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Let or
411.

EQUIVARIANT STIEFEL-WHITNEY CLASSES

I. INTRODUCTION

= (B, X, n) be an n- dimensional vector bundle, B its

total space (bundle space), X its base space, and n B X the

thprojection. For each q> 0, the Stiefel-Whitney class Wq(12

is an element of H (X;Z2), the singular q-dimensional cohomology

group of X with coefficients the integers modulo two.

Let If be the category of vector bundles. The functions Wq

on ir satisfy the following properties (4, p. 281):

W0() is the unit class of H0 (X;Z
2);

-wq(e)= 0 for q > n;

If f = f) :63 at is a bundle map, then

r(Wq(d3')) = Wq(e);

If e e et is the Whitney sum of the bundles 03 and

(13 1, then Wc1(006 1) = E wi(e)_)wi(er);
i+j=q

If e is the one dimensional vector bundle over real pro-

jective 1-space, then W1(03 ) L 0.

If the base space X of e is paracompact, then these five pro-

perties characterize the functions Wq (2, p. 6-7).

In (3), J. W. Smith extends the category Qf to a category of

generalized vector bundles. He then defines an extended Euler class

on a full subcategory of this new category. The classical Euler class



of an oriented n-dimensional vector bundle, reduced modulo two, is
thequal to the Stiefel-Whitney class of the bundle (2, p. 41). This

leads one to consider the possibility of defining the Stiefel-Whitney

classes of generalized vector bundles.

A generalized vector bundle is essentially represented by a vec-

tor bundle together with a set of local bundle maps. In the following

chapters we consider vector bundles together with pseudo-groups of

local bundle maps and thereby get a category
13- g.

the category

of vector bundles with pseudo-groups. Using an obvious identification,

we observe that if can be considered as a full subcategory of

The functions Wq on 'V can be defined in essentially two

ways. One method, discussed in (2, p. 33-35) and (4, p. 281), uses

the Thom isomorphism and the Steenrod squaring operations. The

second method is based upon obstruction theory, and assumes that the

base space X is a finite complex (5, p. 148-204). For each q,

0 < q < n - 1, let C13 q be the associated bundle of 63 (5, p. 43)

with fibre
Vn, n-q the Stiefel manifold of (n-q)-frames in n-space.

The primary obstruction to a cross-section of e q is an element

0q+ 1 (e ) E Hq+1 (X;
Trq n-q) ). The homotopy group Trqn, n-q)

is isomorphic to the group Z of integers if q is even or q=n-1,

and isomorphic to the group Z2 of integers modulo two if q is

2

stodd and q < n - 1 (5, p. 132). The (q+1) Stiefel-Whitney class



certain subcategory of V-
P. g.

shall be obtained by an adaptation
q+1of the obstruction theoretic approach. For 0< q < n - 1, W

shall constitute the primary obstruction to equivariant cross-sections

in the appropriate generalized bundle.

3

Wq+1 (43 ) is then equal to 0q+1 (e ) reduced modulo two (2, p. 57-

59).

W1,Our equivariant Stiefel-Whitney classes W , defined on a



Let A

(pc), pi, P )

by the vertex map

. for j <
ei (p

. 3)

PJ
q+1

IL PRELIMINARIES

be the standard q-simplex with vertices

and let ei
q+1

: A
q

---s""q+1

pj+1
for j >

be the linear map defined

The image of A under ei is denoted by A
(i) and is calledq+1 q+1

ththe q-face of Aq+1. The image in A
q+1

of the composition

(i)(j) .th
eq+1

o
ejq q-1 q+1

: A A is denoted by A
q+1

and is the 3 (q-1)-

face of p (i)
.

q+1

The singular simplexes of a topological space Y, i. e. , the

continuous maps of A into Y, are denoted by small Greek let-

ters, e. g. , o- Y. We shall let S denote the set of all
thsingular q-simplexes of Y. The i (q-1)-face of the singular q-

simplex cr is denoted by cr(i) and is defined to be the composition
0_(i)

= 0th of TO-)eq : Aq-1 Y. The (q-2)-face is denoted by

We let C.,,(Y;G) {C
q

(Y; G), 8q} be the singular chain com-

plex of Y with coefficient group G. The corresponding cochain

complex with coefficients in G is denoted by C()_(!G ), {Cci(Y;G),6q}.

