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EQUrVARIANT MORSE THEORY FOR FLOWS
AND AN APPLICATION TO THE W-BODY PROBLEM

FILOMENA PACELLA

Abstract. In this paper, using Conley's index and equivariant cohomology, some
Morse type inequalities are deduced for a flow equivariant with respect to the action
of a compact topological group.

In the case of a gradient flow induced by a nondegenerate smooth function these
inequalities coincide with those described by R. Bott.

The theory is applied to the study of the central configurations of V-bodies.

Introduction. When a flow on a topological space is subject to some symmetry
there are at least three ways of obtaining Morse inequalities [16]. With simple
examples it is possible to prove that, in the case of a nonfree action of a symmetry
group, these three approaches give different information [16].

In this paper we describe the equivariant Morse theory for flows in the presence of
a symmetry due to the action of a compact topological group.

The theory presented here generalizes the one described in [1 and 4] for a gradient
flow induced by a nondegenerate smooth function. In particular, our extension
allows us to treat the case of functions having degenerate critical orbits.

We point out that a different approach to the study of equivariant gradient flows,
in the presence of particular symmetries, is described in [2, 9, 10] using the
cohomological or geometrical index as a replacement for the Ljusternik-Schnirel-
mann category.

In §3 we apply the equivariant Morse theory to the Ar-body problem, showing that
the Morse relations obtained in [15] hold also when the potential energy has some
degenerate critical orbits.

Moreover we prove that the Morse inequalities for the spatial problem imply the
existence of many more central configurations than one could deduce from the Morse
inequalities for the planar problem [14]. This is relevant for the question of the
existence of spatial central configurations.

We end §3 by proving that the collinear problem is a repeller in the gradient flow
induced by the potential energy.
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1. Preliminaries. Let T be a Hausdorff topological space and the map (y, t) -* y • t
from T X R to T a flow on T [7, 8, 16, 17].

We recall [8] that a locally, compact Hausdorff subspace X of T is a local flow if
for every y e. X there is a neighborhood i/cT of y and an e > 0 such that
(ATi I/)-[0,e)c X.

We suppose that there is a (left) action of a compact topological group G on T [6,
16].

A subset Y <z T is called G-invariant if
g g G    and    y g Y => gy g Y

where gy denotes the element of Y obtained from y using the action of g g G.
We say that the flow on T is equivariant if

(1.1) (gy) ■ t = g(y ■ t),       yGT, gGG, ?gR.
This allows us to define a flow on the quotient T/G in the following way:

(1-2) [y]'*-[yt],     [y]Gr/G, ígr,
where [y] is the orbit of a point y g T under the action of G.

The flow (1.2) is well defined because if y' belongs to the orbit of y, then y' = gy,
for some gGG, and consequently

[y']-t-\y'-t] = [(gy)-t} = [g(y.t)] = [yt] = [y]-t.

It is easy to prove the following proposition.

Proposition 1.1. Let X be a G-invariant local flow in the G-equivariant flow on T
and I a G-invariant isolated invariant set in X. Then

(i) X/G is a local flow in T/G,
(ii) I/G is an isolated invariant set in X/G,
(iii) if (N, N~) is an index pair for I with N and N' G-invariant then (N/G, N~/G)

is an index pair for I/G.

Proof, (i) X/G is locally compact and is an Hausdorff subspace of T/G because
G is a compact topological group [6].

Take [y] e X/G, y G X Since X is a local flow in T, there exists a neighborhood
Uy c T and e > 0 such that (X n Uy) ■ [0, e) c X.

Since G is compact any neighborhood of a G-invariant set contains a G-invariant
neighborhood [6, Ex. 9, p. 69], so we can suppose that Uy is G-invariant. Then Uy/G
is a neighborhood of [y] in T/G and (X/G n Uy/G) ■ [0, e) c X/G.

(ii) To say that / is an isolated invariant set in X means [7, 8] that there exists a
compact N <z X such that I cz intN (relative to X) and / = I(N) where I(N) is
the maximal invariant set contained in N, that is I(N) = {y e N \y ■ R cz N).

