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EQUIVARIANT MORSE THEORY FOR
STARSHAPED HAMILTONIAN SYSTEMS

CLAUDE VITERBO

Abstract. Let I be a starshaped hypersurface in R2n ; the problem of finding
closed characteristics of I can be classically reduced to a variational problem.
This leads to studying an S ' -equivariant functional on a Hubert space. The
equivariant Morse theory of this functional, together with the assumption that
£ only has finitely many geometrically distinct characteristics, leads to a re-
markable formula relating the average indices of the characteristics. Using this
formula one can prove, at least for n even, that genetically there are infinitely
many characteristics (cf. [El] for the convex case).

Notation

(x, v), |x| scalar product and norm in R "
(«, v), ||h|| scalar product and norm in L2(R2")
Ht(X), H*(X) homology, cohomology of X with rational coefficients
Hs, t(X), Hg¡(X)      S -equivariant homology, cohomology in the sense

of Borel [Bo 2] with rational coefficients
Wx ' (R/rZ;R2")        Sobolev space of continuous maps from R/TZ into

R2" with L2 derivative
^ Banach space of C   maps

1. Introduction, statement of the main theorems

Let Z bea C3 hypersurface of R2" strictly starshaped with respect to the
origin.

We shall consider the closed characteristics of I, that is, the periodic solu-
tions of
(jV) x = JN(x)
where 7V(x) is the outward normal, normalized by the condition 7V(x).x = 1
(this will prove to be more convenient than the usual condition |7V(x)| = 1)
and J = [. » ) is the standard symplectic matrix.
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622 CLAUDE VITERBO

The main known results are:
(JV) has always at least one periodic solution (cf. Rabinowitz in [Rl]).
(JV) has at least n geometrically distinct periodic solutions if X satisfies

some geometrical "pinching" condition (cf. [BLMR] generalizing a previous
result of Ekeland and Lasry in [E-L] in the convex case). One of the results of
this paper is

Theorem 1.1. In the C topology (for k>3), the following holds for a generic
L : Either (JY) has infinitely many primitive periodic solutions, or they are all
hyperbolic. Moreover, the latter cannot occur for n even.   D

By primitive solution, we mean one which is not the iterate of some other
periodic solution.

The proof of 1.1 makes use of Theorem 1.2, which we shall state shortly.
Before stating it, we recall that in [VI, V2] we defined an index for a periodic

solution of (JV). (This index, which generalized the one defined by Ekeland in
[El] for the convex case, is up to a constant the same as that defined by Amann,
Conley, and Zehnder in [A-Z, C-Z]. For a proof of this statement see [Br] or
[V3].)

If ik is the index of the ^-iterate of a primitive solution, then the limit
limJt_>+oo ik/k exists and is denoted by í (cf. §6).

Also, we shall say that a primitive periodic orbit of (JV) is nondegenerate if
and only if its nonzero Floquet multipliers are irrational, and zero is a simple
multiplier (see §6 for the definitions). Then

Theorem 1.2. If (JV) has only finitely many nondegenerate primitive periodic
orbits, then the following relations hold:

(-.4) j:'"tf+L2lZ«tf=o.
where £' (resp. J2" ) is the sum extended over all primitive orbits with positive
(resp. negative) t such that j(—l) = i2 - /, is even, and ¿~2" (resp. ¿j~ ) those
with positive (resp. negative) î such that j(-i) — i2 - ix is odd.   D

The aim of this paper is to prove Theorem 1.2. Let us prove Theorem 1.1
assuming Theorem 1.2.

According to a result of Takens (cf. [Ta]) for generic X, all the primitive
periodic orbits are nondegenerate. Moreover, his method can be extended, using
multijet spaces instead of jet spaces, to show that generically, no resonance
relation, in the terminology of [El], between finitely many orbits occurs. In
§6 we shall define resonance relations, and we shall see that if there exists a
nonhyperbolic orbit, then (1.3) or (1.4) is a resonance relation. The fact that
for n even there must be a nonhyperbolic orbit is proved in §9.
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EQUIVARIANT MORSE THEORY 623

Let us now explain the relation between this paper and [El]. In [El] Theorem
1.1 is proved for Z convex. Moreover, there cannot be finitely many hyperbolic
orbits (whether n is even or odd). The proof uses Morse theory as extended
by Bott to functions with nondegenerate critical manifolds.

On the other hand, in order to prove ( 1.3) or ( 1.4) we need equivariant Morse
theory. Even in the convex case [El] asserts that if there are only finitely many
orbits, they satisfy a resonance relation. Our result improves this by specifying
that this relation is actually (1.3). (As we shall see in the convex case, í is
always positive, so (1.4) is obviously satisfied.)

This paper is organized as follows:
In §2, we reduce our problem to a fixed period Hamiltonian system.
In §3 we put this in a variational form by using the dual action functional

(cf. [C] and [C-E]) as generalized in [E2] and [BLMR]. We also define a finite-
dimensional reduction in order to avoid some technical inconvenience. This re-
duction is S '-equivariant and more like the one defined by Conley and Zehnder
[C-Z] than the broken geodesic type of [El]. In §4 we prove that this reduction
satisfies condition (C) of Palais and Smale.

In §5 we compute the equivariant Poincaré series of (X ,X~C) for c large
enough, and in §6 the contribution of the orbits of (yy) to the Morse series of
our function F.

At this point one critical point of our function F does not yield a solution
of (JV), that is, the origin, and it is a very degenerate critical point. The aim
of §7 is to show that we can "forget" the contribution of the origin to the Morse
series of F.

Finally, in §8 we prove Theorem 1.2, and in §9 we show that for n even,
there cannot be finitely many hyperbolic orbits.

This paper is an extended version of my "thèse de 3eme cycle." I would like
to thank my advisor, Ivar Ekeland, for introducing me to Hamiltonian systems
and for his help and encouragement. The reader will easily see how much this
work owes to his. I would like to mention how enjoyable it is to work with him.

2.  REDUCTION TO A FIXED PERIOD HAMILTONIAN SYSTEM

We recall that if 77 is a function such that Z = 77~l(l) and 1 is a regular
value for 77, then the periodic solutions of (jV) coincide with those of x =
JVH(x) on Z.

Now let <f>: R+ —» R be some function having 0 as its only critical point, and
j : R2n -»Rbe the gauge function of Z, that is,

j(Xx) =X   for all x e Z, X e R+.

(This is well defined and C   in R    - {0} since Z is strictly starshaped with
respect to the origin.) Set 77(x) = 4>(j(x)), and consider the fixed period system

~rx = /V77(x),
;lx(0) = x(r).
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Then we claim

Lemma 2.1. Nonzero solutions of (ß?) can be written as x(t) = py(tx/T) where
y is a x-periodic solution of (JV~), and 4>'{p)lP = XIT ■   □
Proof. Straightfoward, as soon as one notices that H'(x) = cp'(j(x))j'(x), and
that on Z, j'(x) = N(x).   D

We now need to specify tj>.

Lemma 2.2. For all real numbers a, large enough, there exists a function cp :
R+ -» R such that

(2.3) <f> is C°° , nonnegative,
a 2(2.4) cf>(t) — -t   near the origin,

(2.5) t —► <f>'(t)/t is decreasing and goes to zero as t goes to infinity.

Moreover, for such a choice of <f>, (%?) has one nonzero solution for every
periodic orbit of (JV) of period less than a.T/2.   D
Proof. The first part is up to a few details Lemma II.2 of [El]; the second part
follows from our Lemma 2.1.   □

Finally, for technical reasons we want to deal with a Hamiltonian 77 which
coincides with ¿e\x\ for |x| large and which has the same T-periodic orbits
as 77.

Now, according to a theorem of Yorke (cf. [Y]), if |77"(x)| < e then (ßf)
has no nontrivial solutions for T such that sT< 2n .

Let us compute 77" (x) :

(2.6) (H"(x)y , y) = 4>"(j(x))(j'(x)yf + 4>'(j(x))j"(x).
Then 77" (x) goes to zero when x goes to infinity since

/' is homogeneous of degree minus one, and cp'(t)/t goes to
zero as t goes to infinity (cf. 2.5). Thus cp'(j(x))j"(x) goes to
zero as x goes to infinity.

/ is homogeneous of degree zero, thus bounded, and cp"(t)
goes to zero as t goes to infinity (because 4>'(t)/t is decreasing
so that (4>'(t)/t)' < 0 , which implies tp"(t) < 4>'(t)/t) , hence
<p"(j(x))j'(x)   goes to zero as / goes to infinity.

Clearly enough, we can construct a function 77, coinciding with H on
{x 177(x) < A} — UA for some large A, with ^e|x:| outside some large ball,
such that V77(x) does not vanish and |77"(x)| < s outside UA . To con-
struct 77, one just has to take a convex combination of H and je|x| , that
is, 77(x) = A(x)77(x) + (1 - A(x))2e|x|2, with X = 1 in a neighborhood of UA
and X = 0 in a neighborhood of infinity. It is easy to check that |77"(x)| < e
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EQUIVARIANT MORSE THEORY 625

outside UA, and V77(x) ^ 0 follows from the fact that Z is starshaped, so
that V77(x) and \ex both point outward.

