EQUIVARIANT POINT THEOREMS

(Dedicated to Professor A. Komatu on his 70th birthday) By
 Minoru Nakaoka

1. Introduction.

This paper is a continuation of my previous paper [13], and is concerned with generalizations of the following two classical theorems on a continuous map f of an n-sphere S^{n} to itself.

Theorem 1.1. If the degree of f is even then there exists $x \in S^{n}$ such that $f(-x)=f(x)$.

Theorem 1.2. If the degree of f is odd then there exists $x \in S^{n}$ such that $f(-x)=-f(x)$.

Throughout this paper, a prime p is fixed, and $G=\left\{1, T, \cdots, T^{p-1}\right\}$ will denote a cyclic group of order p.

Generalizing the situation in the above theorems, we shall consider the following problems.

Problem 1. Let $f: N \rightarrow M$ be a continuous map between G-spaces. Under what conditions does f have an equivariant point, i.e., a point $x \in N$ such that

$$
\begin{equation*}
f\left(T^{i} x\right)=T^{i} f(x) \tag{1.1}
\end{equation*}
$$

for $i=1,2, \cdots, p-1$?
Problem 2. Let $f: L \rightarrow M$ and $g: L \rightarrow N$ be continuous maps of a space L to G-spaces M and N. Under what conditions do there exist p points $x_{1}, \cdots, x_{p} \in L$ such that

$$
\begin{equation*}
f\left(x_{i+1}\right)=T^{i} f\left(x_{1}\right), g\left(x_{i+1}\right)=T^{i} g\left(x_{1}\right) \tag{1.2}
\end{equation*}
$$

for $i=1,2, \cdots, p-1$?
We shall denote by $A(f)$ the set of points $x \in N$ satisfying (1.1), and by $A(f, g)$ the set of points (x_{1}, \cdots, x_{p}) $\in L^{p}$ satisfying (1.2).

If $L=N$ in Problem 2, then $A(f$, id) may be identified with $A(f)$. Therefore

Problem 2 is more general than Problem 1; still Problem 2 can be reduced to Problem 1. In fact, if we define $h: L^{p} \rightarrow M \times N$ by

$$
\begin{equation*}
h\left(x_{1}, \cdots, x_{p}\right)=\left(f\left(x_{1}\right), g\left(x_{1}\right)\right) \quad\left(x_{i} \in L\right) \tag{1.3}
\end{equation*}
$$

and regard L^{p} and $M \times N$ as G-spaces by cyclic permutations and the diagonal action respectively, then we have $A(h)=A(f, g)$.

Throughout this paper, a manifold will always mean a compact connected topological manifold which is assumed to be oriented if p is odd. The dimension of manifolds M, N, \cdots will be denoted by m, n, \cdots. By a G-manifold is meant a manifold on which G acts topologically.

In this paper we shall consider Problems 1 and 2 in case M and N are G manifolds. Some answers have been obtained by Conner-Floyd [3], Munkholm [10], Fenn [5], Lusk [8] and others with respect to generalizations of Theorem 1.1, and by Milnor [9] and the author [13] with respect to generalizations of Theorem 1.2. By pushing the line of [13] we shall prove in this paper more general results.

Throughout this paper the cohomology stands for the Čech cohomology and it takes coefficients from \boldsymbol{Z}_{p}, the group of integers $\bmod p$.

2. Theorems

In this section we shall state our main theorems answering to Problem 2 and then corollaries answering to Problem 1. The main theorems will be proved in $\S 5$ and $\S 6$.

Let $\omega_{k} \in H^{k}(B G)(k=0,1, \cdots)$ denote the usual generators, where $B G$ is the classifying space for G. If X is a paracompact space on which G acts freely, $H^{*}(X / G)$ can be regarded as an $H^{*}(B G)$-module via the homomorphism induced by a classifying map of X; in particular we have $\omega_{k}=\omega_{k} \cdot 1 \in H^{k}(X / G)$.

The first main theorem is stated as follows, and it generalizes Theorem 1.1 (see Remark 1 below).

Theorem A. Let $f: L \rightarrow M$ and $g: L \rightarrow N$ be continuous maps of a compact space L to G-manifolds M and N. Suppose that
i) the action on M is trivial;
ii) the action on N is free and $\omega_{n} \in H^{n}(N / G)$ is not zero;
iii) $n \geqq(p-1) m$;
iv) $f^{*}: H^{q}(M) \rightarrow H^{q}(L)(q>0)$ is trivial;
v) $g^{*}: H^{n}(N) \rightarrow H^{n}(L)$ is not trivial.

Then we have $A(f, g) \neq \phi$; if L is moreover a manifold, we have

$$
\operatorname{dim} A(f, g) \geqq p l-(p-1)(m+n) \geqq 0,
$$

where $\operatorname{dim} A$ denotes the covering dimension of A.
Putting $L=N$ and $g=$ id, we get
Corollary. Let $f: N \rightarrow M$ be a continuous map of a G-manifold N to a manifold M. Suppose that
i) the action on N is free and $\omega_{n} \in H^{n}(N / G)$ is not zero;
ii) $f^{*}: H^{q}(M) \rightarrow H^{q}(N)(q>0)$ is trivial.
Then we have

$$
\operatorname{dim} A(f) \geqq n-(p-1) m,
$$

where M is regarded as a G-manifold by the trivial action.
Remark 1. Taking

$$
N=\text { a } \bmod p \text { homology } n \text {-sphere }
$$

in the above corollary, we have the results due to Conner-Floyd [3], Munkholm [10] and the author [12], which are direct generalizations of Theorem 1.1.

Remark 2. Taking

$$
\begin{aligned}
& L=N=\mathrm{a} \bmod p \text { homology } n \text {-sphere, } \\
& M=S^{m}, \operatorname{deg} f=0, \operatorname{deg} g \not \equiv 0 \bmod p
\end{aligned}
$$

in Theorem A, we have the results due the to Fenn [5] and Lusk [8].
To state the second main theorem and its corollaries, we shall make some preparations.

For any indexing set I, consider the complement $I_{0}^{p}=I^{p}-d I$ of the diagonal in I^{p}, and define (i_{1}, \cdots, i_{p}), $\left(i_{1}^{\prime}, \cdots, i_{p}\right) \in I_{0}^{p}$ to be equivalent if ($i_{1}^{\prime}, \cdots, i_{p}^{\prime}$) is a cyclic permutation of (i_{1}, \cdots, i_{p}). We denote by $R\left(I_{0}^{p}\right)$ a set of representatives of the equivalent classes.

Let $f: L \rightarrow M$ and $g: L \rightarrow N$ be continuous maps of a manifold L to G-manifolds M and N. Given homogeneous bases $\left\{\alpha_{i}\right\}_{i \epsilon l},\left\{\beta_{j}\right\}_{j \in J}$ of $H^{*}(M), H^{*}(N)$ and sets $R\left(I_{0}^{p}\right), R\left(J_{0}^{p}\right)$, we define $\lambda(f, g), \lambda^{\prime}(f, g) \in \boldsymbol{Z}_{p}$ as follows.

