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This is a report on the joint paper with Stefan Gille
(http://arxiv.org/abs/1007.3780).

All schemes/varieties are defined over the base field k .

By a scheme over a field k (k-scheme) we mean a reduced
separated Noetherian scheme over k .

By a variety over a field k (k-variety) we mean a quasi-projective
scheme of finite type over k .

By pt we denote Spec k .

If l/k is a field extension and X is a k-scheme, we define
Xl = X ×pt Spec l to be the respective base change.

By an algebraic group we mean an affine smooth group scheme

over k .

By an action of an algebraic group G on a scheme X we mean a
morphism G ×pt X → X of schemes over k (all group actions are
assumed to be on the left), subject to the usual axioms).

By a G -scheme we mean a scheme X endowed with an action of an
algebraic group G .
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Part I. Equivariant pretheories.

Examples:

equivariant Chow- and K-theory

equivariant algebraic cobordism

equivariant cycle (co)homology

spectral sequence for equivariant cycle homology
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Equivariant pretheories. Definition.

Let G be an algebraic group over a field k .
Consider a contravariant functor from the category of smooth
G -varieties over k to the category of abelian groups

hG : G -Smk −→ Ab, X 7→ hG (X ).

Given X , Y ∈ G -Smk and a G -equivariant map f : X → Y the
induced functorial map hG (Y )→ hG (X ) is called a pull-back and
is denoted by f ∗G .
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Equivariant pretheories. Definition.

The functor hG : G -Smk → Ab is called a G-equivariant pretheory

over k if it satisfies the following two axioms:

H. (homotopy invariance) For a G -equivariant map p : An
k → pt

(where G acts trivially on pt) the induced pull-back

p∗G : hG (pt) −→ hG (A
n
k)

is an isomorphism.

L. (localization) For a smooth G -variety X and a G -equivariant
open embedding ι : U →֒ X the induced pull-back

ι∗G : hG (X ) −→ hG (U)

is surjective.
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Essential pretheories

A G -equivariant pretheory hG is called essential if it can be
extended to the category of essentially smooth varieties G -Essk
with G -equivariant flat morphisms, i.e.

hG : G -Essk −→ Ab,

in such a way that

C. For every f : X → Y and U ⊆ Y as above the canonical
morphism induced by the pull-backs

h̄G (XK )→ hGK
(XK )

is an isomorphism.

Here XK denotes the generic fiber of f and h̄G (XK ) denotes the
colimit lim

−→U⊆Y
hG (f

−1(U)), where U ranges over the set of

non-empty open G -equivariant subsets of Y .
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Examples: Equivariant Chow-theory and K -theory

Let G be an algebraic group over k and let X be a smooth
G -variety. The functor

hG : X 7−→ CH∗
G (X ) =

⊕

i∈Z

CHi
G (X )

where CH∗
G (X ) is the equivariant Chow-theory of Totaro, Edidin

and Graham, provides an example of an essential G -equivariant
pretheory.
Consider the category P(G ,X ) of locally free G -modules on X . It
is an exact category and following Thomason one defines the i-th
G -equivariant K -group Ki (G ,X ) as Quillen’s i-th K -group of
P(G ,X ). The functor

hG (X ) := K(X ,G )

provides an example of an essentially G -equivariant pretheory.
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Example: Equivariant algebraic cobordism

Assume that char(k) = 0. Consider a family of pairs (Vi ,Ui )i∈N of
vector spaces with Ui ⊆ Vi endowed with an action of an algebraic
group G such that

(i) G acts freely on Ui and Ui → Ui/G is a G -torsor,

(ii) Vi+1 = Vi ⊕Wi for some k-subspace Wi , such that
Ui ⊕Wi ⊆ Ui+1,

(iii) sup dimVi =∞, and

(iv) codimVi
(Vi \ Ui ) < codimVi+1

(Vi+1 \ Ui+1), where we
consider Vi as an affine space over k .

