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EQUIVARIANT SMOOTHING THEORY 

BY R. LASHOF 

Given a finite group G acting on a topological manifold M, when can we 
put a smooth structure on M such that G acts smoothly? Our approach to this 
problem is via equivariant immersion theory. This generalizes the immersion 
theory approach of [12], and we begin by reviewing these ideas. Details will 
appear in [13]. 

1. The immersion approach to smoothing theory. A map a: M" -* M£ 
between w-dimensional topological manifolds is called a (topological) 
immersion if a is a local homeomorphism. Of course, a smooth immersion is a 
topological immersion of the underlying topological manifolds. The basis of 
the immersion approach to smoothing is the following trivial lemma: 

LEMMA 1. A topological immersion a of a topological manifold Mn into a 
smooth manifold Vn defines a unique smooth structure on M such that a 
becomes a smooth immersion. 

In fact, define smooth local coordinates on M by pulling back the local 
coordinates on V via the local homeomorphisms. We will denote this smooth 
structure by Ma. 

Recall that the differential of a smooth immersion ƒ: V" -» V2 induces a 
bundle homomorphism df: TVX -> TV2 of the tangent vector bundles which is 
an isomorphism on fibres. Call such a bundle homomorphism a repre
sentation and let R(TVV TV^) be the space of representations with the 
C°-topology and I"*(VX, V£ the space of smooth immersions with the C00-
topology. The Smale-Hirsch theorem for manifolds of the same dimension 
states: 

THEOREM A (HIRSCH). If no component of Vx is closed, d: I°°(Vl9 VJ-+ 
R(TVl9 TV2) is a weak homotopy equivalence. The relative version for 
immersions modulo a given immersion on a neighborhood of a closed subset A 
holds, provided M — A has no compact components. 

For a topological manifold M we have Milnor's tangent microbundle [15], 
[12]. Since the fibre of rM over/7 e M is essentially a neighborhood germ, a 
local homeomorphism ƒ: M, -» M2 defines a microbundle representation 
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df: rM, -* TM2. (Explicitly, the total space of rM is any neighborhood U of 
the diagonal in M X M and df = ƒ X ƒ| £/, £/ sufficiently small.) Lees? 

topological immersion theorem [14] for manifolds of the same dimension 
states: 

THEOREM B. If no component of Mx is closed, d: V{MX9 MJ -» 
R*(rMl9 TM2) is a weak homotopy equivalence . 

Here the "space" /'(M„ M2) of topological immersions must be treated as 
a simplicial set and similarly for R'(rMl9 TM2) [12]. Since each w-dimensional 
microbundle contains an essentially unique Rn bundle, and these two cate
gories of bundles are equivalent by Kister's theorem [10], we can also 
consider R(rMl9 TM2) to be the singular complex of the space of Rn bundle 
representations. Lees' theorem is proved following the scheme of Haefliger 
and Poenaru [5] for piecewise linear immersions after proving a topological 
isotopy extension theorem based on the work of Kirby [8]. 

By taking essentially the smooth singular complex Is(Vl9 V^ of ƒ °°(K„ V£ 
and the singular complex Rs(TVl9 TVJ of R(TVl9 TVJ we get a homotopy 
commutative diagram: 

I\VX, V2) ^ > R\TVX, TV2) 

If(Vl9 V2) ^ >RXTV19TV2) 

where F is obtained by forgetting the smooth structure and <J> by embedding 
TV as a neighborhood of the diagonal inV X V via the exponential map and 
observing that the topological differential and smooth differential then agree 
up to a natural homotopy. 

As an example, if rMn is trivial, i.e., equivalent to M X R", we can 
obviously construct a microbundle representation of rM into TR". By 
Theorem B, if M is open, there is a topological immersion a: M -> Rn, which 
defines a smooth structure Ma on M by Lemma 1. 

More generally (and avoiding technicalities), if rM contains a vector 
bundle £ and U is a contractible open set of M, £| U is trivial and we have a 
vector bundle representation £|£/-> TRn and hence a microbundle represen
tation TU = rM\U-+ TR"9 which induces a smoothing of U. Further, because 
the smoothing of U corresponds to the trivialization of £| U9 if U' is another 
such neighborhood, the smoothing of U C) U' can be extended to a 
smoothing of U' corresponding to £\U'. That is, by Theorem A (relative 
version), there is a smooth immersion ƒ of Un U' in Rn whose differential 
extends to a vector bundle representation of Z\U'-* TRn. By Theorem B 
(relative version), ƒ extends to a topological immersion/: U'->Rn which 
induces a smooth structure on U' extending that on U n U'. Thus by 
induction over a countable open cover we get a smoothing of M correspon
ding to the reduction £ of rM9 provided M is open. 

Define two smooth structures Ma9 M# on a topological manifold M to be 
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isotopic if idM is ambient isotopic as a homeomorphism of Ma onto M^ to a 
diffeomorphism. Then in [12] (see also [9]), we prove for general (in particu
lar, closed) M: 

THEOREM C.Ifn=£49 the isotopy classes of smoothings of Mn are in bijective 
correspondence with the homotopy classes of reductions ofrM to a vector bundle. 