Define $\Delta: M \rightarrow M^{p}$ by

$$
\begin{equation*}
\Delta(x)=\left(x, T x, \cdots, T^{p-1} x\right) \quad(x \in M) \tag{2.1}
\end{equation*}
$$

and put

$$
\begin{equation*}
\Delta_{!}(1)=\sum_{\left(i_{1}, \cdots, i_{p}\right) \in I_{p}} c_{i_{1} \cdots i_{p}} \alpha_{i_{1}} \times \cdots \times \alpha_{i_{p}} \quad\left(c_{\left.i_{1} \cdots i_{p} \in \boldsymbol{Z}_{p}\right)}\right. \tag{2.2}
\end{equation*}
$$

for the Gysin homomorphism $\Delta_{1}: H^{*}(M) \rightarrow H^{*}\left(M^{p}\right)$.
Similarly, put

$$
\Delta_{!}(1)=\sum_{\left(j_{1}, \cdots, j_{p}\right) \in \jmath^{p}} d_{j_{1} \cdots j_{p}} \beta_{j_{1}} \times \cdots \times \beta_{j_{p}} \quad\left(d_{\left.j_{1} \cdots j_{p} \in \boldsymbol{Z}_{p}\right)}\right.
$$

for the homomorphism $\Delta_{1}: H^{*}(N) \rightarrow H^{*}\left(N^{p}\right)$.
We define

$$
\begin{aligned}
& \lambda(f, g)=\left\langle\left(f^{* p} \sum_{\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)} c_{\left.\left.i_{1} \cdots i_{p} \alpha_{i_{1}} \times \cdots \times \alpha_{i_{p}}\right)\left(g^{* p} \Delta!(1)\right),[L]^{p}\right\rangle,}\right.\right. \\
& \lambda^{\prime}(f, g)=\left\langle\left(f^{* p} \Delta_{!}(1)\right)\left(g_{\left(j_{1}, \cdots, j_{p}\right) \in R\left(J_{0}^{p}\right)} d_{j_{1} \cdots j_{p}} \beta_{j_{1}} \times \cdots \times \beta_{j_{p}}\right),[L]^{p}\right\rangle .
\end{aligned}
$$

Obviously we have $\lambda(f, g)=\lambda^{\prime}(g, f)$.
If $L=N$ and $g^{*}=\mathrm{id}$, we write $\lambda(f)=\lambda(f, g)$. It follows that

$$
\lambda(f)=\sum_{\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)} c_{i_{1} \cdots i_{p}}\left\langle\left(f^{*} \alpha_{i_{1}}\right)\left(T^{*} f * \alpha_{i_{2}}\right) \cdots\left(T^{* p-1} f^{*} \alpha_{i_{p}}\right),[N]\right\rangle .
$$

Remark 3. By the definition of $\Delta_{!}$we have

$$
\left\langle\Delta^{*}\left(\alpha_{k_{1}} \times \cdots \times \alpha_{k_{p}}\right),[M]\right\rangle=\left\langle\left(\alpha_{k_{1}} \times \cdots \times \alpha_{k_{p}}\right) \Delta_{!}(1),[M]^{p}\right\rangle .
$$

From this we get

$$
\begin{equation*}
y_{k_{1} \cdots k_{p}}=\sum_{\left(i_{1}, \cdots, i_{p}\right) \in I^{p}}(-1)^{\varepsilon\left(i_{1}, \cdots, i_{p}, k_{1}, \cdots, k_{p}\right)} c_{i_{1} \cdots i_{p}} z_{k_{1} i_{1}} \cdots z_{k_{p} i_{p}}, \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& y_{k_{1} \cdots k_{p}}=\left\langle\alpha_{k_{1}}\left(T^{*} \alpha_{k_{2}}\right) \cdots\left(T^{* p-1} \alpha_{k_{p}}\right),[M]\right\rangle \\
& z_{k i}=\left\langle\alpha_{k} \alpha_{i},[M]\right\rangle \\
& \varepsilon\left(i_{1}, \cdots, i_{p}, k_{1}, \cdots, k_{p}\right)=\sum_{s=1}^{p-1}\left|\alpha_{i_{j}}\right|\left(\left|\alpha_{k_{s+1}}\right|+\cdots+\left|\alpha_{k_{p}}\right|\right),
\end{aligned}
$$

being $|\alpha|=\operatorname{deg} \alpha$. The relations (2.3) for (k_{1}, \cdots, k_{p}) $\in I^{p}$ characterize the coefficients $c_{i_{1} \cdots i_{p}}$ ([6]). In particular, if $p=2$ we see that the matrix $\left(c_{i j}\right)$ is the inverse of the matrix $\left(y_{i j}\right)$.

Now the second main theorem is stated as follows, and it generalizes Theorem 1.2 (see Remark 5 below).

Theorem B. Let $f: L \rightarrow M$ and $g: L \rightarrow N$ be continuous maps of a manifold L to G-manifolds M and N. Suppose that
i) $i^{*}: H^{q}(M) \rightarrow H^{q}\left(M^{G}\right)$ is trivial for $q \geqq m / p$, where M^{G} is the fixed point set of M, and i is the inclusion;
ii) the action on N is free;
iii) $p l=(p-1)(m+n)$.

Then $\lambda(f, g)$ and $\lambda^{\prime}(f, g)$ are independent of the choices of $\left\{\alpha_{i}\right\}_{i \epsilon l},\left\{\beta_{j}\right\}_{j \epsilon J}, R\left(I_{0}^{p}\right)$,
$R\left(J_{0}^{p}\right)$, and we have $\lambda(f, g)=\lambda^{\prime}(f, g)$; If $\lambda(f, g) \neq 0$ we have $A(f, g) \neq \phi$.
Putting $L=N$ and $g=\mathrm{id}$ in Theorem B we have
Corollary 1. Let $f: N \rightarrow M$ be a continuous map between G-manifolds, and suppose that
i) $i^{*}: H^{q}(M) \rightarrow H^{q}\left(M^{G}\right)$ is trivial for $q \geqq m / p$;
ii) the action on N is free;
iii) $n=(p-1) m$.

Then $\lambda(f)$ is independent of the choices of $\left\{\alpha_{i}\right\}_{i \in I}$ and $R\left(I_{0}^{p}\right)$, and if $\lambda(f) \neq 0$ we have $A(f) \neq \phi$.

Put $L=M$ and $f=\mathrm{id}$ in Theorem B, and replace the notations M, N, g by N, M, f respectively. Then we get

Corollary 2. Let $f: N \rightarrow M$ be a continuous map between G-manifolds, and suppose that
i) $i^{*}: H^{q}(N) \rightarrow H^{q}\left(N^{G}\right)$ is trivial for $q \geqq n / p$;
ii) the action on M is free;
iii) $n=(p-1) m$.

Then the same conclusions as in Corollary 1 hold.
Remark 4. The above two corollaries for $p=2$ have been obtained in [13].
The following proposition will be proved in $\S 4$ (see p. 407 of [2] for $p=2$).
Proposition 2.1. If M is a G-manifold such that $i^{*}: H^{m / p}(M) \rightarrow H^{m / p}\left(M^{G}\right)$ is trivial, then

$$
\left\langle\alpha\left(T^{*} \alpha\right) \cdots\left(T^{* p-1} \alpha\right),[M]\right\rangle=0 \quad\left(\alpha \in H^{*}(M)\right) .
$$

Let M be the one in Proposition 2.1 for $p=2$. Then, the proposition and the Poincaré duality show that $H^{*}(M)$ has a homogenecus basis $\left\{\mu_{1}, \cdots, \mu_{r}, \mu_{1}^{\prime}, \cdots, \mu_{r}^{\prime}\right\}$ such that

$$
\left\langle\mu_{i}\left(T^{*} \mu_{k}\right),[M]\right\rangle=0,\left\langle\mu_{i}^{\prime}\left(T^{*} \mu_{k}^{\prime}\right),[M]\right\rangle=0,\left\langle\mu_{i}\left(T^{*} \mu_{k}^{\prime}\right),[M]\right\rangle=\delta_{i k} .
$$

In terms of this basis we see that

$$
\lambda(f)=\sum_{i=1}^{r}\left\langle\left(f^{*} \mu_{i}\right)\left(T^{*} f^{*} \mu_{i}^{\prime}\right),[N]\right\rangle
$$

if $p=2$. In particular, if $M=N$ and $f^{*}=$ id then $\lambda(f)$ equals the semi-characteristic

$$
\chi_{1 / 2}(M)=\operatorname{dim} H^{*}(M) / 2 \bmod 2 .
$$

Thus, for $p=2$ we have the following

Corollary 3. Let M be a manifold with a free involution T, and assume $\chi_{1 / 2}(M) \neq 0$. Let $f, g: M \rightarrow M$ be continuous maps such that $f^{*}=g^{*}=\mathrm{id}: H^{*}(M) \rightarrow$ $H^{*}(M)$. Then there exist $x, x^{\prime} \in M$ such that $f\left(x^{\prime}\right)=T f(x)$ and $g\left(x^{\prime}\right)=T g(x)$. In particular, there exists a point $x \in M$ such that $f T(x)=T f(x)$.

