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   § 1. Introduction. 

   The classical h-cobordism theorem and the s-cobordism theorem have played 

an important role in studying differential topology [15], [16]. 

   In the present paper, we discuss equivariant versions of these theorems. 

   Let G be a compact Lie group and X a finite G-CW-complex. In 1974, S. 

Illman [6] defined the equivariant Whitehead group WhG(X) of X and the equi-

variant Whitehead torsion TG(f) for a G-homotopy equivalence f : X-+Y between 

finite G-CW-complexes X, Y as an element of WhG(X ). When DG(f)=O, f is 

called a simple G-homotopy equivalence. In this paper, we deal with only smooth 

G-manifolds. 

   Let (W; X, Y) be a smooth G-h-cobordism. Namely W is a compact G-

manifold with boundary 6W=X1LY (disjoint union) and the inclusions 

                    iX: X -~W and iY: Y---~W 

are G-homotopy equivalences. 

   When G is a finite group, W admits a unique smooth G-triangulation [7]. 

Accordingly the equivariant Whitehead torsion TG(iZ) is well-defined. On the 

other hand, the recent investigation of Matumoto and Shiota [13] enables us to 

define the equivariant Whitehead torsion rG(i X) even when G is a compact Lie 

group. Notice that DG(iI) is often written as DG(W, X). 
   As in the non-equivariant case, a G-h-cobordism (W; X, Y) is called a G-s-

cobordism when DG(iX) vanishes. 

   We say that a G-h-cobordism (resp. G-s-cobordism) theorem holds if a G-h-

cobordism (resp. G-s-cobordism) (W; X, Y) implies a G-dill eomorphism 

                      W=XxI rel X
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where 1 is the interval [0, 1] with trivial G-action. 

   Unfortunately the G-h-cobordism theorem and the G-s-cobordism theorem do 

not hold in general [12]. Accordingly we need to add some assumptions for a 

theorem of this sort. 

   Let H, K be isotropy groups appearing in W and 

                 WH=LW, WK=11W~ 
                               A it 

be the decompositions to connected components. We now consider two condi-

tions. 

   (*1) If W~Wf, , then dimWR-dimWH>_dimG+3 for any pair of com-

ponents W j5 and W'. 

   (*2) If H is a maximal isotropy group, then 

                      dimWf >_ dimG+6 

for any component W~ . 

   Then our first theorem is the following 

   THEOREM 1. Let G be a compact Lie group and (W; X, Y) a G-s-cobordism. 

If W satisfies the conditions (*1) and (*2) above, then we have a G-diffeomorphism 

                    W NXXI rel X. 

In particular, X is G-di ffeomorphic to Y. 

   If we stabilize a G-h-cobordism (W; X, Y) with respect to disks of suitable 

representations, then the conditions (*1) and (*2) are automatically satisfied. 

However the restriction homomorphism (to a closed subgroup H of G) Wh0(X ) 
-*WhH(X) is defined only for the case of the index I G/HI being finite, and we 

need to use such restriction homomorphisms to diagonal actions in stable ver-

sions. Thus we assume hereafter that the group G is finite and have the fol-

lowing 

   THEOREM 2 (stable equivariant s-cobordism theorem). Let G be a finite group 

and (W; X, Y) a G-s-cobordism. Then there exist an orthogonal G-representation 

space V and a G-diffeomorphism 

             W X V (1) N XX V(1) X I rel X X V (1) . 

In particular, we have G-diffeomorphisms 

          XXV(1) ~ YXV(1) and XXSV(1) N YXSV(1). 

Here V(1) (resp. SV(1)) denotes the closed unit disk (resp. the unit sphere) of V. 

   Let M,, M2 be closed G-manifolds. A G-homotopy equivalence f : M1-~M2 

will be called a tangential G-homotopy equivalence if there exist a G-representa-
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tion space V and a G-vector bundle isomorphism : 

                T(M1) ®V ~ f *T (M2)® V 

where T (M) are tangent G-vector bundles of M1 (i=1, 2), V is the trivial G-

vector bundle M1 X V-~M1 and f *T (M2) is the induced G-vector bundle of T(M2) 

via the map f . 

   A tangential G-homotopy equivalence f : M1-+M2 is called a tangential simple 

G-homotopy equivalence if f is a simple G-homotopy equivalence. 

   Then we have the following equivariant version of [5], [14]. 

