Nakaoka, M. Osaka J. Math. 21 (1984), 809-815

EQUIVARIANT POINT THEOREMS FOR FIBRE-PRESERVING MAPS

MINORU NAKAOKA

(Received December 9, 1983)

1 Introduction

Let $p: X \to B$ and $p': X' \to B'$ be local trivial fibre spaces with fibre-preserving involutions $T: X \to X$ and $T': X' \to X'$ respectively, and let $f: X \to X'$ be a fibre-preserving map. Denote by A_f the set of equivariant points of f:

$$A_f = \{x \in X; fT(x) = T'f(x)\},\$$

and by \bar{A}_f its orbit space under T. In this paper we shall study $H^*(\bar{A}_f)$ in connection with $H^*(B)$, where H^* is the Čech cohomology with coefficients in Z_2 . Two theorems will be proved by making use of the technique of establishing a transfer homomorphism, which was initiated by Becker and Gottlieb ([1], [2])

In case $p: X \to B$ is an *m*-sphere bundle with the antipodal involution and $p': X' \to B$ is an \mathbb{R}^n -bundle with the trivial involution, Jaworowski gave in [4], [5] the following theorem which is a "continuous" version of the Borsuk-Ulam theorem: If $k=m-n\geq 0$ and the all the Stiefel-Whitney classes of $p': X' \to B$ are zero then the composition

$$H^{i}(B) \xrightarrow{\bar{P}^{*}} H^{i}(\bar{A}_{f}) \xrightarrow{\smile \omega(A_{f})^{k}} H^{i+k}(\bar{A}_{f})$$

is injective for every *i*, where $\bar{p}: \bar{A}_f \rightarrow B$ is induced by $p|A_f$, and $\omega(A_f)$ is the characteristic class of the double covering $A_f \rightarrow \bar{A}_f$. It is seen in this paper that the assumption on the Stiefel-Whitney classes is superfluous in the theorem of Jaworowski.

Throughout this paper we use the Čech cohomology with coefficients in Z_2 .

2 Equivariant fundamental cohomology class

Let $M \to X \xrightarrow{p} B$ be a local trivial fibre space such that both the fibre M and the base B are manifolds without boundary. Suppose that there is given a fibre-preserving involution $T: X \to X$, that is, an involution satisfying pT=T.

M. NAKAOKA

We take the fibre square $X \underset{B}{\times} X$ of the map $p: X \to B$, and define an involution on it by permutation of factors. Then there is an equivariant imbedding $\Delta: X \to X \underset{B}{\times} X$ defined by $\Delta(x) = (x, Tx)$. Consider now the normal bundle of $\Delta X \subset X \underset{B}{\times} X$ in which the total space E is regarded as an invariant tubular neighborhood of ΔX in $X \underset{B}{\times} X$. Then we have an R^m -bundle $\pi: E \to \Delta X$ with involution, where $m = \dim M$. Let S^{∞} be the infinite dimensional sphere with the antipodal involution, and consider the orbit spaces $S^{\infty} \times E$ and $S^{\infty} \times (\Delta X)$ under the diagonal action. Then we have an R^m -bundle $1 \times \pi: S^{\infty} \times E - S^{\infty} \times (\Delta X)$, so that the Thom class $U(1 \times \pi) \in H^m(S^{\infty} \times E, S^{\infty} \times E - S^{\infty} \times (\Delta X)) = H^m_{Z_2}(E,$ $E - \Delta X)$. We define $\hat{U}(p) \in H^m_{Z_2}(X \times X, X \times X - \Delta X)$ to be the element corresponding to $U(1 \times \pi)$ under the excision isomorphism, and call it the equivariant fundamental cohomology class of $p: X \to B$. The restriction $\hat{U}(p) | X \times X_B$ $\in H^m_{Z_2}(X \times X)$ is denoted by $\hat{U}'(p)$ and is called the equivariant diagonal cohomology class of p. If B is a single point, then $\hat{U}(p) \in H^m_{Z_2}(M \times M, M \times M - \Delta M)$ and $\Delta(p) \in H^m_{Z_2}(M \times M)$ are denoted by $\hat{U}(M)$ and $\hat{U}'(M)$ respectively. If M is a closed manifold, we have $\hat{U}'(M) = \Delta_1(1)$ for the Gysin homomorphism $\Delta_1: H^*_{Z_2}(M) \to H^*_{Z_2}(M \times M)$.

