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EQUIVARIANT STIEFEL-WHITNEY CLASSES
I. INTRODUCTION

Let 8 =(B,X,m) be an n-dimensional vector bundle, B its
total space (bundle space), X its base space, and =w: B —X the

projection. For each gq> 0, the q‘EE Stiefel-Whitney class Wq((B )

is an element of Hq(X;ZZ), the singular g-dimensional cohomology
group of X with coefficients the integers modulo two.
Let VU be the category of vector bundles. The functions wH
on V' satisfy the following properties (4, p. 281):
0 . . 0
1) W \(@) is the unit class of H (X;ZZ);
2) Wq(@)z 0 for q> n;

3) If f = (fv, f) ;8 — ®' is a bundle map, then

R
¥

ale

N4
fwign) =wis);
4) If @ ®B' isthe Whitney sum of the bundles @& and
@', then WY @8 = = W(8)u W (")
i+j=q
5) If @ is the one dimensional vector bundle over real pro-
jective 1-space, then Wl(@ ) £ 0.
If the base space X of (@ is paracompact, then these five pro-
perties characterize the functions W2 (2, p. 6-T).

In (3), J.W. Smith extends the category U/ to a category of

generalized vector bundles. He then defines an extended Euler class

on a full subcategory of this new category. The classical Euler class



of an oriented n-dimensional vector bundle, reduced modulo two, is
equal to the n‘CE Stiefel-Whitney class of the bundle (2, p. 41). This
leads one to consider the possibility of defining the Stiefel-Whitney
classes of generalized vector bundles.

A generalized vector bundle is essentially represented by a vec-
tor bundle together with a set of local bundle maps. In the following

chapters we consider vector bundles together with pseudo-groups of

local bundle maps and thereby get a category Vp g’ the category

of vector bundles with pseudo-groups. Using an obvious identification,

we observe that U can be considered as a full subcategory of

vp. g.

The functions WY on VU can be defined in essentially two
ways. One method, discussed in (2, p. 33-35) and (4, p. 281), uses
the Thom isomorphism and the Steenrod squaring operations. The
second method is based upon obstruction theory, and assumes that the
base space X is a finite complex (5, p. 148-204). For each q,
0<g<n-1, Ilet @ E be the associated bundle of & (5, p. 43)
with fibre Vn, n-q’ the Stiefel manifold of (n-q)-frames in n-space.

The primary obstruction to a cross-section of B 4 is an element

q+1 q+l, .
(@] (B)eH (X’Trq(vn, n-q) ). The homotopy group nq(Vn’ n-q)

is isomorphic to the group Z of integers if q is even or g=n-1,

and isomorphic to the group Z2 of integers modulo two if gq is

)st

oddand g<n-1 (5 p. 132). The (gq+l Stiefel- Whitney class
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Wq+1(6) is then equal to Oq+1(<6) reduced modulo two (2, p. 57-
59).

Our equivariant Stiefel-Whitney classes W2+l, defined on a

certain subcategory cf V-p g’ shall be obtained by an adaptation
. . q+1
of the obstruction theoretic approach. For 0<q<mn-1, We

shall constitute the primary obstruction to equivariant cross-sections

in the appropriate generalized bundle.




II. PRELIMINARIES

Let Aq be the standard q-simplex with vertices

(po, ISEERR pq) and let e::p'-l : Aq - Aq+1 be the linear map defined

by the vertex map

(i)

g+1 and is called

The image of Aq under e(;+l is denoted by &

th
the i— g-face of Aq+l° The image in Aq+l of the composition
. ) 1){] .th
e::_[+l ° e; : Aq—l - Aq+l is denoted by A((;zﬁij) and is the j— (g-1)-
face of A((:_ll-:l'

The singular simplexes of a topological space Y, i.e., the
continuous maps of Aq into Y, are denoted by small Greek let-
ters, e.g., o : Aq — Y. We shall let Sq{Y} denote the set of all

singular g-simplexes of Y. The iE}l (g-1}-face of the singular g-

simplex ¢ is denoted by c(l} and is defired to be the composition

7o

(i)

0(1) =ce e :a =Y. The jg’l {g-2)-face of o is denoted by

q-1
O‘(i)(j). We let C*(Y;G) = {Cq(Y; G}, aq} be the singular chain com-
plex of Y with coefficient group G. The corresponding cochain
complex with coefficients in G is denotad by C%Q"YgG}, i{Cq(Y;G),Bq}.
When G =2, the group of integers, we shall simply write C*(Y)

and Ca\(Y). We let f# and f# denote the chain and cochain maps
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induced by a continuous map f from one topological space to anoth-
%
er, and f the corresponding cohomology map.

Let 8 = (B,X,n) be an n-dimensional vector bundle.

Definition; A pseudo-group J = fu=(d, G.)} of local bundle maps

on @B is a set of bundle maps u: B [U—> i) , where U 1is an
open subset of X and @& lU is the restriction of B to U,
satisfying the following properties:

1_) 1is an element of J;

(i) the identity map 1 = (lX, B

(ii) the inverse of each element of J is an element of J;

(iii) the restriction of an element of J to an open subset of
its domain is an element of J;

(iv) the composition of elements of J, whenever defined, is

an element of J.

In particular, condition ii) implies that if (4,Q)e¢ J, then d and
Q4 are both homeomorphisms, and the inverse of (U, ﬁ) is
(é_l,ﬁ-l). We shall use the notations Ue¢J and GeJ tomean
. v A .
that thereisa u = (u,u) in J.
Now let @ be a vector bundle and J a pseudo-group of lo-

cal bundle maps on B . We shall denote such a pair by (B,7); and

shall call (@,J) a vector bundle with pseudo-group.

Let (B,J) and (B',J') be two n-dimensional vector bun-

dles with pseudo-groups.



Definition: A bundle map = (E, f) : 8 — B' is called equi-
variant iff for each u = (4,1)e¢ J, there is a u! = (4,4 ¢ J* such

that fvo G=ute f and fo d=0r. % whenever these expressions
are defined,

- With this notion of map, we see that the set of vector bundles
with pseudo-groups and equivariant bundle maps forms a category.

This category will be called the category of vector bundles with

pseudo-groups and will be denoted by U

p. g

Let I@ be the pseudo-group of local bundle maps on &
generated by the identity map of @ . Then we may identify the vec-
tor bundle @& with the pair (8, 18 ), and we note that under this
identification, the category V'~ of vector bundles is a full subcate-
gory of Vp. g |

Now, let (8,J) be an object in V . The pseudo-group
J determines a relation on the set Sq(X) of singular g-simplexes
of X as follows. For o,c'e Sq(X), we say ¢ is J-related to
o' iff thereisa Ue¢J suchthat o = Ue ¢'. Because J is a
pseudo-group, this relation is obviously an equivalence relation. Let

J{c',0) be-the (possibly empty) subset of J consisting of all

(t\i,a)e J for which U° ¢'=g¢.

Definition: Two singular gq-simplexes ¢ and o' of X are

J-equivalent iff J(o,0') is non-empty.




The relation of J-equivalence partitions the set Sq(X) into
equivalence classes. Let A(c) be the J-equivalence class of
o€ Sq(X), i.e., A(o)={c'e Sq(X) :J(o,0') is non-empty}.

Because J-equivalence preserves incidence, the singular chain
complex C*(X) induces a chain complex structure on the quotient of
C*(X) by J-equivalence. This new complex, denoted by C:(X), is

called the equivariant chain complex of X induced by J.

Definition: A g-cochain ce Cq(X;G) is called equivariant iff

c(o) =c(c') forall o,0'e¢ Sq(X), with o¢'e A(o).

Thus, a g-cochain is equivariant iff it assigns the same ele-
ment of the coefficient group to all J-equivalent singular q-simplexes.
The equivariant cochains obviously constitute a subcomplex of the co-
chain complex C*(X;G) which we denote by _C_S;'(_}_E_,i) The corre-
sponding equivariant cohomology groups are denoted by E:D(_,C}_)_

We note that the cochain complex C:(X;G) is naturally isomorphic
to the cochain complex corresponding to the equivariant chain com-

plex Ci(X) and coefficient group G.

Definition: A homomorphism Tp : Cp(X;G) —>Cp(B;G) is
called equivariant iff for each (4, G.) e J, Tp ° fi# = ﬁ# ° Tp" whenever
these expressions are defined. A set of equivariant homomorphisms

T=7_:0<p<gqg, T :C (X;G)—C (B;G satisfying 9 oT =T .09
{p __p_qpp() p( )} ying 8T, =T, 129,




is called an equivariant chain map on dimensions less than q+1.

Now, let (@B,J) be an object in ')j‘p. g’ with B = (B, X, ™)
and the dimension of B equalto n. Foreach q, 0<g<n- I,
let B9= (Bq, X, Tl'q, Yq) be the associated bundle (5, p. 43) of @B
with fibre Y9 = Vn, nq’ the Stiefel manifold of (n-q)-frames in
n-space. Thus, a point of @& d over xe¢ X is a pair (x,v)
where v = (vl, Voseens vn—q) is a set of (n-q) linearly independent
vectors (not necessarily orthonormal) in the vector space n—l(x),

and 'n'q(x, v) = x. The pseudo-group J induces a pseudo-group of

local bundle maps on A q’ for each q=0,1,...,n-1, which we

also denote by J. Thus, with each object (&,J) in Vp. g of
dimension n are associated n new pairs (QO,J), (@l, J)yeud),
(6n_1, J). We note that the pair (B%, J) is not an object of

'])- . However, the notions of J-equivalence and equivariance in-

P- 8-

troduced above have immediate analogues in the present context.

We shall define the equivariant Stiefel- Whitney class W2+1(@,J)

of an object (B,7J) in V—p o as the element of H2+1(X;ZZ)

q+l

o (X;ZZ). The cocycle ¢

determined by a certain cocycle Cre C T

will be an obstruction to extending an equivariant chain map
T = {Tp : Cp(X)—> Cp(Bq)} on dimensions less than g+1 to an equi-
variant chain map on dimensions less than gq+2. The equivariant

chain map T will also be required to satisfy TI'# ° Tp = le(X) so

that T is a lifting of the singular chain complex of X to that of




gd

on dimensions less than q+1.
The condition that T be an equivariant chain lifting will re-

quire that we make some assumption concerning the holonomy induced

by J. The holonomy group of (8,J) atapoint xe X can be
defined as follows. Let Jx = {4, Q) e J: U(x) = x}. Then (3,1)e T
implies that alz-n-—l(x) is a linear isomorphism of .1T—l(x) onto it-
self. Let &= {ﬁ|1'r—l(x) s (4, Q)¢ Jx}. Then @x is a subset of the
group of all automorphisms of the vector space TT-l(X), and be-

cause J is a pseudo-group, the subset @x is a subgroup. @x

is called the holonomy group of (8,J) at xe X. The holonomy
group @2 of (Gq, J) at xe X 1is defined similarly, and we note
that &7 is induced by & .

