}a_{m} & \text { if } m \text { is even } \\ -i a_{m} & \text { if } m \text { is odd }\end{cases}
$$

Then $\left\{b_{1}, \ldots, b_{m}, c_{1}, \ldots, c_{m}, d_{m}\right\}$ is a basis of $R^{2 m+1}$ and the planes spanned by $\left\{b_{k}, c_{k}\right\}$ and d_{m} are orthogonal to each other. Let $e_{1}, \ldots, e_{2 m+1}$ be an orthonormal basis of $R^{2 m+1}$ such that

$$
b_{k}=\alpha_{k} e_{2 k-1}+\beta_{k} e_{2 k}, \quad c_{k}=\gamma_{k} e_{2 k-1}+\delta_{k} e_{2 k} \quad \text { and } \quad e_{2 m+1}=d_{m} /\left|d_{m}\right|
$$

Therefore we get

$$
\begin{aligned}
\eta(z)= & \sum_{k=1}^{m}\left\{\left(\alpha_{k}+i \gamma_{k}\right) z^{k-1}+(-1)^{k-1}\left(\alpha_{k}-i \gamma_{k}\right) z^{2 m-k-1}\right\} e_{2 k-1} \\
& +\sum_{k=1}^{m}\left\{\left(\beta_{k}+i \delta\right) z^{k-1}+(-1)^{k-1}\left(\beta_{k}-i \delta_{k}\right) z^{2 m-k}\right\} e_{2 k}+\lambda z^{m} e_{2 m+1}
\end{aligned}
$$

where $\lambda=\left|d_{m}\right|$ if m is even and $\lambda=i\left|d_{m}\right|$ if m is odd. Since $(\eta, \eta)=0$, we get

$$
\left(\alpha_{k}+i \delta_{k}\right)^{2}+\left(\beta_{k}+i \gamma_{k}\right)^{2}=0
$$

We may assume $\beta_{k}+i \delta_{k}=i\left(\alpha_{k}+i \gamma_{k}\right)$ so that η gives an equivariant minimal immersion of S^{2} into $S^{2 m}(1)$ of type $(1,2, \ldots, m)$ by Theorem 3.1. It follows from Proposition 4.1 that χ is unique. It is clear that the standard minimal immersion of $P^{2}(2 / m(m+1))$ into $P^{2 m}(1)$ has volume $m(m+1) \pi$.

Corollary 4.1. Let χ be a full minimal immersion of P^{2} into $P^{2 m}(1)$ with volume $m(m+1) \pi$. Then χ is the standard minimal immersion.
P. Li and S. T. Yau prove the following

Proposition A [12]. For any metric ds ${ }^{2}$ on $P^{2}, \lambda_{1} \cdot \mathrm{Vol} \leqslant 12 \pi$, where λ_{1} is the first eigenvalue of the Laplacian of $d s^{2}$. Equality implies there exists a subspace of the first eigenspace of $d s^{2}$ which gives an isometric minimal immersion of P^{2} into $S^{4}(1)$ if $\lambda_{1}=2$.

Proposition B [12]. If M is a compact surface in R^{n} homeomorphic to P^{2}, then $\int|H|^{2} \geqslant 6 \pi$, where H is the mean curvature vector of M. The equality holds only when M is the image of a stereographic projection of some minimal surface in $S^{4}(1)$ such that the first eigenvalue of the Laplacian of M is equal to 2 .

Normalizing $\lambda_{1}=2$, we know that the volume $\leqslant 6 \pi$. If the equality holds, then the metric is standard by Corollary 4.1, because the real projective space of volume $=6 \pi$ is minimally immersed in $S^{4}(1)$. Thus we get the following

Corollary 4.2. For P^{2}, if $\lambda_{1} \cdot$ volume $=12 \pi$, then the metric is standard.
Corollary 4.3. If $\int|H|^{2}=6 \pi$ holds for P^{2} immersed in R^{n}, then the surface is the image of a Veronese surface by a stereographic projection.
5. Minimal cones of minimal immersions of S^{2} into $S^{2 m}(1)$. Let χ be a full minimal immersion of S^{2} into $S^{2 m}(1)$. Then the cone C_{χ} is given by

$$
\left\{s \chi(x) \in R^{2 m+1}: s \in[0,1] \text { and } x \in S^{2}\right\} .
$$