   THEOREM 3. Let G be a finite group. Let M1 and M2 be closed G-manifolds 

and f : M1->M2 a G-map. Then f is tangential simple G-homotopy equivalence i f 

and only if there exist an orthogonal G-representation space V and a G-diffeomor-

phism 

                   J: M1 X V(1) -> M2 X V(1) 

such that the following diagram 

f                      M
1 X V(1) ---> M2 X V(1) 

n 

f 

            M1 -> M2 

is G-homotopy commutative, where n are the projection maps. 

   REMARK. Browder and Quinn had an isovariant s-cobordism theorem in [20]. 

   REMARK. An equivariant s-cobordism theorem is stated in [17]. Unfortu-

nately the assumption of the theorem is not stated in terms of the equivariant 

torsion r0(W, X) in the sense of Illman [6]. One of our tasks for the proofs of 

Theorems 1 and 2 is to show that a filtration inherits the property of G-deforma-

tion retractions (see § 4). Accordingly we can define equivariant torsions suc-

cessively. The other task is to show that it follows from the assumption 

DG(W, X)=0 that these successive equivariant torsions also vanish. 

   REMARK. An equivariant s-cobordism theorem for finite G in the category 

of PL and Top is studied in [18]. 

   § 2. Naturality of equivariant Whitehead torsions. 

   We first review some of the basic facts about equivariant simple homotopy 

theory for the benefit of the reader. For further details we refer to [2]. 

   In [6], Illman described the basic properties of the equivariant Whitehead 

group WhG(X) for a finite G-CW-complex X, got a decomposition of WhG(X) and
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described it algebraically for abelian G. 

   Each element of WhG(X) is represented by a finite G-CW-pair (V, X) such 

that X is a strong G-deformation retract of V. The element represented by 

such a pair (V, X) is denoted by TG(V, X) and is called the Whitehead G-torsion 

of (V, X). 

   By a family EF of closed subgroups of G, we understand a . collection of 

closed subgroups H of G such that HEE EF implies (H)c F, where (H) denotes 

the conjugacy class of H. 

   For a family F of closed subgroups of G, Illman introduced the notion of 

restricted Whitehead group WhG(X, ) consisting of those elements TG(V, X) such 

that all the isotropy groups of V -X belong to F. Then WhG(X, ) is a sub-

group of WhG(X ). 

   In 1978, H. Hauschild [4] gave the natural direct sum decomposition 

                  WhG(X) . Ji WhG(X, (H)) 
                                        (H) 

where (H) runs over all conjugacy classes of closed subgroups of G. He de-

scribed WhG(X) algebraically based on this decomposition in a way. 

   Let H be a closed subgroup of G and X a G-space. We denote by XH the 

H -fixed point set of X and by WH the quotient group NH/H where NH is the 

normalizer of H in G. 

   Then the G-action on X induces a WH action on XH and there holds the 

following natural isomorphism 

                  WhG(X, (H)) = WhwH(~'H, {e}) 

which is also due to Hauschild [4]. 

   The WH action on XH induces the WH action on the set of connected com-

ponents of XH. Taking WH orbits of the induced action, we get a decomposi-

tion 

                     XH = Jt WHXa 

a as a topological sum of WH subspaces, where the Xa 's are connected components 

of XH. Denote by AH the index set {a} of the above decomposition. We call 

each summand WH. X« a WH component of XH and Xa a representative 

component of the WH component WH• Xa . 

   Then there holds a direct sum decomposition [2] 

             WhWH(XH, {e}) ~ Jt WhWH(WH'Xa, {e}). 
                                           aEAN 

   We now put 

                   WaH= {w~WHJ w.XHCXa } 

which is a closed subgroup of WH. Xa is a WaH space and we can express
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                  WH' Xa = WH x XH . 
                                           WaH 

Then there holds a kind of Shapiro isomorphism [2] 

              WhWH(WH•Xa, {e}) WhWaH(Xa, {e}). 

   We are now in a position to pass to universal covering spaces. 

N 

   Denote by Xa the universal covering space of XH. Choose a point xo of 

N XH. Then x1=7r1(XH, xo) operates on X« as the covering transformation group. 

   By [1], [8], we have a Lie group Pa satisfying the short exact sequence 

             1--~ 1 -~ T a-* W H -~ 1 

N and X« is a Pa-space such that the Pa-action contains the 7r1-action and the 

N covering projection p : X«-*X« is q-equivariant. 

   Then there holds an isomorphism [2] 

N 

               WhWaH(X«, {e}) Whra(X«, {e}). 