The condition n ^ 4 comes from the fact that the immersion theorem does 
not apply to closed manifolds so that we have to apply it to M — p. In order 
to extend the smoothing over p, and to prove uniqueness up to isotopy, the 
smoothing near p has to be "straightened out" and this requires engulfing 
techniques which hold for n > 5. The case n < 3 is classical. 

Now homotopy classes of reductions of TM correspond to homotopy 
classes of lifts of the classifying map r: M -» B Top„ of the tangent Rn 

bundle to BOn. Here Top„ is the group of homeomorphisms of Rn with the 
C°-topology and On is the orthogonal group. The map of classifying spaces 
BOn -> B Top„ may be considered as a fibre space with fibre Topn/On. Thus 
the obstructions to smoothing and uniqueness lie in ̂ (Top^/O,,), i < n. 

The analogue of the fact that On+x/On = Sn is the result [11] that 
ToP«+i/T°P/i = Sn X BC{Sn). The group C(Sn) is the pseudoisotopy or 
concordance group of S"; i.e., homeomorphisms of I X Sn, I = [0, 1], which 
are the identity on 0 X 5". Thus we have a homotopy theoretic fibration 
Topn/On -» Topn+l/On+l with fibre C(Sn). For n < 3 every manifold has a 
unique smoothing up to isotopy. For n > 5, it can be shown that ^CiS") = 
0 for i < /i + 1. In fact, by surgery arguments of [7] and [16], irtC(Sn) = 
7riC

/,/(5'1), the piecewise linear group. The result then follows from Haefliger 
and Wall's analysis of w/i

>I^f+1//
>Z^I, see [6]. Hence 

*i(T°Pn/On) - ^(Top/O), i < n + 1, 

where 

Top = ind Lim Top„ and 0 = Lim On 

under inclusion. Finally, the computation of ir/Top/O can be reduced to 
computing homotopy groups of spheres by surgery methods. In principle, 
therefore, one can compute the obstruction groups. 

2. Equivariant smoothing. Let G be a finite group. A topological or smooth 
G-immersion of G-manifolds is just an immersion which is a G-map. The 
equivariant version of Lemma 1 is: 

LEMMA 1 EQ. A topological G-immersion a of a topological G-manifold Mn 

into a smooth G-manifold Vn defines a unique equivariant smooth structure Ma 

on M such that a becomes an equivariant smooth immersion. 

If V is a smooth G-manifold, the differential of the action of G on F 
induces an action of G on TV making it into a G-vector bundle [3] and [17]: 

DEFINITION. A G-vector bundle is a vector bundle/?: E-+B where E and B 
are G-spaces, p is a G-map, and the action of G on £ is through vector 
bundle maps. 

The differential of a smooth G-immersion/: V" -* V^ induces a G-bundle 
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homomorphism df: TVX -» TV2 which is an isomorphism of fibres. Let 
RG{TVXy TV2) be the space of G-vector bundle representations and 
AT(̂ i> ^2) Ae space of G-immersions. Bierstone [3] has given an equivariant 
Gromov theory proving in particular a G-version of Theorem A. To state it 
we first need the definitions: 

DEFINITION (BREDON [4]). A topological G-manifold M is called locally 
smooth if M has an atlas of G-invariant open sets U, such that each U admits 
an equivariant smoothing. 

DEFINITION. Let M(H) be the union of orbits of type (H). Af(//) is G-
invariant and a bundle over M(H)/G with fibre G/H [4]. If M is a (locally) 
smooth G-manifold, M{H) is a (locally) smooth submanifold. We say M 
satisfies the Bierstone Condition if no G-component of Afw is a closed 
manifold. (A G-component of M{H) is the preimage of a component of 
M{H)/G.) 

THEOREM A EQ. (BIERSTONE [3]). If VX,V2 are smooth G-manifolds of the 
same dimension and Vx satisfies the Bierstone Condition, d: IG(VX, V^)-+ 
RG(TVX, TV2) is a weak homotopy equivalence. 

Again this theorem has a semisimplicial version. By methods analogous to 
the G-trivial case we get a G-version of Theorem B. 

THEOREM B EQ. If Af„ M2 are locally smooth G- manifolds of the same 
dimension and Mx satisfies the Bierstone Condition, d: IG(MX, M^ -> 
RG(rMx, TM2) is a weak homotopy equivalence. 

Again IG(MX, MJ and RG(rMx, rMJ are simplicial sets. Also rM is a 
G-microbundle; i.e., G acts on the total space through microbundle maps. 

The notion of local triviality for G-vector bundles is somewhat more 
involved than for ordinary vector bundles: If £ is a G-vector bundle over a 
completely regular G-space X, for each x Œ X there is a slice Sx (i.e., the orbit 
Gx through x has a G-neighborhood GSX, G-equivalent to G X^ Sx)9 such 
that (\GSX is equivalent to the G-vector bundle lp(Sx): G XGx (Sx X /?£)-> 
G XGx Sx (obvious projection), where R£ is an orthogonal Gx space, p: Gx -» 
On a representation. 