It is well known that $C \chi$ is minimal in $R^{2 m+1}$ and hence is called a minimal cone.
Using the fact [8] that the first eigenvalue of the Jacobi operator of minimal immersions of S^{2} fully into $S^{2 m}(1)$ is equal to -2 , by the method of J. Simons [15], we see that C_{χ} is stable for variations which fix the boundary of $C \chi$.
It is interesting to consider whether $C \chi$ is homologically volume minimizing. With respect to this problem, an interesting result is known that the cones of the holomorphic curves in S^{6} with the almost complex structure constructed by Cayley numbers are homologically volume minimizing. The proof is given as follows.
Let ($\left.S^{6}(1), J,\langle\rangle,\right)$ be the Tachibana space (nearly Kaehler manifold) constructed by using Cayley numbers and $\omega(X, Y, Z)$ the parallel 3 -form defined by $\langle X, Y \cdot Z\rangle$ on R^{7}, where \cdot is the product on R^{7} defined by Cayley numbers. Then

$$
\omega(\text { any } 3 \text {-plane }) \leqslant 1
$$

holds. For the cone C_{χ} of a holomorphic curve S^{2} in $S^{6}(1)$, we get $\omega\left(T\left(C_{\chi}\right)\right)=1$, where $T\left(C_{\chi}\right)$ is the tangent bundle (see, for example, [4, 13]). It follows from Stokes' formula that C_{χ} is homologically area minimizing. It is known that there exist many holomorphic curves of S^{2} in $S^{6}(1)[4,14]$.

Therefore it is natural to pose a problem:
Classify minimal immersions of S^{2} into $S^{2 m}(1)$ with the property such that there exist a parallel 3-form W which satisfies

$$
\begin{equation*}
W(T(C \chi))=1 \quad \text { and } \quad W(\text { any 3-plane }) \leqslant 1 \tag{5.1}
\end{equation*}
$$

We give the answer to this problem.
Theorem 5.1. A full minimal immersion of S^{2} into $S^{2 m}(1)$ satisfies (5.1) if and only if $m=3$ and $\kappa_{2}=\frac{1}{2}$. If this is the case, there is an orthogonal transformation T of R^{7} such that $T \cdot \chi$ is a holomorphic curve and W is $T^{*} \omega$.

Proof. We use the notations in $\S 2$. Let $\left\{x, e_{1}, e_{2}, \ldots, e_{2 m-1}, e_{2 m}\right\}$ be an orthogonal basis. Then $\left\{x, e_{1}, e_{2}\right\}$ spans the tangent space of $C \chi$. Since ω attains its maximum at $\left\{x, e_{1}, e_{2}\right\}$, that is, $W\left(x, e_{1}, e_{2}\right)=1$ and W (any 3-plane) $\leqslant 1$, we obtain

$$
W\left(e_{\alpha}, e_{1}, e_{2}\right)=0, \quad W\left(x, e_{1}, e_{\alpha}\right)=0 \quad \text { and } \quad W\left(x, e_{\alpha}, e_{2}\right)=0 \quad \text { for } \alpha \geqslant 3
$$

We rewrite these in terms of x, E_{j}, \bar{E}_{k}, etc., as follows:

$$
\begin{gather*}
W\left(x, E_{1}, \bar{E}_{1}\right)=-2 i \tag{5.2}\\
W\left(E_{\alpha}, E_{1}, \bar{E}_{1}\right)=0 \quad \text { for } \alpha \geqslant 2 \tag{5.3}\\
W\left(x, E_{1}, E_{\alpha}\right)=0 \quad \text { for } \alpha \geqslant 2 \tag{5.4}\\
W\left(x, E_{1}, \bar{E}_{\alpha}\right)=0 \quad \text { for } \alpha>2 \tag{5.5}
\end{gather*}
$$

Differentiating (5.3) by E_{1}, E_{1} and using (2.1), we obtain

$$
\begin{align*}
& W\left(E_{2}, \bar{E}_{1}, E_{\alpha}\right)=0 \quad \text { for } \alpha \geqslant 2 \tag{5.6}\\
& W\left(E_{1}, \bar{E}_{2}, E_{\alpha}\right)=0 \quad \text { for } \alpha \geqslant 2 \tag{5.7}
\end{align*}
$$

For (5.4), we have

$$
\begin{equation*}
W\left(x, E_{2}, E_{\alpha}\right)=0 \quad \text { for } \alpha \geqslant 2 \tag{5.8}
\end{equation*}
$$

Differentiating (5.5) by \bar{E}_{1} and using (2.1), we have

$$
\begin{gather*}
W\left(x, E_{2}, \bar{E}_{2}\right)=-2 i, \tag{5.9}\\
W\left(x, E_{2}, \bar{E}_{\alpha}\right)=0 \text { for } \alpha \geqslant 3 . \tag{5.10}
\end{gather*}
$$

