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EQUIVARIANT STABLE HOMOTOPY AND FRAMED BORDISM
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CZES KOSNIOWSKI

ABSTRACT.  This paper gives an elementary proof of the result that

equivariant stable homotopy is the same as equivariant framed bordism.

1. Introduction. Let G be a finite group. The purpose of this paper is

to give an elementary proof of the result that equivariant stable homotopy and

equivariant framed bordism, as G homology theories, are the same.

The idea of the proof is as foUows—fuU definitions and detaüs wUl be

found inside-let cjy(X, A) denote equivariant framed bordism and let ^^(X, A)

denote equivariant stable homotopy. Then, for any subgroup H of G, we have

the foUowing commutative diagram

<4vr.A)—$—arytaiO

where W(H) denotes the quotient N(H)/H and N(H) is the normaliser of H in G.

The maps $ and &* are the Pontrjagin-Thom maps, whüe ^w and *„. denote

taking fixed point sets with respect to H.

To each subgroup H of G, we can associate a pair of G spaces (EF, EF1).

If, in the commutative diagram, we replace (X, A) by (X, A) x (EF, EF') =

(X x EF, X x EF' U A x EF) then we can show quite easUy that

(1) *w is an isomorphism,

(2) &1 is an isomorphism, and

(3) *„ is injective.

It therefore foUows that $ (and V^) is an isomorphism.

Next, to the group G we can associate a finite sequence of G spaces 0=

EFX C EF2 C • • • C EFn with the following properties.

(1) For each /, 4> is an isomorphism for the space (X, A) x (EFi+x, EF¡).

(2) For each G homology theory there is a long exact sequence involving

the spaces (X, A) x (EF¡, EF¡), (X, A) x (EFk, EF?), (X, A) x (EFk, EF¡) for

any i < / < k.
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226 CZES KOSNIOWSKI

(3) EFn is G contractible.

So, by induction and the five lemma, the result easily follows.

This result, for X a point, was first announced by G. Segal [12] with a

proof to appear in J. J. O'Connor's thesis [9]. A proof by H. Hauschild was

given in his thesis [6]. The result for X a point also appears as a corollary in

the thesis of R. Rubinsztein [11].

2. Equivariant framed bordism. Let V be a G module-i.e. a finite dimen-

sional real vector space on which G acts linearly, and let M he a G manifold.

If £ is a G vector bundle on M, we say that £ has a V trivialization if there

exists some integer n and a G bundle isomorphism <t>M s.t.

<pM: £ © (R" x M) =► iV x M) © (R" x M)

where R" denotes the trivial « dimensional G module. A V framed G manifold

is a G manifold M together with a G homotopy equivalence class of V trivializa-

tions of the tangent bundle of M.

Notice that this definition of a F framed G manifold differs from that used

in [7] and [12] where R" is replaced by any G module U. However we do have

the following result which will be needed later on.

Lemma 2.1.  If M is a free G manifold then the above two notions of V

framing are equivalent.

Proof. We need only show that if TM © (U x M) s (V x M) © (U x M)

for some G module U then TM © (Rn x M) =s (V x M) © (R" x Af) for some

n.  The G vector bundles over M are in a one-to-one correspondence with the

vector bundles over M/G (see [1]), the correspondence being given by E —*■ E/G,

it*(E') <— £•' where it: M —► AÍ/G.   So

TM/G © (U x M)/G s(Fx M)/G © (U x M)¡G

as vector bundles over M/G.  Now, there exists some bundle E over M/G such

that (U x M)/G © E is a trivial vector bundle over M/G-say R" x M/G.  Thus

we have

TM/G © (R" x M)\G s (V x Ai)/G © (R" x Ai)/G

and

7AÍ © (R" x M) s (V x Ai) © (R" x Af).

Let (Z, .4) be a G topological pair; then a V framed bordism element of

(X, A) is a pair (Ai, /) where

(i) M is a V framed G manifold, and
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EQUIVARIANT STABLE HOMOTOPY AND FRAMED BORDISM 227

(ii) /: M —> X is an equivariant map with f(bM) C A.  (9AÍ denotes the

boundary of Af.)

If M is a V framed G manifold, then we have a trivialization

0M: 7AÍ © (R" x M) s (V x AÍ) © (R" x Af)-

Let -0^ denote the trivialization

-<t>M = <t>M® (_id): 7M©(R"xAf)©(RxAf)

ss(FxAí)©(R" x AÍ) © (R x M)

where -id: RxAi—»■RxAiisthe map defined by sending (t, m) to (-t, m).

The manifold with this framing will be denoted by -M.