Observe that assumption (i) ensures that the quotient
X ×G U := (X ×k U)/G is a quasi-projective variety over k .
Moreover, it is smooth over k by the descent.
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Examples: Equivariant algebraic cobordism

Let G be connected. Then the n-th equivariant cobordism group

of a smooth G -variety X is defined [Heller and Malagón-López] by

ΩG
n (X ) := lim

←−
i

Ωn−dimG+dimUi
(X ×G Ui ) ,

where Ω∗(X ) denotes the ring of algebraic cobordism of
Levine-Morel.
The functor

hG : X 7−→
⊕

n∈Z

ΩG
n (X )

provides an example of an essential G -equivariant pretheory.

It seems that this construction can be extended to any oriented
cohomology theory in the sense of Levine-Morel.
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ΩG
n (X ) := lim

←−
i

Ωn−dimG+dimUi
(X ×G Ui ) ,

where Ω∗(X ) denotes the ring of algebraic cobordism of
Levine-Morel.
The functor

hG : X 7−→
⊕

n∈Z

ΩG
n (X )

provides an example of an essential G -equivariant pretheory.

It seems that this construction can be extended to any oriented
cohomology theory in the sense of Levine-Morel.

Kirill Zaynullin Equivariant pretheories and invariants of torsors



Examples: Equivariant algebraic cobordism

Let G be connected. Then the n-th equivariant cobordism group

of a smooth G -variety X is defined [Heller and Malagón-López] by
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Equivariant cycle cohomology

Following Rost we consider a cycle module over the field k that is
a (covariant) functor M∗ from the category of field extensions of k
to the category of graded abelian groups satisfying several axioms.

The prototype of such a functor is Milnor K-theory KM
∗ , and by

the very definition M∗(E ) =
⊕
i∈Z

Mi (E ) is a graded KM
∗ (E )-module

for all field extensions E ⊇ k .

Given a quasi-projective k-variety X and a cycle module M∗ Rost
had defined a complex, the so called cycle complex (generalizing a
construction of Kato for Milnor K -theory):

. . . →
⊕

x∈X(2)

Mn+2(k(x))
d2→

⊕

x∈X(1)

Mn+1(k(x))
d1→

⊕

x∈X(0)

Mn(k(x)),
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Equivariant cycle cohomology

We denote this complex by C
•
(X ,Mn) and consider it as a

homological complex with the direct sum
⊕

x∈X(i)

Mn+i (k(x)) in

degree i .

The i-th cycle homology group Hi (X ,Mn) of Mn over X is then
defined as Hi (C•

(X ,Mn)).

Example. Note that there is a natural isomorphism

Hi (X ,K
M
−i ) ≃ CHi (X )

for all i ≥ 0, where we have set KM
−i ≡ 0 for i < 0.
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Equivariant cycle cohomology

To introduce the equivariant cycle homology we adapt the
definition of equivariant Chow groups due to Edidin and Graham
(see also works by Guillot and Totaro).

Let G be an algebraic group over k of dimension s and X a
G -variety. To define an equivariant i-th cycle homology group with
coefficients in the cycle module M∗ we chose a linear
representation V of G , such that there is an open subscheme
U →֒ V with codimV (V \ U) ≥ c = dimX on which G acts freely.

By shrinking U we can assume that U −→ U/G is a principal
bundle. The later assures that X ×G U := (X ×k U)/G exists in
the category of k-varieties.
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Equivariant cycle cohomology

We call the pair (U,V ) an (X ,G )-admissible pair for the
G -variety X . Note that for a finite number of G -varieties there
always exist a pair (U,V ) which is admissible for all of them.