For (5.6), we get

$$
\begin{align*}
& W\left(E_{3}, \bar{E}_{1}, E_{\alpha}\right)=0 \quad \text { for } \alpha \geqslant 2 \tag{5.11}\\
& W\left(E_{2}, \bar{E}_{2}, E_{\alpha}\right)=0 \quad \text { for } \alpha \geqslant 2 \tag{5.12}
\end{align*}
$$

Differentiating (5.7) by \bar{E}_{1}, we obtain

$$
\begin{gather*}
W\left(E_{1}, E_{3}, E_{2}\right)=2 i / \kappa_{2}, \tag{5.13}\\
W\left(E_{1}, \bar{E}_{3}, E_{\alpha}\right)=0 \quad \text { for } \alpha \geqslant 3 . \tag{5.14}
\end{gather*}
$$

If $m=2$, (5.13) implies that there exists no W which satisfies (5.1). Hence assume that $m \geqslant 3$. Differentiating (5.8) by E_{1}, we get

$$
\begin{equation*}
W\left(E_{1}, E_{2}, E_{\alpha}\right)+2 \kappa_{2} W\left(\chi, E_{3}, E_{\alpha}\right)=0 \quad \text { for } \alpha \geqslant 3 \tag{5.15}
\end{equation*}
$$

For (5.10) differentiated by E_{1}, the case $\alpha=3$ implies

$$
\begin{equation*}
W\left(\chi, E_{3}, E_{3}\right)=i /\left(\kappa_{2}\right)^{2}-2 i . \tag{5.16}
\end{equation*}
$$

Differentiating (5.11) by E_{1}, we obtain

$$
\begin{gather*}
W\left(\bar{E}_{2}, E_{3}, E_{\alpha}\right)=0 \text { for } \alpha \geqslant 4 \tag{5.17}\\
-W\left(\chi, E_{3}, E_{\alpha}\right)+\kappa_{3} W\left(\bar{E}_{1}, E_{4}, E_{\alpha}\right)=0 \text { for } \alpha \geqslant 3 . \tag{5.18}
\end{gather*}
$$

Differentiating (5.12) and (5.13) by \bar{E}_{1}, we have

$$
\begin{equation*}
W\left(E_{2}, \bar{E}_{3}, E_{\alpha}\right)=0 \text { for } \alpha \geqslant 3 \tag{5.19}
\end{equation*}
$$

$$
\frac{2 i}{\left(\kappa_{2}\right)^{2}} \bar{E}_{1} \kappa_{2}=\frac{2}{\kappa_{2}}\left(\omega_{5,6}\left(\bar{E}_{1}\right)-\omega_{3,4}\left(\bar{E}_{1}\right)-\omega_{1,2}\left(\bar{E}_{1}\right)\right)+2 \kappa_{3} W\left(E_{1}, E_{2}, \bar{E}_{4}\right)
$$

Since, by (2.1), we have $\omega_{5,6}-\omega_{3,4}-\omega_{1,2}=d^{c} \log \kappa_{2}$,

$$
\begin{equation*}
W\left(E_{1}, E_{2}, \bar{E}_{4}\right)=2 i \bar{E}_{1} \kappa_{2} /\left(\kappa_{2}\right)^{2} \kappa_{3} \tag{5.20}
\end{equation*}
$$

holds. Differentiating (5.4) by \bar{E}_{1}, we get

$$
\begin{gather*}
W\left(E_{1}, E_{4}, E_{3}\right)=\left(-i /\left(\kappa_{2}\right)^{2}+4 i\right) / \kappa_{3} \tag{5.21}\\
-W\left(\chi, \bar{E}_{3}, E_{\alpha}\right)+\kappa_{3} W\left(E_{1}, \bar{E}_{4}, E_{\alpha}\right)=0 \text { for } \alpha \geqslant 4 .
\end{gather*}
$$

Differentiate (5.16) by E_{1} and (5.17) by E_{1}, \bar{E}_{1}, respectively. Then we get

$$
\begin{gather*}
W\left(\chi, E_{4}, \bar{E}_{3}\right)=-\frac{i}{\left(\kappa_{2}\right)^{2} \kappa_{3}}\left(E_{1} \kappa_{2}\right), \tag{5.23}\\
W\left(\bar{E}_{3}, E_{3}, E_{\alpha}\right)=0 \text { for } \alpha \geqslant 4 \tag{5.24}\\
W\left(\bar{E}_{2}, E_{4}, E_{\alpha}\right)=0 \text { for } \alpha \geqslant 4 . \tag{5.25}
\end{gather*}
$$