Remark 5. Taking

$$
M=\mathrm{a} \bmod 2 \text { homology } m \text {-sphere }
$$

in Corollary 3, we have the result due to Milnor [9], which is a direct generalization of Theorem 1.2.

3. Method.

In this section we shall explain how to prove Theorems A and B.
Let M be a G-manifold. If we regard M^{p} as a G-manifold by cyclic permutations, the map $\Delta: M \rightarrow M^{p}$ in (2.1) is an equivariant embedding. Regard $S^{2 k+1}$ as a G manifold by the standard free action. Then we have a pair ($S^{2 k+1} \times M^{p}, S_{G}^{2 k+1} \times \Delta M$) of manifolds, and hence the Thom isomorphism

$$
\theta_{k}: H^{q}\left(S^{2 k+1} \times \Delta M\right) \cong H^{q+(p-1) m}\left(S^{2 k+1} \times\left(M^{p}, M^{p}-\Delta M\right)\right)
$$

which is the composite of the duality isomorphisms for $S^{2 k+1} \times \Delta M$ and for $\left(S^{2 k+1} \times\right.$ $M^{p}, S_{G}^{2 k+1} \times \Delta M$) (see p. 353 of [14]). We denote the Thom class $\theta_{k}(1)$ by $\hat{U}^{(k)}$.

The isomorphisms θ_{k} for sufficiently large k define the Thom isomorphism

$$
\theta: H_{G}^{q}(\Delta M) \cong H_{G}^{q+\left(p_{-1}\right) m}\left(M^{p}, M^{p}-\Delta M\right)
$$

of the equivariant cohomology. The element $\theta(1)$ is denoted by \hat{U}_{M}, and is called the equivariant fundamental cohomology class of M.

The image of \hat{U}_{M} in $H_{G}{ }^{m\left(p_{-1}\right)}\left(M^{p}\right)$ is denoted by \hat{U}_{M}^{\prime}, and is called the equivariant diagonal cohomology class of M.

If the action of G on M is free, the diagonal set $d M$ is in $M^{p}-\Delta M$. In this case the image of \hat{U}_{M} in $H_{G}{ }^{m_{\left(p_{-1}\right)}}\left(M^{p}, d M\right)$ is denoted by $\hat{U}_{M}^{\prime \prime}$, and is called the modified equivariant diagonal cohomology class of M.

Lemma 3.1. Let M and N be G-manifolds, and regard $M \times N$ as a G-manifold by the diagonal action. If the action on N is free, we have

$$
\hat{U}_{M \times N}^{\prime \prime}= \pm\left(q_{1}^{p} * \hat{U}_{M}^{\prime}\right)\left(q_{2}^{p} * \hat{U}_{N}^{\eta}\right),
$$

where $q_{1}^{p *}: H_{G}^{*}\left(M^{p}\right) \rightarrow H_{G}^{*}\left((M \times N)^{p}\right)$ and $q_{2}^{p *}: H_{G}^{*}\left(N^{p}, d N\right) \rightarrow H_{G}^{*}\left((M \times N)^{p}, d(M \times\right.$ N)) are induced by the projections $q_{1}: M \times N \rightarrow M, q_{2}: M \times N \rightarrow N$.

Proof. There are the following natural inclusions of manifolds:

$$
\begin{array}{ccc}
\left.\left(S^{2 k+1} \times \Delta M\right) \times S_{G}^{2 k+1} \times \Delta N\right) & \subset & \left(S_{G}^{2 k+1} \times M^{p}\right) \times\left(S^{2 k+1} \times N^{p}\right) \\
\cup & & \cup \\
S_{G}^{2 k+1} \times \Delta(M \times N) & \subset & S^{2 k+1} \times(M \times N)^{p}
\end{array}
$$

From properties of the Thom class (see 325 of [4]], it follows that the Thom class for the pair in the upper line equals $\pm \hat{U}_{M}^{(k)} \times \hat{U}_{N}^{(k)}$, and that it is sent to $\pm \hat{U}_{M \times N}^{(k)}$ by the homomorphism i^{*} induced by the natural inclusion of the lower line to the upper. Therefore we have

$$
\hat{U}_{M \times N}^{(k)}= \pm i^{*}\left(\hat{U}_{M}^{(k)} \times \hat{U}_{N}^{(k)}\right)= \pm i^{*}\left(p_{1}^{*} \hat{U}_{M}^{(k)} \cdot p_{2}^{*} \hat{U}_{N}^{(k)}\right)= \pm\left(q_{1}^{p^{*}} \hat{U}_{M}^{(k)}\right)\left(q_{2}^{p^{*}} \hat{U}_{N}^{(k)}\right)
$$

where p_{1}, p_{2} are the projections of $\left(S_{G}^{2 k+1} \times M^{p}\right) \times\left(S_{G}^{2 k+1} \times N^{p}\right)$ to $S_{G}^{2 k+1} \times M^{p}, S^{2 k+1} \times$ N^{p}. This fact proves immediately the desired result.

Lemma 3.2. Let $f: N \rightarrow M$ be a continuous map of a G-space N to a G-manifold M, and define an equivariant map $\hat{f}: N \rightarrow M^{p}$ by

$$
\hat{f}(x)=\left(f(x), f T(x), \cdots, f T^{p-1}(x)\right)(x \in N) .
$$

If the action on M is free, and if $\hat{f}^{*}\left(\hat{U}_{M}^{\prime \prime}\right) \neq 0$ for the homomorphism $\hat{f}^{*}: H_{G}^{*}$ $\left(M^{p}, d M\right) \rightarrow H_{G}^{*}\left(N, N^{G}\right)$, then we have $A(f) \neq \phi$. If N is moreover a G-manifold, we have

$$
\operatorname{dim} A(f) \geqq n-(p-1) m \geqq 0 .
$$

Proof. In virtue of a commutative diagram

$\hat{f}^{*}\left(\hat{U}_{M}^{\prime \prime}\right) \neq 0$ implies $H_{G}^{m\left(p_{-1}\right)}(N, N-A(f)) \neq 0$. Therefore $A(f) \neq \phi$. If N is a G manifold, we have isomorphisms

$$
\begin{aligned}
& H^{n-m(p-1)}(A(f) / G) \cong H_{m(p-1)}\left(N^{\prime} / G,\left(N^{\prime}-A(f)\right) / G\right) \\
\cong & H^{m(p-1)}\left(N^{\prime} / G,\left(N^{\prime}-A(f)\right) / G\right) \cong H_{G}^{m\left(p^{p}-1\right)}\left(N^{\prime}, N^{\prime}-A(f)\right) \\
\cong & H_{G}^{m(p-1)}(N, N-A(f)),
\end{aligned}
$$

where $N^{\prime}=N-N^{G}$. Therefore $H^{n_{-} m_{(p-1)}}(A(f) / G) \neq 0$, and so $\operatorname{dim} A(f) \geqq n-$ $m(p-1) \geqq 0$. This completes the proof.