When G = Z, the group of integers, we shall simply write C(Y)

4

and C (Y). We let and f# denote the chain and cochain maps



to mean

5

induced by a continuous map f from one topological space to anoth-

er, and f*
the corresponding cohomology map.

Let e (B, X, Tr) be an n-dimensional vector bundle.

Definition: A pseudo-group J = a)} of local bundle maps

on (i3 is a set of bundle maps u 631-u--- 6 , where U is an

open subset of X and 63 I U is the restriction of CE3 to U,

satisfying the following properties:

the identity map 1 = (lx, 1B) is an element of J;

the inverse of each element of J is an element of J;

the restriction of an element of J to an open subset of

its domain is an element of J;

the composition of elements of J, whenever defined, is

an element of J.

VIn particular, condition ii) implies that if e J, then u and

Au are both homeomorphisms, and the inverse of (6, u4) is
v-1 A-1 V

(U U ). We shall use the notations u E 3 and u E

v nthat there is a u = (u, u) in J.

Now let e be a vector bundle and J a pseudo-group of lo-

cal bundle maps on e. We shall denote such a pair by (e, J); and

shall call (e, J) a vector bundle with pseudo-group.

Let (63 , J) and (el, J') be two n-dimensional vector bun-

dles with pseudo-groups.



v
Definition: A bundle map f = (f, f) e et is called equi-

variant iff for each u = (U, G.) E J,vthere is a ut = (ul, 1.))E J such
A A A

that ° = Z1.20I' and f o u = u o f whenever these expressions

are defined.

With this notion of map, we see that the set of vector bundles

with pseudo-groups and equivariant bundle maps forms a category.

This category will be called the category of vector bundles with

pseudo-groups and will be denoted by -1)--
13- g

Let Ie be the pseudo-group of local bundle maps on 63

generated by the identity map of e . Then we may identify the vec-

tor bundle with the pair (e, ), and we note that under this

identification, the category lr of vector bundles is a full subcate-

gory of V- .
1)- g.

Now, let (e, J) be a.n object in if. The pseudo-group

J determines a relation on the set S (X) of singular q-simplexes

of X as follows. For cr, TIES (X), we say o- is J-related to
Viff there is a ue J such that o- = Because J is a

pseudo-group, this relation is obviously an equivalence relation. Let

J (o- , cr ) be the (possibly empty) subset of J consisting of all

(.1., a) J for which u 0
Cr. °

Definition: Two singular q-simplexes o- and 0- X are
J-equivalent iff J(0-, CT is non-empty.



c (a-) = c(o- ') for all 0-, 0-I E S (X), with a-' E A(o-).

Thus, a q-cochain is equivariant iff it assigns the same ele-

ment of the coefficient group to all J-equivalent singular q-simplexes.

The equivariant cochains obviously constitute a subcomplex of the co-

chain complex C (X;G) which we denote by Ce(X;G). The corre-

sponding equivariant cohomology groups are denoted by Hq(X;G).

We note that the cochain complex
Ce(X;G) is naturally isomorphic

to the cochain complex corresponding to the equivariant chain com-

plex C(X) and coefficient group G.

Definition: A homomorphism T C C (B;G) is
P P

Acalled equivariant iff for each (u, u) E J, Tp 0 = aito Tp, whenever

these expressions are defined. A set of equivariant homomorphisms

7

The relation of J-equivalence partitions the set S (X) into

equivalence classes. Let A( ) be the J-equivalence class of

o-e S (X), i.e., A(cr) = fcriE Sq(X) J(o-, o- t) is non-empty}.