Differentiating (5.19) by \bar{E}_{1}, we have

$$
\begin{equation*}
W\left(E_{2}, \bar{E}_{4}, E_{\alpha}\right)=0 \quad \text { for } \alpha \geqslant 3 . \tag{5.26}
\end{equation*}
$$

When we differentiate (5.21) by E_{1}, using (5.26), we get

$$
\begin{aligned}
E_{1}\left(\frac{1}{\kappa_{3}}\left(-\frac{i}{\left(\kappa_{2}\right)^{2}}+4 i\right)\right)= & i\left\{\omega_{7,8}\left(E_{1}\right)-\omega_{5,6}\left(E_{1}\right)-\omega_{12}\left(E_{1}\right)\right\} \\
& \times\left\{\frac{1}{\kappa_{3}}\left(-\frac{i}{\left(\kappa_{2}\right)^{2}}+4 i\right)\right\}+2 \kappa_{3} W\left(E_{1}, \bar{E}_{4}, E_{4}\right)
\end{aligned}
$$

which, together with (2.1), implies

$$
\begin{aligned}
E_{1}\left(\frac{1}{\kappa_{3}}\left(-\frac{i}{\left(\kappa_{2}\right)^{2}}+4 i\right)\right)= & i\left\{\omega_{1,2}\left(E_{1}\right)+i E_{1} \log \kappa_{3}\right\} \\
& \times\left\{\frac{1}{\kappa_{3}}\left(-\frac{i}{\left(\kappa_{2}\right)^{2}}+4 i\right)\right\}+2 \kappa_{3} W\left(E_{1}, \bar{E}_{4}, E_{4}\right)
\end{aligned}
$$

If $L=\left(-i /\left(\kappa_{2}\right)^{2}+4 i\right) / \kappa_{3}=0$, then

$$
\omega_{1,2}\left(E_{1}\right)=\frac{1}{i L}\left\{E_{1} L-2 \kappa_{3} W\left(E_{1}, \bar{E}_{4}, E_{4}\right)\right\}+i L E_{1} \log \kappa_{3} .
$$

The right-hand side is determined by the value of E_{1}, E_{4} at each point. Let $\tilde{e}_{1}, \tilde{e}_{2}$ be other orthonormal vector fields tangent to S^{2} such that $e_{j}(x)=\tilde{e}_{j}(x)$ at a fixed point x. Then we obtain

$$
\left\langle\nabla_{X} e_{1}, e_{2}\right\rangle=\left\langle\nabla_{X} \tilde{e}, \tilde{e}_{2}\right\rangle \quad \text { at } x
$$

and hence $\omega_{1,2}=0$. This implies that S^{2} is flat, which contradicts (2.2) or [7]. Thus we obtain $L=0$. If $m \geqslant 4$, then $k_{2}=\frac{1}{2}$. Differentiating (5.20) by E_{1}, we get $\kappa_{3}=0$, which contradicts the fact that the immersion is full. Therefore $m=3$, and (5.21) implies $\kappa_{2}=\frac{1}{2}$. Furthermore, we know values of W for a basis $\left\{\chi, e_{1}, \ldots, e_{6}\right\}$, i.e.,

$$
\begin{aligned}
W\left(\chi, e_{1}, e_{2}\right) & =W\left(\chi, e_{3}, e_{4}\right)=W\left(\chi, e_{6}, e_{5}\right)=W\left(e_{1}, e_{3}, e_{6}\right) \\
& =W\left(e_{1}, e_{5}, e_{4}\right)=W\left(e_{2}, e_{5}, e_{3}\right)=W\left(e_{2}, e_{6}, e_{4}\right)=1
\end{aligned}
$$

and other values are zero. For $x \in S^{2}, T_{x}\left(R^{7}\right)$ has a product defined by

	x	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}
x	0	e_{2}	$-e_{1}$	e_{4}	$-e_{3}$	$-e_{6}$	e_{5}
e_{1}	$-e_{2}$	0	x	e_{6}	$-e_{5}$	e_{4}	$-e_{3}$
e_{2}	e_{1}	$-x$	0	$-e_{5}$	$-e_{6}$	e_{3}	e_{4}
e_{3}	$-e_{4}$	$-e_{6}$	e_{5}	0	x	$-e_{2}$	e_{1}
e_{4}	e_{3}	e_{5}	e_{6}	$-x$	0	$-e_{1}$	$-e_{2}$
e_{5}	e_{6}	$-e_{4}$	$-e_{3}$	e_{2}	e_{1}	0	$-x$
e_{6}	$-e_{5}$	e_{3}	$-e_{4}$	$-e_{1}$	e_{2}	x	0