As above we can suppose that N is G-invariant. Then I/G <z int(N/G), N/G is
compact and I/G = {[y] g AyG|[y] • R c N/G}.
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(iii) We recall that a compact pair (N,N~) is an index pair for the isolated
invariant set / [8] if

(a) cl(N \ N~) is an isolating neighborhood of /,
(b) y G N~ and y • [0, t] c N imply y • [0, t] c N~,
(c) if y g N and y • R+C N then there exists t > 0 such that y • [0, î] c N and

y • t G AT.
Since N and N~ are G-invariant and compact, N\N~ is G-invariant and

relatively compact. Thus, by (ii) cl(JV/G \ N~/G) = cl((JV \N~)/G) =
(cl(N\ N~))/G is an isolating neighborhood of I/G.

Moreover, if a g N~/G, then a = [y] for some y g AT".
From a • [0, t] c N/G and (b) we have Vf g [0, i]

[y] -t= [y ■ t] G N/G=>y • t G A

=» y • í G AT=> [y ■ t] = [y] ■ t G AT/G.

Finally, if a g N/G and a • R + <£ N/G, then a = [y], for some y g A and there
exists / g R+ such that [y]-/ = [yí]í N/G. This implies that y • R+<£ A. Thus,
from (c) there exists i > 0 such that Vi g [0, i], y ■ t e 'N and y • i g A~. Conse-
quently a • í = [y ■ t] G A/G, V/ G [0, t], and a • t = [y • t] G JV"/G.   D

Remark 1.1. Given the G-invariant isolated invariant set / it is always possible to
construct an index pair (N, N~) with N and N~ G-invariant. In fact, since I/G is
an isolated invariant set in X/G, there exists an index pair (M,M~) of I/G in
X/G. Then, denoted by it the canonical projection of T on T/G, (tr~l(M), tr'l(M~))
is an index pair for / in X.

From now on we will denote by S a G-invariant isolated invariant set in the
G-invariant local flow X.

Proposition 1.2. // (M,,..., Mn) is an admissible ordering of a Morse decomposi-
tion of S, given by G-invariant Morse sets, then (Mx/G,..., Mn/G) is an admissible
ordering of a Morse decomposition ofS/G.

Proof. A Morse decomposition of S [7, 8] is a finite collection {MW}V^P of
disjoint, compact, invariant subsets M„ c S which can be ordered ( Af,,..., Af„) in
such a way that for every y g S \ Ui ^ j^ „ M- there are indices /' < j such that
u(y) c M, and w*(y) c M}.

The w-limit sets, w(y) and w*(y) are defined to be, respectively, the maximal
invariant set in the closure of y • [0, + oo) and y • (-oo, 0].

Since each Mj is G-invariant and G is compact it is easy to see that {M^/G}W^P
is a finite collection of disjoint, compact, invariant subsets of S/G.

Now let us take for {M„/G}weP the same ordering as for {M^}^EP and prove
that this ordering is admissible.

To do this it is enough to show that if y and y' are in the same equivalence class,
that is, y' = gy, for some g g G, then

(1.3) <o(y') = w(gy) = gw(y)    and    w*(y') = gw^y).1

'Given A c T, we denote by gA, g e G, the set gA = {gx,x e A}.
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In fact, if a G S/G \ U, <,r< n M¡/G,

«(«) = ( U <»(gy))/G,

with y such that [y] = a, and so (1.3) together with the G-invariance of each A/w
implies the assertion.

Let us prove (1.3). By definition w(gy) is the maximal invariant set contained in
cl({gy[0,oo)}).

Then we have

U(gy) = /(cl({ gy • [0, oo)})) = /(cl({ g(y • [0, oo))}))

= /(gcl({y ■ [0, oo)})) = g/(cl({y • [0, oo)})) = g«(y).

In the same way it is possible to prove that co*(gy) = gw*(y).    D
Remark 1.2. If S is G-invariant and (M,,..., Mn) is a Morse decomposition of S,

it is possible to obtain a new Morse decomposition of 5, built up by G-invariant
Morse sets, putting together the sets M, which are in the same orbit.

Actually, if the group is connected, each isolated invariant set must be G-
invariant.

2. Equivariant Morse theory. As in §1 we suppose that an equivariant flow is
defined on the Hausdorff topological space T.