Two V framed bordism elements (M, f), (M, f) of (X, A) are said to be

equivalent if there exists a pair (N, a) where

(i) N is a V © R framed G manifold,

(ii) M U (-A/') C M, the induced F framings on óN restricted to Af,

~M' agreeing with that on M, -M' respectively,

(iii) q: N —* X is an equivariant map with q\M = /, q\(-M') — f and

q(dN\(M U (-M'))) C A.

The set of V framed bordism elements of (X, A) under this equivalence

relationship forms an abelian group denoted by Uy(X, A).

Let V0, Vx.Vr be a complete set of irreducible nonisomorphic G

modules-with VQ being the trivial one dimensional G module, i.e. R. Thus any

G module V may be represented uniquely as a sum V = 2jL0 n¡V¡ where the

n¡ are integers (n¡ > 0) and /i,^. means the direct sum of«, copies of V¡.

An element a G RO(G)—the real representation ring of G-may be written

as a = 2{L0 a¡V¡ where the a¡ ate integers. Let a+ be the sum 2 a¡V¡ where

ci] > 0 and let a~ be the sum 2 -ak Vk where ak < 0. Then a = a+ - a~ and

each of a+ and a~ are G modules. We define

<4(X, A) = u%+(D(a-) x X, S(a~) x X U Z)(oT) x ¿)

where A 5 stand for the unit disc and unit sphere respectively.

The set {<J¿(X, A); a E RO(G)} forms a G homology theory indexed by

elements a E RO(G). (This theory has suspension isomorphisms for trivial G

modules R", although later on it will follow that we have suspension isomor-

phisms for all G modules.)

3. Equivariant stable homotopy. We recall [7] the definition of equivar-

iant stable homotopy. If F is a G module, let Sv denote its one point compact-

ification, in which «> is regarded as base point. We say that a G module W is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



228 CZES KOSNIOWSKI

admissible if W contains at least one copy of each irreducible G module-for

example, W may be 2JL0 V¡ where the Vi are as defined in §2.

We define tts¿°(X, A) to be the direct limit (over k E Z) of the G homo-

topy classes of base point preserving G maps from SkWea   to skWea~ A

(X*/A+). In symbols

tt*'g(X,A) =  Urn  [&"**+i&W9er A (X+/A+)]%.
k—K~

The maps

[SkW®0l+;SkW9a~A(X+/A+)]G

_ [s(k + l)WS>a+;S(k+l)W!)a- A (¿+/A+)\%

are given by suspending with Sw.

This definition is independent of the choice of IV-so long as W contains

at least one copy of each irreducible G module-see [7].

The set {ir*'G(A', A); a E RO(G)} forms a G homology theory and has

suspension isomorphisms for aU G modules V, i.e.

7r£G(Ar, A) s TTsaiv(D(V) xX,S(V)*XV D(V) x A), '

in other words it forms a G homology theory in the sense of [7].

4. The commutative diagram.  Since

hG(X, A) = hG+(D(cT) x AT, S(cT) xXVD(cT) x ¿),

in the case that h = co or h = tt, we shaU henceforth only look at hG(X, A)

where V is some G module.

The aim of this section is to show the existence of the following commuta-

tive diagram.

ofyX, A)-► 7r^G(AT, A)

l*w l*rr
c^CA^ A«) ^ 7r^<">(A* A»)

(a) The map $ is given by the Pontrjagin-Thom construction, which we

proceed to describe.

Let (M, f) be a V framed bordism element of (X, A). We know that TM

© (R" x M) = (V © R") x M, also we may embed M in (k - ri)W where k is

some large number and W is admissible in the sense of §3. If i<Af, (k - n)W)

denotes the normal bundle of M in (k - n)W then we have the foUowing bundle

isomorphisms:
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EQUIVARIANT STABLE HOMOTOPY AND FRAMED BORDISM 229

TM © v(M, (k - n)W) ̂ (k- n)W x Af,

(V x M) © (Rn x Af) © viM, ik - n)W) s (R" x M) © ((A: - n)W x Af)

so

viM, ik - ri)W © R" © V) at (R" x Af) © Hk - n)W x AÍ)

and thus

viM, kW®V)=kWxM.

In other words we can embed M in kW © F for some large A:, such that

the normal bundle is kW x AÍ. Consider the following sequence of maps:

Skwev = D(kW 0 y)iS(kW ®V)-* Div)HDiv\bM) U 5(v))

2» (Af x Z>(A:W0)/((9M x D(*»0) u(*x S(*H0))

£^-+ (Z x D(kW))li(A x ß(A:M0) U (X x 5(*H0)).

The composite defines an element of ity-GiX, A) and so defines the map $.

(b) If (Af, f) is a V framed bordism element of iX, A) then AfH is a VH

framed IV(Ä) manifold and f\MH: MH —*■ XH is a rV(/f) equivariant map with

fibMH) C ̂ H. We therefore define TJ/JJli, f) to be (MH, f\MH).