Consider now a solution of (ß?). Since its trajectory is in some energy level,
it is either contained in UA , in which case it is a solution of (ßif), or outside
UA . The latter cannot happen, because the condition |77"(x)| < e implies there
is no nontrivial solution (by Yorke's theorem), and since V77(x) ^ 0 outside
UA , there are no trivial solutions either. We thus proved

Proposition 2.7. For every large real number a, small e , there exists a function
77 on R " such that

(2.8) 77 is CX on R2" , and C3 on R2n - {0} ,

(2.9) H = H inUA, and H(x) = ±e|x|2 for \x\ large,

(2.10) (ß(f) and (ßtf) have the same set of solutions consisting of:
the constant solution at zero,
one solution for every periodic orbit of(jV) of period less than
aT/2   D

3. The dual action functional and its finite-dimensional reduction

Let 77 be a function on R" such that V77 is Lipschitz. Then for some
large constant K, HK(x) = H(x) + \K\x\ is a strictly convex function, that
is,

(3.1) (V77^(x) - V77^(y) ,x - v) > ||x - y\2

for all x , v E R    , and some positive e .
Let 77^ be the Fenchel dual of 77^ , that is,

(3.2) H*K(y)= sup[(x,y)-HK(x)],
xeft2n

and define
rT n

(3.3) FK(x)= I      -(Jx-Kx,x) + H*(-Jx + Kx)
Jo    .2

ds
'o

for xeX = IV1'2(R/TZ;R2").
It is well known that

Proposition 3.4. Assume KT c£ 2nZ; then x is a critical point of FK if and
only if it is a solution of (ßf).   u
Proof. Straightforward computation (see [BLMR]).

The condition KT  £  2nZ is due to the fact that in this case the map
x -> -7x + 7vx is a Hilbert space isomorphism between X - W[2(R/TZ, R2n)
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and E = L (R/TZ;R "). We shall denote its inverse by MK , and the change
of variable x = MKu yields the functional

(3.5) **(") = /   [-¿(*V. ") + ">)   ds
for ueE , which is sometimes easier to handle.

Throughout this chapter, we shall fix K, and write F for FK, *P for yVK
(but never 77 for 77^ !).

Let us mention that, identifying Sx and R/TZ, we consider the Sx action
on X or E defined by

6-u(-) = u(e + -);
then F and *¥ are 51 -equivariant.

We shall now define a finite-dimensional reduction of *F. The main point
is to remark that F is convex in the direction orthogonal to some finite-
dimensional subspace that we shall now define.

Consider the quantity:

(3.6) ('P'(m) - ^(v) ,u-v) = (M(u -v) + VH*K(u) - VH*K(v) ,u-v).

Since V77^ is strictly convex, we have

(3.7) <V77>) - V77>) ,u-v)> e\\u - v\\2 .

Now if we consider M as a map from L to L it is a selfadjoint compact
operator (because the inclusion map of Wx into L is compact), so if G is
the subspace of E generated by the eigenvectors of M whose eigenvalue is less
than -e/2 , we have that for u - v E G

(3.8) (M(u-v) + VH*K(u)-VH*K(v),u-v) > ^\\u - v\\2.

Inequality (3.8) means that *F is strictly convex in the direction of G . That
is, for any e E E the function h —> *¥(e + h) defined on G is strictly convex.
We now prove

Proposition 3.9. The function h -**¥(g+h) has a unique minimum in G  : h(g).
If for g EG we set y/(g) = *¥(g + h(g)), then

(3.10) y/ ¡s C1  on G and Sx  equivariant.

g is a critical point on y if and only if g + h(g) is a critical
(3.11) point of *F. Moreover, their critical values, index, and nullities

(as defined in the proof) coincide.

If g0 E G and H  is C     (k > 2)  in a neighborhood of the
(3.12) trajectory of g0 +h(g0) , then y/ is C ~x in a neighborhood of

So-    D
Proof. To begin with let us show that g —► h(g) is Lipschitz.
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We first remark that 4* is C , and h(g) is defined by

(3.13) ^(g + h(g)) = 0.

Now let gx,g2E E and set hx = h(gx), h2 = h(g2). Then by (3.13), since
hx-h2EG±,

(3.14) (V(gx +hx)- ^(g2 + h2),hx - h2) = 0.
On the other hand

(3.15) (V'(gx + h2) - ^(gx +hx),h2-hx)> \e\\h2 - hxf
by convexity of 4* in the direction of G   , and

(3.16) \\V'(gx + h2) - ^(g2 + h2)\\ < C\\gx - g2\\
because M is linear and V77¿ is Lipschitz.

To prove this last statement, we use the equality VH*K(VHK(x)) = x . Thus
VH*K(yx)-VH*K(y2) = xx -x2 where VHK(xx) - y, , VHK(x2) = y2. By strict
convexity of ^HK, \VHK(xx) - VHK(x2)\ > {-e\xx - x2\ ; that is, |x, - x2| <
(2C/e)|y, - y2\, so V77¿ is Lipschitz.

Combining (3.14), (3.15), and (3.16) we get

M*2-*i II2 * Q*i-*2ll 11*1-^11;
that is, \\h2-hx\\< (2C/e)\\gx-g2\\ and h is Lipschitz.

Using this, we prove that y/ is C1 and that

(3.17) dy(g) = dV(g + h(g)) = ^(g + h(g)).

We compute

¥(g + Sg) - y(g) = V(g + Sg + h(g + Sg)) - V(g + h(g))

= ^V(g + h(g))Sg + ^(g + h(g))(h(g + Sg) - h(g))

+ 0(\\âg\\ + \\h(g + âg)-h(g)\\).
The map g —► h(g) being Lipschitz,

0(\\h(g + âg)-h(g)\\) = 0(\\âg\\)
and since d¥(g + h(g))/dh = 0, this leads to (3.17).

As for S equivariance, since G is invariant by Sx and 4* is equivariant,
g —>■ h(g) is equivariant, hence also y/ .

The first part of (3.11 ) follows immediately from (3.17) and also the equality
of critical levels.

We shall now define what is meant by the index of a solution. If g e G and
y/ is C in a neighborhood of g, the index of g is the Morse index of y , that
is, the index of the quadratic form y/"(g). A similar definition does not work
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for 4* since 4* is never C ; our index will then be the index of the quadratic
form, still denoted by 4/"(g + h(g)) :

(Qv,v)= f [(Mv,v) + (H*¿'(g + h(g))v,v)]ds.
Jo

Similar definitions hold for nullity.
Now y/"(g) can be identified with the restriction of Q to the tangent space

T of {(g,h(g))\g E G}. But it follows by taking the derivative of (3.13)
that this tangent space is orthogonal for Q to G1. By convexity of 4* in the
direction G , Q is positive definite on Gx , so its index and nullity coincide
with the index and nullity of its restriction to T.

We finally prove (3.12).
Equation (3.13) can be written more explicitly as

(3.18) Mh - PV77* (g + h) = 0

where P is the orthogonal projection on G"1.
From (3.18) we see, using the fact that V77^ is Lipschitz, that PVH*K(g + h)

1 2 1   ? ftis in L , so Mh is in L , and 77 is in W ' c? .By induction, we see that
if 77 is Ck , V77* is Ck~x, and so is Mh , whence h is in Wk(R/TZ;R2n).

We now wish to show, assuming H is C in a neighborhood of the trajectory
of g0 + h(g0), that g —> h(g) is C in a neighborhood of g0, as a map from
G into ff°(R/TZ;R2n). Since 4* is Ck in a neighborhood of g0 + h(g0) in
W°(R/TZ;R2n), this will imply (3.12).

Our first step will be to show that g —* h(g) (through the end of this proof,
this map will be considered as a map from G to ^(R/TZiR2")) is continuous.

Let gn E G be a sequence with limit g, and hn = h(gn).  Then hn -* h
1 1in L (since g -» h (g) is Lipschitz when considered as a map into L ) so

Mhn - Mh in Wx '2.
But by (3.18) Mhn = 7>V77*(g„ + hn), so PVH*K(gn + hn) - Mh in Wx '2 ;

that is, we can write

(3.19) V77*(g„ + hn) = Mhn + rn   with r„ E G.

By continuity of g —> h(g) in L and since V77¿ is Lipschitz, the left-hand
side of (3.19) has a limit in L ; thus rn has a limit r E G (in any topology,
since G is finite dimensional). Therefore Mhn + rn has a limit in g7 , and
since z —► VHK(z) defines a continuous map on C°, gn + hn = VHK(Mhn+rn)
has a limit in ^ , and this limit must be g + h , since it has to coincide with
the L2 limit. This proves continuity.

We can now assert that the image of a neighborhood of g0 by h will be
contained in a C° neighborhood of h(g0), so the trajectories of g + h(g) are
in a neighborhood of g0 + h(g0), where H is assumed to be C  .
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In order to prove that g -* h(g) is C (as a map into &°) in a neighborhood
of g0, let us consider the map </> : Gxf^nf0) — (/nf0 defined by
<f>(g ,h) = Mh- PVH*K(g + h). Then h(g) is defined by equation (4.18). That
is, cp(g,h(g)) = 0. By the implicit function theorem, if (dcf>/dh)(g0,h(g0)) is
invertible and <f> is C ~ , then g —► h(g) is C    in a neighborhood of g0.
This would prove (4.12). We see that (d<t>/dh)(g ,h) = M - PH™ (g + h). If
we cons
veG1

f (Mv-PH*(g + h)v,v)ds
Jo

we consider this as a map between L2 spaces, it will be invertible, since for

-fJo
e,

[(Mv ,v) - (H*K(g + h)v ,v)]ds< - = \\v
21

i.e., M - PH™ (g + h) is a selfadjoint negative definite operator. Now if Mv -
PH™(g + h)v is in W°, then (since Mv e Wx '2 c f °) PH™(g + h)v e W°,
hence H™(g + h)v E W°, and finally, since H'¡.(H*K(g + h)) = [H™(g + h)]~x
is continuous, De? . Thus the inverse image of ? by M - PH™ (g + h) is
in ? , and this map is an isomorphism on L , so it is one on W .