If G is a compact topological group there exists a universal G-bundle char-
acterized by having its total space E contractible:

G
I

(2.1) E
1

E/G = BG
The space BG is the so-called classifying space of G. The action of G on £ is

free2 and E is unique, up to homotopy.
Since the action of G on £ is free, the diagonal action of G on the product Fx£

defined by
g{y,e) = (gy,ge),       g G G, y g T, e g E,

is also free.
The flow can be extended to the product T X E in the trivial way:

(y,e)-t = (yt,e),        t G R.

Of course this flow is G-equivariant on the product T X E. Then it can be
projected to a flow on the quotient space (Fx E)/G = Tc.

It is obvious that if / is a G-invariant, invariant set for the flow on T, then
(/ X E)/G = Ic is an invariant set for the quotient flow in rG.

The aim of this section is to obtain a kind of "Morse inequality" for this quotient
flow.

2An action of G on a space T is said to be free if g e G and g * 1 =» gx * x Vx e T.
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To do this, following the procedure of [8], we need a filtration of compact pairs.
But, usually, in the universal bundle (2.1), E and BG are realized as infinite
dimensional manifolds, hence we cannot hope to construct compact pairs for any
isolated invariant set.

Actually the definition itself of isolated invariant set requires the presence of a
compact isolating neighborhood, so that we cannot even say that a set is an isolated
invariant set in TG.

Using a limit procedure we can still derive some "Morse inequalities".
When G is a compact topological group, E and BG can be obtained as the limit

of finite dimensional compact spaces
E = lim Ek,    BG =  lim BkG,

k—> oo k—*cc

related to the bundles:
G
i

Ek
1

Ek/G = BkG
The action of G on Ek is free and hence the diagonal action on the product

r X Ek is also free.
As before we extend the flow to the product r X Ek in the trivial way and we

project it to the quotient (T X Ek)/G.
Then we have

Proposition 2.1. /// is a G-invariant isolated invariant set for the flow on T, then
(a) (I X Ek)/G is an isolated invariant set for the flow on (T X Ek)/G.
(b) If (N,N~) is an index pair for I and N and N~ are G-invariant, then

((N X Ek)/G, (N~x Ek)/G) = (Nk, Nk~) is an index pair for (I X Ek)/G.
(c) // (Mf,..., Mn) is an admissible ordering of a Morse decomposition of I, given

by G-invariant Morse sets, then ((Mf X Ek)/G,.. -,(Mn X Ek)/G) is an admissible
ordering of a Morse decomposition of (I X Ek)/G.

Proof, (a) and (b) follow from (ii) and (iii) of Proposition 1.1 because it is easy to
see that I X Ekis an isolated invariant set in T X Ek and (N X Ek, N~X Ek) is a
G-invariant index pair for I X Ek.

Part (c) follows from Proposition 1.2 because (Mx X Ek,...,Mn X Ek) is an
admissible ordering of a Morse decomposition of (/ X Ek).   D

If Ek is a Hausdorff space the previous proposition can be formulated for the
local flow (X X Ek)/G.

Let us denote by S a G-invariant isolated invariant set in T and by (M,,..., Mn)
a Morse decomposition of S built up by G-invariant sets.

By virtue of Proposition 2.1, for each A: G A we can write the following Morse
inequalities [8]:

(2.2) ¿ P,{hk(Mj)) = P,(hk(S)) +(1 + ,)g*
7 = 1
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where hk(S) and hk(Mj) are, respectively, the (homotopy) index of (S X Ek)/G
and (Mj X Ek)/G, P,() is the Poincaré series which represents the Cech-cohomol-
ogy of any element in the equivalence class hk(S) or hk(Mj) and Q* is a series with
nonnegative integer coefficients.

We recall that Pt(hk(S)) (resp. Pt(hk(Mj))) can be computed from any index pair
((N X Ek)/G, (N~X Ek)/G) of (5 X Ek)/G (resp. (A/,. X Ek)/G) if (N, AT) is a
G-invariant index pair for 5 (resp. A/-).

Now, if we take the limit in (2.2), k -» oo, using the stabilization property of the
cohomology for the classifying spaces of compact topological groups [11, Chapter
III]3 we obtain

(2.3) £ PtG{h(Mj)) = P,c(h(S)) +(1 + Oof-
7-1

In (2.3) P,G(h(S)) (resp. P,G(h(Mj))) represents the cohomology of the pair
((N X E)/G,(N~X E)/G), if (N, N~) is a G-invariant index pair for 5 (resp. Mj),
that is the equivariant cohomology of the pair (N, A~).4

If / is a G-invariant isolated invariant set and (N, N~~) is a G-invariant index pair
for /, the homotopy type of the pair ((A X E)/G, (N"X E)/G), will be denoted by
hc(I) and called the equivalíant-(homotopy) index of /.