This product is the same as the product ".". Under an appropriate orthogonal transformation, the two products are equal. Consequently we obtain $W=\langle, \cdot\rangle$ at x. Since W is parallel, $W=\langle, \cdot\rangle$ on S^{2}.
Conversely let χ be a minimal immersion of S^{2} into $S^{6}(1)$ with $\kappa_{2}=\frac{1}{2}$. For $x \in S^{2}$, there is a 3-form W on $T_{x}\left(R^{7}\right)$ which satisfies (5.27). (2.1) implies that W is a parallel form on S^{2} and hence we may consider $W=\langle, \cdot\rangle$ and that S^{2} is a holomorphic curve in $S^{6}(1)$. Q.E.D.
6. Equivariant minimal immersions of S^{2} into $S^{6}(1)$ with $\kappa_{2}=\frac{1}{2}$. Let χ be an equivariant minimal immersion of S^{2} into $S^{6}(1)$ of type (m_{1}, m_{2}, m_{3}) and $\xi=$ $G_{3} /\left|G_{3}\right|^{2}$ which gives the directrix curve of χ. Then by the definition of G_{1}, G_{2}, G_{3}, E_{1}, E_{2}, E_{3}, we have

$$
G_{1}=\frac{\lambda}{2} E_{1}, \quad G_{2}=\frac{\lambda^{2}}{2} \kappa_{1} E_{2}, \quad G_{3}=\frac{\lambda^{3}}{2} \kappa_{1} \kappa_{2} E_{3}
$$

and hence

$$
\frac{\left(G_{3}, \overline{G_{3}}\right)}{\left(G_{2}, \overline{G_{2}}\right)}=\lambda^{2} \kappa_{2}^{2}
$$

Since $\xi=G_{3} /\left|G_{3}\right|^{2}$, we get

$$
|\xi|^{2}\left|G_{3}\right|^{2}=1 \quad \text { and } \quad\left|\partial G_{3}\right|^{2}=\frac{1}{|\xi|^{6}}\left(|\xi|^{2}|\partial \xi|^{2}-|(\partial \xi, \bar{\xi})|^{2}\right)
$$

It follows from Lemma 2.1 that $\partial G_{3}=-\left|G_{3}\right|^{2} G_{2} /\left|G_{2}\right|^{2}$ and hence $\left|\partial G_{3}\right|^{2}=$ $\left|G_{3}\right|^{4} /\left|G_{2}\right|^{2}$. Consequently we obtain

$$
\lambda^{2} \kappa_{2}^{2}=\frac{1}{|\xi|^{4}}\left(|\xi|^{2}|\partial \xi|^{2}-|(\partial \xi, \bar{\xi})|^{2}\right)=\partial \bar{\partial} \log |\xi|^{2}
$$

On the other hand, Proposition 2.1 yields $\lambda^{2}=2 \partial \bar{\partial} \log \left|\xi_{2}\right|^{2}$. Thus

$$
\begin{equation*}
\kappa_{2}=\frac{1}{2} \quad \text { if and only if } \quad \partial \bar{\partial} \log |\xi|^{4}=\partial \bar{\partial} \log \left|\xi_{2}\right|^{2} \tag{6.1}
\end{equation*}
$$

Note that $|\xi|^{4}=|\phi|^{4}$ and $\left|\xi_{2}\right|^{2}=\left|\phi_{2}\right|^{2}$ for ϕ constructed in §3. By a simple calculation, we get

$$
\begin{align*}
|\phi|^{2}= & 2\left|A_{1}\right|^{2}|z|^{6-2 m_{(1)}}+2\left|B_{1}\right|^{2}|z|^{6+2 m_{(1)}} \tag{6.2}\\
& +2\left|A_{3}\right|^{2}|z|^{6-2 m_{(2)}}+2\left|B_{3}\right|^{2}|z|^{6+2 m_{(2)}} \\
& +2\left|A_{5}\right|^{2}|z|^{6-2 m_{(3)}}+2\left|B_{5}\right|^{2}|z|^{6+2 m_{(3)}}+|\kappa|^{2}|z|^{6}
\end{align*}
$$