(c) The map $P is the Pontrjagin-Thom construction as in (a).

(d) *„ is  defined by taking fixed point sets with respect to H, i.e.

[skW<BV. ¡*w A x/a]og _ ipwttevH; s**H A XH/AH]°W(H).

iW*1 is clearly admissible for the group WiH).)

The diagram is clearly commutative.

5. Families. Recall that a family F in G isa collection of subgroups of G

such that

(a) if/YGFandA'C/f.thenÄ'GFand

(b) if H E F and g E G, then gHg'1 E F.

Following Palais [10], see also Bredon [2], we define universal spaces EF

as follows. If H is a subgroup of G, let EWiH) denote the universal W(H) space

(i.e. a contractible free W(H) space such that EW(H) —> EW(H)/W(H) = BW(H)

is a numerable W(H) principal bundle). Let EF he defined by

EF = * (G xmH) EWiH))

where the join is taken over a complete set of conjugacy classes of subgroups H
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230 CZES KOSNIOWSKI

in F.  (Note. The join used here is not the Palais join as in [10] and [2] -this

is needed only if F is not a famüy.)

We have, in particular, if AT is a G space aU of whose isotropy subgroups

belong to F then there is a unique map (up to G homotopy) X —* EF.

Given a G homology theory hG we define a new G homology theory

hG [F, F'] for pairs F' C F of famUies in G by

hG [F, F'] (X, A) = hG(X xEF.AxEFUXx EF').

This idea, in this form, comes from torn Dieck [5]. That hG [F, F'] is indeed

a G homology theory is not too difficult to prove. For example, the long exact

sequence

(5.1)->hG [F, F'] (A) — hG [F, F'] (X) -> hi [F, F'] (X,A)-*---

is obtained by looking at the associated hG theory long exact sequence of the

triple (X x EF,X x EF'U A x EF, X x EF1) and using the fact that

hG(X xEF'UA xEF.Xx EF') = hG(A x EF, A x EF')   (by excision)

= hG[F,F'](A).

Let F" C F' C F be famUies in G and consider the triple (X x EF, X x

EF'UA x EF, X x EF" UAx EF). Looking at the associated hG theory

long exact sequence and using the fact that

hG(X xEF'UA xEF.X x EF" U A x EF)

s hG(X x EF', X x EF" UAx EF1)   (by excision)

= hG[F',F"](X,A)

we obtain the foUowing long exact sequence

-► hG[F', F"](X, A) — hG[F, F"](X, A) -+ hG[F, F'](X, A)

(5-2) -^h?-i[F',F"]Q[,A)-+'-

Note.  For bordism type theories we can also define hG [F, F'] (X, A)

along the lines of Conner and Floyd [4] and Stong [13] -the resulting theory

agrees with the one defined above, see the paper of torn Dieck [5].

If F' = 0 then we write hG [F, F'] (X, A) as hG [F] (X, A), if furthermore

F — {1}, the farnUy consisting of just the trivial subgroup, then we write it as

hG [free] (X, A).

If F = AU, the famfly consisting of aU subgroups then hG [AU] (X, A) =

hG(X, A).
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EQUIVARIANT STABLE HOMOTOPY AND FRAMED BORDISM 231

6. Proof of main theorem. Recall that two families F' C F in G are said

to be adjacent if F\F' only contains the conjugates of some single group, say H.

Throughout this section let F' C F be adjacent families in G with H E

F\F'. Returning to the commutative diagram (§4), replacing (AT, A) by the pair

iEF x X, EF x AU EF' x X) gives the following commutative diagram.

(ü°r[F, F'] iX, A)      *    > it'f [F, F'\ iX, A)

I* |*jr
Uy [frJe] (>, A") Ä |}J<"> [frJe] Qt", AH)

(Observe that iEF x Xf = EWiH) x XH and iEF x AU EF' x Xf = EWiH)
xAH.)

Theorem 6.1. *w is an isomorphism.

Proof. We shall first define a map

9: «¡¡^[fieelO* A^ -> uG[Fi F'](^ ,4).

Let (iV, f) G wy [free] iXH, AH), soNisaVH framed IV(/V) manifold and

t: N —*■ EWiH) x XH is a IV(#) equivariant map with i(3A0 C EWiH) x AH.

It follows that N must be a free Wf/0 manifold. Let iVH)1 denote the orthogo-

nal complement of VH in V and consider the following manifold

Q = G *N(m iN x DiiVHf))

which is easily seen to be a V framed G manifold. The isotropy subgroups in Q

axe contained in the family F, hence there is a unique (up to G homotopy) equi-

variant map qx : Q —* EF.  (The map q*¡ : Q" —► iEF)" = EWQI) agrees with

pt where p: EWQI) x XH —*■ EWiH) is the projection map.)