   We now consider the final step of reductions of WhG(X ). 

   Denote by l a, o the component of Pa including the unit element. As is 

well-known, Ta, o is a closed normal subgroup of Pa. Then we have the fol-

lowing isomorphism [2] 

N 

                   Whra(X«, {e}) ^' Wh(ra/l a,o) 

where the right hand side is the Whitehead group defined algebraically (see [3]). 

   Putting all this together, we have the following theorem. 

   THEOREM 4. Let X be a finite G-CW-complex. Then we have a direct sum 

decomposition 

                 WhG(X) N JL 11 W h(ral ra, o) 
                                       (H) aEAH 

   Since one verifies the naturalities of all the processes of the reductions 

above, one has the following theorem on which our theorems are based. 

   THEOREM 5 ([2]). Let f : X--~Y be a G-map between finite G-CW-complexes 

and H a closed subgroup of G. Suppose that the restriction f H : XH_-~YH gives a 

bijection of the connected components and induces isomorphisms of fundamental 

groups for any base points. Then there holds the isomorphism 
                                                                                                          IV 

                f,~ : WhG(X, (H)) --~ WhG(Y, (H)). 

  For the detailed proof of Theorems 4 and 5, see [2]. Theorem 4 is proved 

also by Illman [8] in a different approach.
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   § 3. Decomposition of G-manifolds. 

   In this section, we recall the decomposition theorem of smooth G-manifolds 

of [11] for the benefit of the reader. 

   Let G be a compact Lie group. There is a partial order among the set of 

conjugacy classes of closed subgroups of G, i.e., (Hl)s(H2) if and only if there 

exists gEG such that gHlg-1CH2. 

   Let W be a compact G-manifold. We shall denote the isotropy group at 

x W by G x, namely 

                      Gx = {gE G I gx=x} . 

For a closed subgroup H of G, we shall put 

                 W(H) = {xEW I (Gx)=(H)} . 

   Since W is compact, there are only finitely many isotropy types, say 

                {(Gx) I xEW } = {(H1), (H2), ... , (Hk)} . 

It is possible to arrange {(H1)} in such order that (Hti)>_(H;) implies i< j. 

   We get a filtration 

                      W = Wl J W2 D ,.. Wk 

consisting of compact G-manifolds Wi with corners such that 

                {(Gx) I x~W1} = {(Hz), (II +), ... , (Hk)} 

as follows. 

   For this, we introduce some notations. Let 'r : E-~M be a differentiable G-

vector bundle over a compact G-manifold M. As is well known, there is a G-

invariant Riemannian metric < ,> on E. Concerning the metric < , >, we set 

                    II v I = ./(v, v> for vEE E . 

Then we put for r> 0, 

                E(r) = {vEE I Ilvli<<-_r}, 

               SE(r) = {v~E I Iivll=r}, 

               E(r) = E(r)-SE(r) = {vEE I Ilvll<r} 

Obviously E(r) and SE(r) are compact G-manifolds. 

   Since (Hl) is a maximal conjugacy class, W(H1) is a compact G-invariant 

submanifold of W. We identify the normal bundle vl of W (H1) in W with an 

open tubular neighborhood of W(H1) in W and impose a G-invariant Riemannian 

 metric on vl. 

    Concerning the metric on vl, we set
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                        W2 = W-(1). 

Then W2 is a compact G-manifold with corner and satisfies 

. 

               {(Gx)I x~W2} = {(H2), (Hs), ... , (11)} 

   Suppose that we get a filtration 

                     W=W1~W2~...iWz 

consisting of compact G-manifolds W; with corners such that 

                {(Gx)I x~W;} = {(H,), (M;+1), ... , (Hk)} 

for every 3<_i. Since (Hi) is a maximal conjugacy class among the set 

W1(H1) is a compact G-invariant submanif old of W1. We identify the normal 

bundle vi of W1(H1) in W1 with an open tubular neighborhood of W1(H1) in W1 

and impose a G-invariant Riemannian metric on vi. Concerning this metric, we 

set 

                             W1+1= W1--v1(1) 

Then Wi+1 is a compact G-manifold with corner and satisfies 

               {(Gx)I xEWi+1} = {(11+1), (Hti+2), ... , (Hk)} . 

This completes the inductive construction. 

   Thus we have shown the following decomposition theorem. 