Put $M_b = p^{-1}(b)$ for $b \in B$. Then the restriction of the normal bundle $\pi: E \to \Delta X$ on ΔM_b may be regarded as the normal bundle of $\Delta(M_b) \subset M_b \times M_b$. Therefore it follows that

$$\hat{U}(p)|(M_b imes M_b, M_b imes M_b - \Delta M_b) = \hat{U}(M_b),$$

so that

$$\hat{U}'(p)|(M_b \times M_b) = \hat{U}'(M_b).$$

In some cases, the equivariant diagonal cohomology class U'(M) of a closed manifold M with an involution T is expressed in terms of cohomology of M. Let $\{\alpha_1, \alpha_2, \dots, \alpha_s\}$ be a homogeneous basis of $H^*(M)$, and let $C=(c_{ij})$ be the inverse of the matrix $Y=(y_{ij})$ with $y_{ij}=\langle \alpha_i \smile T^*\alpha_j, [M] \rangle$. Let $\pi_1: H^*(M \times M)$ $\rightarrow H^*_{2_2}(M \times M)$ denote the transfer homomorphism for the covering $S^{\infty} \times (M \times M)$ $\rightarrow S^{\infty}_{2_2} \times (M \times M)$. We have

Proposition 1. (i) If T is trivial, then

$$\hat{U}'(M) = \sum_{i=0}^{\lfloor m/2 \rfloor} q^* \omega^{m-2i} \smile P_0(V_i) + \sum_{i < j} (c_{ij} + c_{ii}c_{jj}) \pi_1(\alpha_i \times \alpha_j),$$

where $q: S^{\infty}_{Z_2} \times (M \times M) \to S^{\infty}/Z_2$ is the projection, $\omega \in H^1(S^{\infty}/Z_2)$ is the generator,

(ii) If T is free, then

$$\hat{U}'(M) = \sum_{i < j} c_{ij} \pi_1(\alpha_i \times \alpha_j)$$
 (See [7], [8]).

3 Equivariant point theorem of Borsuk-Ulam type

For any space X with a free involution, we denote by \overline{X} the orbit space of X under the involution, and by $\omega(X) \in H^1(\overline{X})$ the characteristic class of the double covering $X \to \overline{X}$.

Theorem 1. Let $M \to X \xrightarrow{p} B$ and $M' \to X' \xrightarrow{p'} B'$ be local trivial fibre spaces over ENR's (=Euclidean neighborhood retracts), where the fibre M is a closed *m*-manifold, and M' is a compact *n*-manifold with or without boundary. Let $f: X \to X'$ be a fibre-preserving map covering a map $g: B \to B'$, and let $f_b: M_b =$ $p^{-1}(b) \to M'_{g(b)} = p'^{-1}(g(b))$ ($b \in B$) denote the restriction of f. Suppose that X provides a fibre-preserving free involution T, and put $A_f = \{x \in X; f(x) = f(Tx)\}$. If $k=m-n \ge 0$ and, for some point b of each connected component of B,

 $\omega(M_b)^m \neq 0, \qquad f_b^* = 0: \tilde{H}^*(M'_{g(b)}) \to \tilde{H}^*(M_b),$

then the composition

$$H^{i}(B) \xrightarrow{\bar{p}^{*}} H^{i}(\bar{A}_{f}) \xrightarrow{\smile \omega(A_{f})^{k}} H^{i+k}(\bar{A}_{f})$$

is injective for every $i \ge 0$.

Proof. Case 1: B and B' are manifolds without boundary, and M' is a closed manifold.

By the continuity property of Čech cohomology, it suffices to prove that, for any invariant neighborhood V of A_f , the composition

$$\bar{p}_k: H^i(B) \xrightarrow{\bar{p}^*} H^i(\bar{V}) \xrightarrow{\smile \omega(V)^k} H^{i+k}(\bar{V})$$

is injective for every $i \ge 0$. To do this we shall establish a transfer homomorphism

$$\tau_k: H^{i+k}(\bar{V}) - H^i(B)$$

such that $\tau_k \circ \overline{p}_k = id$.