X X

Now, suppose the holonomy group @x of (B,J) at X € X
0
is non-trivial, i.e., contains an element other than the identity. Then

there is an element (4, 1)e Jx such that G.l'rr-l(xo) £1 If

-1 ot
0 ™ (xg)

e SO(X) is defined by O'(AO) =X, then the equivariance of
. — q i = Vo = 4
TO : CO(X) CO(B ) requires that TO(O') = To(u o) =u

But since ﬁ| T 1 (x

4 ° TO(U).

O) is not the identity, this last equation is not
necessarily satisfied.

In Chapter III, we shall treat the case of trivial holonomy. In
Chapter IV, we shall consider the case where the holonomy group {)x
at each xe¢ X is orientation preserving and leaves at least an (n-1)-
1

dimensional subspace of w ~(x) fixed. We shall also comment on

why our procedure cannot be carried out for more general holonomy.
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III. THE CASE OF TRIVIAL HOLONOMY

Let & = (B, X, 7) be an n-dimensional vector bundle and J
a pseudo-group of local bundle maps on & such that @X consists
of only the identity automorphism for each xe¢ X. For each q,

0<g<n-1, we have the associated bundle and pseudo-group

(@q, J) with fibre Vn nq In the present case of no holonomy we
note that if (l,ﬁ) €J, then 4 =1. Hence, if (Ci,G) and (U, 3)

arein J, we must have u = v.

Until stated otherwise, let q be a fixed integer, 0 < g<n-L.
In the associated bundle B % we shall drop the superscript g on
the projection and fibre, so that @& 9. (Bq, X,m Y), with
Y=YV . The fibre over xe¢ X will be designated as YX= 1\7:1(5::).

n,n-q

We wish to define an equivariant lifting of the singular chain

complex of X to the singular chain complex of Bq. More pre-
cisely, we shall define homomorphisms Tp : Cp(X) -—*Cp(Bq) for
0<p< g satisfying the following conditions:

(o) for each o¢:a_ —X, T (0): & —>Bq;
1 p p

(i)sa T =T .0 ;
PP p-lp

v

(iii) T o u, = G,0T whenever these expression are defined.
p p P

#  #

We shall refer to condition (i) as the lifting condition and (iii) as the

equivariance condition. Condition (ii) simply states that the Tp’s
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form a chain map on dimensions less than g+1. A collection
T={T :0<p<gqg T :C (X)—~C (Bq)} satisfying conditions (o),
p - - p p p
(i), (ii) and (iii) will be called an equivariant lifting in (ﬁq, J) on

dimensions less than q+1.

We shall define Tp by finite induction on the dimension p.
In order to facilitate this definition, we assume that the singular sim-
plexes of X on each dimension have been well ordered, and let <
be the order relation on Sp(X). We define Tp on Sp(X) by
transfinite induction and extend Tp to all of Cp(X) by linearity.
We further assume that the pseudo-group J, considered as a set,
has been well ordered.

For each ¢« Sp(X), the J-equivalence class A(oc) of o
is a non-empty subset of the well ordered set Sp(X), and conse-

quently A(c) has a first element. We call this first element the

base of Al{o).

v A v
If the subset J{(o,c') ={(q,u)e J:Uo o = o'} of the well or-
dered set J 1is non-empty, then it also has a first element which we

call the base of J(o, o').

Each oe Sp(X), being a continuous mapping of Ap into X,

q

induces a bundle over Ap (5, p. 47-48) with bundle space B
o

and a bundle map h making the following diagram commutative:
o
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h
(1) Bt %, gl

o
0 l l T
o
A —> X .
b o
The bundle space Bg of the induced bundle is the subspace of the
product space Ap x B¢ given by (x,b) ¢ B(i iff o(s) = w(b). The

maps T and h(r are the restrictions to B? of the natural pro-
o

-jections to the first and second factors of Ap b:4 Bq, respectively.

The standard fibre of the induced bundle is again Vn n-q
The induced bundle in (I) has as its base space a finitely trian-

gulable space. The obstruction theory for such bundles is treated in

(5, p. 148-217), and we shall make use of several results proved

there. In particular, the fibre Vn n-q is (g-1)-connected so that |

it ]

any cross-section over the boundary Ap of Ap can be extended
to a cross-section over Ap, 0<p<q (5 p. 149).

The induced bundle in (I) is a product bundle and hence it admits
cross-sections. We assume that the cross-sections of the induced
bundle are well-ordered for each oe¢ Sp(X).

Note that if o€ A(c'), with ¢ =0, o', then the pair

(4,4)¢ J induces a bundle isomorphism (1,1) : B?T,—' B?r making

the following diagram commutative:
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g o
A4

and furthermore (1, ﬁ)_l =(l,u ")
We are now ready to define TO. Let ¢ Dbethe first element

of SO(X), and let t be the first cross-section of the induced
o

bundle in (I). We define T (0c)=h ot . Then T (o):a _ — B4
0 o o 0 0

and because (I) is commutative, o To(cr) = TTOhO'OtO': ooom o tcr =aq.
Now, let ¢ be an arbitrary element of SO(X) and suppose
TO(cr') has been defined for all o¢'< ¢ in such a manner that condi-
tions (o) and (i) are satisfied, i.e., To(cr’) : A‘O-—’ BY and
Ty o TO(cr') = g!'. We distinguish two cases in defining To(cr):
1) cr{s A(c') for any o¢'< o
2) e A(c") for some "< 0.
In case 1) we define To(cr) as above, i.e., let tcr to be the
first cross-section of the induced bundle in (I) and define
Toe)=h ot . Then T,(o) isaliftingof o to BY,
In case 2), let o' be the base of A(c"), 1i.e,, the first ele-
ment in  A(c"), andlet (4, 3)  be the base of J(¢', ¢), so that

c=uo° o'. Since ¢' is the baseof A(q"), o' < o"< o so that

T (¢') is defined. Let t ::n — B?  be the cross-section in-
0 a! 0 a'

q

duced by the map TO(cr') PALT B and the bundle map hcr,:; Bi'—” BY
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The bundle map (l,ﬁ_l) : B(i—> B(j.: of (II) and the cross-section
t(r‘ - induce a unique cross-section t : A 0 BY making the follow-
o o

ing diagram commutative (5, p. 12):

a-1
B4 (1,u )5 Bq'
[0}

o
(HIO) t(r/[ Tt“'

s
20 1 20

We define T (o)=h ot :A —~ B? and mo T (6) = ¢ again fol-
0 o o 0 0

lows from (I).
By transfinite induction we have TO defined on all of SO(X)
and satisfying condition (o) To(cr) Ay Bq, condition (i)

o To(cr) = ¢, and condition (ii)} {(vacuously). It remains to show that
condition (iii) is satisfied.
Before showing this, we wish to make two remarks.

Firstly, the map T_.(0): & 0~ BY together with the bundle

0
map h : B4~ B4 uniquely determines a cross-section t _:A —p4
o o o 0 o
=h o . : — i i
such that To(cr) - t(r If d:a 0 T AgX L, s the diagonal
map, then t(r is defined by tcr = (l,TO(cr)) o d, This will also be

true of the maps Tp(cr) : Ap —~ B to be defined later. The cross-

section determined by Tp(cr) and h  will hereafter be designated
o
t . d hall th ntati =h ot ith-
by t_ and we shall use the representation Tp(cr) - , Wi

out additional comment.

Secondly, if o,0'e A(o'), with o' the base of A(am),
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andif oc=Ue ¢t and o' =V o', then c=do¥ e ot By
our definitions and diagram (IIIO), tcr = (1,1) o tcr" ~and

E,= (L)t sothat t = (L&) (1,8 et = (1,887 et .
Consequently, whenever we have the relation o = w o o', we have
the companion relation tcr = (l,\/x\/) o tcr" This will also be true for

dimensions other than zero, because our definitions will be similar,
and we shall have a commutative diagram (IIIp) corresponding to
(IIIO).

Now, let o=U, o'; 0,0'¢ SO(X) and let

n'_l(cr'(AO)) = Bql ot{a O). We have the commutative diagram:

A
Bqlo_,(AO)___“.l__)Bq

) hUiT Thcr

pl—— I
g A ag

(1,4)
vo 1) = = ° = ° q) o 41 o t
Consequently, To(u o) To(cr) hcr tcr hcr (L,u)eo (1L,u 7) .
= Uo hcr' ° tcr' =0 To(cr') and condition (iii), the equivariance of
T, is satisfied.

0
We now extend TO to all of CO(X) by linearity and note that

since conditions (o), (i), (ii) and (iii) are satisfied on the generators

of CO(X), namely on SO(X), and w,, 8 and TO are homo-

#’
morphisms, then conditions (o), (i), (ii) and (iii) are satisfied by the

. . q
map TO : CO(X) CO(B ).
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We now proceed to our inductive step. Thus, we assume that

T :C (X})—C (Bq)‘ has been defined for all m for which
m m m _
0<m< p<q, satisfying the conditions (o) Tm(cr) AT BY for

h 1 [ = 11 =
eac oe Sm(X), (1) Tl'# Tm 1 (ii) amT T ] and

c Xy m m-1"m’
m

(iii) ﬁ# ° Tl;n = Tr.n ° {i# whenever these eXpressions are defined.

Let o be the first element of Sp(X). For each (p-1)-face -
(i) '

o of o, T (") n — B9 is defined and induces a cross-

p-1
h

Let A(l) be the it

section t ., in the bundle Bq@ ~~ A .
(U o p-1 P :

(p-1)-face of Ap. We then have the commutative diagram:

(e , 1)
Big—LE— %, ¢ o
(V) N l
A >A(i) C
p-1 ei P p
p

. i . . .
Since ep is a homeomorphism, we may define a cross-section

i (i) qp. @) i i i-1
t . — = , o ; o | .
AL Bo_lAp by t =, Dot o (e)

th
cross-section of the part of the bundle Bi* Ap over the i— (p-1)-

i
Thus, t is a
o

face of A .
P

If the t'!'s fit together, i.e., if they are equal on their com-
a

mon domains, then we may define a cross-section t. over A
o

A('1) i
p

=t . This condition is superfluous, of course, for
o

by tc}

p :i]_,‘

Before showing that the 'tl‘s do in fact fit together, we verify
o



the following facts which are collected together as a lemma due to

their frequent use,

(Bq) and

m-1- —

Lemma III. 1: Let T : C (X)— C
m-1 m-1

. - q , . e
Tm : Cm(X) Cm(B ) be homomorphisms satisfying

— q Y - q
T Sm_l(X) Sm_l(B) and Tm.sm(X) sm(B ). Let

m—l:

pe Sm(X) and let t and h  be defined as before. Then
- P T p

a) the following diagram is commutative:

i Tp
(V1) (e 1) o

Furthermore, consider the conditions (i) 11'# ° Tm(p) =p and (ii)

Bme(p) = Tm_lam(p) and the diagram:

q (e 1) q; (1) q
B.- > B a B
p(f)‘ 4 pl m C p
t ti t
(VII) p® P P
(i)
hY
A1rr1-l ei ’ A1rr1 C A1rr1 .
m

17

Then b) if conditions (i) and (ii) are satisfied, then diagram (VII) is

commutative;

c) if diagram (VII) is commutative, then conditions (i) and (ii)




18

are satisfied.