Definition. The i-th G-equivariant cycle homology group with
values in the cycle module M∗ over k is defined as

HG
i (X ,M∗) := Hi+l−s(X ×

G U,M∗−(l−s)) ,

where s = dimG and (U,V ) is a (X ,G )-admissible pair with
dimV = l and codimV V \ U ≥ dimX . If X is smooth, we define

Hi
G (X ,Mn) := HG

dimX−i (X ,Mn−dimX ) = Hi (X ×G U,Mn)

and call it the i-th G-equivariant cycle cohomology group of X
with values in M∗.
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Equivariant cycle cohomology

Theorem (Gille, Z.) Definitions of the cyclic (co)homology don’t
depend on the choice of an admissible pair and the functor

hG : X 7→ H∗
G (X ,M∗)

provides an example of a (graded) essential G -equivariant
pretheory.
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Spectral sequence

We provide now a version of Merkurjev’s equivariant K -theory
spectral sequence for the equivariant cycle homology.

Let X be a G -variety, where G is an algebraic group over k , and
T ⊆ G a split torus of rank m. Let χ1, . . . , χm be a basis of the
character group T ∗ = Hom(T ,Gm).

Let T act on the affine space Am
k = Spec k[x1, . . . , xm] by

t · (a1, . . . , am) 7−→ (χ1(t) · a1, . . . , χm(t) · am) ,

and on Am
X = X ×k A

m
k diagonally.
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Spectral sequence

Let Zi ⊂ Am
k be the hyperplane defined by xi = 0 for i = 1, . . . ,m.

Then X ×k Zi are T -subvarieties of Am
X and, therefore, we have

closed subschemes

(X ×k Z1)×
G U , . . . , (X ×k Zm)×

G U

of AX ×
G U, where (U,V ) is a (Am

X ,T )-admissible pair.

Since U → U/T is a T -torsor we have

⋂

j 6∈I

(X ×k Zj)×
G U = (X ×k ZI )×

G U

for all I ∈ {1, . . . ,m}, where ZI =
⋂
j 6∈I

Zj .
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Spectral sequence

Following Levine’s construction of spectral sequence for Quillen
K -theory we obtain then a convergent spectral sequence

Ẽ
p,q
1 =

⊕

|I |=p

HT
−q−m(X ×k ZI ,Mn) =⇒ HT

−p−q(X ×k T ,Mn).

Using HT
−p−q(X ×k T ,Mn) ≃ H−p−q−m(X ,Mn+m) and the fact

that ZI = A
|I |
k = Spec k[xi , i ∈ I ] →֒ Am

k is a T -equivariant vector
bundle over k , we obtain that the pull-back

π∗I T : HT
−q−m−|I |(X ,Mn+|I |) −→ HT

−q−m(X ×k ZI ,Mn)

is an isomorphism, where πI : X ×k ZI → X is the projection.
Replacing q by q +m the spectral sequence then takes the
following form
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A version of Merkurjev’s spectral sequence

Theorem (Gille, Z.) There is a convergent spectral sequence

E
p,q
1 =

⊕

|I |=p

HT
−q−p(X ,Mn+p) =⇒ H−p−q(X ,Mn+m) .
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Part II. Torsors and equivariant maps
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Let S = GL(V ) be the group of automorphisms of a finite
dimensional k-vector space V . Let H be an algebraic subgroup of
S . Consider S as a (left) H-variety.

Let hH be a H-equivariant pretheory over k . We embed S into the
affine space Endk(V ) as a S-equivariant (and, hence,
H-equivariant) open subset.

Let φ : S → pt denote the structure map. The induced pull-back
φ∗H factors as the composite of pull-backs

hH(pt)
≃
−→ hH(Endk(V )) ։ hH(S),

where the first map is an isomorphism by homotopy invariance and
the second map is surjective by the localization property.
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Therefore we obtain the following

Lemma 1. The induced pull-back φ∗H is surjective.

Let µs : S → S denote the right multiplication by s ∈ S(k). Since
φ ◦ µs = φ as morphisms over k and µs is H-equivariant, we have
(µs)

∗
H ◦ φ

∗
H = φ∗H . Since φ

∗
H is surjective by Lemma 1, this proves

that

Lemma 2. The induced pull-back (µs)
∗
H : hH(S)→ hH(S) is the

identity.

Kirill Zaynullin Equivariant pretheories and invariants of torsors



Therefore we obtain the following

Lemma 1. The induced pull-back φ∗H is surjective.