We thus obtain a map

1 = <7i * (G x^ /): Q-^EFxiG xN(H) XH) ̂  EF x X.

Since

9Ö = C **(*) (W * W)1)) U G x„(ff) iN x 5((^))

it follows that q($Q) CEF xAU EF' x X and so (g, tf) determines an element

of co£[F, F'KX, A). We define 0 by QiN, T) = iQ, q). Clearly *w0 = id.

The fact that 0*w = id follows from the next two lemmas.

Lemma 62. If Misa V framed G manifold then the normal bundle of

MH in M is trivial and is given by MH x (K^)1.
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232 CZES KOSNIOWSKI

Proof. TM © (Rn x M) ~ (V x M) © (R" x M) so

7M* © (Rn x Ai") s (Kw x Ai*) © (R" x Ai")

and

JAi" © p(MH, M) © (Rn x M11) ss (7AÍ © (Rn x AifllAi*

s ((K x M) © (R" x AifllAi* a(Fx Ai") © (Rn x Af")

s (VH x MH) © ((J^)1 x MH) © (R" x Ai"),

which impUes that v(MH, M) is MH x (VHr since the H representation in TMH

© (R" x MH) is // trivial but not so in v(MH, M).

The next lemma is the analogue of Lemma 5.1 in [13].

Lemma 63.  Let (M, f) and (M', f) be elements of «£ [F, F'] (X, A) and

suppose that M' is a regularly embedded submanifold of M with f\M' = /'. If

every point ofM\M' has isotropy group belonging to F' then these elements

represent the same class in uG[F, F'](X, A).

Proof.   Consider Af x / where / is the unit interval, with r: M x / —>

EF x X given by r(m, t) = f(m). We have

(i) M x I is a V © R framed G manifold,

(ii) M U (- Ai') C b(M x I), with the induced V trivializations on ÓW

restricted to Ai, -M' agreeing with that on M, -Ai' respectively,

(Ui) r: M x I —► EF x X is an equivariant map with

r(d(M x I)\M U (-AÍ'))) = r((M x / U Ai U (-M))\M U (~Ai')))

= r((M x I) U (-(AAAi'))) CEFxAUEF'xX.

Theorem 6.4.   &* isan isomorphism.

Proof. This result foUows from Lemma 2.1 and the fact that transversal-

ity works for G maps between free G spaces-see for example [8].

Corollary 65. 3> is injective and *w is surjective.

Theorem 6.6. IfA=0then *„ is injective.

Proof.  Suppose /E ttsvg [F, F'] (X) and that *„(/) = 0, i.e. that

Vn(f) E TrfflH)[fiee](XH) is W(H) nuU homotopic.

Since EF is the join of G x^^ EW(H) with EF' we consider G xN,H^

EW(H) as being a subspace of EF.  Also X x (G xN,H^ EW(H)) is a subspace of

D(kW) x X x EF in the obvious way, and hence a subspace of SkW A X A

(EF/EF').
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EQUIVARIANT STABLE HOMOTOPY AND FRAMED BORDISM 233

Let L=f~1(Xx(G xN(H) EW(H))) and let * denote the base point of

SkW A X A (EF/EF'); then L n /"*(*) = 0. We shall show that L = 0. Let a

be some point of L and let Ga denote the isotropy subgroup at a, then either

(0 CaGF,
(II) GaGF\F',or

(III) Ca6F'.
In case (I) Ga $ F then Gf(a) $ F since Ga C G/(a) £ H E F, and hence this

case does not arise. In case (II) Ga G F\F' means that Ga is conjugate to H and

/(a) E(SkW AX A (EF/EF'))G<> which by assumption on *„(/) may be assumed

to be the base point and hence a$L,so this case does not arise. Finally in case

(III) Ga G F', but / restricted to such points factors through (D(kW) x X x EF')

which is in the base point of (SkW A X A (EF/EF1)), thus this case also does

not arise.

It follows that L = 0, in other words rl(X x (G xN(H) EW(H))) =0.

Since the complement of X x (G xN(H) EW(H)) in SkW A X A (EF/EF) is G

contractible it follows that / is G null homotopic.

Corollary 6.7.   <i> is an isomorphism.

Proof. If A = 0, then this follows immediately from Theorems 6.1, 6.4

and 6.6. In general the long exact sequence 5.1 and the five lemma provide a

proof.

We have shown that <E> is an isomorphism for every pair of adjacent famil-

ies. Since G is a finite group we can find families 0 = Fx C F2 C • • • C Fn =

All, such that F. C FJ+1 are adjacent families in G. So by induction aftd the

five lemma on the long exact sequence 5.2 we can show that 3> is an isomor-

phism for all pairs F' C F of families in G. In particular for 0 C All. This com-

pletes the proof of the result that equivariant framed bordism is the same as

equivariant stable homotopy.
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