Proof: To prove a), let (s,b)¢ Bs(,«, . Then hp(") ((s, b)) = b.

But b - (,erin' 1)((s, b)) = hp((e;n(s),b)) <b. Thus, kg =h o (ein,l).
i i
For b) we have from (ii) 8Tm(p) = i%‘lo(ml) Tm(p) °o e
o i “
= i=0(—1) ’Tm_l(po em) = mela(p). Since Tm and T.m_l take

simplexes into simplexes, this equation implies that

i ]
k . . .
Tm(p) ce = x Tm_l(po em) for some pairings b and I Sup-

i J
k k , .
pose that Tm(p) o e = + Tm-l(p em) for some i # I Then

ik J‘k ik | Jk
(i) implies that p e e, =Epe e s that Tm- l(po em) m‘:l:Tm_l(pp em).

i

k i i .
= 'Tm(p) ° em. Thus Tm(p) o em = Tm—l(po e.m) for all i, and

hence hp°t o e = h

, °t . Byparta)we have
p m p(c) p(n} Yy

h°toel =h9(€l,1)et(¢'};. Let sea
P P m p m p:

. Then
m-1

e exin(s) - (ejn(s),b) and (ein, Dot (s) = (e;(s),ﬁ) for some

b and b in BT Then h ot o e (s)=b=b=ho(e ,1)ot g (s)
pp m p o m' p

sothat t o e = (e_,1)et y , aswastobe shown.
p m m P
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m . .
N i
For part ¢c) we have 8Tm(p) = 'Z (-1) Tm(p) o e
1=0
1 1 1 1 1
= Z(-1)h ot - e = Z(-1Yh o (em,l)o t o = Z(-1h 4 ot 4.
i=0 P p i=0 P e i=0 Y P
=T (9p).
m-1 Q.E.D
Now, to show that the t:r's fit together, let AI()I) and AI()J)
have a common face, say Alil)(k) = AI()J)M). Then
i k j £ iy{k i) (¢
ep ° ep-l = e; ° ep-l so that (r( ) k) = O'(JM ) and tU“-,m\,: to"j)“\)”'( .
L i, (i)(k) i i-1, (1)(k)
Bv definition, t |A =(e,1)o t o (e) A
y U| P A )e t W o | P
i (k) i1 (i)k) . .
=(e,1)e t g A o (e A . Our induction hypotheses (o),
et fa e (e Ay yP )

. oy (k) k
(i) and (ii) imply by Lemma III 1, b) that t g |Ap_l =t

k - -
p-1’ 1o t(r(“)({‘) ° (elg‘l) l. Also, the two preceeding equations

hold when the pair i,k is replaced by the pair, j,£. Hence

iy (iMk) i k ' k -1 i-1, (i)k)
P G T I L B C S i o

k , i k-1, {i)K)
1:1) t (ep e ) 125

1l
-
[}
o
[}

I}
—
)

o
¢}

i ot o -1y ey gy, G
R t 4 o o =t th
1y e t v (eloe )| &y (r| Ap and the

i . . . .
t 's doin fact agree on their common domains. We define

O( q
t. :A —B b t.
te A B by t.

b
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We recall that since the fibre Vn n-q of the induced bundle
B~ & is (g-1)~-connected, the cross-section tc'r over A can
o
be extended to a cross-section over A . Let tcr be the first such

extension, and define Tp(cr) = hcr ° tcr : Ap ~— B9, Then condition (i)

m.o Tp(O') = o follows again from the commutativity of (I).

By the definition of tcr’ the following diagrams are commuta-
tive:
i
(e, 1) ,
q P q, (1) q
B @ ? BUIAP C B
i
E o T%w T%
A . > a0 C A
p-1 1 p p
e
p
h
Bd—-To g4

Hence by Lemma III. 1, (¢}, condition {ii} 8 T () =T o (o is
y (c) (i) o T (o) =T, ,8,(0)

satisfied.

Now let o be an arbitrary element of Sp(X) and suppose
Tp(cr') has been defined for all o¢'< ¢ satisfying conditions (o), (i)
and (ii). We again distinguish two cases in defining Tp(cr):

1) o 4 A(c') for any o'< o, i.e., o 1is not J-equivalent to

any o¢'< o;
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2) o e A{(c") for some "< g.

In case 1) we define Tp(cr) precisely as we did above for the
first element of Sp(X). Hence, for each {p-1)-face cr(l) of o
we get a cross-section t'1 = (ei 1)o t 45 © (ei)_l over the (p-1)

g - o ps o O_(L) p p-1)-
face Alf)l) of Ap and the tl's fit together to give a cross-

2
section t., over the boundary A of A . Welet t be the
o ) ) 2
first cross-section over Ap which is an extension of tcr and de-
fine T (6)=h ot :A — Bq. Then conditions (i) and (ii) are sat-
p o o p

isfied exactly as before.

In case 2), let o' be the base of A(c") and (‘:, G) the base
of J(o', o) sothat o= Yo o'. Since o' is the base of Aa"),
c'< "< o, and T (o') 1is defined. Let t  :A —>Bq| be the

= P o P g

t

cross-section induced by Tp(cr') so that Tp(cr‘) =h o tcr . We

O-I
let tcr be the cross-section of the bundle BI— Ap induced by the
o

bundle map (1, (\1_1) and cross-section t so that the following

3
0—!

diagram is commutative:

. Lt )y g9

g g
(111p) t T thr,

We define Tp(cr) = hcr ° tcr A —BY and as before, condition (i) fol-
lows from diagram (I).

In order to show condition (ii), we shall show that
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i i
tcr o ep = (ep, 1) o to_w and then apply Lemma IIIL 1, c).

We have the commutative diagram

A
BqIO"(Ap) —2 581
) b, T Thg
BY, >BY .
(1, 4)

By our inductive hypothesis on ¢' and Lemma III 1, b),

o' l) and (IIIp) we have

i i
t o ep = (ep, 1) tow - Hence, by (III

i A i A i i A
tcro ep = (1,u) o tcr' o ep = (1,u)e (ep, 1o tcr"” = (ep,l)o (l,u)otcr'(,L),

= (e;, 1) tcr(i)" and thus tcr ° e; = (e;, 1) o tcr(") , as was to be

shown,

By transfinite induction, we have Tp defined on all of Sp.(X)’
satisfying conditions (o), (i) and (ii).

Now let o, o' ¢ Sp(X), with o¢=U. o'. Then tcr = (1,&)0%,

so that using (IV_) we have T (Goc') =T () =h ot
P P P a o

=h o (l,a)o (l,{\lﬁl)ot =%o h g0t '=1A10T (') and condition
o o o 2 P

(iii) is satisfied.
We now extend Tp to all of Cp(X) by linearity and note that

since conditions (o), (i), (ii) and (iii) are satisfied on the generators

of Cp(X), namely Sp(X), and Tm,, 9 and Tp are homomorph-

# Tp

isms, conditions (o), (i), (ii) and (iii) are satisfied by the map

. — q
Tp : Cp(X) Cp(B )-
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The above construction of an equivariant lifting of Cp(X) to

Cp(Bq) fails on dimension q+l. For let p: Aq+1 ~ X. Then us-
(1)

ing conditions (o), (i) and (ii) for Tq(p, ) and applying Lemma III.1,

b), the cross-sections t'  over the q-faces A(l) of A de-
g+l g+1
. i i i -1 .
fined by tp = (eq+l’ 1)o tpw ° (eq+l) fit together as before to
give a cross-section t. over the boundary A of A . Be-
g+1 g+l
cause w (V )# 0, the cross-section t, may not be extend-
q n,n-q p
ible to a cross-section over all of Aq+1' Hence we meet with an
obstruction.
q+1

(X;Z 2) which we

We now define a singular cochain CT € C

show is equivariant, is a cocycle, and obstructs equivariant exten-

sions of T , in the sense that if there is an equivariant extension

) th = .
Tq+l en CT 0

Let p:

: Aq+l — X bea (g+l1)-singular simplex of X and let

t, be the cross-section over Aq+l in the bundle Bq —- A
P

g+l 2F

described above. The obstruction to extending t, to a cross-
P

section over all of Aq+l is a cocycle C(tF-)) € Cq+l(Aq+1’Wq(vn,n-q))

which is defined as follows (5, p. 148-151).

The oriented boundary A of A is homeomorphic to
q+1 g+l

the oriented q-sphere Sq, so that tF.) : Aq+l — B¢ uniquely deter-
p

mines an element {t.} e 'ITq(Bq). Choosing a point s € A say
P P

q+l’

the leading vertex, and letting YS be the fibre over s, the inclu-

sion map YSC Bg induces an isomorphism Trq(YS)= ‘qu(B:)l). Since
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Ys is homeomorphic to V , we have an isomorphism
n, n-q

T (V = w (Y ). Lettin t. be the element of w (V
AU LE N g [t Vo nsg)

corresponding to {t,} under the above isomorphisms, the cocycle
P

c(tF.)) is defined by C(tF.))(A ) = [tp]

q+l
t
As noted in Chapter I, the Stiefel manifold Vn had qE

N -

homotopy group isomorphic to either Z or ZZ' Let

r: wm (V )— Z

be the unique non-zero homomorphism.
q' n,n-g——2

For each p: Aq+l — X, we define < (p) :>r(c(tf))(A'q+l)

(X) by linearity we have a

= r([t.]). Extending cr to all of Cq+l

-_ 0P
(g+1) singular cochain cre Cq+l(X; ZZ).

Theorem IIL 2: The cochain cr € Cq+l(X-, ZZ) obstructs the

equivariant extension of T .