Let µs : S → S denote the right multiplication by s ∈ S(k). Since
φ ◦ µs = φ as morphisms over k and µs is H-equivariant, we have
(µs)

∗
H ◦ φ

∗
H = φ∗H . Since φ

∗
H is surjective by Lemma 1, this proves

that

Lemma 2. The induced pull-back (µs)
∗
H : hH(S)→ hH(S) is the

identity.

Kirill Zaynullin Equivariant pretheories and invariants of torsors



Therefore we obtain the following

Lemma 1. The induced pull-back φ∗H is surjective.

Let µs : S → S denote the right multiplication by s ∈ S(k). Since
φ ◦ µs = φ as morphisms over k and µs is H-equivariant, we have
(µs)

∗
H ◦ φ

∗
H = φ∗H . Since φ

∗
H is surjective by Lemma 1, this proves

that

Lemma 2. The induced pull-back (µs)
∗
H : hH(S)→ hH(S) is the

identity.

Kirill Zaynullin Equivariant pretheories and invariants of torsors



Let G be an algebraic subgroup of S such that H ⊆ G ⊆ S so that
G is considered as a (left) H-variety.

Let E be a (left) G -variety over k and let ηE : SpecK → E denote
its generic point, where K = k(E ).

Consider the G -equivariant (and, hence, H-equivariant) map

ψE : GK = G ×Spec k SpecK
(id,ηE )
−→ G ×Spec k E −→ E

which takes the identity of G to the generic point of E .
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Suppose that there is a G -equivariant map ρ : E → S over k .
Then there is a commutative diagram of H-equivariant maps

GK
ψE−−−−→ E

ρ
−−−−→ S

i

y
xp

SK −−−−→ ·ρ(ηE ) −−−−→ SK

where the map i is the embedding, p is the projection
SK = S ×Spec k SpecK → S to the first factor and the bottom
horizontal map is the multiplication by ρ(ηE ).

By the diagram (ψE )
∗
H ◦ ρ

∗
H = (ρ ◦ ψE )

∗
H coincides with the pull

back (p ◦ µρ(ηE ) ◦ i)
∗
H . By Lemma 2 the latter coincides with the

pull-back i∗H ◦ p
∗
H , hence, proving the following
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Lemma 3. Let E be a G -variety together with a G -equivariant
map ρ : E → S . Then we have

(ψE )
∗
H ◦ ρ

∗
H = i∗H ◦ p

∗
H : hH(S)→ h̄H(GK ).

We are now in position to prove the main result of this part

Theorem (Gille, Z.) Let H ⊂ G be algebraic groups and let
hH(−) be a H-equivariant pretheory. Then for any G -torsor E with
K = k(E ) we have

Im(ϕ∗
H) ⊆ Im((ψE )

∗
H) in h̄H(GK ),

where ϕ : GK → pt is the structure map.
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Proof of the theorem. By Lemma 1 we have

Im(ϕ∗
H) = Im(i∗H ◦ p

∗
H ◦ φ

∗
H) = Im(i∗H ◦ p

∗
H).

Theorem then follows from Lemma 3 and the fact that there exists
a finite dimensional k-vector space V and a G -equivariant map
E −→ S = GL(V ).

Corollary. Let H ⊂ G be algebraic groups over k and let hH(−)
be an essential H-equivariant pretheory. Then there exists a field
extension l/k and a G -torsor E over l with L = l(E ) such that

Im(ϕ∗
Hl
) = Im((ψE )

∗
Hl
) in h̄Hl

(GL)

Such a torsor E will be called generic.
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Proof of the corollary. We fix an embedding G −→ S = GL(V )
for some finite dimensional k-vector space V . The quotient
S −→ G\S (for the right action of G on S) is a (left) G -torsor.
Let l be its function field and consider the cartesian square

E
ρ

−−−−→ S
y

y

Spec l −−−−→ G\S

Since S −→ G\S is a G -torsor, the map E −→ Spec l is a
G -torsor. The l-scheme E is a localization of S and, therefore, by
(C) and (L) the pull-back ρ∗H : hH(S)→ h̄H(E )→ hH(E ) is
surjective. This implies that the pull-back ρ∗Hl