Because J-equivalence preserves incidence, the singular chain

complex C*(X) induces a chain complex structure on the quotient of

C (X) by J-equivalence. This new complex, denoted by C(X), is

called the equivariant chain complex of X induced by J.

Definition: A q-cochain c E C (X;G) is called equivariant iff

T = : 0 < p < q, :C MG) C (B;G)} satisfying a = T aP - P P P P P-1 P
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is called an equivariant chain map on dimensions less than q+1.

Now, let (e , J) be an object in iT
g

, with 63 (B, X, Tr)
.

and the dimension of e equal to n. For each q, 0 < q < n - 1,

let e q = (Bq, X, Trq, Yq) be the associated bundle (5, p. 43) of e
with fibre Yq = Vn, n-q, the Stiefel manifold of (n-q)-frames in

n-space. Thus, a point of e q over x E X is a pair (x, v)

where v = (v,
v2

, , vn-q) is a set of ( _q) linearly independent
1

-1vectors (not necessarily orthonormal) in the vector space Tr (x),

and Trq(x, v) = x. The pseudo-group J induces a pseudo-group of

local bundle maps on 63 q, for each q = 0, 1, ,n-1, which we

also denote by J. Thus, with each object ( di3 , J) in

1dimension n are associated n new pairs (0e,J), (&, J), ,

(en-1, J). We note that the pair (eq, is not an object of

-17p.
However, the notions of J-equivalence and equivariance in-

troduced above have immediate analogues in the present context.

q+1We shall define the equivariant Stiefel-Whitney class We (e,J)

of an object (e, J) in ).1- g as the element of Hc1+1(X;Z2 )P. e

determined by a certain cocycle
cT E Cq+1e(X;Z ). The cocycle

2

will be an obstruction to extending an equivaria.nt chain map

T = C (X) C (Bq)} on dimensions less than q+1 to an equi-
P P

variant chain map on dimensions less than q+2. The equivariant

chain map T will also be required to satisfy Tr
# Tp = 1C (X)

SO

that T is a lifting of the singular chain complex of X to that of

of
P. g.



on dimensions less than q+1.

The condition that T be an equivariant chain lifting will re-

quire that we make some assumption concerning the holonomy induced

by J. The holonomy group of (6,J) at a point x E X can be

defined as follows. Let Jx = a) E J ii(x) = x}. Then,,U, U)E Jx
implies that Au! Tr-1(x) is a linear isomorphism of Tr-1 (x) onto it-

self. Let /x = {0.1Tr-1(x) a) E
Jx}. Then /x is a subset of the

group of all automorphisms of the vector space Tr -1(x), and be-

cause J is a pseudo-group, the subset/ix is a subgroup.
i/x

is called the holonomy group of (6,J) at x E X. The holonomy

group el of (6q, J) at x E X is defined similarly, and we note

that el is induced by /x.
Now, suppose the holonomy group / of ( , J) at xo E X

X0
is non-trivial, i. e. , contains an element other than the identity. Then

u) e J such that I Tr-1 (x) 1 1 . Ifthere is an element A

x0
E So(X) is defined by 0-(6, 0) = xo, then the equivariance of

To : Co(Bg) requires that To(o-) = cr) = Tool.

But since ul it 1 (X) is not the identity, this last equation is not

necessarily satisfied.

In Chapter III, we shall treat the case of trivial holonomy. In

Chapter IV, we shall consider the case where the holonomy group
/ix

at each x E X is orientation preserving and leaves at least an (n-1)-

dimensional subspace of ii 1(x)fixed. We shall also comment on

why our procedure cannot be carried out for more general holonomy.