Proposition 3.3. Let $f: L \rightarrow M$ and $g: L \rightarrow N$ be continuous maps of a space
L to G-manifolds M and N. Suppose that the action on N is free. Then if

$$
\left(f^{p *} \hat{U}_{M}^{\prime}\right)\left(g^{p *} \hat{U}_{N}^{\prime \prime}\right) \in H_{G}^{(m+n)(p-1)}\left(L^{p}, d L\right)
$$

is not zero, we have $A(f, g) \neq \phi$. If L is moreover a manifold, we have

$$
\operatorname{dim} A(f, g) \geqq p l-(p-1)(m+n) \geqq 0
$$

Proof. Consider $h: L^{p} \rightarrow M \times N$ defined by (1.3). Then, for the map $\hat{h}: L^{p} \rightarrow$ $(M \times N)^{p}$ we have $q_{1}^{p} \circ \hat{h}=f^{p}, q_{2}^{p} \circ \hat{h}=g^{p}$. Therefore by Lemma 3.1 we have

$$
\begin{aligned}
\hat{h}^{*}\left(\hat{U}_{M \times N}^{\prime \prime}\right) & = \pm \hat{h}^{*}\left(\left(q_{2}^{p} * \hat{U}_{M}^{\prime}\right)\left(q_{2}{ }^{p *} \hat{U}_{N}^{\prime \prime}\right)\right) \\
& = \pm\left(f^{p *} \hat{U}_{M}\right)\left(g^{p *} \hat{U}_{N}^{\prime \prime}\right)
\end{aligned}
$$

This proves the desired result by Lemma 3.2,
We shall prove Theorems A and B by making use of Proposition 3.3. For this purpose we are asked to examine the following:
(i) structure of the equivariant cohomologies $H_{G}^{*}\left(X^{p}\right)$ and $H_{G}^{*}\left(X^{p}, d X\right)$ for a compact space X.
(ii) the equivariant diagonal cohomology class \hat{U}_{M}^{\prime} and the modified equivariant diagonal cohomology class $\hat{U}_{M}^{\prime \prime}$ for a G-manifold M.

As for (i) we have the results due to Steenrod and Thom, which are stated in $\S 4$. Thus Theorems A and B will be proved by examining (ii), as seen in $\S 5$ and $\S 6$.

4. Preparations

In this section we shall recall some facts needed later.
Let X be a paracompact G-space. Then we have

$$
\begin{aligned}
& H^{*}(X)=\underline{\lim H^{*}}(K), \\
& H_{G}^{*}\left(X, X^{G}\right)=\underline{\lim } H^{*}\left(K / G, K^{G} / G\right),
\end{aligned}
$$

where K ranges over the nerves of G-coverings of X (see Chap III, § 6 and Chap VII, § 1 of [2]). For each K a cochain map

$$
\varphi_{K}: C^{*}(K) \longrightarrow C^{*}\left(K / G, K^{G} / G\right)
$$

is defined by

$$
\left\langle\varphi_{K}(u), \pi(s)\right\rangle=\sum_{i=0}^{p-1} u\left(T^{i} s\right),
$$

where $u \in C^{*}(K), s$ is a simplex of K, and $\pi: K \longrightarrow K / G$ is the projection. Thus
we have a homomorphism

$$
\begin{equation*}
\pi_{1}^{\prime}: H^{*}(X) \longrightarrow H_{G}^{*}\left(X, X^{G}\right) \tag{4.1}
\end{equation*}
$$

defined by the cochain maps φ_{K}.
We define

$$
\begin{equation*}
\pi_{!}: H^{*}(X) \longrightarrow H_{G}^{*}(X) \tag{4.2}
\end{equation*}
$$

to be the composite $j^{*}{ }^{\circ} \pi!$, where $j^{*}: H_{G}^{*}\left(X, X^{G}\right) \longrightarrow H_{G}^{*}(X)$ is induced by the inclusion. It follows that $\pi_{!}$is the composite of the usual transfer $H^{*}(X) \longrightarrow$ $H^{*}(X / G)$ and the canonical homomorphism $H^{*}(X / G) \longrightarrow H_{G}^{*}(X)$.

We call $\pi_{!}$in (4.2) the transfer, and $\pi!$ in (4.1) the modified transfer. Put

$$
\sigma^{*}=\sum_{i=0}^{p-1} T^{i *}: H^{*}(X) \longrightarrow H^{*}(X)
$$

Then it is easily seen that

$$
\begin{equation*}
\pi^{*} \circ \pi_{!}=\sigma^{*} \tag{4.3}
\end{equation*}
$$

for the canonical homomorphism $\pi^{*}: H_{G}^{*}(X) \longrightarrow H^{*}(X)$, and that

$$
\begin{equation*}
\pi_{!}\left(\alpha_{1}\right) \cdot \pi!\left(\alpha_{2}\right)=\pi!\left(\alpha_{1} \cdot \sigma^{*} \alpha_{2}\right)=\pi!\left(\sigma^{*} \alpha_{1} \cdot \alpha_{2}\right) \tag{4.4}
\end{equation*}
$$

($\left.\alpha_{1}, \alpha_{2} \in H^{*}(X)\right)$. We have also

$$
\begin{equation*}
\pi_{1}(\alpha) \cdot \delta^{*}(\beta)=0 \quad\left(\alpha \in H^{*}(X), \beta \in H_{G}^{*}\left(X^{G}\right)\right) \tag{4.5}
\end{equation*}
$$

for the coboundary homomorphism $\delta^{*}: H_{G}^{*}\left(X^{G}\right) \longrightarrow H_{G}^{*}\left(X, X^{G}\right)$.
In fact

$$
\begin{aligned}
(-1)^{|\alpha|} \pi_{1}(\alpha) \cdot \delta^{*}(\beta) & =\delta^{*}\left(i^{*} \pi_{!}(\alpha) \cdot \beta\right) \\
& =\delta^{*}\left(i^{*} j^{*} \pi_{!}^{\prime}(\alpha) \cdot \beta\right)=0,
\end{aligned}
$$

where $i^{*}: H_{G}^{*}(X) \longrightarrow H_{G}^{*}\left(X^{\boldsymbol{G}}\right)$.
If X is a paracompact G-space, the Smith special cohomology groups $H_{P}^{*}(X)$ are defined for $\rho=\sigma=\sum_{i=0}^{p-1} T^{i}$ and $\rho=\tau=1-T$, and we have the exact sequences

$$
\begin{aligned}
& \cdots \xrightarrow{\rho^{*}} H^{q}(X) \xrightarrow{i_{\rho}^{*}} H_{\rho}^{q}(X) \oplus H^{q}\left(X^{G}\right) \\
& \xrightarrow{\delta_{\rho}^{*}} H_{\rho}^{q_{+1}}(X) \xrightarrow{j^{*}} H^{q_{+1}}(X) \longrightarrow \cdots
\end{aligned}
$$

for $(\rho, \bar{\rho})=(\sigma, \tau)$ and (τ, σ). We have also an isomorphism

$$
H_{\sigma}^{*}(X) \cong H_{G}^{*}\left(X, X^{G}\right)
$$

(See p. 143 of [2].)
It follows that

$$
\begin{equation*}
i_{\tau}^{*}=\left(\pi^{\prime}, i^{*}\right): H^{*}(X) \longrightarrow H_{G}^{*}\left(X, X^{G}\right) \oplus H^{*}\left(X^{G}\right) \tag{4.6}
\end{equation*}
$$

Lemma 4.1. If M is a G-manifold such that the action is not trivial, then it holds

$$
\pi_{!}^{\prime}: H^{m}(M) \cong H_{G}^{m}\left(M, M^{G}\right)
$$

Proof. In the exact sequence

$$
H^{m}(M) \xrightarrow{i_{\tau}^{*}} H_{\sigma}^{m}(M) \oplus H^{m}\left(M^{G}\right) \xrightarrow{\delta_{\tau}^{*}} H_{\tau}^{m+1}(M)
$$

we have $H_{r}^{m+1}(M)=0, \quad H^{m}(M) \cong \boldsymbol{Z}_{p}, H^{m}\left(M^{G}\right) \cong H_{0}\left(M, M-M^{G}\right)=0$, and moreover $H_{\sigma}^{m}(M) \neq 0$ is proved as follows. Therefore we get the desired result by (4.6).