Regard X' as a space with involution by the trivial action. Then we have the equivariant fundamental cohomology class $\hat{U}(p') \in H^n_{Z_2}(X' \underset{B'}{\times} X', X' \underset{B'}{\times} X' - dX')$ of $p': X' \to B'$, where dX' is the diagonal. There is an equivariant map $\hat{f}: (X, X - A_f) \to (X' \underset{B'}{\times} X', X' \underset{B'}{\times} X' - dX')$ defined by $\hat{f}(x) = (f(x), f(x))$

Μ. ΝΑΚΑΟΚΑ

fT(x)). Consider $\hat{f}^*(\hat{U}(p')) \in H^n_{Z_2}(X, X-A_f) = H^n(\bar{X}, \bar{X}-\bar{A}_f)$, and define τ_k to be the composition

.

$$\begin{array}{c} H^{i+k}(\bar{V}) \xrightarrow{\smile l^* \bar{f}^*(\bar{U}(p'))} & H^{i+m}(\bar{V}, \ \bar{V} - \bar{A}_f) \\ \stackrel{l^*}{\leftarrow} & H^{i+m}(\bar{X}, \ \bar{X} - \bar{A}_f) \xrightarrow{\bar{f}^*} & H^{i+m}(\bar{X}) \xrightarrow{\bar{P}_1} & H^i(B) , \end{array}$$

where $l: (V, V - \bar{A}_f) \subset (\bar{X}, \bar{X} - \bar{A}_f), j: \bar{X} \subset (\bar{X}, \bar{X} - \bar{A}_f), \text{ and } \bar{p}_1 \text{ is the integration}$ along the fibre ([2]) for the fibre space $\bar{p}: \bar{X} \rightarrow B$. We shall show $\tau_k \circ \bar{p}_k = id$. For any $\beta \in H^i(B)$ we have

$$\begin{aligned} \tau_k \overline{p}_k(\beta) \\ &= \overline{p}_1 j^* l^{*^{-1}} (\overline{p}^*(\beta) \smile \omega(V)^k \smile l^* \widehat{f}^*(\widehat{U}(p'))) \\ &= \overline{p}_1 j^* (\overline{p}^*(\beta) \smile \omega(X)^k \smile \widehat{f}^*(\widehat{U}(p'))) \\ &= \overline{p}_1 (\overline{p}^*(\beta) \smile \omega(X)^k \smile \widehat{f}^*(\widehat{U}'(p'))) \\ &= \beta \smile \overline{p}_1(\omega(X)^k \smile \widehat{f}^*(\widehat{U}'(p'))) . \end{aligned}$$

Therefore it remains to prove

$$\overline{p}_{!}(\omega(X)^{k} \smile \widehat{f}^{*}(\widehat{U}'(p'))) = 1 .$$

We have a commutative diagram:

$$\begin{array}{ccc} H^*_{Z_2}(X' \underset{B'}{\times} X') \xrightarrow{\hat{f}^*} & H^*_{Z_2}(X) \xrightarrow{\tilde{p}_1} H^*(B) \\ \downarrow i^* & \downarrow i^* & \downarrow i^* \\ H^*_{Z_2}(M'_{g(b)} \times M'_{g(b)}) \xrightarrow{\hat{f}^*_b} & H^*_{Z_2}(M_b) \xrightarrow{\tilde{p}_1} H^*(b) \end{array}$$

where i are inclusions. Therefore we see

$$i^* \overline{p}_{\mathfrak{l}}(\omega(X)^k \smile \widehat{f}^*(\widehat{U}'(p'))) \\= \overline{p}_{\mathfrak{l}}(\omega(M_b)^k \smile \widehat{f}^*_b(\widehat{U}'(M'_b)))$$

.

From (i) of Proposition 1 and our assumption $f_b^*=0$, it follows that

$$\hat{f}^{m{st}}_{b}(\hat{U}'(M'_{b})) = \omega(M_{b})^{m{st}}$$
 .

Since $\omega(M_b)^m \neq 0$ we have $p_1(\omega M_b)^m = 1$. Thus it holds that

$$i^*
ot \! p_1(\omega(X)^k \!\!\! \smile \!\! \hat{f}^*(\hat{U}'(p'))) = 1$$

which shows the desired result.

Case 2: B and B' are manifolds without boundary, and M' is a compact manifold with boundary.