Proof.: Let Tq+l be an equivariant extension of Tq, i e.,
T is a homomorphism from C (xXy—=0C (Bq) such that
g+1 q+l1 g+l
q oy ,

T : - 11 o = R
(o) q+l(p) Aq+l B for a p € Sq+l(X)’ (i) 17# Tq+l f'lcq+1(x)
(ii) aq+qu+l = Tqaq+l and (iii)ﬁc’l’q_l_l:’l'qﬂo 4 whenever these ex-
pressions are defined. For each p: Aq+l - X, Tq+l(p) induces
a cross-section t Aq+l -84 By Lemma III. 1, b), the following

p p

diagram is commutative:
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q (eq+1’ Y y 14y, ) q
B B A B
pt¥ > Bolagn C B
i
t . t t
pft) P P
(i)
> A
2q i 7 g+l C g+l
q+l
Therefore, t is an extension of the cross-section t, over
Aq+1’ so that c(tF.)) = 0. Consequently, <r (p) = r(c(tf))(Aq+l)) = 0,
Q. E. D.

Because of Theorem III. 2, we call <t the obstruction co-

chain of T.

Theorem III. 3: The obstruction cochain C’T is equivariant,

Proof: We must show that if p, p' e Sq_l_l(X) with p =1u-s p,

then Cr (p) = <t (p!'). It therefore suffices to show that

(1)

r ({tf)}) = r({tF.),’}). Now, p =ue p' implies that p' ' = g e p'(l).

A

We have seen that the latter equation implies that tpm = (Lu)et .
{ p'’
Therefore t, = (1, G.) o t,,. Hence, r{{t.}) = r({(l,ﬁ)ot.,})
p P p p
=r.o (1, a)*({tﬁv}) = r({té,}), since the homeomorphism (1,4) in-

duces an isomorphism of the homotopy groups.

Q. E. D.
Alternate Proof: Suppose p = U o pt: Aq+1 —~+X. Then as
A
above tF.) = (1,u) e tb‘ so that té is the cross-section induced by
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the bundle map (1, G_l) and cross-section t, . Then by the nat-
P
urality of the obstruction cocycle c(t.) (5, p. 168),
P

c(tF.)) =1,c(t, )= c(t,,) and hence CT(p) = CT(p').

#oe P Q. E. D.

Now, let p: A —+X Dbe a singular m-simplex of X, and
let K(p) ={c:0 is aface of p}. Let K(Am) be the finite simpli-
cial complex consisting of Am and all of its proper faces. There is
a natural identification of K(p) with K(Am) which we now de-
scribe, If A; is a p-face of Am’ there are face maps

€ . Ak-l — Ak for k=p+l1,p+2,...,m . such that

i 1 i .
Al =e ™ em~l° - ep+l(A ). Let o be the p-face of p
p m m-1] pt+tl " p
i : ot i
defined by ¢ =p . e e, ..cePT" Then the association Al — ¢’
m p+1 p

is a bijection between K(Am) and K(p) which respects face oper-

i (k)

ations in the sense that if (Ap)

i (k)
and (Ap)

1
P
is associated with crk, then crk is the k‘é (p-1)-

is the kt—h~ (p-1)-face of A
face of cri.

The above allows us to identify K(p) with the finite simplicial
complex K(Am). This identification is assumed for m=q+2 in
the proof of the following theorem, and we shall use K(p) and

K(a ) interchangeably.

q+2

Theorem IIl. 4: The equivariant obstruction cochain is a cocycle.
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Proof: Let p: Aq+2 — X be given. Define a (g+1)-simplicial
i
( (i)

cochain ¢ of K{p) with values in Z2 by 4:(p(1)):c,rp

).
Then 6CT(p): CT(ap)::¢(8p)=:6¢(pL so that 5c71p): 0 if and
only if 6ql,(p) = 0.

We prove that §¢(p) = 0 by showing that ¢ is an obstruction

cochain for a cross-section f over the q-skeleton of K(Aq+2) in
the bundle BY —a and is therefore a cocycle,
p q+2
(m)(k) m k
Let Aq+2 = eq+2 ° eq+l(Aq) be a g-face of Aq+l' We

then have the following commutative diagram:

k m
B*, > B > B
tp(mw l/
A > A > A
q . atl o at2
eq+l eq-i—l

(m)(k),

where tp(m)(/t) is induced by Tq(p Therefore we have for

- : k k

each g-face A(m)( ) of A a cross-section t . of the part
q+2 q+2
k
of the bundle BY — A over A(m)( ) defined by
p q+2 q+2
mk m k m k -1
t = (eq+2o eq-}—l’ 1)o tp{’”)(/z) 0 (eq+2f> eq+l) .
i J
Now, suppose two g-faces A and A of A have a
PP q q q q+2

common (g-1)-face. Then there is a {q+1)-face A (m) of

A
q+2 q+2
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such that Al and AJ are faces of A (m) . Thus let
q q q+2
Al = A(m)(l) and AJ = A(m)(J) have a common (q-1)-face, At
q q+2 q q+2 q-1

We define a cross-section t 3 of the part of the bundle
p

q . (k) k k-1
— A A b t . = ot i) © .
Bp(m) g+1 over g+l Yy p{m) ‘Aq+l (eq+l’l) p( Y4) (eq+l)
Then in the bundle Bq — Aq+2’ we define a cross-section of the
p L4
part of the bundle over the boundary A(m) of A(m)
q+l q+l
. [
m m m -1, (m
t = o t .2 o . t
(eq+2, 1) o (eq+2) | q+2 We see that
m|  (m)(k) m k k-1 m -1, (m)k)
t = ° o t o °
IAq+2 (eq+2’ 1) (eq+1’ 1) p{mk4) (eq+1) (e q+2) IAq+2
k . .. [ . . .
=t Consequently, £ | A;J-l = tml ;J-l = thl ;J-l' Thus,
. mk q
the cross-sections t of the parts of the bundle B~ — Aq+2
p
k
over Agfz)( ) fit together to give a cross-section f{ of the part of
the bundle over the q-skeleton of K(Aq+2). Furthermore, for each
(m) (m) _, m m -1, (m)
) = s o £ ey 0 .
Aq+2 | q+2 ( q+2 1) p(m) (eq+2) lAq+2

Now, the obstruction to extending f to a cross-section over

(m)

the (g+1)-skeleton of K(A g2

) is a (g+l)-cocycle c(f). Let A

(m)

q+2

be a (g+l1)-simplex of K(a ). Then f: A — BY determines

q+2 q+2 P
an element of w (Bq), and this element is by definition c(f)_(Agfz)).
Y
(m) m m -1, (m)
t = ] . o
Bu fl Aq+2 (e g2’ 1) tp(m) (eq+2) | q+2 so that
c(f)(Agfg) = {(er;_z, 1) o tp(""')} € ‘qu(Bg). Hence the qbstruction cocycle
of f with values in Z2 is r(c(f)) and r(c(f))(Ac(sz))

= r({(en;_z, 1) o tp('ﬁ) } = r({tp{"-,)}) since the homeomorphism (em 1)

q+2,
induces an isomorphism of the homotopy groups.

(m))

(
Consequently, 4: (p m)) = CT(p = r([tp(,,-,‘) h= r({tp(,;,)}) =
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(m)
q+2

cycle, Q. E. D.

= r(c(f)(A ), i.e., ¢ = r(c(f)) and ¢ is an obstruction co-

We now wish to show that the equivariant obstruction cocycle is

natural with respect to equivariant bundle maps. We recall that a

vector bundle map f = (f, f) :(B,7)—=(®',J") is equivariant iff for
v A . v A Y v v, Y
each u=(y,u)eJ thereisa u'=(4,0')eJ' suchthat foU=0'cf
A A
and fol=10'"of whenever these expressions are defined. Also,
the associated bundle maps (ﬁq, J)—( 8 "q, J') are equivariant in
this same sense,

Before proving naturality, we establish the following two lem-

mas.

oy q q
Lemma IIL 5: If f=(f,f): 8"~ @ is a bundle map and

TF,> : Cp’(X') ~vCp(B'q) is defined for 0<p<gq satisfying

. 1q .
0')T!''(¢c) : A — B for S (X", iYw)e TN =1 , and
(ii') 8 T =T' .8, thenthereisa T :C (X)—C_(BY) defined

pp p-lp p’p p —_—

for 0< p< q and satisfying (o) Tp(cr) : Ap—' BY for o Sp(X),

. A v
ii)ysda T =T 9 , and (iii)f, T =T' o £ .
()pp and ( )# p p #

() T o Tp - 1Cp(X)’ p-1p

Proof: Our proof is by induction on the dimension p.
First, for dimension 0, let o¢:A_ —X bean arbitrary

0

singular zero-simplex of X and consider the commutative diagram:
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ple—2 pd__(1Lf) L 1q fed ot
o foa
Y ! vo
(VIIIO) tfocrj/ O(f a)
€ > 7 > X!
X o A0 1 A0 foq

where the cross-section t'fo - is induced by To'(fo o) so that

v
Tt(foo) = hl ot . Let t :A —~+B?  be the cross-section in-
0 foo °o T o 0 o

duced by t%o . and the bundle map (1, f), so that for each s ¢ AO,

with (1, f)s = (l,f)l-rrcr_l(s), we have tU(S) = [(1,?)8]‘l o t%

00'.

We define To(cr) = hcr ° tcr : AO — BY  and condition (i) follows

immediately from diagram (VIII ) and the fact that tcr is a cross-

o

section. Also, condition (ii) is vacuously satisfied.

To check condition (iii), let se AO. Then .fo T’O(cr')(s)

=fo ‘ -Ao o £ -1 ° )
=foh otcr(s)_f h [(l,f)s] tfocr(s). But

a

Ao 2 1 " _ b . A q
f hcr(s’ b) = f(b) = hfo cr(s’ f(b)) = hfo . (1, f)(s,b) for all (s, b)e BU.

P " ~ -1
° = ht'v ° ° o ti = h} o ti
Hence, f« To(cr)(s) hfo(r (1, f) [(l,f)s] tfocr(s) hfocr tfocr(s)
— 1 Vo 3 Ao = 1 ° M
= To(f o)(s), i.e, f To(cr) TO f(o).

We define TO on each singular zero-simplex on X as above

and extend TO to all of CO(X) by linearity., Then conditions (o),

(i), (ii) and (iii) are satisfied since they are satisfied on the genera-
‘tors of CO(X), namely SO(X), and Ty TO, 9, f# and f# are

homomorphisms.