Suppose $H_{\sigma}^{m}(M)=0$. Then, by the Smith cohomology exact sequence, we see that $i_{\sigma}^{*}: H^{m}(M) \cong H_{\tau}^{m}(M)$ and $\tau^{*}: H_{\tau}^{m}(M) \longrightarrow H^{m}(M)$ is onto. This implies that $\tau^{*}: H^{m}(M) \longrightarrow H^{m}(M)$ is onto and so $H^{m}(M)=0$, which is a contradiction.

For a paracompact space X, consider the equivariant cohomology $H_{G}^{*}\left(X^{p}\right)$, where G acts on X^{p} by cyclic permutations. Then we have the external Steenrod p-th power operation

$$
P: H^{q}(X) \longrightarrow H_{G}^{p q}\left(X^{p}\right)
$$

which is related to the Steenrod square $S q^{i}$ if $p=2$, and to the reduced p-th power \mathscr{S}^{i} and the Bockstein operation β^{*} if $p \neq 2$ as follows ([15]):
(4.7) $d^{*} P(\alpha)$

$$
=\left\{\begin{array}{l}
\sum_{i=0}^{|\alpha|} \omega_{|\alpha|-i} \times S^{i} \alpha \\
h_{q} \sum_{i=0}^{[|\alpha| / 2]}(-1)^{i}\left(\omega_{(|\alpha|-2 i)(p-1)} \times \mathscr{S}^{i} \alpha-\omega_{(|\alpha|-2 i)\langle p-1)-1} \times \beta^{*} \mathscr{S}^{i} \alpha\right) \text { if } p \neq 2,
\end{array}\right.
$$

where $d^{*}: H_{G}^{*}\left(X^{p}\right) \longrightarrow H_{G}^{*}(X)=H^{*}(B G \times X)$ is induced by the diagonal map, and

$$
h_{q}=\left\{\begin{array}{l}
(-1)^{q / 2} \text { if } q \text { is even, } \tag{4.8}\\
(-1)^{(q-1) / 2}((p-1) / 2)!\text { if } q \text { is odd. }
\end{array}\right.
$$

P is natural, and it satisfies also

$$
\begin{equation*}
\pi^{*} P(\alpha)=\alpha^{p} \tag{4.9}
\end{equation*}
$$

for the canonical homomorphism $\pi^{*}: H_{G}^{*}\left(X^{p}\right) \longrightarrow H^{*}\left(X^{p}\right)$.

Lemma 4.2. Let M be a G-manifold, and let $\alpha \in H^{*}(M)$ satisfy $i^{*}(\alpha)=0$ for $i^{*}: H^{*}(M) \longrightarrow H^{*}\left(M^{G}\right)$. Then $\Delta^{*} P(\alpha)$ is in the image of $j^{*}: H_{G}^{*}\left(M, M^{G}\right) \longrightarrow$ $H_{G}^{*}(M)$ induced by the inclusion.

Proof. Consider a diagram

in which the rectangle is commutative and the lower sequence is exact. Then it follows from (4.7) that $i^{*} \Delta^{*} P(\alpha)=(i d \times i) * d * P(\alpha)=0$. Therefore $\Delta^{*} P(\alpha) \in \operatorname{Imj}{ }^{*}$.

Proof of Proposition 2.1. We may assume that the action is non-trivial and $|\alpha|=m / p$. Consider a commutative diagram

By Lemmas 4.1 and 4.2, we see

$$
\pi^{*} \Delta^{*} P(\alpha) \in \operatorname{Im} \sigma^{*}
$$

Since $\sigma^{*} H^{m}(M)=0$ and

$$
\pi^{*} \Delta^{*} P(\alpha)=\Delta^{*}\left(\alpha^{p}\right)=\alpha\left(T^{*} \alpha\right) \cdots\left(T^{p-1 * \alpha}\right)
$$

by (4.9), the proof completes.
The following theorem is due to Steenrod [15] (see also [12]).
Theorem 4.3. Let X be a compact space, and $\left\{\alpha_{i}\right\}_{i e l}$ be a homogeneous basis of $H^{*}(X)$. Then the totality of elements

$$
\begin{aligned}
& \omega_{j} P\left(\alpha_{i}\right) \quad(i \in I, j \geqq 0), \\
& \pi_{1}\left(\alpha_{i_{1}} \times \cdots \times \alpha_{i_{p}}\right) \quad\left(\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)\right)
\end{aligned}
$$

is a homogeneous basis of $H_{G}^{*}\left(X^{p}\right)$.
The following is due to Thom [16] (see also [1], [11], [17]).

Theorem 4.4. Let X be a compact space, and $\left\{\alpha_{i}\right\}_{i \in I}$ be a homogeneous basis of $H^{*}(X)$. Then the totality of elements

$$
\begin{aligned}
& \delta^{*}\left(\omega_{j} \times \alpha_{i}\right) \quad\left(i \in I, 0 \leqq j<(p-1)\left|\alpha_{i}\right|\right), \\
& \pi!\left(\alpha_{i_{1}} \times \cdots \times \alpha_{i_{p}}\right) \quad\left(\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)\right)
\end{aligned}
$$

is a homogeneous basis of $H_{G}^{*}\left(X^{p}, d X\right)$, where $\delta^{*}: H^{*}(B G \times X)=H_{G}^{*}(d X) \longrightarrow$ $H_{G}^{*}\left(X^{p}, d X\right)$ is the coboundary homomorphism. Furthermore we have

$$
\pi!(\alpha \times \alpha)=\sum_{i=0}^{|\alpha|-1} \delta^{*}\left(\omega_{|\alpha|-i-1} \times S q^{i} \alpha\right)
$$

if $p=2$, and

$$
\pi_{i}(\alpha \times \cdots \times \alpha)=\sum_{i=0}^{[\mid \alpha \alpha / 2]} \varepsilon_{i} \delta *\left(\omega_{(p-1)(|\alpha|-2 i)-1} \times \mathscr{S}^{i} \alpha\right)
$$

with some $\varepsilon_{i} \not \equiv 0 \bmod p$ if $p \neq 2$.
Remark. Theorems 4.3 and 4.4 are proved in the literatures for a compact polyhedron. However we can extend them to compact spaces by the device seen in [2].

5. Proof of Theorem A.

The equivariant diagonal cohomology class \hat{U}_{M}^{\prime} in case the action on M is trivial has been studied by Haefliger. By Theorem 3.2 in his paper [6] and

$$
\begin{equation*}
\pi^{*}\left(\hat{U}^{\prime}\right)=\Delta_{!}(1) \tag{5.1}
\end{equation*}
$$

we have the following (see the proof of Theorem 9.1 in [13]).
Proposition 5.1. If the action on M is trivial, then

$$
\hat{U}_{M}^{\prime}=\sum_{k=0}^{[m / 2]} \omega_{m-2 k} P\left(V_{k}\right)+\sum_{i<j}\left(c_{i j}-c_{i i} c_{j j}\right) \pi_{!}\left(\alpha_{i} \times \alpha_{j}\right)
$$

if $p=2$, and

$$
\begin{aligned}
\hat{U}_{M}^{\prime}= & h_{m} \sum_{k=0}^{\left[m / 2 p_{]}\right.}(-1)^{k} \omega_{(p-1)(m-2 k p)} P\left(V_{k}\right) \\
& +{ }_{\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)}\left(c_{i_{1} \cdots i_{p}}-c_{i_{1} \cdots i_{1}} \cdots c_{\left.i_{p} \cdots i_{p}\right)}\right) \pi_{!}\left(\alpha_{i_{1}} \times \cdots \times \alpha_{i_{p}}\right)
\end{aligned}
$$

if $p \neq 2$, where $\left\{\alpha_{i}\right\}_{i \in I}$ is a homogeneous basis of $H^{*}(M), c_{i_{1}}, \cdots, i_{p}, h_{m}$ are those in (2.2), (4.8), and $V_{k} \in H^{*}(M)$ are the Wu classes given by

$$
\left\langle V_{k} \cdot \alpha,[M]\right\rangle=\left\{\begin{array}{lll}
\left\langle S^{k} \alpha,[M]\right\rangle & \text { if } & p=2, \\
\left\langle\mathscr{S}^{k} \alpha,[M]\right\rangle & \text { if } & p \neq 2 .
\end{array}\right.
$$