   THEOREM 6 ([11]). Let W be a compact G-manifold and (H1), ..., (Hi) the 

isotropy types appearing in W. Arrange {(H1)} in such order that (H1)>_(H~) im-

plies i< j. Then there exist compact G-manifolds M1 with corners and G-vector 
bundles ,.-*M1 ~for 1 <_ i <_ k such that 

                     M1(H1) = Mi = W (H1) 

G and that we have a decomposition 

                    W ` y1(1)Uy2(1)u ... 

Moreover i f we set 

                    Wi = y1(1)Uyi+1(1)U ... Uyk(1), 

then we have 

                {(Gx)I x~W1} = {(H~), (I-I+\ ..., (Hk)} 

and a G-di ffeomorphism 

                        Mi = W1(H1) 

:
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    4. Excision theorem of G-deformation retractions. 

   Let W be a compact G-manifold with boundary dW=XJIY (disjoint union). 

Let 
                    W =W1 WW2 ~... ~Wk 

be the filtration of Theorem 6. 

   We now set 

                    Xi = XnWi, Yti = YnW1. 

   Then we have the following theorem which is crucial for the inductive 

proof of our equivariant s-cobordism theorem. 

   THEOREM 7 (Excision theorem of G-deformation retractions). Suppose that 

(W ; X, Y) is a G-h-cobordism. Namely both X and Y are G-deformation retracts 
of W. If W satisfies the condition (*1) in § 1, then both Xi and Yi are G-

deformation retracts of Wi for each i, 1 <i _<k. 

   PROOF. Although the assumption of Lemma 3.1 of [11] is slightly different 

from the condition (*1), we proved it actually under the condition (*1). There-

fore Theorem 7 was already shown in the proof of Lemma 3.1 of [11]. 

   REMARK. In [12], we have shown that the excision theorem of G-deforma-

tion retractions does not hold in general if the condition (*1) is not satisfied. 

Accordingly the equivariant torsion itself is not defined in general. 

   The counter example of the equivariant s-cobordism theorem is provided by 

making use of the failure of the excision theorem of G-deformation retractions. 

   REMARK. The excision theorem of G-deformation retractions does not 

follow from [10]. 

   The rest of the section will be devoted to showing how to employ Matumoto-

Shiota's well-definedness of the equivariant Whitehead torsion in our case. Let 

(W ; X, Y) and (W i ; Xi, Yi) be the G-h-cobordisms in Theorem 7. Then their 
method is briefly as follows. Take a G-diffeomorphism f : (W; X, Y)-+(W' ; X', Y') 

such that (W' ; X', Y') is an analytic G-h-cobordism embedded in a representa-

tion space V of G analytically and equivariantly. Then (W' ; X', Y') is endowed 

with an equivariant analytic stratification by isotropy types. Now the quotient 

W'/G is embedded in Rn subanalytically for some n > 0 and has subanalytic 

stratification by isotropy types. Moreover the quotient map nv' : W'-+W'/G is 

subanalytic. Next take a subanalytic triangulation of the triple (W'/G ; X'/G, 

Y'/G) compatibly with the stratification. After taking a barycentric subdivision 

of this triangulation they lift each simplex to a subanalytic simplex embedded in 

W' satisfying certain conditions (cf. [13], Lemma 4.4) and take its G-orbit. The
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collection of them forms a G-CW-subdivision of (W' ; X', Y'). Finally take the 

pull-back of such a G-CW-complex by f, then we get a G-CW-subdivision of 

(W ; X, Y). This type of G-CW-subdivisions of (W; X, Y) is unique up to sub-

divisions and G-isomorphisms. 

   In our case we use the above mentioned filtration 

                      W = Wl J W2 J ••• D Wk . 

Construct the same filtration 

                      W'=W1~W2~...~yVk 

making use of real analytic induced invariant metric from V, which refines 

subanalytic stratifications of W' and of W'/G respectively. Take Matumoto-

Shiota's construction of a G-CW-subdivision of W' so that it is compatible with 

these refined stratifications, and pull back to W the filtration and G-CW-sub-

division of W' by f. Then we get well-defined equivariant Whitehead torsion 

at each stage of our inductive argument.

   § 5. Equivariant s-cobordism theorem. 

   Let A be a G-manifold and B a G-invariant submanifold of A. Denote by 

I the unit interval [0, 1] with trivial G-action. Then a G-cliff eomorphism f : A 
-~BxI which is an extension of the canonical G-diffeomorphism B(CA)-- Bx {0} 

is called a G-di ffeomorphism relative B and is denoted by 

                     ANBXI rel B. 