Supposenow that T :C (X)— C (Bq) has been defined for
m° “m m
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0<m<p<gq satisfying (o), (i), (ii) and (iii), and let o be an ar-
bitrary singular p-simplex of X. We have the following commuta-

tive diagram:

h
BY «—Z ¢
i a
(VI )
P
X € A
- P

where again the cross-section t is induced by Tﬁ)(fo o) so that

L
foo

T'(fo o) = hf!f ° tf . Let t :A — B? be the cross-section in-
P o g o0 o

a

duced by t% - and (1, f), so that for each sc¢e Ap,

t () =L, I ety (o).

q

. We define Tp(o*) = hﬂ_q to_: A —B and condition (i) is again

p
immediate. Condition (iii) follows exactly as in the case p = 0,
since the computations used make no reference to the dimension.

In order to show that conditicn (ii) is satisfied, we first recall

that conditions (o), (i!) and (ii'') on TI‘) imply that

i !

t%o - ° ep = (ep, 1) o t%o ) by Lemma III. 1,b). We also have the re-
. 1 1 — L ° 1 T
lation h{o ol = hfo - (ep, 1) by Lemma III. 1, a) and, by the defini

A A ’
ti ° = h} o

ions, f hcr hfo - (1, f)
Now let se A . Then h o ¢ . e {8} =
p-1 o G ¢
A -1 ! - - -1 i
° : o t& ° = (1,1} o t!

hU' [(lsf)e;(s)] thO' € (SE h ““-“‘")el (S>] (eps 1) tfo 0_(‘)(3)

a

= [(f

-1
oo el(s)] ohfoo
p
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i .
hcr o tcr ° ep = hcrwo tcr(i) for each i=0,1,...,p. Consequently,
5 T (o) > DM (0) o e g( 1V'h ot o el g( 1)'h et
= - o = - 1 [ © = - (")o (‘)

PP i=0 P P o T 7 P o0 7

AN (i)
= Z(-1)T (") =T 8 (5), and condition (ii) is satisfied.

=0 p-1 p-1p

We define Tp on each singular p-simplex of X as above
and extend Tp to all of Cp(X) by linearity. Again, conditions

(0), (i), (ii) and (iii) are satisfied on the generators of Cp(X) and

eachof w, T, 9, f and f is a homomorphism so that the condi-

# p # #
tions are satisfied for T :C (X)—C (Bq).
P P P Q. E. D.
The set T = {Tp : Cp(X) —>Cp(Bq) :0<p< q} 1is called the in-

duced lifting.

Lemma IIL 6: If in Lemma IIL.5, @ and g'? have

pseudo-groups J and J', respectively, and if T' and f:(f,f)

are both equivariant, then the induced lifting T is also equivariant.

Proof: Let o : Ap—>X, 0<p<gq, andsuppose Uoo is

defined for some (4,3) ¢ J. We must show that U, Tp(cr) = Tp(ﬁo o),

i, e., Ueh et =h, o t, Now, by definition, for each
oc- o Ueg Uoo
s € Ap, t(r(s) =, %)s]_l ° ti’,oo_ Let wu' = (1, %) be an element in
J' associated with u = (4, Q) in J by the equivariance of f.
A r A -1
Then f , oh ot =0.h o [{1,f ot} =
en for each s ¢ Ap u SRR hcr [ )s] 3 G(s)
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A A -1 | N
= o |f o h! o thy = v o ' o hiv o
dof U(s)] ¥ (s) [fuo U(s)] u'e hly t‘fog(s)
A -1 -1
= |f o ° t‘v v = v o h'v o thv
[ﬁoo‘(s)] We foo ! f90‘(s) [uoo‘(s)] foloo foﬁoo‘(s)
A q-1
= hv o ) o Ty = v o Ly )
[ f)s] tfoﬁoo_(s) hy ot (s). Thus
Geh ot =h, oty Q. E.D
a a Vo0 log

Thoerem III. 7: If f = (f, f) (B, J)— (B, J') 1is an equivariant

vector bundle map, and T' 1is an equivariant lifting in (@'q, J') on

dimensions less than q+ 1, 0<g<n -1, andif T 1isthe induced

equivariant lifting in (®Y, J), then Cr = ' (c

X. Then (e ) = o, (fo p)

P f: Let : -
ZIooti bet Pl T -

)). Therefore it suf-

= r(c(tfoﬁ)(Aqu )) and CT (p) = r(c(tF.))(A

1 q+l

fices to show that c(t% .) = c{t,). By the definition of the induced
°p P

lifting T, the following diagram is commutative:

A
e L (g
fop
—

D

D>e ——> t

p
t
fop

gtl 1 g+l

> ——> o

b

i, e., the cross-section t, is induced by t%» , and the bundle
P °op

map (I, f). Consequently, by the naturality of the obstruction co-

#
le (5, p. 168-169), t,) =1 te ) = c(ty ,).
eyele (5, p ) etey) = 1etey ) = cley, ) -

We have shown above that with each equivariant lifting T in

(@q, J) on dimensions less than or equal to g, there is associated
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an equivariant obstruction cocycle CT € Cq+l(X;ZZ). We now wish

to show that the equivariant cohomology class of Cr is independent

of the particular choice of equivariant lifting, i.e., if T and T

are equivariant liftings in (Bq, J) on dimensions less than q+l1,
then ¢ and cx are equivariantly cohomologous. We do this by

defining an equivariant gq-cochain d(T, ’?) € C?(X;Z ) which satisfies

2

6d(T’ T) = CT. N C:r— :

?q(cr) induce cross-sections tcr and t of the bundle Bq—*A
o o

Before we define d(T, -’F), we note the following. Let

og: A —X, m=q or g+l. Then in the induced bundle BE—* A

m m

any two cross-sections t and t over the (q-1)-skeleton of
2 2

Am are homotopic (5, p. 181), and any such homotopy kcr gives

rise to a g-cochain d =d(t ,k ,t )e Cq(A ,w (V }), called
o o ¢ o m

q t}‘]-: n‘q

the deformation cochain, which satisfies the following condition. If

C(tcr) and c(?) are the obstruction cocycles of tcr and ?cr’ then
o

—

6dcr = C(tcr) = C(tcr) (5, p. 171-172). We suppose that for any given

o Am—>X, m=q or qg+l, and any two cross-sections tcr and t
o

over the (gq-1)-skeleton of A in the induced bundle BY — A ,
m o m

the set of homotopies kcr : tcr = —t—cr is well-ordered.

Let 0l Dbe the setof all base elements of Sq(X)’
a = {ce Sq(X) : 0 is the base of some A(c')}. We first define
d(T,T) on JL by transfinite induction.

Thus, let o be the first element of /L . Then Tq(cr) and

q
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Let kcr be the first homotopy of the restrictions of tcr and t

o
to the (g-1)-skeleton A of A . Then k :t IA =t |A  gives
q 9 c o qg o q
. q o =
t d : = r(d
rise to € C (Aq ﬂq(vn, an)) and we define d(T,T)(o) = r( U(Aq))’
where r is as before the unique epimorphism r : 7w (V )~ Z ..
q n,n-g 2
Next, let o' be the second element of JI . We distinguish

two cases in defining d(T, T)(a"):
1) ¢' has no face of any dimension in common with o}
2) ¢' has a face in common with o.

Note that for g=0, ‘case,l) is the only possibility.

In case 1), we define d(T,T)(¢') in the same way that we de-
fined d(T, T)(c), i.e., we let kcr be the first homotopy of the re-

strictions of the induced cross-sections tcr' and ?cr' to the (q-1)-

skeleton Aq of A ,d  =d{t ,k ‘,—1_:‘ ,) the corresponding defor-

',
a a a

mation cochain, and define d(T,T)(¢') = r(d '(Aq)).
2
Before discussing case 2), we prove the following lemma.

ade
L e

Lemma III. 8: For gq>1, let Aq be a proper subset of the

faces of Aq' Let t and ?U be cross-sections over Aq in the
bbbl o —_— s

ok o R

bundle BY —A . Then any homotopy K oct A =T |A can be
—_— q oo c'"q —

q
extended to a homotopy k(r to=t .

g a

Proof: We can extend k trivially to a rnap
o

:"'c [ :'ig * '] >:<
: - d
kcr Aq xI v Aq x {0} qu x {1} such that kcr(s’ 0) tcr(s) an

3k — .
k (s,1)=t (s) forall sea . Let K=A xI and
o o q e}



36
L4 * . L4
L = Aq x I Aq x {0} qu x {1}, Then L 1is a closed subset of
K, and the pair (K,L) is a finitely triangulable pair. Therefore
we wish to show that a cross-section over L into B: x1 can
be extended to a cross-section over K.. By (5, p..149), since
B: x I is (g-1)-connected, the cross-section ka‘ can be extended
o

to a cross-section over L Kq, where K is the g~skeleton of

K. But the dimension of K 1is g, so that kK¥-K-=-L oK

and k: can be extended to all of K.
Q. E.D.

Now, in case 2), we identify K(o) and K(¢') with the finite
simplicial complex K(Aq) as in the proof of Theorem III. 4. Let

L be the subcomplex of K(Aq) consisting of all those faces of o

which are in common with faces of ¢'. Let L' be the corre-
sponding subcomplex for ¢' and let lLI and IL'I be the cor-
responding subsets of Aq' Then ILl and lL'l are homeo-

morphic and we have the following commutative diagram:

A
q q h q
B2 O slflLj<r—sd |l C B
(IX) t t t )t
[0} [0} o o
L} ¢—— L A
s, O Il Inl C g

The map h isa homeomorphism, and L is the corresponding
bundle space homeomorphism.. The inner vertical maps are those

induced by the outer vertical maps in each cuter rectangle.
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The homotopy kzr : tzrlAq =t 'Aq together with diagram (IX)
induces a homotopy k>‘<‘ it 'l IL‘! =t fl ]L'I. By Lemne III. 8,
o by o

this homotopy can be extended to a homotopy over all of Aq. Let

kzr' be the first such extension. Then as before, we have the defor-
mation cochain d | e Cq(A s (V })) and we define
o 9 q n,n-qg
ar, () = x@d (s ).
Now, let o be an arbitrary element of (7, and suppose

that d(T, -’F)(zr') has been defined as above for all o'< o in such a

manner that the following is true. If o¢'"< ¢! and o' and o
have a common face, then the homotopy k , in d _ =d(t ,.,k ',,? ;) used
o o ot oV o

to define d(T, _’F)(zr') is the first extension of the partial homotopy
induced by k(r” in d(r” used to define d(T, :F-)(tr”). We again
distinguish two cases in defining d(T, -’F)(zr) :
1) ¢ has no face of any dimension in commeon with any o' < o}
2) ¢ has a face in common with some o¢!< o.
Note again that for =0, case 1) is the only possibility.

In case'l) we define d(’l’,:l'-)(zr) exactly as in case 1) of the de-

finition for the second element of ¢J7. Thus, we let

1

k :t |A
o’ o'Tq

d(T, T)(o) = r(dU(Aq)).