We shall next prove
Propostrion 5.2. If the action on M is free and $\omega_{m} \in H^{*}(M / G)$ is not zero, it holds

$$
\omega_{m} \hat{U}_{M}^{\prime \prime}=\delta^{*}\left(\omega_{(p-1) m-1} \times \mu\right),
$$

where μ is a generator of $H^{m}(M)$.
Proof. Let V be an equivariant open neighbourhood of $d M$ in M^{p}, and put

$$
W=M^{p}-\Delta M-d M, \quad C=M^{p}-\Delta M-V .
$$

Then C / G is a closed connected and non-compact subset of W / G, and hence we have $H^{m p}(W / G, W / G-C / G)=0$ (see p. 260 of [4]). Therefore it follows that

$$
H_{G}^{m p}\left(M^{p}-\Delta M, V\right) \cong H_{G}^{m p}(W, W-C) \cong H^{m p}(W / G, W / G-C / G)=0 .
$$

This shows that $i^{*}: H_{G}^{m p}\left(M^{p}, M^{p}-\Delta M\right) \longrightarrow H_{G}^{m p}\left(M^{p}, d M\right)$ is onto, and so is

$$
i^{*} \circ \theta: H_{G}^{m}(\Delta M) \longrightarrow H_{G}^{m p}\left(M^{p}, d M\right) .
$$

It follows from Lemma 4.1 and the assumptions that $H_{G: ~}^{m}(\Delta M) \cong \boldsymbol{Z}_{p}$ is generated by ω_{m}. By Theorem 4.4, $H_{G}^{m p}\left(M^{p}, d M\right) \cong \boldsymbol{Z}_{p}$ is generated by $\delta^{*}\left(\omega_{(p-1) m} \times \mu\right)$. Since $i^{*} \circ \theta$ is a homomorphism of $H^{*}(B G)$-modules and it sends 1 to $\hat{U}_{M}^{\prime \prime}$, we have the desired result.

We shall now give
Proof of Theorem A. By the assumption ii) and Proposition 5.2, it holds

$$
\omega_{n} \hat{U}_{N}^{\prime \prime}=\delta^{*}\left(\omega_{(p-1) n-1} \times \nu\right),
$$

where ν is a generator of $H^{n}(N)$. Therefore we have

$$
\omega_{n}\left(g^{p *} \hat{U}_{N}^{\prime \prime}\right)=\delta^{*}\left(\omega_{(p-1) n-1} \times g^{*} \nu\right)
$$

and this is not zero by the assumption v) and Theorem 4.4. Since $n \geqq(p-1) m$ by the assumption iii), it holds

$$
\omega_{(p-1) m}\left(g^{p *} \hat{U}_{N}^{\prime \prime}\right) \neq 0 .
$$

On the other hand, it follows from the assumptions i), iv) and Proposition 5.1 that

$$
f^{p *}\left(\hat{U}_{M}^{\prime}\right)=h_{m} \omega_{(p-1) m}
$$

with $h_{m} \neq 0 \bmod p$. Consequently we have

$$
f^{p *}\left(\hat{U}_{M}^{\prime}\right) \cdot g^{p *}\left(\hat{U}_{N}^{\prime \prime}\right)=h_{m} \omega_{(p-1) m} g^{p *}\left(\hat{U}_{N}^{\prime \prime}\right) \neq 0,
$$

which completes the proof by Proposition 3.3.

6. Proof of Theorem B and an example.

The following proposition has been proved in [13] if $p=2$. By the similar method we shall prove it for any p.

Proposition 6.1. If $i^{*}: H^{q}(M) \longrightarrow H^{q}\left(M^{G}\right)$ is trivial for $q \geqq m / p$, then we have

$$
\begin{aligned}
& \hat{U}_{M}^{\prime}=\sum_{\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)} c_{i_{1} \cdots i_{p} \pi_{1}\left(\alpha_{i_{1}} \times \cdots \times \alpha_{i_{p}}\right),} \\
& c_{i \cdots i}=0 \quad(i \in I),
\end{aligned}
$$

where $\left\{\alpha_{i}\right\}_{i \in I}$ is a homogeneous basis of $H^{*}(M)$, and $c_{i_{1} \cdots i_{p}}$ are those in (2.2).
Before we proceed to proof we make some preparations.
The equivariant homology group $H G_{*}\left(X^{p}\right)=H_{*}\left(E G \times X^{p}\right)$ is canonically identified with $H_{*}\left(G ; H_{*}(X)^{p}\right)$, the homology group of the group G with coefficients in $H_{*}(X)^{p}=H_{*}(X) \otimes \cdots \otimes H_{*}(X)$ on which G acts by cyclic permutations. Taking the standard G-free acyclic complex W, we have an element of $H_{*}\left(G ; H_{*}(X)^{p}\right)$ represented by $w_{k} \otimes a \otimes \cdots \otimes a$, where $w_{k} \in W$ is the basis of degree k and $a \in H_{*}(X)$. The corresponding element in $H_{*}^{G}\left(X^{p}\right)$ will be denoted by $P_{k}(a)$.

Lemma 6.2. Suppose that $i^{*}: H^{q}(M) \longrightarrow H^{q}\left(M^{G}\right)$ is trivial for $q \geqq m / p$. Then, for any $k \geqq 0$ and for any $\alpha \in H^{*}(M)$, we have

$$
\left\langle\omega_{1} \hat{U}_{M}^{\prime}, P_{k+1}(\alpha \frown[M])\right\rangle=0
$$

if $p=2$, and

$$
\begin{aligned}
& \left\langle\hat{U}_{M}^{\prime}, P_{2 k+1}(\alpha \frown[M])\right\rangle=0, \\
& \left\langle\omega_{1} \hat{U}_{M}^{\prime}, P_{2 k+1}(\alpha \frown[M])\right\rangle=0
\end{aligned}
$$

if $p \neq 2$.
Proof. Similarly to Lemma 4.4 in [13], the result for $p \neq 2$ is proved as follows.