By using Lemma 3.6, the coefficients $A_{j k l}$ of (3.6) are functions of $|z|^{2}$. Furthermore we have

$$
\begin{aligned}
& \operatorname{Min}_{j<k<1}\left\{\operatorname{deg} A_{j k l} \text { with respect to }|z|\right\}=6-m_{(1)}-m_{(2)}-m_{(3)} \\
& \operatorname{Max}_{j<k<1}\left\{\operatorname{deg} A_{j k l} \text { with respect to }|z|\right\}=6+m_{(1)}+m_{(2)}+m_{(3)}
\end{aligned}
$$

Comparing $|\phi|^{4}$ with $\left|\phi_{2}\right|^{2}$ for degrees of $|z|^{2}$ and using (6.1) and Liouville's theorem for harmonic functions on a complex plane, we get

$$
\begin{equation*}
m_{(3)}=m_{(1)}+m_{(2)} \tag{6.3}
\end{equation*}
$$

and hence a positive real number ε such that

$$
\begin{equation*}
\varepsilon|\phi|^{4}=\left|\phi_{2}\right|^{2} \tag{6.4}
\end{equation*}
$$

By a simple but long calculation, we see that (6.4) is equivalent to

$$
\begin{gathered}
\frac{\left|B_{1}\right|^{2}\left|B_{2}\right|^{2}}{\left|B_{3}\right|^{2}}=\frac{\left|A_{1}\right|^{2}\left|A_{2}\right|^{2}}{\left|A_{3}\right|^{2}}, \\
\frac{1}{4}|\kappa|^{2} m_{(3)}^{2}=\frac{\left|B_{1}\right|^{2}\left|B_{2}\right|^{2}}{\left|B_{3}\right|^{2}}\left(m_{(1)}-m_{(2)}\right)^{2}, \\
\frac{1}{4}|\kappa|^{2} m_{(2)}^{2}=\frac{\left|A_{1}\right|^{2}\left|B_{3}\right|^{2}}{\left|B_{2}\right|^{2}}\left(m_{(1)}+m_{(3)}\right)^{2}, \\
\frac{1}{4}|\kappa|^{2} m_{(1)}^{2}=\frac{\left|A_{2}\right|^{2}\left|B_{3}\right|^{2}}{\left|B_{1}\right|^{2}}\left(m_{(2)}+m_{(3)}\right)^{2},
\end{gathered}
$$

which gives the following
Theorem 6.1. Let χ be an equivariant minimal immersion of S^{2} fully into $S^{6}(1)$ of type $\left(m_{(1)}, m_{(2)}, m_{(3)}\right)$. Then $\kappa_{2}=\frac{1}{2}$ is equivalent to the following:
(1) $m_{(3)}=m_{(1)}+m_{(2)}$,
(2) there exist real numbers $\alpha>0, \beta<0, \gamma>0$ such that $\alpha \cdot \beta=-\gamma$ and

$$
\begin{aligned}
\left|A_{1}\right|^{2} & =\frac{\kappa^{2} m_{(2)} m_{(3)}}{4 \alpha\left(m_{(2)}-m_{(1)}\right)\left(m_{(1)}+m_{(3)}\right)}, \\
\left|A_{2}\right|^{2} & =-\frac{\kappa^{2} m_{(1)} m_{(3)}}{4 \beta\left(m_{(2)}-m_{(1)}\right)\left(m_{(2)}+m_{(3)}\right)}, \\
\left|A_{3}\right|^{2} & =\frac{\kappa^{2} m_{(1)} m_{(2)}}{4 \gamma\left(m_{(1)}+m_{(3)}\right)\left(m_{(2)}+m_{(3)}\right)} .
\end{aligned}
$$

Proof. Setting $B_{1}=\alpha \overline{A_{1}}, B_{2}=\beta \overline{A_{2}}$ and $B_{3}=\gamma \overline{A_{3}}$ for complex numbers α, β, and γ, we have Theorem 6.1. Q.E.D.

Corollary 6.1. For positive integers $m_{(1)}<m_{(2)}$, there exists an equivariant holomorphic immersion of S^{2} fully into $S^{6}(1)$ of type ($m_{(1)}, m_{(2)}, m_{(1)}+m_{(2)}$).
7. Totally real submanifolds in $S^{6}(1)$. Let χ be a full holomorphic immersion of S^{2} into $S^{6}(1)$. Note that the first and normal bundles are well defined on S^{2}. Therefore we can construct the tubes of radius $\gamma(0<\gamma<\pi)$ in the direction of the first and normal bundles. Except at isolated points of S^{2} where an s_{0} exists such that $l_{s_{0}}=0$, points of S^{2} each have an open neighborhood U where an orthonormal basis e_{1}, \ldots, e_{6} can be constructed by the method described in $\S 2$. Using this basis, the tube of radius $\gamma(0<\gamma<\pi)$ in the direction of the second normal bundle on U is given by

$$
\begin{aligned}
& F_{\gamma}: U \times S^{1}(1) \rightarrow S^{6}(1), \\
& \quad(x, \theta) \rightarrow(\cos \gamma) \chi(x)+(\sin \gamma)\left((\cos \theta) e_{5}+(\sin \theta) e_{6}\right)
\end{aligned}
$$