?:—(T |A'q be the first homotopy and define

In case 2), suppose ¢ has a certain p-face, 0<p<g-1,

.in common with some preceding element of ¢ and let o! be the

first such element of J7 . Let Ap>‘< be the domain of this p-face
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. p*
AP
q

induced by the homotopy k | used in defining d(T, Tl')(cr'). By our
o

of o, andlet k{:z be the homotopy of tcr and ?cr over

e

inductive hypothesis, kI:‘ then coincides with the homotopy induced

by k k used in defining d(’l’,:l:)(cr"), for any o¢'""'< ¢ which

g’ g '

has the given p-face of o as a face. If we carry out the above pro-

cedure for each m-face of ¢ which is common with an m-face of

als

some o¢'< o in JZ, and let A; be the union of the domains of
: sk e K — , K
all such m-faces, we obtain a homotopy k =t IA =t |A . By

o o q o q
Lemma III. 8, this homotopy can be extended to all of Aq' Let k

2
be the first such extension and let dcr = d(tcr’ kcr’jc-cr) be the cor’re—
sponding deformation cochain. We define d(T, :l:)(cr) = r(dU(Aq)).

By transfinite induction, we have d(T, :l:) defit‘lked on the subset
gt of Sq(X) and satisfying the condition that if ¢ <g¢' in A
and o and o' have a common p-face, 0< p< g-1, then the
homotopy kcr', used to define d(T, —"-l'-)(o"), when restricted to the
domain of this p-face is induced by the homotopy kcr used to define
(T, T)(o).

Now let ¢ be an arbitrary element of Sq(X), not in J7 .

Let o'edl bethe base of A(sc) and (4, 4) the base of J(ao!, c).

‘We then have the following commutative diagram:

-1
( PaS
pd (I,u ") %Bq'
» o o'
(IX) ¢ ﬁ t ¢ m T
o o ot g!
A > A s

q 1 g
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e, t_ =(1,8).t and t =(1,%)t . Let k be the
o g! o '
homotopy used to define d(T, T)(c') and let k(r : t(r| A =t ‘A be
the induced homotopy. Then the deformation cochain
d =d(t ,k ,t )ec3a ;m (v )) is defined, and we define
o (R g’ 'q n,n-q
4T, T(e) = x(d (8 )
We now have d(T, :l:) defined on all of Sq(X)' Suppose that
o and o' in Sq(X) have a common p-face, 0<p<g-1l, say

crp:cr'p. Let o and o' be the bases of A(sc) and A(c'),

respectively, and (4, 4) and (\\;, ¥) the bases of J(}—, o) and

J(;', al), respectively. Then ¢ and o' in JL have a com-
mon p-face, namely vl oP ¥t sothatif o< o', then

k;-' over the common p-face is induced by k(—r-. By our definition,

k(r and k(r' over the common p-face are induced by k; and

k(—r-', respectively, so that finally, since (1, G.-l) is a homeo-

morphism, k(r' over the common p-face is induced by k(r

We extend d(T,T) to all of Cq(X) by linearity and we have

a(, ?) c cq(x;zz).

Theorem III. 9: The g-cochain d(T, :l:) is equivariant.

Proof: Let o =0, o'e Sq(X). We must show that
d(T,T)(¢) = d(T, T)(s'). Let o' e Ol be the baseof A{c)=Al(s"),

and (v, 9), (w,W) bethe bases of J(c',0) and J(o',c'), re-

spectively. Then o=%o o' and o' =wWo o' so that
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v -1 v v - v A
T =vVew oc!'. Hence U=vow and (@,vew )e J. We then
have the following commutative diagram:
A-1 A-1
! (1,v ) N Bq.< (1,w ) gd
a a'! a!
— _ AN
(X) t t t t t t
o o gt gt 0—1 0—’
A A & A
g 1 K 1 g

By definition, d(’l’,?)(cr) = r{d(t ,k ,t ){A )) where
o’ o’ o q

k :t |A =t |A is induced by the left square in (X) from the
g g q o q
homotopy kcr used to define d(T,T)(c"), and similarly

"

d(T, ?)(cr') =r(d{t ,k _,,t ) )). Because the bundle maps are
o o’ o q

homeomorphisms, kcr is induced from kcr’ by the bundle map

-1 — .
(1, Wo ¥ ). Therefore, t ,k , and t are induced from t
o o o o!

k , and t . By the naturality of the deformation cochain (5,
o g

p. 172), - d(t koLt ):l#‘d(t kK ,t ) =d{t L,k ). Conse-
: F o T T 0—’ H

- t? ‘gt g! 0'" g
tly, d(T,T)(s) = r(d =r(d = d(T, T)(v").
quently ( )(o) = r{( O_(Aq)) r( U'(Aq)) (T T Q. E. D.

Theor I1I. 10: &d(T, = - C—=..
em 5d (T, T) CT CT

Proof: Let p: A — X, The cross-sections t, and -t-,

g+l P P
over.the q-skeleton of A in the bundle B9 —a . are homo-
g+1 : ) - g+l
topic as maps of the (g-1)-skeleton of" Aq+l’ and any such homotopy

k, gives rise to a deformation cochain d, =d(t,,k,,t,)e¢
' Y PP P

q - e o —
C (Aq+l’nq(vn, n_q)) satisfying 6(1FS = C(tF'J) - C(tﬁ)'
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g+l . _
Now, &d(T, T)p)=d(T,T)(8p)= = (-1)'d(T, T)(p
i=0

(i))

i

+
= r( Zo("l)dp“"mq))' Also, (cT-cr,FMp):r<[c(t§)-c<t‘é)]mq ))

+1
T iy O

)=r( =2 (-1)d,(a )) for anydeformation cochain 4,
=0 poatl P

defined as above. We shall construct a particular homotopy kf)

below such that d, satisfies the relation el# d, =4 @ for each
P q+l p e
_ ol

(i)
q+l) - eq+1dé(Aq)

= d,
r(6 p(Aq-f—l

i=0, 1,...,qg+l. Then it will follow that dF.)(A

L -. o el e
=d (s ), sothat AT, T)p)=r( = (-1)d ,(a N=r( = (-1)'d, (2}

o q) )(p) (i:O ) ol q» '1:0( ) .p( q+1))
(CT-'C;—r)(p), as was to be shown.

Thus, it remains only to define the homotopy k, making d,
P P

satisfy the relations el# d, =d ) > O0<i<g+ 1. For a fixed i,
gl p ~ e’ T ="
0 <i<qg+l, consider the commutative diagram:
i
(e .,1) .
q g+l q), (i) gy
. : B
B 1) ~>Bp!Aq+l C 1B
P p P p P P
(i)
Aq i 4 AC_H—l C g+l
e
g+l

Because the bundle map (e1

0+l 1) is a homeomorphism, the homo-

topy kp(") used to define d(T,?)(p(l)) induces a homotopy kl, of
P

the maps tl. and 7c_,1 restricted to the (g-1})-skeleton of A(l) .
P P g+l
Thus, we have a homotopy of the cross-sections t, and ?F" over
p



42

KRG

the (g-1)-skeleton of each g-face of A . However, if and
g+l g+l
Ac(:_lJ-I?l have a common (q-1)-face, then the homotopy k ) is induced
P

by the homotopy kp‘j) so that the homotopies kl, and kJ. agree
p p

on this common (g-1)-face. Therefore, the homotopies kl, fit to-
p

gether to give a homotopy k, of the maps t, and t, over the
P P

el

L0y

: A(i)(j)xl.
g+l P

g+l

(g-1)-skeleton of A k, is defined by kf)
P

g+l’
Furthermore, by the naturality of the deformation cochain

d, =dft,, k,,t.) and diagram (XI), e .d, =d .
[ ’ . » ’ 1 o (,,)
b T e P atl p o Q. E. D.

We have shown that for each g, 0<g<n-1, we can construct

an equivariant lifting in ((Bq, J) on dimensions less than q+1.

1
Using this equivariant lifting, we can define a cocycle CTEC2+ (X;ZZ)
and the equivariant cohomology class of <t is independent of the

choice of equivariant lifting.

Definition: The cohomology class Ee(@q,J)e H2+1(X;Z2) of

o is called the equivariant characteristic cohomology class of
(Bq, J). It is the primary obstruction to an equivariant lifting in

81,

Theorem III. 11: _c—e(@q, J) obstructs equivariant liftings in

(Bq,J) on dimension gq+l.

Proof: Suppose there is an equivariant lifting

T, C,X) —»cp(Bq) for 0<p<gq+1. Then by Theorem IIL 2, the
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equivariant obstruction cocycle € C2+1(X;Z2) is zero. There-

T
fore, its equivariant cohomology class —c_e( 89, J) 1is also zero.
Q. E. D.

We now show that the equivariant characteristic cohomology

class is natural with respect to equivariant bundle maps.

Theorem IIL 12: If £ = (f,{): (8, J) = (@', J') isan equivari-

ant bundle map, then for each q, 0<g<n -1,

_c'e(Bq, J) = f*(?e(@'q, ).

Proof: Let g be a fixed integer 0<g<n-'1. Let

TF; : Cp(X') — Cp(B'q) be an equivariant lifting in (@'q, J') for

0<p<aq andlet T be the induced lifting in (89,7). Then

S and c, are representative cocycles of Ee(@'q, J') and
< (Bq J). By Theorem III. 7 c_ = f#(c ) so that
e ’ T T T
-_— q - b 'q '
c (B7,7) =1 (c (877, I) Q. E. D.

Let Vp()) o be the full subcategory of the category v; o

consisting of those objects (&,J) in —V; g which have trivial

holonomy. For each ¢ > 0, we define the function W2+1 on

Vo by

p.-g.

c (ﬁq, J) if the dimension of B is greater than q;
q+1l e
w9 = N
0e H: (X;ZZ) otherwise.
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Definition: The element W2+1(@, J)e H2+1(X;ZZ) is called

' t
the (q+1)§- equivariant Stiefel- Whitney class of the object (B, 7).

For 0<qg<mn-1, W2+1(@, J) 1is by definition the primary

obstruction to a lifting in (@q, J).

Theorem III. 13: The equivariant Stiefel-Whitney classes are

0
natural with respect to the morphisms in Vp

. g

v A
Proof: Let f'=(f,f): (8,J)—~ (8", J') be a morphism be-

tween n-dimensional objects of Vr()) g Then W2+1(61’ JN =0

ats
>

:W2+1(6,J) for g>n-1. For quin-l,f(wz-l-l(ﬁ':y))

} E«(;e(B:q’ ) = Ze(@q’ J) = W:"'l(@, J) by Theorem III. 12.