It follows that $P_{2 k+1}([M])$ is in the image of

$$
i_{k *}: H_{2 k+1+p m}\left(S_{G}^{2 k+1} \times M^{p}\right) \longrightarrow H_{2 k+1+p m}^{G}\left(M^{p}\right)
$$

induced by the inclusion, and that $i_{k}^{*}\left(\hat{U}_{M}^{\prime}\right)$ is the image of 1 under the homomorphism

$$
\underset{G}{(\mathrm{id} \times \Delta)!}: H^{*}\left(S_{G}^{2 k+1} \times M\right) \longrightarrow H^{*}\left(S_{G}^{2 k+1} \times M^{p}\right) .
$$

From these facts we see that $\hat{U}_{M}^{\prime} \frown P_{2 k+1}([M])$ is in the image of

$$
H_{2 k+1+m}\left(S^{2 k+1} \times M\right) \xrightarrow{i_{k *}} H_{2 k+1+m}^{G}(M) \xrightarrow{\Delta_{*}} H_{2 k+1+m}^{G}\left(M^{p}\right) .
$$

Therefore it follows that

$$
\begin{aligned}
& \left\langle\hat{U}_{M}^{\prime}, P_{2 k+1}(\alpha \frown[M])\right\rangle=\left\langle\hat{U}_{M}^{\prime}, P(\alpha) \frown P_{2 k+1}([M])\right\rangle \\
= & \left\langle P(\alpha), \hat{U}_{M}^{\prime} \frown P_{2 k+1}([M])\right\rangle=\varepsilon_{k}\left\langle P(\alpha), \Delta_{*} i_{k *}\left[S^{2 k+1} \times M\right]\right\rangle \\
= & \varepsilon_{k}\left\langle\Delta * P(\alpha), i_{k *}\left[S^{2 k+1} \times M\right]\right\rangle \quad\left(\varepsilon_{k} \in \boldsymbol{Z}_{p}\right),
\end{aligned}
$$

and similarly

$$
\left\langle\omega_{1} \hat{U}_{M}^{\prime}, P_{2 k+1}(\alpha \frown[M])\right\rangle=\varepsilon_{k}\left\langle\omega_{1} \Delta * P(\alpha), i_{k *}\left[S^{2 k+1} \times M\right]\right\rangle .
$$

To prove the desired two equalities, we may suppose $p|\alpha| \geqq m+1$ in the first, and $p|\alpha| \geqq m$ in the second. Consequently it suffices to prove that

$$
\begin{aligned}
& \Delta^{*} P(\alpha)=0 \quad \text { if } \quad p|\alpha| \geqq m+1, \\
& \omega_{1} \Delta^{*} P(\alpha)=0 \quad \text { if } \quad p|\alpha| \geqq m .
\end{aligned}
$$

By Lemma 4.2 $\Delta^{*} P(\alpha)$ and $\omega_{1} \Delta^{*} P(\alpha)$ are in the image of $j^{*}: H_{G}^{*}\left(M, M^{G}\right) \longrightarrow$ $H_{G}^{*}(M)$, and the Smith cohomology exact sequence implies $H_{G}^{q}\left(M, M^{G}\right)=0(q>m)$. Therefore we have the desired results, and the proof completes.

Proof of Proposition 6.1. In virtue of Theorem 4.3 it can be written uniquely that

$$
\hat{U}_{M}^{\prime}=\sum_{i, j}^{\prime} \xi_{i j} \omega_{j} P\left(\alpha_{i}\right)+\sum_{\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)} \eta_{i_{1} \cdots i_{p} \pi_{!}}\left(\alpha_{i_{1}} \times \cdots \times \alpha_{i_{p}}\right)
$$

with some $\xi_{i j}, \eta_{i_{1} \cdots i_{p}} \in \boldsymbol{Z}_{p}$. Since it is easily seen that

$$
\begin{aligned}
& \operatorname{Im} \pi_{!} \frown P_{k}(a)=0, \\
& \left\langle\omega_{j} P(\alpha), P_{k}(a)\right\rangle=\delta_{j k}\langle\alpha, a\rangle
\end{aligned}
$$

($\alpha \in H^{*}(M), a \in H_{*}(M)$), it follows from Lemma 6.2 that $\xi_{i j}=0$. We see from (5.1) that $\eta_{i_{1} \cdots i_{p}}=c_{i_{1} \cdots i_{p}}$ if $\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)$ and $c_{i \cdots i}=0$ for any $i \in I$. This completes the proof.

Remark 1. Working in the smooth category, Hattori [7] has given formulae for \hat{U}_{M}^{\prime} with no assumption on M^{G}.

The following is immediate from Proposition 6.1 and Theorem 4.5.
Proposition 6.3. If the action on M is free, then it can be written uniquely that

$$
\begin{aligned}
\hat{U}_{M}^{\prime \prime}= & \sum_{\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)} c_{i_{1} \cdots i_{p}} \pi_{!}\left(\alpha_{i_{1}} \times \cdots \times \alpha_{i_{p}}\right) \\
& +\sum_{\left|\alpha_{i}\right| \geq m-m / p} \varepsilon_{i} \delta^{*}\left(\omega_{(p-1) m-\left|\alpha_{i}\right|-1} \times \alpha_{i}\right)
\end{aligned}
$$

with some $\varepsilon_{i} \in \boldsymbol{Z}_{p}$.
Remark 2. The author does not know how to determine ε_{i} in the above. If M is a $\bmod p$ homology sphere, it follows from Propositions 5.2 and 6.3 that

$$
\hat{U}_{M}^{\prime \prime}=\left\{\begin{array}{l}
\pi!(1 \times \mu) \quad \text { if } \quad p=2, \\
\pi!(1 \times \mu \times \cdots \times \mu)+\varepsilon \delta *\left(\omega_{(p-2) m-1} \times \mu\right)
\end{array} \text { if } p \neq 2,\right.
$$

where $\varepsilon \not \equiv 0 \bmod p$, and $\mu \in H^{m}(M)$ is a generator such that $\langle\mu,[M]\rangle=1$.
We shall now give
Proof of Theorem B. By the assumption i) and Proposition 6.1 we have

$$
f^{p * \hat{U}_{M}^{\prime}=\pi_{1} f^{* p}\left(\sum_{\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{\mathrm{o}}^{\prime}\right)} c_{i_{1} \cdots i_{p}} \alpha_{i_{\mathrm{s}}} \times \cdots \times \alpha_{i_{p}}\right), ~, ~, ~}
$$

and by the assumption ii) and Proposition 6.3 we have

$$
\begin{aligned}
g^{p *} \hat{U}_{N}^{\prime \prime}= & \pi_{!}^{\prime} g^{* p}\left(\sum_{\left(j_{1}, \cdots, j_{p}\right) \in R\left(J_{0}^{p}\right)} d_{j_{1} \cdots j_{p}} \beta_{j_{1}} \times \cdots \times \beta_{j_{p}}\right) \\
& +\sum_{\left|\beta_{j}\right| \geq n-n^{\prime} p} \varepsilon_{j} \delta^{*}\left(\omega_{(p-) n-\mid \beta_{j \mid-1}} \times g^{*} \beta_{j}\right) .
\end{aligned}
$$

It follows from (5.1) and Proposition 6.1 that

$$
\begin{aligned}
& \boldsymbol{\sigma}^{*}{ }_{\left(i_{1}, \cdots, i_{p}\right) \in R\left(\left(_{0}^{p}\right)\right.} c_{i_{1} \cdots i_{p}} \alpha_{i_{1}} \times \cdots \times \alpha_{i_{p}}=\Delta_{!}(1), \\
& \boldsymbol{\sigma}^{*}{ }_{\left(j_{1}, \cdots, j_{p}\right) \in R\left(J_{0}^{p}\right)} d_{j_{1}, \cdots, j_{p}} \beta_{j_{1}} \times \cdots \times \beta_{j_{p}}=\Delta_{!}(1) .
\end{aligned}
$$

Thus, by (4.4), (4.5) and the assumption ii), we have

$$
\begin{aligned}
& \left(f^{p} \hat{U}_{M}^{\prime}\right) \cdot\left(g^{p *} \hat{U}_{N}^{\prime \prime}\right) \\
= & \pi_{!}^{\prime}\left(f_{\left(i_{1}, \cdots, i_{p}\right) \in R\left(I_{0}^{p}\right)} i_{i_{1} \cdots i_{p}} \alpha_{i_{1}} \times \cdots \times \alpha_{2_{p}}\right)\left(g^{* p} \Delta_{!}(1)\right) \\
= & \pi_{!}^{\prime}\left(f^{* p} \Delta_{!}(1)\right)\left(g_{\left(j_{1}, \cdots, j_{p}\right) \in R\left(j_{0}^{p}\right)} d_{j_{1}, \cdots, j_{p}} \beta_{j_{1}} \times \cdots \times \beta_{j_{p}}\right)
\end{aligned}
$$

in $H_{G}^{p l}\left(L^{p}, d L\right)$.
It follows from Theorem 4.4 that $H_{G}^{p l}\left(L^{p}, d L\right) \cong \boldsymbol{Z}_{p}$ is generated by $\delta^{*}\left(\omega_{\left(p_{-1}\right) l-1} \times\right.$ ρ) or $\pi_{!}(\rho \times \cdots \times \rho)$, where $\rho \in H^{l}(L)$ is a generator such that $\langle\rho,[L]\rangle=1$.