Finally, it is easy to check that if 77 is C  , 77^ is C  , and tp is C "' ,
thus proving (3.12).

4. The Palais-Smale condition is satisfied by y/

As the reader might have guessed from the heading of the section, we wish
to prove

Proposition 4.1. y/ satisfies condition (C) of Palais and Smale; furthermore,
if g„ G G is a sequence such that y/'(gn) -> 0, then gn has a converging
subsequence.   D
Proof. To begin with, since G is finite dimensional, we only need to show that
gn is bounded. We argue by contradiction and assume \gn\ goes to infinity.
Then Mgn goes to infinity, and zn = Mgn +Mh(gn) goes to infinity in the W°
topology (since M: L —► W ' c ^ is continuous and the projection on G
is continuous on f °).

Now y/'(gn) —* 0 can be written

M(gn + hn) - VH*K(gn + h„) = en ,

where £„eG goes to zero. This implies

VHJz -e) + Jzn -Kz=0,

that is,

(4.2) Jzn + VH(zn-en) = Ken.
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Since zn goes to infinity in W°, there is a sequence tn E [0, T] such that
lz„(i„)l ëoes to infinity. Changing zn into zn(in + •), we can assume that
|z„(0)| goes to infinity.

Now let n be large enough so that |e„|c0 < R/2KT, |z„(0)| > 3R, where
77(x) = 5ß|x| outside a ball of radius 7?, as in (2.9) of Proposition 2.7; we
wish to show that ]zn(t)\>R for all t 's.

We argue by contradiction; let xn be the first time that zn enters B(0, R),
thus \zn(t)\>R on [0,tJ. As long as t is in [0, xn], (4.2) yields

(4.3) Jzn + ezn = (K + E)En

so that

(4.4) z (t) = (K + e) /   e\p(eJs)e ds + exp(sJs)z (0).
Jo

) = (K + e) j    exp(£js)En(s) ds + exp(eJxn)zn(0),
Jo

Thus
Z_(T.

but
I fr"

(K + e)\      exp(eJs)e (s) ds
\Jo

<(K + s)xnR/2KT <R

so |z„(t„)| > \zn(0)\-R > 27?, a contradiction since we assumed |z„(r„)| = 7Î.
Now since \zn(t)\ > R for all t 's, (4.3) and thus (4.4) hold for all t 's. From

(4.4) we infer

zn(T)-zn(0) = (K + E) [   exp(EJs)En(s)ds + (exp(sJT) - l)zn(0),
Jo

hence
\zn(T) - zn(0)\ > \(exp(EJT) - l)zn(0)\ - R ,

but if 0 < eT < 2n, (expsJT -I) is a linear isomorphism, so |(exp(e7r) -
7)z„(0)| > C|z„(0)|, and finally

\zn(T)-zn(0)\>C\zn(0)\-R.
For |zn(0)| large enough, the right-hand side is positive, yielding \zn(T) -

zn (0)| > 0, a contradiction since zn is T-periodic.

5. Computing 77*, (X,X~°°)

Up to now, we have been working mainly with 4* and y/. In this section
we need to work with F and /. We have F(Mu) = 4/(w), and since G is
preserved by M, f(Mu) = y/(u). We call Z the space G when we consider
it as the domain of /, and set for a real number c

Xe = {XE X\F(x) <£•},

Z' , Ec, G having the obvious meaning. It is clear that M is a homeomor-
phism between 0e and Zc, as well as between Ec and Xe. Moreover, we
have the following lemma.
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Lemma 5.1. The natural embedding Zc <-> Xe is an Sx-equivariant homotopy
equivalence,   u
Proof. We actually shall prove this for the natural embedding (7e <-» Ec. We
recall that the natural embedding is given by g -» g + h(g). Now if e = g+h e
Ec set rt(e) = g + (1 - t)h + th(g). Then by convexity in the direction of (r ,
we have

¥(/,(*)) < (1 - t)V(g + h) + P¥(g + h(g)),
but by definition of h(g),

V(g + h(g))<*¥(g + h),
so 4/(r,(e)) < c, and r( is the sought after homotopy inverse. It is obviously
equivariant.

By X~°° (resp. Z"°°, E~°°, G~°°) we mean some Xe with c < 0, |c|
large.  We shall be more precise later, but it is already plain that computing
H*si(X,X~°°) or H*sx(Z,Z~°°) will yield the same result. We shall actually
compute H*si(X,X~°°).
The following preliminary lemma will prove useful:

Lemma 5.2. There is an Sx-invariant subspace V of X suchthat

(5.3) F is bounded from below on V,
(5.4) F goes to minus infinity as \\z\\ goes to infinity on V   ,
(5.5) codim V = d(K), where we define d(K) to be 2n([KT/2n] +1).   D
Proof. Define the quadratic form A by

A(z) = Í   \(Jz -Kz,z)- ^\Jz - Kz\ ds,

and take for V    the space generated by the eigenvectors associated with nega-
tive eigenvalues.

Let z(t) = ¿Z-^ txp((2n/T)kJt)zk be the Fourier decomposition of z ; then
we see that

,2.. , _ y^ (27TrC - eT)(2nk + KT)
(K + e)Tl

so that the codimension of V is given by 2« #{k e Z | - kT < 2nk < eT) =
d(K). This proves (5.5).

Now by (2.9) of Proposition 2.7, we have

||x|2-C<77(x)<||x|2 + C

for some constant C, so

^|x|2-C<77,(x)<^|x|2 + C
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and

^M2-C<77>)<^M2 + C,
thus

(5.6) A(z) - CT < F(z) < A(z) + CT ,

and (5.3) and (5.4) are now straightforward.

The aim of this section is to prove

Proposition 5.7. If c is large enough, then the inclusion i: S(p, V ) —> X~c
(S(p ,V ) is the intersection of S(p), the sphere of radius p, and V ) is an
S -equivariant homotopy equivalence.   D

Let us first remark that by Proposition 5.1, the set of critical points of F is
compact, hence the set of critical levels is bounded.  If —b and -c are less
than the lower critical level, then assuming b > c , the inclusion X     •—► X
is an equivariant homotopy equivalence (e.h.e. for short).

We shall denote by X~°° any of the set X~c with c as above.

Definition 5.8. p : X~"° —» S(p , V ) is the composition of n , the orthogonal
projection on V   , and of the radial projection r (which is well defined since
r°°nK = 0 by (5.3)).   □

By the definition, p o i = id5(   v±], our aim is to prove that i o p is equiv-
ariantly homotopic to id^.^ ; this implies Proposition 5.7.

Lemma 5.9. Set n:(z) = (1 - t)z + tn(z). Given c, there exists b such that
nt(X~b) cX~c for te [0,1].    a
Proof. Let us prove that if the lemma is true with F replaced by A , then it is
true for F.

By (5.6), we have

A(z) -CT < F(z) < A(z) + CT ,

so if A(z) < -b' implies A(nt(z)) < -c then F(z) < -b' - CT = -b will
imply

F(nl(z))<-c' + CT = -c.

We then just have to prove the lemma with A instead of F. But this is
straightforward since we can write A(z) = A(z+) + A(z_) with z+ = 7r(z),
z_ = z - n(z) and A is positive on V , negative on V   . Therefore

A(nl(z)) = A(tz+) + A(z_) = t2A(z+) + A(z_)
<A(z+) + A(z_) = A(z),

whence our statement holds with b' — c .
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Lemma 5.10. For z E V , set r t(z) = (l - t)z + tr (z) (we recall that rp is

the radial projection of V - {0} on S(p, V ) ). Given d, there exist c and
p such that X'cnV = 0 and rpt(X~c n V±) C X~d for tE [0,1].   a
Proof. As for Lemma 5.9, if the lemma is true for A, it will be true for F.
The case of A is straightforward and left to the reader.

We can now proceed to the proof of Proposition 5.7.
Let d be such that -d is less than the smallest critical value of F ; apply

Lemma 5.10 to get a c. Given this c, Lemma 5.9 yields some b. Now if
F(z) < -b , then F(nt(z)) < -c , and F(rp t(n(z))) < -d.

The homotopy nl followed by r    n is then an equivariant homotopy of

X~ in X~ from id^..,, to r on = i o p. Since X~ and X~ are e.h.e.,
this concludes our proof.

Corollary 5.11. H\,(X ,X~°°) ~ Hq~d{K)(CP°°) (which is one dimen-
sional for all even q 's larger than d(K), and {0} otherwise),   u

Proof. It is clear by Proposition 5.7 that H(X ,X~°°) ~ H(X ,S,(I/±)) where
S(VX) denotes S (I ,VL).

k 1Now, according to Leray, there is a spectral sequence with an E2 term
equal to

Ek J = Hk(X , S(VX)) ® H!(CP°°)

and converging to E^ , where 0/t+/= E^ is the graded algebra of some fil-
tration of Hqs¡(X,S(VX)) (cf. [Sp, Chapter 9, §2]).

It is well known that Hk(X,S(VL)) is Q for k = d(K) and 0 otherwise,
hence d2 = d3 = ■ ■ • = 0, and this yields the result.

6. Contribution of the solutions of (¿V) to the Morse theory of Fk

Let us point out that since 77 is C in R " - {0} , and the nonzero solutions
of (ßV) have their trajectories in R "- {0} , then according to (3.12) of Propo-
sition 3.9, y/ and / are C in a neighborhood of their nonzero critical points.
According to Cambini's proof of the Morse lemma (cf. [Ca]), which requires
only that the function be C , we can use Morse theory; that is, for c / 0 the
groups 77s, t(Xc+£, XC~E) are computed in the usual way (cf. [B , ]), provided
all critical orbits at level c are nondegenerate.