: hHl
(Sl)→ hHl

(E )
is surjective. It remains to apply the proof of the theorem over l
and to observe that Im(ϕ∗

Hl
) = Im((ψE )

∗
Hl
◦ ρ∗Hl

) = Im((ψE )
∗
Hl
).
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The latter theorem and the corollary can be viewed as a
generalization of the following result

Theorem (Karpenko-Merkurjev). Consider the characteristic
map for the Chow theory

c : S∗(T ∗)→ CH(G/B),

where G/B is the variety of Borel subgroups. Let ξG/B be a
twisted form by means of a G -torsor ξ. Then

Im(res) ⊇ Im(c),

where res : CH(ξG/B)→ CH(G/B) is the restriction map.
Moreover, there exists a torsor over a field extension of k such that
the equality Im(res) = Im(c) holds.
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Indeed, we have

T = H, G = G , S∗(T ∗) = CHT (pt), CH(G/B) = CHT (G )

c = ϕ∗
H and res = (ψE )

∗
H .

Note that the result by Karpenko-Merkurjev plays a fundamental
role in computations of canonical/essential dimensions, discrete
motivic invariants of G and in the study of splitting properties of
G -torsors.

To measure the difference between h̄H(GK ) and the image
Im((ψE )

∗
H) we introduce the following
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Definition. Let H ⊂ G be algebraic groups over k and hH(−) be
an equivariant pretheory with values in the category of
commutative rings. To each G -torsor E we associate a
commutative ring

ĥH(E ) := h̄H(GK )⊗hH(E) h̄H(HK ),

where h̄H(GK ) is the hH(E )-module via (ψE )
∗
H and h̄H(HK ) is the

hH(E )-module via the composite hH(E )
(ψE )

∗

H→ h̄H(GK )→ h̄H(HK )
with the last map induced by the embedding H ⊂ G .

It will be shown that for most of the examples of equivariant
pretheories ĥH(E ) is a quotient of the cohomology ring h(G ) of G .
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Part III. Applications to equivariant

oriented cohomology.

In this part we investigate the case of a B-equivariant oriented

cohomology, where B is a Borel subgroup of a split semisimple linear

algebraic group.
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Let G be a split semisimple linear algebraic group of rank n over a
field k and let T be a split maximal torus of G . Following the
construction of the spectral sequence we consider the action of T
on the affine space An

k with weights χ1, . . . , χn together with an
action of T on G by left multiplication. Then T embeds into
An
k = Spec k[x1, . . . , xn] as the complement of the coordinates

hyperplanes Zi , i = 1, . . . , n.

Let V = An
k ×

T G be the associated vector bundle over G/T .
By definition V = LG/T (χ1)⊕ . . .⊕ LG/T (χn), where LG/T is the

associated line bundle, and G = T ×T G embeds into V as the
complement of the union of zero-sections

Vj =
⊕

j 6=i

LG/T (χi ) = Zj ×
T G , i = 1, . . . , n .

Note that ej : Vj →֒ V is a smooth subvariety for every j .
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Let now h(−) be an oriented cohomology theory in the sense of
Levine-Morel, i.e. a contravariant functor from the category of
smooth varieties over k to the category of graded commutative
rings satisfying certain axioms.

In particular, if X is a k-variety with an open subvariety ι : U →֒ X

there is an exacts sequence

h(Z )
j∗
→ h(X )

ι∗
→ h(U)→ 0

where j : Z = X \ U →֒ X is the closed complement of U, and
there is also a first Chern class which we denote by ch1 .

Kirill Zaynullin Equivariant pretheories and invariants of torsors



Let now h(−) be an oriented cohomology theory in the sense of
Levine-Morel, i.e. a contravariant functor from the category of
smooth varieties over k to the category of graded commutative
rings satisfying certain axioms.