   For a compact G-manifold M, we denote its boundary by dM. Let W, X, Y, Z, 

be compact G-manifolds with corners satisfying 

                   d W = (X1LY)uZ, 

            aX = XnZ, d Y = YnZ and 6X. Y = 3Z. 

   We prove Theorem 1 in the following form. 

   THEOREM 8. Let W, X, Y, Z be as above. Suppose that both X and Y are 

G-deformation retracts of W and 

  (i) Z. 9X x 1 rel d X 

   (ii) r0(W, X) = 0 

   (iii) the conditions (*1), (*2) are satisfied for W. 

Then there exists a G-di ffeomorphism 

                        W =' X x I rel X 

which is an extension of the G-diffeomorphism of (i ).
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   PROOF. We prove Theorem 8 by induction on the number of isotropy types 

of W. 

   Suppose that W has only one isotropy type, say (H). In this case, we have 

the isomorphism 

         WhWH(XH, {e}) ^' WhG(X(H), (H)) WhG(X, (H)). 

Note that both XH and YH are WH deformation retracts of W". It follows 

from the above isomorphism that 

           TWH(WH, XH) = r0(W(H), X(H)) = TG(W, X) =0. 

Since WH acts freely on W", W"/ WH, XH/ WH and YH/ WH are compact~mani-

folds with corners and satisfy : 

             6WH/WH= (XH/WHILYH/WH)UZH/WH, 

             aXH/WH= XH/WHnZH/WH, 

             6YH/WH= YH/WHnZH/WH, 

             aXH/WHJtdYH/WH= dZH/WH. 

Obviously we have the induced diffeomorphism 

             ZH/WH (aXH/WH)xI rel aXH/WH. 

Moreover one verifies that both XH/WH and YH/WH are deformation retracts 

of WH/WH and that 

                  T(WH/WH, XH/WH) = 0 

by [6]. It follows from the classical s-cobordism theorem that we get a dif-

f eomorphism 

              WH/WH N (XH/WH)xI rel XH/WH 

extending the above diffeomorphism since dim(W H/ WH)> 6. For the relative 

s-cobordism theorem, see for example [19]. 

   The projection it : W H--*W H/ WH is a principal WH bundle. Hence by the 

homotopy property of principal bundles, we have a WH diff eomorphism 

                      WH=XHXI rel XH 

extending the induced WH diffeomorphism 

                    ZH ^' 6XHXI rel aXH. 

   Since W has only one isotropy type (H), there are the canonical G-diff eomor-

phisms : 

               W G/Hx WH, X N G/Hx XH 
                         WH WH
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               Y N G/H x YH, Z~ G/H x ZH. 
                         WH WH 

Thus we get a G-diff eomorphism 

                     W N XXI rel X 

extending the given G-diffeomorphism (i ). 

   This completes the first step of the inductive proof. 

   Next we assume that Theorem 8 holds for the case where the 

the isotropy types is less than k. 

is k. Let { (Hi) I i=1, •••, k } be the isotropy types indexed as in § 3. 

W 

        Z(H1)                     compact Y(    ) 

have 

                aW(H1) _ (X(H1)JLY(H1))UZ(H1) 

                dX(H1) = X(H1)nZ(H1), 

                aY(H1) = Y(H1)nZ(H1), 

                 6X(H1)j.dY(H1) = aZ(H1) 

and we have a G-diff eomorphism 

                Z(H1) ~ aX(H1) x I rel aX(H1) 

which is the restriction of the G-diffeomorphism (i ). 

exist the canonical G-diffeomorphisms 

            W(H1) N G/Hl x W', X(H1) G/Hl X XH1, 
                            WH1 WH1 

            Y(H1) N G/Hl X YH1, Z(H1) G/Hl X ZH1. 
                             WH1 WH1

number

Let: W, X, Y Z be as before such that the number of isotropy types of

359

of

w

Since (Hl) is maximal among the set of isotropy types of W,                                            (H1), X(Hl), 

l and                       G-invariant submanifolds of W. Obviously we H              are

As is well-known, there

Since both XH1 and YH1 are WH1-deformation retracts of WH1, we may assert 

that both X(H1) and Y(H1) are G-deformation retracts of W(H1). 

   It follows from [6] that 

             TG(W, X)=0 implies TG(W (Hl), X(H1))=0. 