Let us recall how this works: by using a perturbation, we can always assume
that Xc+e - Xe' ' contains a unique critical orbit of index i and isotropy
subgroup Zk . Then

(6.1) 775, .(Jrc+£,*C-£)^77,_,(£Z,,0),

where 6 is the orientation rational bundle of the negative bundle of yi" (cf.
[St] for the definition of homology with coefficients in a line bundle).
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We recall that if 6 is the trivial bundle, that is, if v is orientable (this is
always the case if k is odd), then

(6.2) H,(BZk;d) = Ht(BZk,Q) = Q°
(i.e., Q in dimension zero, and 0 otherwise); if 6 is not trivial, then k is even
and 8 coincides with the orientation bundle of BZ2k , Q(, and

(6.3) Ht(BZk,6) = Ht(BZk,Ql) = 0.
Now, given a primitive solution of (jV) , we consider the family of its iterates

and wish to compute the contribution of this family to the Morse theory of F .
A first problem is due to the fact that the Morse index ~i(K) of x, critical

point of FK considered as a solution of (ßt?) depends on K. Fortunately, this
dependence is quite simple according to the following lemma.

Lemma 6.4. We have ~i(K) = 2n([KT/2ii] +1) + / = d(K) + i, where i does not
depend on K, but only on 77.   □
Proof. See [VI, §5, Lemma 1], or [V2] (or [V3, the proof of Proposition 8]).

Definition 6.5. We shall call i the index of x .
Remark 6.6. i can be either positive, negative, or zero. This contrasts with the
convex case, where i is nonnegative.

Now let y be a r-periodic solution (JV) and k be an integer; then y
can also be considered as a Ar-periodic solution of (JV). The corresponding
solutions of (ßif) shall be denoted by x, and xk , respectively, and x^. is
T/k-periodic. Then if /, is the index of x, , we write ik for the index of xk .

Now as in [B2 and El] we shall relate ik with ¿, and the Poincaré map of
x, , that is,

Definition 6.7. If cf>s is the flow of our Hamiltonian vector field, and x, is a
solution of (ß?) (i.e., cpT(xx) = xx), then we define the (linear) Poincaré map
of x, to be 7? = dcf>T(xx(0)).

We shall assume for all primitive orbits that the Poincaré map R satisfies
the following generic conditions:

The eigenspace and characteristic space of R  corresponding
(6.8) to the eigenvalue 1 are respectively one dimensional and two

dimensional.

{6 9) If tox = e2in6s.   œm = e2,n6'" ,   mx.Wm are the other
eigenvalues of R on the unit circle, then the 6j 's are irrationals.

According to [Ta], the set of hypersurfaces for which (6.8) and (6.9) hold for
all periodic solutions is a Baire set.

Let us recall that if to is a eigenvalue of 7? on the unit circle, then to is
said to be of Krein type (p , q) if on ker(7? - toi) c C2n the hermitian form
i(Jz,z) has signature (p,q) (cf. [Y-S]).
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We can now state

Definition 6.10. Given x, solution of (ßt?) with Poincaré map 7?, we define a
function j : Sx - {a>x , ... ,com , to,, ... ,Wm} —► Z by setting

(6.11) 7(1) = *!.        limj(e'c) = ix+n+l,
e—>0

(6.12) j is locally constant,
(6.13) A,.(ta,) = Hm j(e'£co¡) - j(e~'eco¡) =q,-p,,

where (p¡ ,q¡) is the Krein type of w;.   a

Proposition 6.14. We have the following.

h = ¿2 j^
or

m

ik = il + (k-i)j(-i)-2j2*j(o>,)[kdl];
l=\

hence
(i) there are constants c, c   such that

kî- c < ik <kî+ c

where î = (l/2n) fs< j(co)dto;
(ii) ik = ix + (k - 1);'(-1)   modulo 2.   a

Proof. This is a generalization of the results of [El, §§4 and 5], and was carried
out in [VI, V2]. The idea of the formula stated in Proposition 6.14 goes back
to Bott (cf. [B2]) for the case of geodesies.

Now let x, be a primitive solution; the following tells us whether the x2k
are orientable or not.
Proposition 6.15. The x2k are all orientable if j(-l) is even, all unorientable
ifj(-l) is odd.   a
Proof. x2k is a T-periodic solution of (ß?) which is in fact 772ft-periodic.
The negative bundle of x2k is endowed with a Z/2/cZ-action, the generator of
this group corresponding to the map

rT/2k:u(-)^u(T/2k + -).

Notice that if F is the fiber of the negative bundle over x2k , we can identify
the total negative bundle to [0, T/2k] xf/- where

i0.f)~(T/2k.rT/2k(f)).
Thus the bundle is orientable if and only if rT/2k is orientation preserving.

2kSince (rT,2k)     = Id, because all w's are 7-periodic, F splits as a direct
sum of subspaces on which rr/2k is respectively a rotation of angle 6 £ Zn ,
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the identity, and minus identity. Obviously, rT/2k will then be orientation
preserving if and only if the dimension of this last subspace is even, that is, if
dimker(rT/2k + I) is even, or else if dimker(r2 k - I) - dimker(rT,2k - I) is
even.

But the vectors of ker(rT/2k -1) are the T/2k-periodic elements of the neg-
ative bundle of x2k , that is, the iterates of the vectors in the negative bundle
of x,, so dimker(xT,2k - I) = ix(K). By the same argument,

dimker((rT/2k)2 - I) = i2(K),

and since i2(K) - ix(K) = i2 - ix = j(-l), this completes our proof.
Now recall that 77 depends on a (cf. Proposition 2.7) and xk is a critical

circle of FK if and only if kx < a.T/2, where x is the period of the solution
of (JV) corresponding to Xj.

We assume that x, is a primitive solution, and we compute the contribution
of the xk , for kx < a.T/2, to the Morse series of FK : this is given by

(6.16) td(K)      ¿2      tik=MKa(xx;t).
kz<aT/2

Xi¡ orientable

We set Ma(xx ;t) = Cd(K) MKa(xx;t) and Ma(t) = E-M^x, ;0 • the sum
being extended over all primitive solutions of (JY).

Notice that for a generic hypersurface, there are only finitely many periodic
orbits of period smaller than a.T/2, so our sum is bounded for any given a.

Moreover, set Ma(t) - ^m^a)/ ; we claim that for |/| > 2n2 and if there
are only finitely many periodic orbits, then m¡ = lima^+oom,(a) is finite.

Indeed, if i(X[) ^ 0, then \ik\ goes to infinity with k (cf. 6.14(i)) hence the
contribution of the xk to m,(a) is bounded. On the other hand, if î = 0, j
takes positive as well as negative values. By definition (cf. (6.13)) the variation
of j at co¡ has absolute value less than n and it is easily checked that (using
6.14)

m

\'k -kî\<^2I4/(û>/)I <nm<n .
i=i

So if í = 0, \ik\ < n2 and thus does not contribute to m ¡(a). This proves our
claim.

We can set

Definition 6.17.
.       N .       N

X+=   lim   ±-Y(-l)'m.,        x~ =   Hm   -^ Y (-1)'m  ..    D
/=2«2 /=2n2

Remark. x+ and X~ are some sort of average Euler characteristics; indeed we
shall show that their value is an invariant.
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Proposition 6.18. The contribution of a primitive solution of (JV) and its iterates
to x+ (resp. x~ ) is given by

(i) If j(-l) is even, (-l)'fi if î> 0 (resp. î <0) and zero otherwise.
(ii) If j(-l) is odd, (-l)''/î if î> 0 (resp. i <0) and zero otherwise,   a

Proof. We shall only consider the case f > 0 ; the other case is similar.
If v'(-l) is even, all the xk are orientable, so the contribution of our family

to x+ is given by lim^+oo(l/W)^^(-l)4 •
By 6.14(H), ik - ix modulo 2, so the sum reduces to (-1 )''#{& 12«2 < ik <

N} , and using 6.14(i), this is asymptotically (-l)'[N/i, hence our result.
It is easy to check that the contribution to x~ is zero since ik > -2« .
Finally, if v'(-l) is odd, only the x2k+x are orientable, so the contribution

to x+ is given by
lim  1      V     (-1)'"+',

2n2<2k+l<N

and since i2k+x = /, mod2 our sum is equal to (-l)''#{k 12«   < i2k+x < N},
which is asymptotically (-l)hN/2i, yielding our result.

7. Contribution of the origin

By contribution of the origin, we mean Hs¡ t(Xe ,X~e). Since it is easily
shown that there are no other critical points than the origin in (Xs\X~e), our
terminology is appropriate.

First, let us show that this contribution depends only on the restriction of 77
to a neighborhood of the origin, and thus we can assume 77 to be homogeneous
of degree two everywhere.

We shall consider the case where (JV) has no periodic solution of period
aT/2 (if the set of periods of solutions of (JV) is discrete, we can always pick
such an a ; otherwise there are obviously infinitely many primitive solutions), so
that the origin is an isolated critical point of /. Then in Conley's terminology
(cf. [Co]) any neighborhood of the origin is an isolated invariant set, hence
the contribution of the origin depends only on the restriction of / to such a
neighborhood. But if x e X is small, then {x(0 11 E Sx} is in a neighborhood
of 0 in R   , and this proves our assertion.