In particular, if X is a k-variety with an open subvariety ι : U →֒ X

there is an exacts sequence

h(Z )
j∗
→ h(X )

ι∗
→ h(U)→ 0

where j : Z = X \ U →֒ X is the closed complement of U, and
there is also a first Chern class which we denote by ch1 .

Kirill Zaynullin Equivariant pretheories and invariants of torsors



Let now h(−) be an oriented cohomology theory in the sense of
Levine-Morel, i.e. a contravariant functor from the category of
smooth varieties over k to the category of graded commutative
rings satisfying certain axioms.

In particular, if X is a k-variety with an open subvariety ι : U →֒ X

there is an exacts sequence

h(Z )
j∗
→ h(X )

ι∗
→ h(U)→ 0

where j : Z = X \ U →֒ X is the closed complement of U, and
there is also a first Chern class which we denote by ch1 .

Kirill Zaynullin Equivariant pretheories and invariants of torsors



Let now h(−) be an oriented cohomology theory in the sense of
Levine-Morel, i.e. a contravariant functor from the category of
smooth varieties over k to the category of graded commutative
rings satisfying certain axioms.

In particular, if X is a k-variety with an open subvariety ι : U →֒ X

there is an exacts sequence

h(Z )
j∗
→ h(X )

ι∗
→ h(U)→ 0

where j : Z = X \ U →֒ X is the closed complement of U, and
there is also a first Chern class which we denote by ch1 .

Kirill Zaynullin Equivariant pretheories and invariants of torsors



Having such a theory h(−) we get from the localization sequence
(by induction) an exact sequence

n⊕

j=1

h(Vj)
⊕j (ej )∗
−→ h(V )→ h(G )→ 0

By the properties of the first Chern class we have

(ej)∗(1Vj
) = ch1 (LV (χj))

which implies that the image of ⊕j(ej)∗ is an ideal generated by
the first Chern classes ch1 (LV (χj)), j = 1, . . . , n.
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Oriented cohomology of a group

Let B be a Borel subgroup of G containing T and let G/B be the
variety of Borel subgroups. The composite of projections
V → G/T → G/B is a chain of affine bundles. Therefore, by the

homotopy invariance there is an isomorphism h(G/B)
≃
→ h(V )

compatible with the Chern classes and we obtain the following

Proposition (Gille, Z.) There is an isomorphism of rings

h(G ) ≃ h(G/B)/
(
ch1 (LG/B(χ1)), . . . , c

h

1 (LG/B(χn))
)
,

where χ1, . . . , χn is a basis of the character group T ∗.

Note that the case of h = CH Chow groups is due to Grothendieck
and the case of K0 – to Merkurjev.
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Let hB(−) be an B-equivariant pretheory to the category of
commutative rings such that

(i) hB(E ) = h(E/B) for every G -torsor E , where h(−) is an
oriented cohomology in the sense of Levine-Morel.

(ii) h̄B(BK ) = h(pt) and h̄B(GK ) ≃ h(G/B).

Then the ring ĥB(E ) = h̄B(GK )⊗hB(E) h̄B(BK ) can be identified
with a quotient of h̄B(GK ) ≃ h(G/B) modulo the ideal generated
by non-constant elements from the image of the restriction
(ψE )

∗
B : h(E/B)→ h(G/B).
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Then the ring ĥB(E ) = h̄B(GK )⊗hB(E) h̄B(BK ) can be identified
with a quotient of h̄B(GK ) ≃ h(G/B) modulo the ideal generated
by non-constant elements from the image of the restriction
(ψE )

∗
B : h(E/B)→ h(G/B).

Kirill Zaynullin Equivariant pretheories and invariants of torsors



Let hB(−) be an B-equivariant pretheory to the category of
commutative rings such that

(i) hB(E ) = h(E/B) for every G -torsor E , where h(−) is an
oriented cohomology in the sense of Levine-Morel.