If (B,J) isan object in the subcategory V of V‘g g’
then J = I@ and singular cohomology and equivariant cohomology
of the base space coincide. Furthermore, every lifting T in
(ﬁq, IB ) is equivariant and gives rise to an equivariant obstruction

1 .
cocycle ¢

For any two such liftings T and T in (ﬁq,l6 ) the co-

chain d(T,-’F) is equivariant. Therefore, our definition of

Wq+1 qg+1

o (8, IB ) coincides with the definition of W (88) and we
have the following.
Theorem III. 14: The function W2+1 on V—g g is an exten-

sion of the function Wq-l-1 on ')/_
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IV. THE CASE OF ALLOWABLE HOLONOMY

Let B = (B, X, w) be an n-dimensional vector bundle and J
a pseudo-group of local bundle maps on @B  such that for each

x ¢ X, the holonomy group @X of (B,J) at x is orientation

preserving and leaves a subspace B " of Tl'-l(X) of dimension at
x

least (n-1) fixed. With this restriction on the holonomy, we note

that if (%, Q), (5,?«‘) ¢ J, then for each x e domain 4, ﬁl'nfl(x) and

?rl'n'_l(x) differ only on a one-dimensional subspace of w-l(x), and

ﬁlfn' (x) preserves orientation if and only if Gln-l(x) preserves

orientation.

For each g, 0<g<mn- 1, the corresponding holonomy group

q

of (Bq, J) at x will be denoted by éx. An element of @}?

acts only on one and the same component of each vector in the (n-q)-

frames of the fibre -n-—l(x) =Y . Now, Y is homeomo rphic to

e
3K

. For g>0, the subset Y C of Y which is left point-
n,n-q x x

q

wise fixed by the action of @X can therefore be identified with

Vn_l, (n-1)-(q-1)" Therefore, the first non-zero homotopy group of
Y is 'n'q_l(YX) and Trq-l(Yx) T ow

e . ——
a-1Vn-1, (a-1)-(g-1)) 180
morphic to either Z or ZZ.
Now let g be a fixed integer, 0<g<mn -1, until stated

otherwise, and let qus = XKEJXY:. Then the pseudo-group J acts

on the bundle Bc‘l;‘< —X, denoted by ia, q*, with trivial holonomy.
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Consequently, the pair (@qﬁi J) is of the type considered in Chapter

III, and we may apply the results of that chapter. In particular, we
may define an equivariant lifting Tp : Cp(X) — Cp(Bq*) for
0<p<g-1 andwe suppose we have done so. We identify Cp(Bq*)
with its image in Cp(Bq) under the monomorphism induced by the
inclusion Bq*c B
Thus, for each p, 0<p<g-1, wehaveahomomorphism

Tp : Cp(X) - Cp(Bq) satisfying:

(o) Tp(cr) : Ap—>Bq for each oe Sp(X);

(1) ‘IT#_o Tp = le(X);
(i1) apr = Tp_lap;

(iii) Tpo ﬁ# =0, Tp whenever these expressions are defined,

#

We shall define an extension (not necessarily equivariant)

T :C (X)C (B) of T in such a manner that the obstruction
q q 9 q g-1

cochain Cre defined as before, is an equivariant cocycle. Thus,
we shall define a homomorphism Tq : Cq(X) -—>Cq(Bq) satisfying:

(0)T (o) : A —BY for oS (X);
9 9 9

i oT = ;
(1) n#, q 1Cq(X)
ii)a T =T .98 ;
(i) qq g-1q
(iii) 6CT = 0;

(iv) CT(’\\{’Op)ZCT(p) for alill p:Aq_{_l**X and WeJ for

which Wo p is defined.

In order to define T

,  we shall again use transfinite induction.
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Hence, as in Chapters II and III, suppose Sq(X) = {o: Aq—. X} is
well ordered, A(c)={c'¢ Sq(X) : o' is J-equivalentto o}, and
each set A(c) has as base the first element of A(cg). Also, let
J bewell-ordered, J(o,0')={(,0)eJ: %o o =0c'}, andif
J(o,0') is non-empty, then its first element is the base of J(o, o).

Let 07 Dbe the set of all base elements in Sq(X),
X ={oe Sq(X): o is the base of some A(c')}. We first define ’Tq
on the subset J7 of Sq(X).

Let oe¢Zl and consider the induced bundle B(j_ - Aq and
bundle map ho' : B(j_ —~BY a5 before. Then exactly as in the induc-
tion step of the definition of Tp in Chapter III, for each (q-1)-face

(i)

i i i.-1
of t - ti t = , o t pyo over
o o we get a cross-section - (eq 1) o) (eq) ve

the (g-1)-face A((;) in the induced bundle, and these fit together to

give a cross-section t, over qu, the boundary of Aq. Be-
o
cause the fibre V: is (g-1)-connected, t, can be extended
n,n-q o
to a cross-section over all of A . Let t‘T be the first such exten-

sion and define T (6)=h ot : A — Bq. Then also as before,
9 o o 9
mo T(o)=0 and 8 T (o)=T 3 o).
q q q( ) q—l( q )
This defines Tq on the subset /¢ of Sq(X). Now let
o Aq — X be an arbitrary element of Sq(X). If ocedl, i e,
if o 1isthe base of some A{c!), then Tq(o‘) has been defined

above. If o ¢J0, then thereis a unique element o'e¢dZ for

which o eA(c'). Let (4,0) bethe base of J(o', o) and define
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q A
T(U:GOT a'): A —B-, Then 7T (6)=mwmouoT (a!
q ) q( ) q q() q )

= l\.’].vo T o Tq(cr') =Uo o' =0 and condition (i) is satisfied.
Also, since Tq—l is equivariant, we have G# ° Tq_l(acr')
=T o U, (90! so that 0T =9@eT (') =T, 0 9T (a°
SRR WCLD L (0) = 0T (a1) = &0 0T (o)
=8 . 1y = o ¥ 1y = Uoog!) = [ d di-
4 Tq_l(acr ) Tq-l u#(acr ) Tq-la(u a') Tq_la(‘cr) and condil

tion (ii) is satisfied.

The above defines Tq on Sq(X) satisfying conditions (o), (i)
and (ii). We extend Tq to all of Cq(X) by linearity and note that
conditions (0), (i) and (ii) are satisfied since 11'#, Tq and 9 are
homomorphisms.

Before discussing conditions (iii) and (iv) concerning the cochain

c we note the following. In the definition of Tq, we relied on

T’

the equivariance of T to show that condition (ii) was satisfied.

The fact that T 1 could be defined equivariantly depended on the

fact that the holonomy group @x of (B,J) at xe X leaves an
(n~1)-dimensional subspace of 7 (x) pointwise fixed. Therefore,
we see that the construction of this section does not extend to vector

bundles with pseudo-group (@,J) where the holonomy groups do

not leave at least an (n-1)-dimensional subspace of the fibre pointwise

fixed.
. g+l . . .
Now, the cochain Cr € C (X;ZZ) is defined precisely as
in Chapter III. Thus, for p: Aq-}—l — X, the cross-sections over
the g-faces A((;Zl of Aq+1 in the bundle Bg — Aq+1’ induced by
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q

the cross-sections t ,, : A — B, fit together to give a cross-

p\b'./\ ) q p(lr) ?
section t, : A —BY. The obstruction cocycle
P qtl P

q+1 . . |
C(th) e C (Aq+l’ Trq(Vn’ n_q)) is then defined by C(tf))(Aq-i—l)

= [tF.)] € nq(V ), and we define c¢_(p) = r(C(tﬁ)(Aq

n,n-q T

o) = rlles))

Theorem IV.1: The cochain <r obstructs the equivariant ex-

tension of T .

Proof: The proof is identical to that of Theorem III.2, since the

equivariance of Tq played no part in the proof.
We state condition (iii) in the form of a theorem.

Theorem IV. 2: The cochain Cr is a cocycle.

Proof: The proof is identical to that of Theorem III. 4, since

the equivariance of Tq played no part in the proof. Q. E. D.
We precede the proof of condition (iv) by the following lemma.

Lemma IV.3: Let p: Aq+l~>X and p'=Uo.p, (4, 17)eJ.

Then under the present holonomy assumptions, the following diagram

is homotopy commutative:

g+l
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Proof: In order to show (1,Q)ot., = t.,, it suffices to show
P Y
N PN TSN,

b

A

that for each i, 0O<i<gq, (1,4), ¢,
- - Y

(i)
g+1

Aq+l T Uep!' Tl g+l

) is the boundary of A(l) , for since T is
q+1 g-1

(i) o (i) .
ar1) = tapl (Bgp) Re-

call that t, | A(l) =t :(e1 ,1) o t ) (e1 )-l so that it suffices to
p' g+l p g+l plé g+l

where (A

equivariant, we actually have (1,4) . t, I(A
P

A 1 i ] .
show (1,u) o(eq+1,1)o tp(i) o (eq+ , 1) e tﬁOP(i) rel A . Thus, let i

1 q

be a fixed integer, 0<i <q.
Foreach o:A —X,t =(1,T (6))ed, where d:aA —A xA
q o q q q

is the diagonal map. Hence it is sufficient to show that

(i) (1)

A i i A
(lyu)°(eq+lyl)°(lqu(p )—(eq+11u°Tq(p )) .
o gl v (i) . ~ (i)
= (e , T (Qo rel d(A and hence to show u-e° T

(equpr Tqep ) reld(d ) S

:Tq({iop(l)) rel Aq
Now, let ¢ be the base of A(p(l)), (W, w) the base of

J(a, p(l)). Then by definition, Tq(p(l)

4 p(l) € A(p(l)) so that 1 e p(l) =Voo, andif (V, %) is the base

) :G\Vo’\'q(cr). Also,

of J(cr,ﬁop(l)), then Tq(t‘iop(l))zfro’\'q(cr). Therefore

Tq(p(l)) :\%\,o{\r—l qu(ﬁop(l))- But, p(l) :‘:{’0 O'Z‘J\\/’o\\;-l ol\io p(l)
so that w o \Vr—l = ﬁ_l and we have (1, G.) and (4, 7o G\V'l) in J
. . A
and Gov?r-lo’\' (p(l)):T (ﬁop(l)). Let Qo\?v—l =u so that
q q
A a - -
({I’ &)1 (6‘1 u) €J a.nd u e Tq(p(l)) = Tq(l\Io p(l))

By the above, it is therefore sufficient to show that if (5., u),

v = A-1 2 (i) (i) !
(u,u) e J, then u ouqu(p ) rel Aq' We do this by

exhibiting a homotopy.
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I.et F be defined on Aq xI by F(st)= t(ﬁfleEqu(p(i))(s))
00 ). Thus F(s,00 =T (M), Flo1) = TGt (6o
so that F is a homotopy between Tq(p(i)) and ﬁ—l ouoT (p(i)).