From now on, we assume 77 to be homogeneous of degree two and everything
shall refer to this new H : f ,y/ ,XC ,EC, ... . Also the contribution of the
origin is given by 775, t (Xe ,X~e) for any positive e.

The aim of this section is to prove

Theorem 7.1. Let I be an interval of Z such that no solution of (jV) with
period larger than a.T/2 has index in I. Then if F = Q, we have

Hs> ,k+d(K)(xe(a ■K) • x~\a - *)) = 0  for k e I
o

(where I is I minus its endpoints).   G
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We denote Xe by Xe (a, K) to remind the reader that it depends on both a
and K.

The proof of Theorem 7.1 is done in several steps, which we now shortly
describe.
Preliminary remark. By homogeneity of FaK, we can replace (Xe(a,K),
X~\a,K)) by (X,X~(a,K)) where

X-(a,K) = {xEX\FaK(x)<0}.

1st step: We show that there is an isomorphism

(7-2) Hs> Md(K)(X >X~("> *)) - Hs, Md{KI)(X ,X-(a, K1)),

given by the geometric construction that we shall now describe. First of all, we
claim that if F is a space with an ¿''-action, any class in Hs¡ t(Y) is in the
image of some 0t : H$l t(A) -* Hsl t(Y), where <f> : A —► Y is an equivariant
map between the compact set A endowed with an S -action and Y. In order to
check our claim, we first construct <f>: A —► YxESx /Sx such that A is compact
and our class is in the image of Ht(A) in Ht(Y x ESX/SX) ~ 7/5, t(Y). Then
Y xESx is an S '-bundle over Y x ESX/SX ; denote by A its pullback by 0.
Then <f> is covered by an equivariant map <j>: A -» YxESx. Since the projection
Y x ESX -> F induces a canonical isomorphism 77s, „(F x ESX) -+ Hs¡ t(Y),
if we take for <f> the composition of <j> and the above mentioned projection, we
are done.

Obviously, the same holds for relative homology. Consider then a map y :
(Tx, T2) —► (X, X~(a, K)) where (Tx, T2) is a compact pair of spaces with an
S'-action, inducing ym : Hs¡ ,(T,, T2) -» Hs¡ m(X ,X~(a, K)). Set DR(K, K')
— ®K<L<K, DR(L), and for L in (2n/T)Z, we set

DR(L) = {exp(-/L0x | x E R2" , ||x|| < 7?} ,

and define / = y © DR(K, K1) to be the map

/ : (r, ,T2) x (DR(K,K'),dDR(K,K')) -+ (X,X~(a,K1))

(note: (A , B) x (C, D) means (A x C, BxCuAxD)) given by y'(x, u) =
y(x) + u.
Remark. Let us mention that the assertion

y (Y2x DR(K ,K') ,Yxx dDR(K ,K')) C X~ (a ,K)
is not trivial and holds only for 7? large enough, which we shall assume hence-
forth. The proof that this inclusion holds will appear later in this section.

As we shall see, there is a natural isomorphism (induced by the Thom iso-
morphism of some fibration)

(7-3)   Hsl M    (T, ,r2) - 77s, M+d(KI)(Tx, T2) x (DR(K,IC), dDR(K, fC)),
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT MORSE THEORY 639

and we claim that yt, y[, (7.2), and (7.3) are the edges of a commutative
diagram.

2nd step: Since X(a , K1) c X' (a , K1) for a > a there is a map

»s. ,k+d(K)ix -x~«>-*')) - »s- jhW* • *V ■ **»
which, compared with (7.2), yields a map

We prove that if a   and K' are large enough, the map (7.4) is zero. This is
achieved by showing that if y represents some class in 77s, k+d,KdX, X~(a , K)),
then y@DR(K ,K') has its image contained in X~(a ,K') for a  large enough.

3rd step: The map 77s, M+d(KI)(X, X~(a , K')) - 77s, Â+d{KI)(X, X~(a , K'))
o

is an isomorphism for k in 7, and a such that any periodic orbit of (JV)
o

with period larger than a.T/2 has period in 7. This is proved by showing
that X~(a ,K') has the equivariant homotopy type of X~(a,K') with equi-
variant cells attached, corresponding to the solutions of (JV) with period in
[aT/2 ,aT/2].  From this and step 1, we infer that (7.4) is an isomorphism

o
for k in 7. On the other hand, according to step 2, this map is zero, hence

o
775i ic+d(K)(x>x  (a>K)) is zero for A: in 7.

Let us now give the complete proofs.

Preliminary remark. We want to prove that the inclusion

(X£(a , K), X~£(a , K)) <-+(X,X~(a, K))

is a weak equivariant homotopy equivalence (e.h.e. in the sequel). This follows
from the fact that F'  „ satisfies the Palais-Smale condition and has zero asa ,K
its unique critical level, so that Xe(a ,K) -* X is an e.h.e., and X~£(a ,K) «-►
X~£ (a, K) also, for e < e . From this last assertion, X~£(a ,K)^>X~(a, K)
= U£'>o x    (a • K) is an e.h.e., hence our result.

Step 1.   This is the longest and most intricate part of our proof.   We use
induction, together with the two following special cases of step 1 :

(a) d(K) = d(K') ;
(b) K < K0< K' with K0-K, K' - KQ small, and KQT/2n is an integer.

It is then clear that (a) and (b) imply the general case.
To begin with, we consider case (a). An easy but tiresome computation shows

(7-5) ^FaK(x) = -j\\x--7HK(-Jx + Kx)\\2.

Indeed write

Fa.K(x)= [   \(^Jx - Kx ,x) + H*(-Jx + Kx)
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so that

mF'*iX) = ~lM2 + i    ^(HKÍ-Jx + Kx))dt-
We first compute dH*K(u)/dK: set vK = H*,(u) (i.e., VHK(vK) = u) ; then

H*K(u) = (vK , u) - HK(vK)

and

§«"» = (¿^ - «) - (¿^) tvK) - (vhm , J^) .
Since dHK(x)/dK = ±|x|2 , we get

¿//» = (JLvK , n) - i|^|2 - (a , ¿^) = -^|V77»|2 .
Now

J-77¿ (-Jx + Kx) = -^\VH*K(-Jx + Kx)\2 + (VH*K(-Jx + Kx),x),
whence (7.5).

From (7.5), we see that dFa K(x)/dK is negative (it can be zero only if
x = VH*K(-Jx + Kx) and x would yield an aT/2 periodic solution of (JV),
which was excluded). From (7.5) we use the fact that X~(a ,K) is contained
in X~(a,K') if K' > K.

We now prove that the sets X~(a,L) for L in [K,K'] are all isotopic.
Since the Fa L are homogeneous, the X~(a,L) are stable by dilation, so

it is enough to prove that the X~ (a , L) n S are isotopic, where 5 is the unit
sphere in X.

The restriction of Fa L to S has zero as regular value since if VFa L(x) = Xx
then 2Fa L(x) = (VT^ L(x) ,x) = X\\x\\ , implying that a critical point of level
zero is a critical point of the unconstrained function. But, by assumption, the
only such critical point is the origin, which is not on S.

Now by Proposition 1 of Appendix 1, this implies that X~ (a ,K') is equiv-
ariantly isotopic to X~ (a , K), hence the inclusion X~ (a , K) •—* X~ (a ,K') is
an e.h.e. This concludes the proof of (a).

We now consider case (b). Let C(7C0) denote the orthogonal of D^Kq) in
X . Let us remark that in the direction of D^Kq) , FK (resp. FK,) is convex
(resp. concave); that is, to be precise, for all x in X, h in 7)^(7^),

(7.6) (F;'(x)/?,A)>C(7C0-L)||/i||2    if L < KQ ,

(7.7) (F^(x)h,h)<-C(L-K0)\\h\\2    if L>K0,
where C is independent of L , x, h and F'[(x) is defined as in §5.

The proof of (7.6), (7.7) is just computational: if h E D^Kq) , -Jh + Lh =
-Jh + K0h + (L- K0)h = (L- K0)h ; hence

(F'l(x)h ,h) = j     -\(L - K0)\h\- + (L- KQ)2(H*L"(-J.x + Lx)h ,h) ds.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT MORSE THEORY 641

Since 77¿" is uniformly bounded, we have that for (L-K0) small enough, the
linear term in (L - KQ) dominates the quadratic one, yielding (7.6) and (7.7).

Before we state Lemma 7.9, the crucial step of our proof, we need a definition.

Definition 7.8. For Y c C(KQ), we denote by Y x D(K0) the union of y ©
D,, AKQ) for y G F where cf> : C(K0) —► R*+ is some continuous function on
C(K0).

Our next lemma is

Lemma 7.9. The following inclusions are e.h.e.:

(7.10) X~(a,L)->X~(a,KQ)   forL<KQ,
(7.11) X   (a ,K0)\j£C(K0) x D(KQ) - X  (a , L)   forL>KQ.
Remark. If L > KQ , then for y € C(KQ), h -» Fa L(y+h) defined on 7)^(7^)
is strictly concave, according to (7.7). Thus, if \\h\\ is large enough, y + h is
in X~ (a ,L), implying that (7.11) is indeed an inclusion.

Proof of the Lemma. In this proof, a is fixed, so we write FL for Fa L . By
strict convexity (resp. concavity) of FL , for L < K0 (resp. L > KQ) there is a
map

uniquely defined by the relation  VFL(y + zL(y)) e C(KQ); that is,   zL(y)
achieves the minimum of FL(g + h) for h in D^K^).

Then we claim that

(7.12) \FL(x) - FKo(x)\ < C\L - KQ\\\x\\H¡ ,
(7.13) \\VFL(x) -VFKo(x)\\H¡ < C\L - K0\\\x\\w .