In this case X' is a manifold with boundary, and a local trivial fibre space

812

EQUIVARIANT POINT THEOREMS

$$DM' \to DX' \xrightarrow{\tilde{p}'} B'$$

is defined naturally, where DX' and DM' are the doubles of X' and M' respectively. Put $\tilde{f}=i\circ f$: $X \to DX'$ where i: $X' \subset DX'$. Obviously $A_{\tilde{f}}=A_f$. Therefore, by applying Case 1 to p, \tilde{p}' and \tilde{f} , we have the result.

Case 3: B and B' are ENR's, and M' is a compact manifold. There are continuous maps

$$B \xrightarrow{i} W \xrightarrow{r} B$$
, $B' \xrightarrow{i'} W' \xrightarrow{r'} B'$

such that $r \circ i = id$, $r' \circ i' = id$, where W and W' are open sets in Euclidean spaces. Let $q: Z \to W$ and $q': Z' \to W'$ be the induced fibre spaces of $p: X \to B$ and $p': X' \to B'$ under r and r' respectively. Define $\tilde{r}: Z \to X$, $\tilde{i}': X' \to Z'$ and $S: Z \to Z$ by

$$\tilde{r}(w, x) = x, \quad \tilde{i}'(x') = (i'p'(x'), x'),$$

 $S(w, x) = (w, T(x)), \quad (x \in X, x' \in X', w \in W).$

Then $h = \tilde{i}' \circ f \circ \tilde{r} \colon Z \to Z'$ is a fibre-preserving map, and S is a fibre-preserving free involution. We see $\tilde{r}(A_{\tilde{i}}) \subset A_f$. In a commutative diagram

$$\begin{array}{c} H^{i}(B) \xrightarrow{\overline{P}^{*}} H^{i}(\overline{A}_{f}) \xrightarrow{\smile \omega(A_{f})^{k}} H^{i+k}(\overline{A}_{f}) \\ \downarrow r^{*} & \downarrow \widetilde{r}^{*} \\ H^{i}(W) \xrightarrow{\overline{q}^{*}} H^{i}(\overline{A}_{h}) \xrightarrow{\smile \omega(A_{h})^{k}} H^{i+k}(\overline{A}_{h}) , \end{array}$$

 r^* is injective and the lower composition is injective by Cases 1 and 2. Therefore the upper composition is injective.

Corollary 1. Let $f: X \to X'$ be a fibre-preserving map of an m-sphere bundle $p: X \to B$ with the antipodal involution into an \mathbb{R}^n -bundle $p': X' \to B'$, where B and B' are ENR's. Then if $k=m-n\geq 0$ the composition

$$H^{i}(B) \xrightarrow{\bar{p}^{*}} H^{i}(\bar{A}_{f}) \xrightarrow{\smile \omega(A_{f})^{k}} H^{i+k}(\bar{A}_{f})$$

is injective for every i.

Proof. Taking one point compactification of each fibre, $p': X' \rightarrow B'$ may be regarded as a subbundle of an *n*-sphere bundle. Regard f as a fibre-preserving map between the sphere bundles, and apply Theorem 1. Then we get the corollary.

Corollary 2. Let $M \to X \xrightarrow{p} B$ be a local trivial fibre space with a fibrepreserving free involution, where B is a connected ENR, and M is a closed m-maniΜ. ΝΑΚΑΟΚΑ

fold. Then, if $\omega(M_b)^m \neq 0$ for some $b \in B$, the composition

$$H^{i}(B) \xrightarrow{\bar{P}^{*}} H^{i}(\bar{X}) \xrightarrow{\smile \omega(X)^{k}} H^{i+k}(\bar{X})$$

is injective for every $i \ge 0$ and $k=0, 1, \dots, m$.

Proof. Take the disc D^{m-k} , and regard a constant map $f: X \to D^{m-k}$ as a fibre-preserving map of $p: X \to B$ to $p': D^{m-k} \to pt$. Then $A_f = X$, and we get the result by Theorem 1.