Consequently we have

$$
\begin{aligned}
\left(f^{p *} \hat{U}_{M}^{\prime}\right)\left(g^{p *} \hat{U}_{N}^{\prime \prime}\right) & =\lambda(f, g) \pi i(\rho \times \cdots \times \rho) \\
& =\lambda^{\prime}(f, g) \pi_{i}(\rho \times \cdots \times \rho),
\end{aligned}
$$

which completes the proof by Proposition 3.3.
Theorem B for $p=2$, particularly corollary 3 in $\S 2$, has interesting applications as is seen in [13]. The author does not know so interesting applications of Theorems B for $p \neq 2$. However there is the following example for which Theorem B for $p=$ 3 is applicable.

Let $n=1,3$ or 7 , and take in Theorem B

$$
L=S^{n} \times S^{n}, \quad M=S^{n} \times S^{n}, \quad N=S^{n},
$$

where the action on N is any free G-action, and action on M is given as follows:

$$
T(x, y)=\left(y, y^{-1} x^{-1}\right),
$$

x, y being complex numbers, quaternions or Cayley numbers according as $n=1,3$ or 7. It follows that the fixed point set of M is homeomorphic to $S^{n-1}+$ point. Thus the assumptions i), ii), iii) in Theorem B are satisfied.

Let $\nu \in H^{n}\left(S^{n}\right)$ denote a generator, and put $\nu_{1}=\nu \times 1, \nu_{2}=1 \times \nu \in H^{n}\left(S^{n} \times S^{n}\right)$. Then, by Remark 3 in $\S 2$, it can be seen that

$$
\Delta_{!}(1)=\sigma^{*}\left(1 \times \nu_{1} \nu_{2} \times \nu_{1} \nu_{2}-\nu_{1} \times \nu_{1} \times \nu_{1} \nu_{2}-\nu_{2} \times \nu_{2} \times \nu_{1} \nu_{2}-\nu_{2} \times \nu_{1} \times \nu_{1} \nu_{2}\right)
$$

for the homomorphism $\Delta_{1}: H^{*}(M) \longrightarrow H^{*}\left(M^{3}\right)$, and

$$
\Delta_{!}(1)=\sigma^{*}(1 \times \nu \times \nu)
$$

for the homomorphism $\Delta_{\mathrm{I}}: H^{*}(N) \longrightarrow H^{*}\left(N^{3}\right)$. Therefore, if continuous maps $f: L \longrightarrow M, g: L \longrightarrow N$ satisfy

$$
f^{*}\left(\nu_{i}\right)=a_{i 1} \nu_{1}+a_{i 2} \nu_{2}, \quad g^{*}(\nu)=b_{1} \nu_{1}+b_{2} \nu_{2}
$$

($a_{i j}, b_{i} \in \boldsymbol{Z}_{3}$), simple calculation shows

$$
\lambda(f, g)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|\left(\left|\begin{array}{cc}
a_{11} & a_{12} \\
b_{1} & b_{2}
\end{array}\right|-\left|\begin{array}{ll}
a_{21} & a_{22} \\
b_{1} & b_{2}
\end{array}\right|\right)
$$

This yields by Theorem B the following
Theorem 6.4. Let $n=1,3$ or 7 , and let $f_{1}, f_{2}, g: S^{n} \times S^{n} \longrightarrow S^{n}$ be continuous maps of type $\left(a_{11}, a_{12}\right),\left(a_{21}, a_{22}\right),\left(b_{1}, b_{2}\right)$ respectively. Let $T: S^{n} \longrightarrow S^{n}$ be a homomorphism of period 3 without fixed points. Then, if

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|\left(\left|\begin{array}{ll}
a_{11} & a_{12} \\
b_{1} & b_{2}
\end{array}\right|-\left|\begin{array}{ll}
a_{21} & a_{22} \\
b_{1} & b_{2}
\end{array}\right|\right) \not \equiv 0 \bmod 3,
$$

there exist $x, y, z \in S^{n} \times S^{n}$ such that

$$
\left(f_{2}(x), f_{2}(y), f_{2}(z)\right)=\left(f_{1}(y), f_{1}(z), f_{1}(x)\right)
$$

$$
\begin{aligned}
& (T g(x), T g(y), T g(z))=(g(y), g(z), g(x)), \\
& f_{1}(x) f_{1}(y) f_{1}(z)=1
\end{aligned}
$$

In particular, taking $f_{i}=$ projection to the i-th factor, we have
Corollary. If $b_{1}+b_{2} \not \equiv 0$ then there exist $x, y, z \in S^{n}$ such that

$$
T g(x, y)=g(y, z), T g(y, z)=g(z, x), x y z=1
$$

where n, g and T are those in Theorem 6.4.

References

[1] Aeppli, A., Akiyama, Y.: Cohomology operations in Smith theory. Ann. Scuola Norm. Sup. Pisa. 24, 741-833 (1970).
[2] Bredon, G.: Introduction to Compact Transformation Group. New York-London: Academic Press 1972.
[3] Conner, P., Floyd, E.: Differentiable Periodic Maps. Berlin-Heidelberg-New York: Springer 1964.
[4] Dold, A.: Lectures on Algebraic Topology. Berlin-Heidelberg-New York: Springer 1972.
[5] Fenn, R.: Some generalizations of the Borsuk-Ulam theorem and applications to realizing homotopy classes by embedded spheres. Proc. Cambridge Philos. Soc. 74, 251-256 (1973).
[6] Haefliger, A.: Points multiples d'une application et produit cyclique reduit. Amer. J. Math. 83, 57-70 (1961).
[7] Hattori, A.: The fixed point set of a smooth periodic transformation I. J. Fac. Sci., Univ. Tokyo. 24, 137-165 (1977).
[8] Lusk, E.: The mod p Smith index and a generalized Borsuk-Ulam theorem. Michigan Math. J. 22, 151-160 (1975).
[9] Milnor, J.: Groups which act on S^{n} without fixed points. Amer. J. Math. 79, 623-630 (1957).
[10] Munkholm, H.: Borsuk-Ulam type theorems for proper \boldsymbol{Z}_{p}-actions on (mod p homology) n-spheres. Math. Scand. 24, 169-185 (1969).
[11] Nakaoka, M.: Cohomology theory of a complex with a transformation of prime period and its applications. J. Inst. Polyt., Osaka City Univ. 7, 51-102 (1956)
[12] Nakaoka, M.: Generalization of Borsuk-Ulam theorem. Osaka J. 7, 423-441 (1970).
[13] Nakaoka, M.: Equivariant [point theorems for involutions. Jap. J. Math. 4, 263-298 (1978).
[14] Spanier, E.: Algebraic Topology. New York: McGraw-Hill 1966.
[15] Steenrod, N. Epstein, D.: Cohomology Operations. Ann. of Math. Studies 50. Princeton: Univ. Press 1962.
[16] Thom, R.: Une théorie intrinséque des puissances de Steenrod. Colloque de Topologie de Strasbourg 1951.
[17] Wu, W.T.: A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space. Peking: Science Press 1965.

M. Nakaoka
Department of Mathematics
Osaka University
Toyonaka 560 Japan