Thus (2.3) could be written

(2-4) t P,{hc(Mj)) = P,(hG(S)) +(1 + t)Qc.
7-1

Proposition 2.2. // / is a G-invariant isolated invariant set and the action of G on I
is free then P,(hc(I)) = Pt(h(I/G)) where h(I/G) is the (homotopy) index of I/G
in the quotient flow on T/G.

Proof. Since the action on / is free and the set of the points in T on which the
action is free is open in T it is possible to find an open neighborhood V of / in T on
which the action is also free.

Then we can take an index pair (N,N~) with Ac V, so that the action of G is
free on N. But, whenever the action on a space is free the equivariant cohomology
coincides with the ordinary cohomology of the quotient space. So we have

P,(hc(l)) = P,((N X E)/G,(N-X E)/G )
= P,(N/G,N-/G) = P,(h(I/G)). D

We close this section by showing that if G is a compact Lie group and we have a
gradient flow on a G-invariant compact manifold M, induced by a nondegenerate
G-invariant smooth function / (2.3) generalizes the (classical) equivariant Morse
inequalities described in [1 and 4].

3If E = Mmk^x Ek and BG = lim*^ Ek/G then for each i e N there exists m(i) e N, such that
k > m'i) =» H'(E) = H'(Ek) and H'(BG) = H'(Ek/G).

4 If G acts on a space X and E is the total space in the bundle (2.1) the equivariant cohomology of X,
HC(X), is, by definition, the cohomology of (X X E)/G = XG.
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In fact, considering again the bundle (2.1) the function / can be extended to a
G-invariant function on M X E and hence projected to a function fE on
(M X E)/G = MG.

The important thing is that in doing this we do not lose the nondegeneracy of /,
that is fE is still nondegenerate on A/c. Moreover, if T is a nondegenerate critical
manifold5 of / on M,(T X E)/G is a nondegenerate critical manifold of fE and the
Morse indices of T relative to / and (T X E)/G relative to fE are equal [1].

Since a nondegenerate G-invariant function has only a finite number of critical
orbits, which are nondegenerate critical manifolds, we can take as a Morse decom-
position of / the one given by these critical orbits, ordering them according to the
values of / [8, 16].

From (2.3) we get

(2.5) LPlC(h(T)) = P,G(M)+(l + t)QG
T

where the summation is extended to all the critical orbits of /.
Because of the lack of compactness (2.5) is obtained using the same approxima-

tion method employed in deriving (2.3). That is P,G(h(T)) = lim^^ Pt(hk(T)).
But for nondegenerate critical manifolds the (homotopy) index can be computed

more directly [1, 16]:

(2.6) P,{hk(T)) = txrPt((T X Ek)/G, ÖT® K)

where \T is the number of negative eigenvalues of the hessian of / in the direction
normal to (T X Ek)/G (which is the same as for T), K is a ring and P,(-,0~<g> K)
denotes the cohomology with local coefficients. More precisely 0~ is the orientation
bundle of v~(T), which is the part of the normal bundle v(T) spanned by the
negative eigenvalues of the hessian of / on v(T). In particular, if f^(T') is orientable
Pt(T,(9~® K)is the cohomology with ordinary coefficients.

Then passing to the limit in (2.6), for each critical orbit T, (2.5) becomes

(2.7) Y,tXTPG(T,0-® K) = PG(M)+(l + t)QG
T

where PG(M) (resp. PG(T)) represents the equivariant cohomology of M (resp. T).
Moreover each T, being a single orbit, is homeomorphic to G/H, where H is the

isotropy group6 of each point of T. Then we have

(T X E)/G = (G/H X E)/G = E/H s BH.

The last relation holds because if E is the total space for a universal G-bundle, E is
also the total space for a universal //-bundle; hence E/H is homotopically equiva-
lent to BH, the classifying space of H.