The inequality (7.12) follows immediately from (7.5). To prove (7.13), take
the gradient of (7.5), yielding

¿(VFL(x) ,y) = -(x- VH*L(-Jx + Lx), y - H*L"(-Jx + Lx)(-Jy + Ly)) ;

since 77^" is bounded, this yields

hence
d

dL

VFL(x

^ c|MI/,ii

dL
which yields (7.13) by integration.

< C||x||„, ,

Now for y e C(7C0), set FL(y) = FL(y + zL(y)), and notice that

VFL(y) = VFL(y + zL(y))(I + z'L(y)) = VFL(y + zL(y)),

because VFL(y + zL(y)) is zero on the image of z'L(y) which is contained in
¿>oo(*0)-
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As we shall prove later, the following holds:

(7.14) \zL(y)\<C\\y\\w,

with C independent of L .
Using (7.12), (7.13), and (7.14), we infer

IW - FK0(y + zL.(y))\ < QL - K0\\\y\\w •

\\VFL(y) - VFKo(y + zL(y))\ < C\L - K0\\\y\\2w .

Since FK is constant in the D^Kq) direction, the last two inequalities can
be written

^(^-^(^l^ci^-^ollMÈ"
||VFL(y) - VFKo(y)\\H, < C\L - K0\\\y\\2H¡.

Now FL is homogeneous, because FL is, and for \L - K0\ small, the re-
striction of FL to S n C(KQ) is C close to FK . Since the restriction of
FK to 5" n C(KQ) has no critical points on level zero (as before, such a critical
point would yield a critical point of the unconstrained function FK , whence
we would have an a.T/2 periodic solution of (yT), contradicting our assump-
tions), using Appendix 1, Proposition l(i), and the homogeneity of FL , we see
that the map

X~(a,L)^X~(a,K0)

—where we define X~(a , L) to be {y E C(K0) \ FL(y) < 0}—is an e.h.e.
Now if L < KQ, X~(a,L) is a fiber space over X~(a, L) with convex

(hence contractible) fiber: from the convexity of FL in the 7)oo(7C0) direction,
we infer that FL(y+zL(y) + h) < 0 implies FL(y + zL(y)) = FL(y) < 0 and
{h E D^Kq) I FL(y + zL(y) + h) < 0} is convex and nonempty if and only if
FL(y)<0.

As a result we have the following commutative diagram:

X~(a,L) -► X~(a,K0)

(7.15) }~

X~(a,L) -^— X~(a,K0)

where " ~ " denotes an e.h.e.
From this diagram, we conclude that the inclusion X~(a , L) —* X~(a , KQ)

is also an e.h.e. if L < K0 , thus proving the first part of the lemma.
We now assume L > KQ, and consider for y E C(K0) the set Ny = {h E

D^Kq) I T^y + zL(y) + h) < 0}. Since FL is concave, and the maximum of
FL(y + zL(y) + h) on 7)^(7^) is achieved only when h = 0, Ny is D^Kq) if
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y E X (a ,L) and the complement of a nonempty convex set otherwise. There
is then an inclusion

X-(a,L)xDoo(K0)ölC(K0)xD(K0)^X-(a,L)
(where the <f> of Definition 7.8 is defined so that ZD,, AK0) is contained in
TV ) ; let us show that this is an e.h.e.

It is easily checked that there is an e.h.e.

;r£/2(0, L) x DJK0) U X~£(a ,L)-*X-(a,L)x D^KJ U ZC(K0)xD(K0)

induced by the inclusion.  In fact, we can identify X~£(a,L)\X~£' (a,L) x

ZC(K0)xD(K0)\X £/2(a,L)xDoo(K0),
since if Fa L(y+h) < -e but Fa L(y + zL(y)) > -e/2 by the concavity of Fa L
in the D^Kq) direction, h is in the complement of a convex set of nonempty
interior, which we can identify with the fiber of

ÍC(K0)xD(K0)\X-£,2(a , L) x DJK0).

Therefore, we can identify X~£/2(a,L)xDoo(K0)uX~£(a ,L) and X~e/2(a,L)
xD^K^utC^) x D(K0). Now since X~(a,L) and X~e/2(a,L) are e.h.e.,
our statement is proved.

We then have to prove that the inclusion

X'£,2(a , L) x />„(*„) U X~£(a, L) -> X~£'2(a, L)

is an e.h.e. Since X~£(a, L) —► X~£' (a, L) is an e.h.e., it is enough to prove
that

X~£(a , L) -» X~£/2(a , L) x Dx(K0) u X~£(a, L)
is an e.h.e.

But if A, B are two spaces, in order to prove that A —> A U B is an e.h.e.,
it is enough to prove that A n B —* B is an e.h.e. Here we set A = X~£(a , L),
B = X~£/2(a , L) x 7>oo(7C0), and we have to consider the map

X~£(a, L) n X~£/2(a, L) x DJ^KJ - X~e(a, L)

induced by the inclusion. In order to prove that this is an e.h.e., we consider
the restriction of FL to X~£/2(a,L) x D^Kq) . By the concavity of FL in
the direction D^Kq) , FL is less than -e/2 on this set. By Propositions 1
and 2 of Appendix 1, we just have to prove that FL has no critical point in the
interior of B with critical value in [-e, - e/2] and that critical points of the
restriction of FL to the boundary of B are such that VFL points outward.

Now a critical point (y, h) of FL in the interior of B satisfies
VFL(y + zL(y) + h) = 0;

since FL has only zero as a critical point, and y = 0 is not in X~£,2(a , L),
this cannot happen.
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If (y , h) is a critical point of the restriction of FL to the boundary, we have

VFL(y + zL(y) + h) = XVFL(y);

this implies dFL(y + zL(y) + h)/dh = 0, that is, h = 0, hence X - 1, and
VFL(y + zL(y)) = VFL(y) indeed points outward.

By Proposition 2(i) of Appendix 1, this implies that

Bn{FL< -e} -» B

is an e.h.e.
This concludes our proof, modulo (7.14); that is, we have to prove that

l|zL(y)|| < CHyll^, with C independent of L . This will follow from

(7.16) ¿KOOII < 9      /  ï
dLZ¿y) <C(\\y\\H¡ + \\zL(y)\\)

by using Gronwall's lemma.
Let us prove (7.16): for h E D^Kq) ,   VFL(y + zL(y)) ■ h = 0, so

d0 ^(VFL(y + zL(y)).h)
(7.17)

= (F'[(y + zL(y))—zL(y) ,h) + (—VFL)(y + zL(y))-h,dL dL
Let us compute (dVFJdL)(x) ■ h = V(dFJdL)(x) ■ h , using (7.5):

(7.18)
SrVF¡\ (x)-h = -(x-VH*L(-Jx + Lx),h-H*L"(-Jx + Lx)(-Jh + Lh)),

since h e D^Kq) , -Jh + Lh = (L - KQ)h , and VF¿(y + zL(y)) ■ h = 0 can
be written (x - VH*L(-Jx + Lx), h) = 0, so plugging this into (7.18) yields

(7.19)
(¿VFL)(y + z¿(y)).A

= (L - K0)(x - VH[(-Jx + Lx), H*L"(-Jx + Lx)h)

where x = y + zL(y) ; as a result,

(7.20) (j^yF^(y + zL(y)).h < C\L-K0\\\y + zL(y)\\HI

The other term in (7.17) is taken care of using the concavity of FL in the
direction of D^KJ (cf. (7.7)) so that

(7.21) |F;'(y + zL(y))(/2,/i)|>qL-V'

Set h = dzL(y)/3L ; then (7.17) implies

C\L-K0\\\y + zL(y)\\H> 9      t   ^
dLZ^y) >C\L-K0\ dL zL(y)

hence \\dzL(y)/dL\\ < C(\\y\\w + \\zL(y)\\), which proves (7.16).
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To conclude our proof, we apply GronwalFs lemma; thus

||zL(y)|| < \\zLo(y)\\eC{L~Lo) + C\\y\\Hl(eC(L-La) - I),

and using the homogeneity of y —► zL(y), we infer

11^)11 <C||y||ffl.
This concludes the proof of Lemma 7.9.
We can now prove case (b) of step 1: let K < KQ < k! ; then by Lemma 7.9,

(X ,X~(a, K)) has the e.h. type of

(C(K0)xD(K0),X-(a,K0)xD(K0)),

and (X , X~(a , K')) has the e.h. type of

(C(K0) x Doo(K0),X-(a,K0) x DJK,) uCC(7C0) x D(KQj) .

We denote these pairs respectively by

(C(K0),X-(a,K0))xD(K0)

and
(C(K0),X-(a,K0))x(DJK0)XLWÖ)) ■

Now let y: (r,,r2) —► (X ,X~(a ,K)) represent some homology class as
described in the sketch of step 1, and consider the commutative diagram in
Figure 1.

(X,X-(a,K))

(C(K0),X-(a,K0))xD(K0)

(C(Ka),X-(a,K,))
ni

(TxS2)x(DR(K0),dDR(K0)) + (C(K0),X~(a ,KQ)) x (Dx(K0) ,D(KQ))

(X,X-(a,K))
Figure 1

In the diagram, i and i' are the maps (7.10) and (7.11) of Lemma 7.9,
p, the projection on the first factor. The dashed arrows nx , n2 represent the
fibration T, x DR(KQ) — T, and the fibration C(KQ) x D^KJ — C(KQ). The
map y' is defined by

(7.22) y(x,u) = (pxiy(x),u).