   We are now in a position to employ the arguments in the case where W 

has only one isotropy type and we get a G-diff eomorphism 

                W (H1) ~ X(H1) x I rel X(H1) 

extending the above G-difeomorphism 

               Z(H1) N 6X(H1)xI rel aX(H1). 

   Next we consider the normal bundle vl of W(H1) in W. By the G-homotopy
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property of G-vector bundles, we have an isomorphism of G-vector bundles 

                      v1 ~ (v1 I X(H1)) x 1 

which is an extension of the canonical bundle isomorphism 

                  v1 I Z(H1) "' (v1 I ax(H1)) x I 

induced from the product structure above. 

   In particular, we have G-diffeomorphisms 

            v1(1) (v1(1) I X(H1)) x I rel v1(1) I X(H1), 

            Sv1(1) ̂ ' (Sv1(1) I X (H1)) x I rel Sv1(1) I X(H1) . 

Therefore we have 

                   r0(v1(1), v1(1) I X(H1)) = 0 
and 

      TG(SL)l(1), Sv1(1) I X(H1)) = 0. 

We now set 
               W2 = W-v1(1), X2 = XnW2i Y2 = YnW2 

and 
            Z2 = (Z-v1(1) I Z(H1))USv1(1) . 

Then W2i X2, Y2f Z2 are compact G-manifolds with corners and Z2 has the 

induced product structure 

                     Z2 ax2x1 rel 6X2. 

Moreover it is easy to see that 

                   aW2 = (X2.LY2)UZ2, 

                    axe = X2nZ2 i 6Y2 = Y2nZ2, 

                  dX2116Y2 = aZ2. 

   It follows from Theorem 7 that both X2 and Y2 are G-deformation retracts 

of W2. 

   Next we will show that 

                          rG(W 2, X2) = 0. 

For this, we make use of the following geometric sum theorem due to Illman [6]. 

   THEOREM 9 (Illman). Let (A, B) be a finite G-CW-pair and A1, A2 G-sub-

complexes of A such that A=A1UA2. Set 

            Ao = A1f IA2 and Bk = BnAk (k=0, 1, 2). 

Denote by ik : Bk-*B the inclusion maps (k=0, 1, 2). Suppose that the inclusion 

maps 3k : Bk--*Ak are all C-homotopy eguivalences.
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   Then the inclusion B-~A is also a G-homotopy equivalence and we have the 

equality 

           TG(A, B) = i1*r0(A1, B1)+i2*TG(A2, B2)-io*TG(Ao, Bo). 

   Apply Theorem 9 to the following case : 

                A = W , B = X, A1= v1(1), A2 = W2. 

Then we have 

         Ao = A1nA2 = Sv1(1), Bo = XfSv1(1) = Sv1(1) I X(H1), 

         B1, Xnv1(1) = (1)l X(H1) and B2 = XnW2 = X2. 

The maps corresponding to the maps in Theorem 9 are the following inclusion 

maps : 

                   io : Sv1(1)IX(H1) -~ X, 

                    it : v1(1)IX(Hi) --> X, 

                       i2 : X2 -~ X, 

                   Jo : Sv1(1) I X(H1) -~ Sv1(1), 

                   J1: vi(1) I X(H1) -~ vl(1), 

                           12: X2 -- * W2. 

Note that j k are all G-homotopy equivalences (k =0, 1, 2). It follows from 

Theorem 9 that 

         TG(W, X) = it*TG(vl(1), ,(1) I X(H1)) 

               +i2*TG(W 2, X2)-i0 rG(Sy1(1), Sv1(1) I X (H1)) 

Thus we have 

                          i2*TG(W2, X2) = 0. 

Consider the Hauschild decomposition : 

                  WhG(X2) ~ 1. WhG(X2, (H)) 
                                      (H) 

Since the set of the isotropy types of W2 is {(H2), (H2), , (Hk)}, the element 

TG(W2, X2) can be written as 

k 

                      (W2, X2) = -L TG(W 2, X2)(HZ) 
                                                         $=2 

corresponding to the Hauschild decomposition. By the assumption (*1), the in-

clusion map 

                           i' : XHz --o XHti i>_2 

gives a bijection of the connected components and induces isomorphisms of 

fundamental groups for any base points. It follows from Theorem 5 that the
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homomorphism 

            i2: Wh0(X2, (Hi)) -~ Wh0(X, (Hi)), i?2, 

is an isomorphism. Since i2*TG(W2, X2)(Hi)=0 for any i>_2, we have 

                v0(W2, X2)(Hi) = 0 for 2i k. 