ST is a nondegenerate critical manifold of / if [5]
(i) each point p e T is a critical point of /.
(ii) the hessian of / is nondegenerate in the normal direction to 7".

6The isotropy group of a point x e T is the subgroup of G defined by Gx. = {g e G\gx = x}.
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Then (2.7) becomes

(2.8) Y,tXTP,{BH,<ax K) = PG(M)+(1 + t)Qf.
T

Moreover, if H is connected, we do not need to use local coefficients because, in
this case, BH is simply connected and every bundle over a simply connected base is
orientable.

3. An application to the A-body problem. Let us denote by q = (a,,..., qN) g R3N
the positions of N bodies with masses m„..., mN respectively.

The potential energy is the function

^    m¡m¡

Keeping the same notations as in [15] we denote by S the manifold

S N

G R3N:  £ m¡q¡ = 0 and £ m\qtf =
,=i i-i

and by A the set {a g R?n: there exists i ¥= j such that a, = ay}.
We are interested in studying the critical points of V restricted to the manifold

M = S\A.
As shown in [15], this is equivalent to studying the central configurations of N

bodies.
We also consider the cases when the bodies lay on a fixed line or on a fixed plane.

Let us examine both cases.
When the bodies are constrained to move on a fixed line the problem is called

collinear. In this case the manifold T corresponding to <?\ A is N — 2 dimensional
and is invariant, together with the potential V, under the diagonal action of the
group Z2, given by the reflection with respect to the origin.

If the bodies are constrained to move on a fixed plane the problem is called
coplanar and the manifold Y corresponding to <?\ A is 2 A - 3 dimensional. The
problem is invariant under the action of the group 0(2), given by the rotations in
that plane plus the reflections with respect to the lines through the origin.

In this case any collinear configuration has a nontrivial isotropy group isomorphic
to Z2, while the action is free on the planar configurations. If we restrict our
attention only to the action of S0(2) = S1 on 7, then the action is free also on the
collinear configurations.

The coplanar problem has been studied by Palmore by applying Morse theory to
the quotient space Y/S1 [14].

If there is no restriction on the motion of the N bodies the problem is called
spatial.

The manifold M is 3A - 4 dimensional and is invariant for the action of 0(3), as
well as the potential V(q).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT MORSE THEORY FOR FLOWS 49

The nontrivial isotropy groups are 0(2) and Z2 for the collinear and planar
configurations, respectively.

To consider only the action of SO(3) c G(3) does not make the action free but
reduces the isotropy groups to S1 and the identity, respectively.

The spatial problem has been studied in [15] by applying the equivariant Morse
theory to the SO(3)-equivariant flow q = V V | M-

When the masses (m„..., mN) are such that the corresponding potential energy
has only nondegenerate critical orbits the equivariant Morse relations obtained in
[15] are

<3j Y («, ♦ ß,v +(*)££- <1 + '')-i<^r-1),') ♦ ac)
= 7-L^"¿2Y5,'2,+(i + ')e,(c)

V 1 - r   ,=o

where
(i) ax is the number of spatial critical orbits, whose points have index \,7
(ii) ßx is the number of planar critical orbits whose points have index \,
(iii) (N\/2)t2N~4/(l - t2) is the part related to the collinear configurations

(according to (2.8)),
(iv)Er=o2Y2/ = A'!/2.
From (3.1) the following estimate holds [15]:

(3.2) a2j + ß2j > yo + y2 + • • • +y2y,       0 < 2j < 2AT - 5.

As a consequence of Proposition 2.2 we have

Proposition 3.1. Equivariant Morse relations of (3.1) type hold also when the
potential energy has a finite number of degenerate critical orbits.

Proof. Since the action of SO(3) is free on the spatial and planar configurations
the equivariant index of each critical orbit coincides with the index in the quotient
space M/SO(3).

Then this index is expressed by a polynomial of the type P(t) = T.2rfy5a¡t'; so
that summing up all the polynomials we obtain the expression (3.1) where, of course,
\ does not represent the number of positive eigenvalues of the hessian of V any
more.   □

The previous proposition implies that if each P(t) is a monomial ax/x (or ßxtx),
from (3.2) we deduce an estimate of the number of spatial and planar central
configurations, even in the presence of degenerate critical orbits.

Now let us compare (3.1) with the Morse inequalities for the planar problem [14].