Let us check that 7'(r,xô7)A(7C0)ur2x7)/î(A:o)) is contained in CC(AT0) x D(K0)
l>X~(a,K0)x D^Kq) for 7? large enough.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



646 CLAUDE VITERBO

To begin with, y embeds T2 x DR(KQ) into X~(a,K0) x D^Kq) , since
by assumption, y(T2) is contained in X~(a, K) c X~(a, K0) x D^Kq) , thus
implying

y(T2 x DR(K0)) c pxiy(Y2) x D^K,) c X~(a,K0) x D^KJ.

We now prove that y'(Yx x dDR(K0)) is contained in ZC(K0) x D(K0). This
is obvious, since T, being compact, for R large enough pxiy(Yx) x dDR(K0)
is contained in CC(7C0) x D(K0) (just take 7? > sup{cf>(y) | y e pxiy(Yx)}).

Now, according to Appendix 3, Proposition 2, corresponding to the Thorn
isomorphisms of nx and n2, we have two natural isomorphisms,

Tx : Hs¡ .(T, , T2) - Hst t+2n((Tx, T2) x (DR(K0), dDR(K0))),

T2:Hsi.(C(K0),X-(a,K0))

^Hsx.+2n((C(K0),X-(a,K0)) x (D^K,) XCD(K0))).

Since y' is a morphism between the fibrations nx, n2 which induces y on
the base, we have by naturality

(7.23) ■yt°Tx = T2oy^.

Hence, by using the diagram, this yields

y'toTx = i[ oT2opXto ,; o y, .

Since i't and i, are, according to Lemma 6.9, isomorphisms, p, , and T2
are isomorphisms as well, and the map (7.2) which is equal to i't oT2opx toit
is an isomorphism.

Thus as announced in the sketch of step 1, there is an isomorphism

X.:Hslt(X,X-(a,K))^Hslm+2n(X,X-(a,K'))

given geometrically by y —► / = y © 73Ä(7C0), or to be more precise such that
?', ° Ti = K ° y. •

This concludes the proof of case (b) of Step 1, and thus the proof of Step 1
is complete.

Step 2. We prove that for given a,   K, and for a , K1 large enough, the
map

I"- HS> Md{K)(X >X~«>> *)) - "S- *W ■ * V - K'))
is zero. This map is obtained by comparing the map induced by the embed-
ding X~(a,K) ■-► X~(a ,K')  and the map from Hsl k+d{K](X,X~(a,K))
into Hs¡ k+d(K,AX ,X~(a .K')) obtained in Step 1.

We shall show that for any compact pair (Yx ,T2) and map y: (Yx ,Y2) -*
(X,X~(a,K)),

Toyk=0   for k El.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT MORSE THEORY 647

To begin with, we use the finite-dimensional reduction of §3, in order to
deform y into a map whose image is in EN = ®k=_NT>00(k), by applying
Lemma 5.1. We still denote this map by y .

Using step 1, T o yt is represented geometrically by y = y © DR (K, K ),
whose image is then contained in EN © (&K<k<K, ̂(k).

On the other hand, we have

77^(x)< {-(K + a/R2)\x\2;

hence
R2 -,

H*K(y)<--2-|y|2,
K 2(KR2 + a)

which implies that

E„ Ax) <-s- /    [ Jx - Kx , Jx -\—~x ] ds.
"•K 2(KR2 + a)Jo   V R2   )

Writing down the Fourier series of x, x = ¿^keZexp((2n/T)kJt)xk , the
latter inequality yields

r-     /  x ̂         r2        x^flnk     „\(2nk      a\t    |2Fa AX) < -i- Vh=-+A:    Ur + -r    u   .
a'K 2(KR2 + a)f^z\ T J\T       R2)    *'

Finally, for x E ®-K<k<ki,a)F>oß<-) > where k(a) is defined to be a/R ,
Fa K(x) < 0, i.e., x E X~(a ,K). It is now clear that for a , K' large enough,

En®     0     Ax>(*)=     0    Doo(k)
-K'<k<-K -K'<k<N

is contained in X~(a , K1), hence the image of y   is contained in X~(d , K ),
thus y't is zero.

This concludes the proof of Step 2.
Step 3. We assume F = Q. We wish to prove that the map

»S>,k+d(K)(X'X~^'K))^HstJc+äm(X,X-(a',K'))l

induced by the embedding X~(a,K') —► X~(a ,K'), is an isomorphism for
o

k E I. This is equivalent to proving that

(7.24) Hs> k+d{KI)(X-(a',K'),X-(a,K)) = 0   for k E I,

as we easily see by using the cohomology exact sequences of the pairs

(X ,X~(a,K')),    (X ,X~(a ,K')),    (X~ (a , K'), X'(a , K))
and the five lemma.

By homogeneity, (7.24) is equivalent to

(7.25) 775, k+d{KI)(X~(a ,K')nS ,X~(a,K')nS) = 0   for k El,

where 5 is the unit sphere.
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To check (7.25), we apply the corollary of Proposition 3 of Appendix 1,
taking for f the restriction of FK, ( to S .

We already checked for Step 1 that the critical points of FK, { correspond
to / • r/2-periodic solutions of (JV). By assumption, their index is / + d(K')
with i not in 7 . Since F = Q, HQ(BGx, 0) = 0 for g ¿ 0, where Gx is the
isotropy group of the orbit, we can apply the above-mentioned corollary and

o
conclude that (7.25) holds for k E I.

This completes the proof of Theorem 7.1.

8. Proving Theorem 1.2

We shall now write the equivariant Morse inequalities for F' K in order to
prove Theorem 1.2.

As noted at the beginning of §7, the origin is the only critical orbit in X-X~£.
— E —bHence in the exact homology sequence of the triple (X ,X ,X ) (for b large

as in §6),

(8.1) - 775, t(X~£ ,X~b) - 77,, t(X,X~b)

- Hsl t(X~£ , X~b) - 775, m_x(X~£, X~b) -> ■ ■ ■
— £ — bthe term Hs¡ t(X ,X ) corresponds to the contribution of the periodic or-

bits of (JIT) of period < aT/2 . We shall denote by Ma(t) = ¿Zk&zmk(a)tk the
normalized Morse series of Fa K in X~£ - X~  . If we denote by t      Ha(t)

— E —bthe Poincaré series of 77s, t(X ,X ), Ha(t) isa Laurent series, and we have
the equivariant Morse inequality

(8.2) Ma(t)-Ha(t) = (l + t)Ra(t),
where 7?a(/) is a Laurent series with nonnegative coefficients (cf. Appendix 1).

On the other hand, the Poincaré series of 775, t(X ,X~ ) is, by Corollary
5.11,  td{K)(l/(l -t2)). The Poincaré series of H$] t(X,X~£) is td{K)Qa(t),

where according to Theorem 7.1, if we set Qa(t) = Efcez^t(a)'   tnen

(8.3) qk(a) = 0   for k E I
o

(we suppose F — Q and 7 is defined as in Theorem 7.1).
Now from (8.1) we have

(8.4) Ha(t)--±i + Qtt(t) = (l+t)Sa(t),

with 5 (t) a Laurent series with nonnegative coefficients. Adding up (8.2) and
(8.4) yields

(8.5) Ma(t)-—^r + Qa(t) = (l+t)Va(t),

where U   also has nonnegative coefficients.
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2«2, and 2N > 2C, and write M2N (2C ; t), Q2aN(2C ;t)--    for the truncated
Now truncate (8.4) at the degrees 2C and 27V, where we set C equal to

i2 , and 27V > 2C , and write
series; then from (8.4) we infer

N
M2aN(2C;t)-Y,t2h + QlN^C;t)

(8.6) h=C

= (l + t)U2aN-X(2C;t) + t2Nu2N(a) + t2Cu2C_x(a).

By (8.3), and the fact that for a large enough 7 contains [2C.2TV], indeed
let q such that any solution with f ^ 0 has |i| > a and period smaller than x.
Then if k > a.T/2, ik ~ kî > ka > (aT/2)a, which goes to infinity with a so
Q2aN(2C;t) = 0, and (8.6) can be written

N
(8.7) M2aN(2C;t)-Y.t2h = (\ + t)U2aN-x(2C;t) + t2Nu2N(a) + t2Cu2C_x(a).

h=C

So, if in (8.7) we let first a , then TV, go to infinity, we get
N

(8.8) M+(2C;t)~Y,f2h = (I + t)U+(2c;t) + t2Cu2C_x ,
h=C

where u2C_x >0 and U(2c;t) has nonnegative coefficients.
Changing C into -C, N into -TV, we obtain

(8.9) M~ (2C ;t) = (I + t)U~ (2C ;t) + t~2C u_2C.

Let us now check that all series have bounded coefficients. In fact, it is enough
to check that M+(2C;/) has bounded coefficients. Now m¡ is bounded by the
number of solutions of index /. Consider a primitive solution with nonnegative
î; then by assertion (i) of Proposition 6.14, we have ik E [kî - c ,kî + c'] so
ik = I for a most (c + c')/i values of k , whence

t-^c + c'mi^J2 ~r •
where the sum is taken on the set of primitive solutions with nonnegative /,
thus proving the boundedness of m¡.

Now multiply (8.8) by (1+0 and take the limit as / goes to -1 . We get
by Proposition 6.18

(«■■o) E'tf + E-^M.
where E' and E" nave tne same meaning as in Theorem 1.2.