Note that since M is locally smooth TM is locally G-equivalent to a 
G-vector bundle and hence locally G-trivial in the above sense. One may 
prove a G-Kister theorem for locally G-trivial microbundles and show the 
category of locally G-trivial microbundles coincides with the category of 
locally G-trivial G-Rn bundles. 

Now T(G XGx R£) = G X c (R£ X R^) and we have an obvious G-
vector bundle map of lp(Sx) -> Y(G X Gx R£) sending Sx to 0 e R£. 

Thus again we have that if rM contains a G-vector bundle £ we can cover 
M by G-invariant neighborhoods U = GSX such that £| U is G-trivial and 
hence we get a G-immersion (/-» G XGRp and a G-smoothing of U by 
Lemma 1 eq. Then using Theorems A eq. and B eq., we get by an argument 
completely analogous to the G-trivial case that if M satisfies the Bierstone 
Condition and rM reduces to a G-vector bundle £, then M has a G-smoothing 
corresponding to the reduction of rM to £ (cf. [2]). 

To obtain a result for arbitrary G-manifolds we must use a G-engulfing 
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theorem. This is proved from the ordinary engulfing theorem by inducing up 
the orbit types and leads to: 

THEOREM C EQ. If dim H ^ 4 for any H c G, the isotopy classes of 
G-smoothings of M are in bijective correspondence with the homotopy classes of 
G-vector bundle reductions ofrM. 

We remark that it isn't necessary to assume M is locally smooth, because it 
is easy to see that if rM reduces to a G-vector bundle then M must be locally 
smooth. 

The obstructions to reducing rM to a G-vector bundle lies in ^(TopJ/O^), 
where p: H-*On and Top£ (Of) is the subgroup of Top„ (On) commuting 
with the orthogonal action of H. 

Now Rp = Rk © Rl, k + I = n9 where we have split off the trivial repre
sentations. Write Top£ - Top£+/ and O* = 0£+/. Then if we let Ca(Sk+i) 
be the subgroup of C(Sk+i) commuting with the action of H on I X Sk+i 

(trivial action on /, orthogonal action on S*+/)>we again have a fibration: 

C'(Sk+')-*Tofi+l/Ot+l^Tofi+l+l/Ot+l+l. 

Here however, the groups tniC
a{Sk^1) are not zero in general. In principle, 

they can be computed by methods of Anderson and Hsiang [1]. In particular, 
if H acts freely on Sh~x via a then ^Ca(Sh+I) « rçCa(S*+,mod S1) 0 
7TIC(5,/); and if k + / > 6, Anderson and Hsiang have shown: 

#_ / + 1 + / (Z ( / / ) ) , / < / - ! 

„C^'modS')-*"*2*"»- ' " ' - ' 
V ' Wh,(ff), / - / 

^ . ^ ( I X D ^ 1 ) , i>l 

where L = Sh~x / H and the ÀL, are Bass' algebraic A"groups. 
Let Mn be a locally smooth //-manifold for which the action is semifree. 

Suppose dim MH = /, n = k + / and a: / / -> 0* is the representation of if 
on the normal disc to MH. Then the obstructions to //-smoothing lie in 
ToP"+//<?"+/ and in Topn/On if dim MH i- 4 and dim M ¥* 4. For this we 
need know ^/(Top2+//0^+/) only for i < / and 7r, Top^/O,, for i < /*. 

Now Topz/0/ is a retract of Top%+l/Oj*+i. We also have the inclusion of 
Aa(Sk-l)/0£ -^Topl^i/Of*,, where ^ a(Sk'x) - group of 
homeomorphisms of S*"1 commuting with a. It can be shown that this map 
induces a split injection 

wêÂ*(Sk-l)/OÏ->"/(Top^/O^,, Top,/©,), / < /; 

where Âa{Sk~x) = group of block homeomorphisms of Sk~x commuting 
with a (see [12]). Hence we get a split injection: 

^(Â^S^yo^Q^o^/O^^^TopUi/O^ i < /. 

Further, from the fibration above, using the fact that ^CiS1) = 0, / < / + 1, 
we get the exact sequence: 
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0^7ri+l(Â
a(Sk-l)/O^)®irl+l(Topl+l/Ol+l) 

^*<Jofi+!+i/Oï+M ) - > ^ ( Z ( H ) ) - . • > _ , ( T o p ï + / / 0 ; + / ) 

-* »,_, CTopï+ / + 1 /0;+ / + 1 ) -> *_ , + 1 (Z ( # ) ) -> v0(Topg+//O^+l ) 

^^o(Top2+ / + 1 /0^+ / + 1 ) -» JL,(Z(U)). 

Of course, ir /+1(Top /+1/0 /+1) - *rl+1(Tqp/0). Also Vi{Âa(Sk-l)/0£) 
can be computed up to extension from the surgery exact sequence for L. 

Finally, we note the following results of Bass and others for the algebraic 
^-groups. 

For m abelian, K_j(Z(ir)) = 0 fory > 1. 
For m abelian and prime j>ower order, K_ I(Z(TT)) = 0. 
For m cyclic of order /?, K0(Z(TT)) = class group of Q (e2"i/p). 
For IT finite K0(Z(H)) is finite. 
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