7 Here the word index means the number of positive eigenvalues of the hessian of V at each point of a
critical orbit.
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Applying Morse theory in the quotient manifold Y/S1 one gets
(3.3)

( rV-2
I b^+i^y-2 =(1 + 2t)(l + 30 • • • (1 +(N - 1)0 +(1 + t)Q,(V)
/-o v z ;

N-2
= Z5,i'+(1 + 0Ô,(^),

i = 0

v2 = ^l^        2  '
/-o       z

From (3.3), equating the coefficients of the same powers and denoting by 2p the
number of S^critical orbits of planar configurations (except the collinear ones) we
get

2p>l + 8f + ■■■ + 8N_3+(N\/2-8N_2).
Since AM/2 = 1 + 8,-1- • ■ • +8N_2, we have

(3.4) 2/7 > 2(1 + 8f+ ■■■ + 8N_3).
But, as we observed before, the coplanar problem is invariant under the 0(2)-

symmetry and 0(2) is contained in SO(3). Then the number of S0(3)-critical orbits
coming from planar configurations is

(3.5) p > 1 + 8f + ■ ■ ■ +8N_3 = m.
From (3.2), denoting by 5 the number of S'0(3)-critical orbits of spatial configura-

tions (i.e. except the collinear and coplanar ones) we get

(3.6) s+p>l+(l+y2)+ ■■■ +(l+y2+ ■■■ +y2N.b) = p.

Since 8¡ = y2i, 0 < / < N — 3, we have

(3.7) p-m>l+(l + 8f)+ >■• +(1 + 8X+ ••• +rV4)
so that p — m -» oo for N —> oo.

The estimate (3.7) is very important because it shows that from the equivariant
Morse inequalities one deduces the presence of many more central configurations than
one could guess from the Morse inequalities for the planar problem.

This is obvious if one believes that there are "many" spatial central configurations
that are not coplanar, which is still an open problem.

As pointed out in [15] a better estimate of the index of the coplanar configura-
tions, together with (3.2) and (3.7) could solve this problem, allowing a distinction
between the coplanar and spatial configurations, in the same way as it happens for
the collinear configurations.

We end by showing that the collinear problem is a " repeller" in the gradient flow

First of all we observe that even if the manifold M = <?\ A is not compact, the
critical points of V | M lie in a compact contained in M. Actually, it is possible to
prove that there exists a neighborhood of A in S in which there are no critical points
of V \M [18].

Hence the set S = {q g M\cl(q ■ R) is compact in M) is compact.
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We set S0 = (a g S | a is a collinear configuration}. S0 is a compact invariant set
relative to S and we can prove the following theorem.

Theorem 3.1. S0 is a repetier relative to ST8

Proof. By a collinear configuration we mean a configuration where all the masses
are positioned on a line through the origin in R3.

In [15] it has been proved that if q is a collinear central configuration the hessian
HV(q) is positive definite in each direction normal to S0 c S.

The number of these normal directions is 2 A - 4. This implies that the (homo-
topy) index h(q) relative to S is equal to

(3.8) h(q,S)-h(q,So)A22»-*,9
where h(q,S0) is the (homotopy) index of q relative to S0.

Moreover if q is any point in S, its co-limit, w(a) must be a critical point of V\M,
since the flow is a gradient flow.

Thus from (3.8) we have that if a g S and u(q) G SQ, then q G S0, because the
critical points of V \ M in S0 are "repellers" in the direction normal to S0.

We prove that SQ is a repeller, relative to S, by proving that there exists a compact
neighborhood N of SQ, relative to S, such that I(N), the maximal invariant set in N,
is 50 and each boundary point of N leaves N in forward time.

As shown in [7] this implies that SQ is a repeller relative to S.
Let A be a compact neighborhood of S0 in S, disjoint from all the remaining

critical points.
Thus the maximal invariant set in N is S0. In fact if q g N and q ■ R g N then

u(q) G N and must be a critical point of V \ M in S0. From (3.8) q belongs to S0.
If a G 9A, then q £ S0 and hence w(a) <£ S0. Then there exists t > 0 such that

a • t £ N, otherwise u(q) would belong to N and would be a critical point of V \ M
in S0. So each boundary point of N eventually leaves N in forward time. The proof
is complete.    D
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