It turns out that 

                          VG(W 2, X2) = 0. 

Clearly W2 satisfies the conditions (*1), (*2). 

   Thus we have shown that W2, X2i Y2, Z2 instead of W, X, Y, Z in Theorem 

8 satisfy all the conditions of Theorem 8. Since the number of the isotropy 

types of W 2 is equal to k-1, we get a G-diff eomorphism 

                      W 2 _ X2 X 1 rel X2 

which is an extension of the product structure on Z2, by the inductive hypothesis. 

   Note that 

                  Z c (y~(1)IZ(Hl))uZ2 

and that the product structure on the right hand side agrees with that of Z. 

   Thus we obtain a product structure on W which is an extension of the 

product structure on Z. 
   This makes the proof of Theorem 8 complete. 

    § 6. Equivariant stable s-cobordism theorem. 

   In this section, we assume that G is a finite group. 

   First we state the following lemma which follows directly from the defini-

tion of an elementary G-collapse and an elementary G-expansion. 

    LEMMA 1O. Let (W, X) be a finite G-CW -pair such that X is a G-de f orma-

 tion retract of W. I f VG(W, X)=0, then 

                      zG(W X Y, X x Y) = 0 

for any finite G-CW-complex Y. 

    In view of [ii], any compact G-manifold has a finite G-CW-structure. 

Hence we have the following corollary. 

    COROLLARY ii. Let W be a compact G-manifold and X a compact G-sub-

mani f old of W such that X is a G-deformation retract of W. I f VG(W, X)=0, 

 then we have 

                      zG(W x Y, X x Y) = 0 

for any compact G-manifold Y.
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   PROOF OF THEOREM 2. In [11], it is shown that there exists an orthogonal 

G-representation space V such that W X V (1) and W X SV(1) satisfy the condi-

tions (*1), (*2) in § 1. 

   First we will apply Theorem 8 to the triad 

              (WXSV(1); XXSV(1), YXSV(1)). 

It follows from Corollary 11 that DG(W, X)=0 implies 

                r0(W XSV(1), XXSV(1)) = 0. 

Hence by Theorem 8 we get a G-diffeomorphism 

            WXSV(1) ~ XXSV(1)XI rel XXSV(1). 

   Next we will apply Theorem 8 to the triad 

               (WXV(1);XXV(1), YXV(1)). 

As above, we get 

                  r0(WXV(1), XXV(1)) = 0. 

Appealing to Theorem 8 again, we have a G-diff eomorphism 

             WXV(1) N XXV(1)XI rel XXV(1) 

which is an extension of the above product structure on W X S V(1). 

   This makes the proof of Theorem 2 complete. 

   § 7. Stable equivalence of G-manifolds. 

   In this section, we assume that G is a finite group. 

   Let M1, M2 be closed G-manifolds and f : M1-- M2 a tangential simple G-

homotopy equivalence. It is well-known that there exist an orthogonal G-

representation space V1 and a G-embedding e : M1-~ V1. We assume that V1 

includes R with trivial G-action as a direct summand. For any positive integer 

m, we denote by V the direct sum of m-copies of V1 and by j : V1--* Vm the 

inclusion to the first factor. Set V =V r. 

   Then the composition 

                  f Xe idX j                M
1 --- >M2XV1- >M2XV 

is a G-embedding. One verifies that the normal bundle of the G-embedding is 

isomorphic to the product bundle 

                     M1 X V -* M1, 

if V1 is sufficiently large. Thus we get a G-embedding
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                     i : M1xV(1)--~M2XV. 

By this embedding, we identify M1 X V(1) with the image i(M1 X V(1)). If we 

choose a sufficiently large number r, there holds the following inclusion 

0 

                   M1xV(1) c M2XV(r). 

We now set 

0 

                    W= M2 X V (r)-Ml X V (1) 

and get a triad 

                 (W; M1XSV(1), M2XSV(r)). 

The proof that the triad above is a G-h-cobordism for m>_ 3 is shown in the 

proof of Lemma 3.2 in [11]. 
   Next we will show that the G-h-cobordism is in fact a G-s-cobordism. 