By (2.1), we obtain

$$
\begin{aligned}
F_{\gamma^{*}}\left(e_{1}\right)= & (\cos \gamma) e_{1}-\kappa_{2}(\sin \gamma)(\cos \theta) e_{3}-\kappa_{2}(\sin \gamma)(\sin \theta) e_{4} \\
& -(\sin \gamma)(\sin \theta) \omega_{56}\left(e_{1}\right) e_{5}+(\sin \gamma)(\cos \theta) \omega_{56}\left(e_{1}\right) e_{6}
\end{aligned}
$$

and $F_{\gamma^{*}}\left(e_{2}\right)=\cdots, F_{\gamma^{*}}(\partial / \partial \theta)=\cdots$. It follows from (5.27) that

$$
\begin{aligned}
J F_{\gamma^{*}}\left(e_{1}\right)= & F \cdot F_{\gamma^{*}}\left(e_{1}\right) \\
= & -(\sin \gamma)^{2} \omega_{56}\left(e_{1}\right) \chi+\left[(\cos \gamma)^{2}-\kappa_{2}(\sin \gamma)^{2}\right] e_{2} \\
& +\left(\kappa_{2}+1\right)(\sin \gamma)(\cos \gamma)(\sin \theta) e_{3} \\
& -\left(\kappa_{2}+1\right)(\sin \gamma)(\cos \gamma)(\cos \theta) e_{4} \\
& +(\sin \gamma)(\cos \gamma)(\cos \theta) \omega_{56}\left(e_{1}\right) e_{5} \\
& +(\sin \gamma)(\cos \gamma)(\sin \theta) \omega_{56}\left(e_{1}\right) e_{6}, \quad \text { etc. }
\end{aligned}
$$

The condition that F_{γ} gives a totally real submanifold is equivalent to $(\tan \gamma)^{2}=\frac{4}{5}$, because $\kappa_{2}=\frac{1}{2}$.

Next, let χ be the holomorphic immersion of $S^{2}\left(\frac{1}{6}\right)$ into $S^{6}(1)$. Then $\kappa_{1}=\sqrt{5 / 12}$. By the same calculation, we see that the tube of radius γ in the direction of the first normal space of χ gives a totally real submanifold if and only if γ satisfies

$$
\begin{equation*}
27(\cos \gamma)^{3}+5(\cos \gamma)^{2}-15(\cos \gamma)-5=0 \tag{7.1}
\end{equation*}
$$

Consequently we obtain
Theorem 7.1. Let χ be a full holomorphic immersion of S^{2} into $S^{6}(1)$. Then the tube of radius γ such that $(\tan \gamma)^{2}=\frac{4}{5}$ in the direction of the second normal space of χ gives a totally real submanifold in $S^{6}(1)$.

Theorem 7.2. Let χ be the holomorphic immersion of $S^{2}\left(\frac{1}{6}\right)$ into $S^{6}(1)$. Then the tube of radius γ which satisfies (7.1) in the direction of the first normal space of χ gives a totally real submanifold $S^{6}(1)$.

We can calculate the Chern number c_{1} of the second normal bundle of a full holomorphic immersion of S^{2} into $S^{6}(1)$. By (2.1),

$$
d \omega_{5,6}=3 d \omega_{1,2}+d \theta_{2} \quad \text { and } \quad d \theta_{2}=\Delta\left(\log \kappa_{1}\right) \omega_{1} \wedge \omega_{2} .
$$

Therefore the curvature of the second normal bundle of χ is given by $\frac{1}{2}$ which implies

$$
c_{1}=\frac{1}{4 \pi} \text { volume }\left(S^{2}\right)
$$

Using Corollary 6.1 and Theorem 3.1, we obtain a full holomorphic immersion S^{2} into $S^{6}(1)$ with $c_{1}=2 k$ for a positive integer $k \geqslant 3$. Similarly, we see that the Chern number of the first normal bundle of $S^{2}\left(\frac{1}{6}\right) \rightarrow S^{6}(1)$ is 4 .