Furthermore F 1is a homotopy relative to Aq because for

v (i) . % .
seA , T s isin Y ,; , the subspace of Y ,. fixed
g Tqle ) o9 (s) pace ot Yo (s)
a-1 =
under the action of the holonom roup, and u o ulY g eJ ,; .
onomy Exoup 1Y sy € 7 ot
Hence for s ¢ Aq’ Cfl o u OTq(p(l))(S) = Tq(p(l))(s) and

F(s,t):Tq(p Y(s) for all tel

We wish to show that F is a homotopy in Bq, i. e., that

F: Aq x1—-B% or F(s,t) 1is an (n-gq)-frame for each s ¢ A ,

q
be the fibre in B over p(l)

tel. Let (s). Bp“)(s) is

B .
p(“) (s)
homeomorphic to R". The holonomy group & (s) leaves an
p

. . * . n-1
(n-1)-dimensional subspace Bp(t') () fixed. Let Bpw(s) = R x R

* n-1

(s) ~

Now, the (n-q)-frame Tq(p(l))(s) can be written
(i) - - -
T = . e h
q(p As) (vl+v1, Vot v, , Vn-q+vn-q) where
vy = (v 0) and v, = (0,0,...,0, V.nk)' Let

= lk,...,Vn_l,k,
a-1 2

4) =u o\llYp(‘.)

(

() € épw(s)' By our assumption concerning holonomy,

, V +av ) for some positive real num-

i)(s)))= (v + a??l,... n-q" *Vn_q

$ (Tq(p

ber a.

}+ (l—t‘)(vl-l—v,...,v

1 n-q+vn-q)

Thus, F{(s,t)= t'(vl+a.v1 Yoo "‘Vn'-quavn_q

= (vl+ (at+l-t);l, A + (at+1-t)v q). To show F(s,t) ¢ Bq,

it suffices to show that the following matrix is of maximal rank (n-q):
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Vit Vip o etl-tivy

(a) : :
v e,V {ta+ l_t);
n-q, 1 n-q,n-1 n-q, n
We know that the matrix
V11 o V1,n-1 1n
(B) : ' :
Vn_q, 1 Vn-q, n-1 Vn-q,n

is of rank (n-q), so that (B) has an (n-q) by (n-q) submatrix

V with non-zero determinant. If this submatrix is of the form

then V is also a submatrix of (a) and (a) has rank (n-q).

If the submatrix V is of the form

then consider the following submatrix of (a}:
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-t
V.. v, o, (ta+1 )vln

3

(ta+ 1-t)v
n-

3

Then, determinant of Vt = det Vt = (ta+ 1-t) det V so that det Vt =0
if and only if ta+ 1 -t=t{(a-1)+1=0. But, a>0 and tel
implies that t{(a-1)> ~.1. Therefore, det Vt #0 and (a) is of

rank (n-q). Q. E.D.

We now prove condition (iv) as a theorem.

Theorem IV.4: The obstruction cocycle r is equivariant.

Proof: Let p'=Uop: —~ X. Then the elements

Aq+l

{(1,Q)° tp} and {t,,} in Trq(Bq') are equal by Lemma IV. 3.
(Y (Y

Hence, the elements [(1,4)ot,] and [t, ] are equalin = (V ).
P p' q n,n-q

A . . . . . .
Because (l1,u) is a homeomorphism, it induces an isomorphism

(1, (\1)3,< on the homotopy groups. Therefore, CT(p) = r(C(tF.J)(A N

q+l

= I‘([(l,ﬁ)ot.]) =T o(l, G-) |([t

: )y 6]):r([té]). ‘But also, r([(l,ﬁ)oté])

i
=
—

—
o+
.
T
i
0
1
—
e
H
o
o}
n

e (p) = ¢ (p"). Q. E.D.

We next show that the equivariant obstruction cocycle is natural

with respect to equivariant bundle maps. This fact is contained in the

following theorem.

Theorem IV.5: Let f:(if):(@,J)—'(B',J') be an




54

equivariant bundle map. Let TP') : Cp(X‘) - Cp(B!q) be an equivar-

iant lifting for 0< p< g -1 andlet ’Té : Cq(X') -*Cq(B'q) be an

extension of ’Té ] which yields an equivariant obstruction cocycle

q+l . . oy . - q
Coy € Ce (X’ZZ)' Then the induced lifting ’Tp.Cp(X) Cp(B ),

0<p<q, given by Lemma III. 5 is such that ’Tp is equivariant for

b4

0<p<Lg-1, (CTI) =c, and r is equivariant.

Proof: The fact that ’Tp is equivariant for 0<p<qg -1
follows exactly as in Lemma III. 6.

Let p:

: Aq+1 — X. By the definition of the induced lifting,

the following diagram is commutative:

P fop
t, tt ,
Aqrl 1 ? a4l
Therefore, as in the proof of Theorem III. 7, cf(t,) = c(t%'« F.)) so that
p [
<r (p) = r(c(tF.))(Aq+1)) = r(c(t%/o b)(Aq-l—l))— CT'(fo p), i.e., cr = f (;CT").
Finally, let p'= ﬁop : Aq+1 — X. Since { 1is equivariant,
thereisa U'e J' such that Eoﬁ = Q! of. Therefore
v Y v v, ¥ v . . . .
c,r(uop) = CT,(fouop) = CT,(u ofop) = CT,(f°p) since c_, is equivari-
ant. Consequently, <r (Qop) = C’T(p)' Q. E. D.

We have now shown that with every equivariant lifting T in
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(ﬁq, J) on dimensions less than or equal to q - 1, we may define
an extension "I'q which yields an equivariant obstruction cocycle

C’T € Cq+l(X;ZZ). We now wish to show that the equivariant cohomol-

ogy class of T is independent of the particular equivariant lifting

on dimension less than g and the extension ’T'q, as long as T
yields an equivariant obstruction cocycle.
Thus, suppose T, T :C X)y—C (Bq) are equivariant lift-
PP p p
ings for 0<p<q-1, and Tq, ?q : Cq(X)—> Cq(Bq) are exten-

c—. We

sions which yield equivariant obstruction cocycles Crr CF

shall define an equivariant q-cochain d(T, ?) € Cq(X;ZZ) such that

5d(T, T) = cr - Cx-

The cochain d(T, ?) is defined precisely as in Chapter III.

Thus, for oedl , cg: A —X, we associate the cross-sections

t and t_ induced by T (¢) and T (¢) and let

o o q q

k ot IA t |A be the first homotopy satisfying the condition
o o'’q o' q

it

that if o'< ¢ and o' and ¢ have a common face, then the
homotopy kcr restricted to the domain of this common face is in-
duced by the homotopy kcr' used to define d(’T',?)(cr‘). Associated
with tcr’ kcr and FG is the deformation cochain
d_e Cq(Aq, (Vo hg) @ndwedefine a(T, T) (o) = r(d_(8).

If oe Sq(X) -0, i.e., o isnota base element in Sq(X),

then there is a unique o¢'edl suchthat o'e A(c). Let (d, G) be

the base element of J(o',0). Then k ,, the homotopy used to
o



56

define d(T, ”_I')(cr'), and the bundle map (1, (\1_1) : B(j_—* B:, induce:
a homotopy kcr : tcr z'xq = ?U | A . This yields the deformation co-
chain dcr’ and we define d(T,;—I')(cr) = r(d&( q)).

This defines d(T,T) on Sq (X), satisfying the condition that
if o and o' have a common face and kcr and kcr' are the
homotopies used to define d(T,?)(cr) and d(T, ?)(cr'), then the
homotopy kcr restricted to the domain of the common face, is in-
duced by kcr -

We extend d(T,T) to all of Cq(X) by linearity, and we have
AT, T) e U x;2 ).

Because the definition of d(T, ”_I') depends upon what occurs on
dimension (g-1), and Tq—l and Trq-l are equivariant, the

proof of the following theorem is identical to the proof of Theorem

III. 9.

Theorem IV. 6: The g-cochain d(T, ”_I') is equivariant.

c= and d(T, ?) are defined precisely as in Chap-

Since CT’ T

ter III, the following theorem is proved exactly as is Theorem III. 10.

Theorem IV.7: 8d(T,T) =c_ - c=.

T T
We have now shown that for each q, 0<g<n=1, wecan con-
struct an equivariant lifting in (ﬁq, J) on dimensions less than q,

and an extension to dimension ¢ which yields a cocycle
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Cp € C2+1(X;ZZ). Furthermore, the equivariant cohomology class of
<y is independent of the particular equivariant lifting and extension
to dimension q.

Definition: The cohomology class Ze( Bq, J)e H2+1(X;ZZ) of

<t is called the equivariant characteristic cohomology class of

(ﬁq, J). It is the primary obstruction to an equivariant lifting in

89,

Theorem IV.8: If f = (f, f) t(B,J)—~(g8',J") is an equivari-

ant bundle map, then for each g, 0< g <n-1,

— q _v*— 1q 1
¢ (89 1) = F(c (8", 1)).

Proof: The proof is identical to that of Theorem III. 12, except

that we refer to Theorem IV.5 rather than Theorem III. 7.
Q. E.D.

Let ')j‘; g be the full subcategory of the category V; g

consisting of those objects (£,J) in .)J; o for which the holo-

nomy group éx' of (B,J) at each xe X is orientation preserv-

ing and leaves a subspace of n—l(x) of dimension at least (n-1)

pointwise fixed, when the dimension of (8,J) is n. For each
g >0, we define the function W2+1 on v-; ’ by

_c-e(@q, J) if the dimension of (#,J) is greater

+1, than ¢q;
w8, ) = a

0e¢ H2+1(X;ZZ) otherwise.



58

Definition: The element W2+l((8, J)e H2+1(X;ZZ) is called

the (q+l)ﬂ equivariant Stiefel-Whitney class of the object (8, J).

Theorem IV. 9: The equivariant Stiefel-Whitney classes are

1
p.- g

natural with respect to the morphisms in V—

Proof: The proof is identical to the proof of Theorem III. 13,

except that we refer to Theorem IV. 8 rather than Theorem IIL. ]2.

Q. E.D.

As in Chapter III, the definition of chl+l(@, for an ob-

I
. 8 )
ject (@, % )¢ U coincides with the definition of Wq+l(B ).

Therefore we have the following.

Theorem IV:10: The function chl+l on U-rl) g is an exten-

sion of the function Wq-*—l on ')/‘
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