(ii) h̄B(BK ) = h(pt) and h̄B(GK ) ≃ h(G/B).
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Consider now the map ϕ∗
B : hB(pt) −→ h̄B(GK ) ≃ h(G/B). By

the main theorem of the previous part Im(ϕ∗
B) ⊆ Im((ψE )

∗
B),

hence, ĥB(E ) can be identified with a quotient of the factor ring
h(G/B)/I , where I denotes the ideal generated by elements from
the image of ϕ∗

B which are in the kernel of the augmentation.

Then by the proposition we obtain the following
Corollary (Gille, Z.). Assume that the image of ϕ∗

B is generated
by the Chern classes ch1 (LG/B(χi )) of line bundles associated to the
characters χi ∈ T ∗ (i = 1 . . . n).
Then ĥB(E ) is a quotient of h(G/B)/I ≃ h(G ).
Moreover, if hB(−) is essential and E is generic, then

ĥB(E ) ≃ h(G ).
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hence, ĥB(E ) can be identified with a quotient of the factor ring
h(G/B)/I , where I denotes the ideal generated by elements from
the image of ϕ∗

B which are in the kernel of the augmentation.

Then by the proposition we obtain the following
Corollary (Gille, Z.). Assume that the image of ϕ∗

B is generated
by the Chern classes ch1 (LG/B(χi )) of line bundles associated to the
characters χi ∈ T ∗ (i = 1 . . . n).
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Examples: Equivariant Chow-theory

Consider the equivariant Chow groups hB(−) = CHB(−).
Let E be a G -torsor.
The ring hB(pt) can be identified with the symmetric algebra
S(T ∗) and the map

ϕ∗
B : S(T ∗) = hB(pt) −→ h̄B(GK ) = CH(G/B)

coincides with the characteristic map for Chow groups.
So its image is generated by the first Chern classes c1(LG/B(χi )) of
the respective line bundles.
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Examples: Equivariant Chow-theory

The map (ψE )
∗
B coincides with the restriction map

res : CH(E/B) −→ CH(G/B),

where E/B is the twisted form of G/B by means of E and the map

S(T ∗) = hB(pt) −→ hB(BK ) = CH(pt) = Z

is the augmentation map. If E is generic, then we have

ĥB(E ) ≃ CH(G/B)⊗S(T∗) Z ≃ CH(G ).

where the last isomorphism follows by the corollary.
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Examples: Equivariant Chow-theory

Therefore, for an arbitrary G -torsor E the ring

ĥB(E ) = CH(G/B)⊗Im(res) Z

is a quotient ring of CH(G/B) modulo the ideal generated by
non-constant elements from the image of the restriction
CH(E/B)→ CH(G/B).
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Examples: Equivariant Chow-theory

Observe that the characteristic map ϕ∗
B is not surjective in general.

However, its image is a subgroup of finite index in CH(G/B)
measured by the torsion index τ of G . This implies that for
a G -torsor E we have ĥB(E )⊗Z Q ≃ Q.
If p | τ , then there is an isomorphism

ĥB(E )⊗Z Z/p ≃
Z/p [x1, . . . , xr ]

(xp
j1

1 , . . . , xp
jr

r )
,

where (j1, . . . , jr ) is the J-invariant of G twisted by E [Petrov,
Semenov, Z.]. Observe that ji ≤ ki , i = 1 . . . r , where ki are
defined via the p-exceptional degrees introduced by Kac, and for a
generic torsor E we have equalities ji = ki for each i .
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Examples: Equivariant K0

Consider the equivariant K0-groups hB(−) = K0(B ,−).
Let E be a G -torsor.
The ring hB(pt) can be identified with the integral group ring
Z[T ∗] and with the representation ring RepT of T , i.e.

hB(pt) = Z[T ∗] = RepT .