Doing the same with (8.9) yields

2/
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Let us also mention that if there is no solution with 7 = 0 we do not need to
cut our series at ±2C ; we can cut at -27V and 2TV, thus obtaining

(8.12) Af(,)__!_ = (i+r)ry(,).
l -r

9. The case of finitely many hyperbolic orbits
Suppose now that (./f ) has only a finite number of primitive hyperbolic

solutions. We shall prove that this cannot happen if n is even.
Let us first remark that for a hyperbolic solution ik — (k - l)í + i. and

í = j(-1) = /', + n + 1. So if î > 0 the contribution of such a solution and its
iterates is

(9.1) t-(m-i)_i_    for f even,
1-/'

(9.2) re»-D_t f
1 - t2'

There are no orbits with í = 0, because such an orbit and all its iterates
would have the same index, -(« + 1). Now for a large enough all the orbits
of period larger than a 77 2 will have their index

either   (i) equal to - (n + 1),
or (ii) different from - (n + 1) ± 1.

This implies that for large values of a, a , a < a ,

(9-3) Hst M+d{K)(X ,X~(a, K)) - 77,, k+d(K)(X, X~(a', K)),

induced by the inclusion map X~(a ,K) •-* X~(a,K), is nonzero for k =
-(n + I), which contradicts step 2 of §7.   To prove it, we first claim that
(9.3) is injective: "going" from X~(a,K) to X~(a ,K) we "meet" periodic
orbits of type (i) or (ii) described above. None of these can "kill" a homol-
ogy class of dimension d(K) - (n + I) so (9.3) is injective. On the other
hand, 775, dK)_.n+X)(X,X~(a,K)) is nonzero since when a increases, we
"meet" infinitely many orbits of type (i). Such an orbit can either contribute
to 775, dK)_X)(X,X~(a,K)) or kill a homology class of dimension d(K)-
n - 2. But the latter are finite, because only finitely many orbits have index
d(K) - n - 2 ; so infinitely many orbits of type (i) must actually contribute to
775, d{K)_(n+X)(X ,X~(a , K)), which is then nonzero. This concludes the proof.

As there are no orbits of index -(n + 1 ), we can split the Morse inequalities
in two, one corresponding to orbits of index > -(« + 1), the other to the orbits
of index < -(« + 1), which amounts to separating the orbits with î > 0 from
those with î < 0 .

In the sequel we consider only the Morse inequalities obtained for î > 0,
that is,

(9-4)     r-"(x: t^ + eAI-A-o + 'W),
\l even   l       ' iodd l       '     ) l       '
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Now write ck for the number of orbits with í = k ; then (9.4) is equivalent
to

(9.5)
EC2A
h>\

N_
2/7 2^C2A+l

h>0

N 1
2(2/?+ 1) + 2

-(-1)     sup N-(n + l) + 1 ;o) = (-i)^

where /("+1)7?(0 = £rti* .
Now obviously, by looking at the leading term (or applying Theorem 1.2),

<»•«> £%-E "2A+1 = 0.
2/z     ^2(2h + l)

Now let q be an integer such that cl = 0 for / > q, and apply (9.5) to
N = q\-2. Then [(q! - 2)/2/z] = (q\/2h) - 1 if c2h ¿ 0, and

q\-2        i
2(2h + I)     2 2(2/?+ 1)

g!
2(2/1 + 1)

g!
2(2/1 + 1)

11
2     2/* + l

if M 0,

1    if/z = 0.

So (9.5) can be written

(9.7) h>\   vz"   '   h>\

rN>0;

-'2(2/1 + 1)

-líf-'J-i-T-IÍ-H1
using (2.6) this becomes, for n even,

(9.8) _£C2A+C]_^>0.
h>\

Applying (9.5) with TV = 2 yields
(9.9) c2-c,>0;
adding (9.8) and (9.9) gives

(9-10) -£^    ">o,
h>2

which is rather unlikely to happen.

Appendix 1 : Morse theory with boundary and some corollaries

Let A' be a smooth manifold with boundary, and f a C function satisfying
condition (C) defined on X. We set Xa = {x E X | f(x) < a} ; then the
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Proposition 1. (i) If f and f\dX have no critical values in [a ,b], then Xa «
Xb.

(ii) If f\dX has no critical value in [a, b] and f has a single nondegenerate
critical point in f~ ([a ,b]) of index i, then

rb   va,      fF    ifk = i,
0   otherwise.

Hk(Xb ,Xa) = i

The same is true in the equivariant setting, that is, if f is G-invariant, Ht
replaced by HG t, and the last two equalities replaced by

HG.k(Xb,Xa)^Hk_i(BGx,e),

where Gx is the isotropy group of the critical orbit, 6 the orientation bundle of
the negative bundle of f"(x).     G
Proof. This is standard Morse theory.

Proposition 2. If in f~ [a ,b] there is a single nondegenerate critical point, x0 ,
of f\dX of index i, then

(i) if V/(x0) points outward, Xb k, Xa ;
(ii) if V/(x0) points inward, then X    is diffeomorphic to Xa with an i-

dimensional handle attached.
Also if {x E X\f(x) = a} is denoted by X(a) we have, in case

(i) X(a) is diffeomorphic to X(b) with an i-dimensional handle attached;
(ii) X(b) is diffeomorphic to X(a) with an i-dimensional handle attached.

The same is true in the equivariant setting,   u

Corollary.  With the hypothesis of Proposition 2, we have

Hk(Xb)^Hk(Xa)      fork^ij-l,
Hk(X(b))*Hk(X(a))   fork±i,i-l.

In the equivariant setting, this is true provided the condition k ?é i, i - 1   is
replaced by

ff*-,(*V*)-0.       ffk_i+x(BGXo,6) = 0

(cf. Proposition I).
Proof. This is just Morse theory with boundary.

Consider now M a manifold without boundary, ft a family of functions•y
on M satisfying condition (C). Set f(t,x) = ft(x), and assume / is C  .
Denote {x E M \ ft(x) < a) by M° ; then we have

Proposition 3. (a) If f  has no critical point of level 0 for t E [a,b], then
M«*M?.a bLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(b) If f0 has a unique nondegenerate critical point, x0, of index i in f~ (0),
then

(i) if dft(xQ)/dt < 0,  then  M    is diffeomorphic to  Ma   with an   i-
dimensional bundle attached;

(ii) if df(xQ)/dt > 0, then Ma  is diffeomorphic to M    with an  i-
dimensional handle attached.

The same is true in an equivariant setting,   a
Proof. Set I = {(x,/)gA(xR|//(x)<0}; this is a manifold with boundary
as df(x , t) = dxft(x) dx + (d/dt)ft(x) dt is never zero.

Consider on X the map x : (x, t) —* t. This map has no critical points in the
interior of X. (x0 , t0) is a critical point of t\dx if and only if dt = X df(xQ , t0),
that is, dxft (x0) = 0 and dft (x0)/dt ± 0, and Vt points inward if and only
if X < 0, that is, dft(x0)/dt <0 .

Applying Proposition 2 yields the result.

Corollary. Hk(Ma) sa TIk(Mb) for k ^ i ,i - I , and the same is true in the
equivariant setting with the condition k # /, i — 1 changed as in the corollary of
Proposition 2.   o
Proof. Apply the corollary of Proposition 2.

Appendix 2: Morse inequalities

In this appendix, Ak, Bk, ... will denote graded vector spaces and A(t),
B(t) the Poincaré series, that is,

A(t) = Y,tk dim Ak.
/tez

Suppose now that we have a long exact sequence

(1) A^B^C^At_x^-.;
then

Proposition 1. A(t) - B(t) + C(t) = (1 + 0-^(0 - where R(t) has nonnegative
coefficients.   D
Proof. Suppose first we have a short exact sequence 0 ^ At —> Bt —> Ct —>
Dt—>Et->0; then if we set ak = dim Ak , bk = dim Bk , ... , we have

ak-bk + ck-dk+ek = 0,

hence A(t)-B(t) + C(t)-D(t) + E(t) = 0. Now from ( 1 ) there is a short exact
sequence

0 - ImC,+, -> ¿. -> *. -» C, - ImC. - 0,
where ImC, is the image of Ct in At_x . So if C'(t) is the Poincaré series
of ImC,+1, we get

C'(t) - A(t) + B(t) - C(t) + tC'(t) = 0 ,

that is, A(t) - B(t) + C(t) = (1 + t)C'(t).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Appendix 3: Thom isomorphism and equivariant homology

Let G be a compact group; then up to a homotopy equivalence, there is a
unique contractible space EG, endowed with a free G-action.

Definition 1. BG - EG/G is the classifying space of G.  The principal un-
bundle EG -+ BG is the universal (/-bundle.

Definition 2. If X is a G-space, the homotopy quotient of X is XG - XxEG/G
where G operates diagonally on X x EG (i.e., g(x, e) = (gx, ge)).
Remark. If the action of G is free, then XG ~ (X/G) x EG has the homotopy
type of X/G.

Now let 77, be some homology theory; we set

Definition 3. If X is a G-space, HGtt(X) = H,(XG).
Now let n : X —► A be a ¿-dimensional G-vector bundle, that is, a vector

bundle such that X is endowed with a fiber-preserving G-action, linear on the
fibers.

Let D(X) be the unit disk bundle associated with X (we can choose a G
invariant metric, so that D(X) is a G space). Then

Proposition 1. There is a natural isomorphism

T:HGt(X,X-D(X))^HG^_k(A;6),

where 0 is the orientation bundle of n.   o
Proof. This follows from the fact that we have a vector bundle XG —► AG, and
the usual Thom isomorphism.

If we have K c A and Y = n~x(K), Proposition 1 can be generalized to

Proposition 2. There is a natural isomorphism

T:HG,(X,Yl)X-D(x))*HG._k(A,K;d).    D
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