Corollary 7.1. There exists a minimal (totally real) immersion of the circle bundle of S^{2} with positive even Chern number $\geqslant 4$ into $S^{6}(1)$.

Bryant [4] gives a holomorphic map of any Riemann surface into $S^{6}(1)$. Since they have the same properties as a full holomorphic map of S^{2} into $S^{6}(1)$, we obtain many 3-dimensional totally real submanifolds in $S^{6}(1)$ with singularities.

In [8], we construct the totally real (minimal) immersion of $S^{6}\left(\frac{1}{16}\right)$ into $S^{6}(1)$. Calculating the curvature tensor of the tube in the direction of the second normal bundle of the holomorphic immersion of $S^{2}\left(\frac{1}{6}\right)$ into $S^{6}(1)$, we obtain the minimal immersion $S^{3}\left(\frac{1}{16}\right)$ into $S^{6}(1)$.

Remark. Let T_{γ} be the tube of radius $\gamma(0<\gamma<\pi)$ in the direction of the second normal bundle of a full holomorphic immersion of S^{2} into $S^{6}(1)$. We denote by \mathscr{T}_{γ} the mean curvature vector of T_{γ}. Then we easily see
(1)

$$
\left|\mathscr{T}_{\gamma}\right|=\frac{(\sin \gamma)(\cos \gamma)\left((\operatorname{cotan} \gamma)^{2}-5 / 4\right)}{(\cos \gamma)^{2}+(\sin \gamma)^{2} / 4}
$$

(2) \mathscr{T}_{γ} is not parallel for the normal connection.
(3) \mathscr{T}_{γ} is the scalar multiple of the variation vector field in the direction of γ.
(4) T_{γ} (not minimal) are Chen submanifolds [17] in $S^{6}(1)$.
(5) Let V be the 4-dimensional submanifold defined by attaching the totally geodesic submanifold $S^{2}(1)$ for each point of the holomorphic immersion of S^{2} into $S^{6}(1)$, where the tangent space of $S^{2}(1)$ is spanned by the second normal space of the holomorphic immersion. Then V is minimal in $S^{6}(1)$ and contains T_{γ}.
(6) We obtain the analogous result for some holomorphic curve in the 3-dimensional complex projective space (in preparation).

References

1. O. Borůvka, Sur les surfaces représentées par les fonctions sphériques de prèmiere espèce, J. Math. Pures Appl. 12 (1933), 337-383.
2. J. L. M. Barbosa, On minimal immersions of S^{2} into $S^{2 m}$, Trans. Amer. Math. Soc. 210 (1975), 75-106.
3. \qquad , An extrinsic rigidity theorem for minimal immersions from S^{2} into S^{n}, J. Differential Geom. 14 (1979), 355-368.
4. R. L. Bryant, Submanifolds and special structures on the octonions, J. Differential Geom. 17 (1982), 185-232.
5. \qquad , Conformal and minimal immersions of compact surfaces into the 4 -sphere, J. Differential Geom. 17 (1982), 455-473.
6. E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967), 111-125.
7. S. S. Chern, On the minimal immersions of the two sphere in a space of constant curvature, Problem in Analysis, Princeton Univ. Press, Princeton, N. J., 1970, pp. 27-40.
8. N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
9. \qquad , The index of minimal immersions of S^{2} into $S^{2 n}$, Math. Z. 184 (1983), 127-132.
10. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 5 (1971), 333-340.
11. R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157.
12. P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surface, Invent. Math. 69 (1982), 269-291.
13. K. Mashimo, Minimal immersions of 3-dimensional sphere into sphere (preprint).
14. K. Sekigawa, Almost complex submanifolds of a 6-dimensional sphere, Kodai Math. J. 6 (1983), 174-185.
15. J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1969), 62-105.
16. K. Uhlenbeck, Equivariant harmonic maps into spheres, Proc. Tulane Conf. on Harmonic Maps, 1981, Lecture Notes in Math., vol. 949, Springer-Verlag, Berlin and New York, 1981, pp. 146-158.
17. L. Gheysens, P. Verheyen and Leopold Verstraelen, Characterization and examples of Chen submanifolds, J. Geom. 20 (1983), 47-62.

Department of Mathematics, Tokyo Metropolitan University, Fukazawa, Setagaya, Tokyo 158, JAPAN

[^0]: Received by the editors January 4, 1985 and, in revised form, July 12, 1985.
 1980 Mathematics Subject Classification. Primary 53A10; Secondary 53C40.