The map

ϕ∗
B : Z[T ∗] = hB(pt) −→ h̄B(GK ) ≃ K0(G/B)

coincides with the characteristic map c for K0 and again its image
is generated by the first Chern classes.
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Examples: Equivariant K0

As before the map (ψE )
∗
B coincides with the restriction map

res : K0(E/B) −→ K0(G/B),

and applying the main theorem we obtain the following
K0-analogue of the Karpenko-Merkurjev result:

Corollary (Gille, Z.) Let E be a G -torsor over k and let E/B be a
twisted form of G/B by E .
Then

(i) c(Z[T ∗]) ⊆ res(K0(E/B));

(ii) there exists a G -torsor E over some field extension of k such
that

c(Z[T ∗]) = res(K0(E/B)).
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Examples: Equivariant K0

According to a result of Panin the image of the restriction map is
given by the sublattice

{iw ,E · gw}w∈W ,

where W is the Weyl group of G , {gw}w∈W is the Steinberg basis
of K0(G/B) and {iw ,E} are indexes of the respective Tits algebras.
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Examples: Equivariant K0

Then by the corollary proven in the last part there exists a maximal
set of indexes {mw}w∈W such that

(i) iw ,E ≤ mw for every w ∈W and every torsor E ;

(ii) there exists E such that iw ,E = mw for every w ∈W ;

(iii) the image of the characteristic map ϕ∗
B(Z[T

∗]) coincides with
the sublattice {mw · gw}w∈W , hence, providing a way to
compute mw .
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Examples: Equivariant K0

The indexes mw are called the maximal Tits indexes. They have
been extensively studied by Merkurjev, Panin and Wadsworth.
They are closely related to the dimensions of irreducible
representations of G . Comparing with the case of Chow groups
one observes that

the maximal Tits indexes in K0 play the same role as the

p-exceptional degrees of Kac in Chow groups.
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Examples: Equivariant K0

Since the map Z[T ∗] = hB(pt) −→ h̄B(BK ) = K0(pt) = Z is the
augmentation map, for a generic torsor E we have

ĥB(E ) = K0(G/B)⊗Z[T∗] Z ≃ K0(G ),

where the last isomorphism follows by the corollary.

Hence, for an arbitrary G -torsor E

ĥB(E ) = K0(G/B)⊗Im(res) Z

is the quotient ring of K0(G/B) modulo the ideal generated by
elements from the image of the restriction K0(E/B)→ K0(G/B)
which are in the kernel of the augmentation.
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Examples: Equivariant algebraic cobordism

Consider the equivariant algebraic cobordism hB(−) = ΩB(−).
Let E be a G -torsor.
The completion hB(pt)

∧ of hB(pt) at the augmentation ideal, (the
kernel of hB(pt)→ hB(B)) can be identified with the formal group
ring L[[T ∗]]U introduced by [Calmes, Petrov, Z.], where L is the
Lazard ring and U denotes the universal formal group law.
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Examples: Equivariant algebraic cobordism

The map

ϕ∗
B : L[[T ∗]]U = hB(pt)

∧ −→ h̄B(GK ) = Ω(G/B)

coincides with the characteristic map from [Calmes, Petrov, Z.]
and its image is generated by the first Chern classes.

The map (ψE )
∗
B coincides with the restriction map

res : Ω(E/B) −→ Ω(G/B),

where E/B is the twisted form of G/B by means of E and the
map L[[T ∗]]U = hB(pt)

∧ −→ hB(BK ) = Ω(pt) = L is the
augmentation map.
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Examples: Equivariant algebraic cobordism

By the corollary for an arbitrary G -torsor E we have

ĥB(E ) = Ω(G/B)⊗Im(res) L.

is a quotient of the ring Ω(G/B) modulo the image of the
restriction Ω(E/B)→ Ω(G/B) from the kernel of the
augmentation. And for a generic G -torsor E we obtain an
isomorphism

ĥB(E ) ≃ Ω(G ).

This isomorphism can be used to compute Ω(G ).
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Couple of questions

What is the analogue of p-exceptional degrees/maximal Tits
indices for algebraic Morava K -theories/cobordisms ? The
same question for cycle (co)homology theories.

How to compute h(G ) in general ?

Using the isomorphism ĥB(E ) ≃ h(G ) how to construct a
direct sum decomposition in the category of h-motives ? Say,
for K0 it should give a different proof of Panin’s result.
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