4 Equivariant point theorem of Lefschetz type

We shall first recall from [7], [8] the definition of equivariant Lefschetz number $\hat{L}(f)$ for a continuous map $f: M \to N$, where M and N are closed *n*-manifolds with free involutions S and T respectively. There exists a homogeneous basis $\{\alpha_1, \dots, \alpha_r, \alpha'_1, \dots, \alpha'_r\}$ of $H^*(N)$ such that

$$\langle \alpha_i \smile T^* \alpha_i, [N] \rangle = 0, \langle \alpha'_i \smile T^* \alpha'_i, [N] \rangle = 0 \ \langle \alpha_i \smile T^* \alpha'_i, [N] \rangle = \delta_{ij},$$

where [N] is the fundamental homology class of N. Then the number

 $\sum_{i=1}^{r} \langle f^* \alpha_i \smile S^* f^* \alpha'_i, [M] \rangle \in \mathbb{Z}_2$

is independent of the choice of $\{\alpha_1, \dots, \alpha_r, \alpha'_1, \dots, \alpha'_r\}$. This number is $\hat{L}(f)$ by definition. If M=N, S=T and $f^*=id$, $\hat{L}(f)$ coincides with the mod 2 semi-characteristic $\hat{\chi}(M)$ of M.

Theorem 2. Let $M \to X \xrightarrow{p} B$ and $M' \to X' \xrightarrow{p'} B'$ be local trivial fibre spaces over ENR's such that the fibres are closed n-manifolds, and let $f: X \to X'$ be a fibrepreserving map. Suppose there are given fibre-preserving free involutions T: $X \to X$ and $T': X' \to X'$, and put $A_f = \{x \in X \mid fT(x) = T'f(x)\}$. If the equivariant Lefschetz number $\hat{L}(f_b)$ is not zero for some point b of each connected component of B, then

$$\overline{p}^*: H^*(B) \to H^*(\overline{A}_f)$$

is injective.

Proof. If we use (ii) of Proposition 1, Theorem 2 can be proved similarly to the proof of Theorem 1.

Corollary. Let $M \rightarrow X \rightarrow B$ be a local trivial fibre space with a fibre preserving free involution, where B is an ENR and M is a closed manifold. If the mod 2 semi-characteristic $\hat{\chi}(M) \neq 0$ then

$$\bar{p}^* \colon H^*(B) \to H^*(\bar{X})$$

814

is injective.

Proof. Take f=id in Theorem 2. This corollary can be applied to prove

Theorem 3 ([7], [8], [9]). If a closed manifold M admits a free action of $Z_2 \times X_2$, then $\hat{\chi}(M) = 0$.

Proof. Let T_1 and T_2 generate $G = Z_2 \times Z_2$. Take an *n*-sphere S^n for sufficiently large *n*, and consider the orbit space $X = S^n \times M$ of $S^n \times M$ under the diagonal action of the antipodal involution on S^n and the involution T_1 on M.

A fibre space $M \to X \xrightarrow{p} S^n/Z_2$ and a fibre-preserving free involution T on X are given by p(z, x) = x and $T(z, x) = (z, T_2(x))$, where $z \in S^n$ and $x \in M$. We have also a fibre bundle $S^n \to X \to M/Z_2$, so that $H^i(X) = 0$ if m < i < n, where $m = \dim M$. Therefore $\overline{p}: H^i(S^n/Z_2) \to H^i(\overline{X})$ is not injective if m < i < n. Thus $\hat{\chi}(M) = 0$ by the above corollary.

References

- [1] J.C. Becker and D.H. Gottlieb: Applications of the evaluation map and transfer map theorems, Math. Ann. 211 (1974), 277-288.
- [2] D.H. Gottlieb: Fibre bundles and the Euler characteristic, J. Differential Geometry 10 (1975), 39-48.
- [3] A. Haefliger: Points multiples d'une application et produit cyclique reduit, Amer. J. Math. 83 (1961), 57-70.
- [4] J. Jaworowski: A continuous version of Borsuk-Ulam theorem, Proc. Amer. Math. Soc. 82 (1981), 112–114.
- [5] J. Jaworowski: Fibre preserving maps of sphere bundles into vector space bundles, Fixed point theory symposium (Sherbrooke). Lect. Notes in Math. 886 (1981), 154-162.
- [6] M. Nakaoka: Generalizations of Borsuk-Ulam theorem, Osaka J. Math. 7 (1970), 433-441.
- [7] M. Nakaoka: Continuous maps of manifolds with involution I, II, Osaka J. Math. 11 (1974), 129–145, 147–162.
- [8] M. Nakaoka: Equivariant point theorems for involutions, Japan. J. Math. 4 (1978), 263-298.
- [9] R. Stong: Semi-characteristics and free group actions, Compositio Math. 29 (1974), 223-248.

Department of Mathematics Faculty of Science Osaka University Toyonaka, Osaka 560 Japan