   For this, we first show that the G-embedding 

                     i : M1XV(1) --~ M2XV(r) 

is a simple G-homotopy equivalence. Consider the following G-homotopy com-

mutative diagram 

f                 M
1 ---> M2 

                           ~ j 

i 
                       M1 X V (1) -----> M2 X V (r) 

where r is the projection map and j is the natural inclusion map. In view of 

[3], [6], we have 

                TG(z) = DG(j ' f ' 7r) = ZGC7 ' f)+(J ' f)*VG(lr) 

                  = ZG(j )+i *T G(f )+(j' f)*VG(lt) 

Since n, f and j are all simple G-homotopy equivalences, we may conclude that 

i is also a G-simple homotopy equivalence. 

   Next we will show that 

                    DG(W, M1 x S V(1)) = 0. 

For this, we apply Theorem 9 to the following case : 

                A = M2XV(r), B = M1XV(1), 

                  A1=M1xV(1)=B, A2=W. 

Then we have 

                 Ao = A1nA2 = M1xSV(1), 

                  Bo=BfAo=M1xSV(1)=A0,
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                  B1 = BnA1 = A1 = B = M1xV(1), 

                 B2 = BnA2 = M1xSV(1) = A0. 

The maps corresponding to those maps in Theorem 9 are the following inclu-

sion maps : 

                 io = i2: M1xSV(1) --~ M1xV(1), 

                 it =id: M1 X V(1) --~ M1 X V(1) 
and 

                j o = id : M1 X S V(1) -~ M1 x S V(1) , 

                j 1 = id : M1 X V(1) -* M1 X V(1), 

                 12: M1 x SV(1) -~ W . 

Note that j k are all G-homotopy equivalences (k =0, 1, 2). It follows from 

Theorem 9 that there holds 

 z0(M2 X V (r), M1 x V(1)) = i 1*v0(M1 X V (1), M1 x V (1)) 

                    +i2*VG(W, M1 X SV(1))-io*v0(M1 X SV(1), Ml X SV (1)) . 

By definition, we have 

                 VG(Ml x V(1), M1 X V(1)) = 0, 

                DG(M1 X S V(1), M1 X S V(1)) = 0. 

Thus we have 

             i2*r0(W, M1 X S V(1)) = r0(M2 X V (r), M1 X V (1)) 

                                = Z'G(i) = 0. 

   Finally we will show that 1 * is an isomorphism. If the m above is greater 

than two, we have 

                    dimVG = m dimV >_ m>_ 3. 

Hence for any subgroup H of G, SV(1)H is connected and simply connected. It 

turns out that the inclusion map 

     a 2 : (Ml X SV(1))H = MH X SV(1)H --~ (Ml x V (1))H = MH x V (1)H 

gives a bijection of the connected components and induces isomorphisms of 

fundamental groups for any base points. Accordingly there holds an isomorphism 

           i2*: WhG(MO X S V(1), (H)) N WhG(M1 X V (1), (H)) 

by Theorem 5. Since H is an arbitrary subgroup of G, it follows from the 

Hauschild decomposition that 

              Z2*: Wh0(M1 X S V(1)) = Wh0(M1 X V (1)) 

is an isomorphism.
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   Since i2*TG(W, M1 X SV(1))=0, we conclude that 

                     TG(W, M1XSV(1)) = 0. 

Namely the triad (W; M1 X SV(1), M2>< SV(r)) is a G-s-cobordism. 
   If we take m as m>_6, then the conditions (*1), (*2) of Theorem 1 are 

satisfied and we have a G-diffeomorphism 

             W M1XSV(1)XI rel M1XSV(1). 

Therefore we obtain the following G-diff eomorphisms 

         M2 X V (r) = M1 X V (1)UW ~ M1 X V(1)U(M1 X S V(1) X I) 

                M1 X V(1) . 

Obviously M2 X V (r) and M2 X V(1) are G-diff eomorphic and we have the required 

G-cliff eomorphism 

                   f : M1 X V(1) ---~ M2 X V(1) . 

The G-homotopy commutativity of the following diagram : 

f                         M
1 X V (1) ------> M2 X V (1) 

I                M
1 -- > M2 

is obvious. 

   Conversely suppose that there exists a G-diff eomorphism 

                    f : M1 X V(1) -- > M2 X V(1) 

so that the diagram above is G-homotopy commutative. Since two projection 
maps 2r: M1 X V (1)--~M1, 7r: M2 X V (1)-~M2i and f are all simple G-homotopy 

equivalences, one can show that f is also a simple G-homotopy equivalence as 
before. 

   This makes the proof of Theorem 3 complete. 
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