III. THE CASE OF TRIVIAL HOLONOMY

Let e = (B, X, Tr) be an n-dimensional vector bundle and J

a pseudo-group of local bundle maps on 63 such that consists

of only the identity automorphism for each x E X. For each q,

0< q < n - 1, we have the associated bundle and pseudo-group

( J) with fibre Vn, n-q. In the present case of no holonomy we
Anote that if (1, a) E J, then u = 1. Hence, if 01,11.) and (u, v)

A Aare in J, we must have U = V.

Until stated otherwise, let q be a fixed integer, 0 < q < n - I.

In the associated bundle e we shall drop the superscript q on

the projection and fibre, so that e q = mg, X, Tr, Y), with

-1Y =
Vn, n-q. The fibre over X will be designated as Y =Tr (x).

We wish to define an equivariant lifting of the singular chain

complex of X to the singular chain complex of Bq. More pre-

cisely, we shall define homomorphisms T C (X) C (B ) for
P P

0 < p < q satisfying the following conditions:

(o) for each o- : A X, T (cr) : A .-Bq;

(i) Tri Tp = lc 1)0,

(ii)8 T =T app P-1 P
(iii)'Tpo = 0 Tp whenever these expression are defined.

We shall refer to condition (i) as the lifting condition and (iii) as the

equivariance condition. Condition (ii) simply states that the T's

10



form a chain map on dimensions less than q+1. A collection

T ={ T 0 < p < q, T C (X) C (Bc1)} satisfying conditions (o),
P P P

(i), (ii) and (iii) will be called an equivariant lifting in (63q, J) on

dimensions less than q+1.

We shall define T by finite induction on the dimension p.

In order to facilitate this definition, we assume that the singular sim-

plexes of X on each dimension have been well ordered, and let <

be the order relation on S (X). We define T on S (X) by

transfinite induction and extend T to all of C (X) by linearity.

We further assume that the pseudo-group J, considered as a set,

has been well ordered.

For each 0- E S (X), the 3-equivalence class A(o) of o-

is a non-empty subset of the well ordered set S (X), and conse-

quently A(o-) has a first element. We call this first element the

base of A(o-).

v AIf the subset JO-, 0-') {(u,u)E J o- = 0-'} of the well or-

dered set J is non-empty, then it also has a first element which we

call the base of J(o-, o-').

Each 0- E S (X), being a continuous mapping of A into X,

induces a bundle over A (5, p. 47-48) with bundle space B
o-

and a bundle map h making the following diagram commutative:
o-

11



(I) Bq hcr
> Bq

cr

IT In
0-

A >x.
o-

The bundle space Bq of the induced bundle is the subspace of the
o-

product space A x Bq given by (x, b) E Bq iff o-(s) = re(b). The
o-

maps irr and h are the restrictions to Bq of the natural pro-
f)" cr cr

jections to the first and second factors of x Bq, respectively.

The standard fibre of the induced bundle is again
Vn, n-q.

The induced bundle in (I) has as its base space a finitely trian-

gulable space. The obstruction theory for such bundles is treated in

(5, p. 148-.217), and we shall make use of several results proved

there. In particular, the fibre Vn, n-q is (q-1)-connected so that

12

any cross-section over the boundary A of A can be extended

to a cross-section over A , 0 < p < q (5, p. 149).P -
The induced bundle in (I) is a product bundle and hence it admits

cross-sections. We assume that the cross-sections of the induced

bundle are well-ordered for each (FE S (X).

Note that if o- E A(04 ), With 0- U o o-', then the pair

(.'1, LI) E J induces a bundle isomorphism (1, a) : Bq Bq making
o-' o-

the following diagram commutative:



Bq (1, > Bq
o-t o-

Tr Tr
0-

A A
1

A - 1 A 1and furthermore (1, u) = (I, u ).

We are now ready to define T0. Let be the first element

of S (X), and let t be the first cross-section of the induced
0 cr

bundle in (I). We define T (cr) = h 0 t . Then T (o-) : A "' Bq
0 o- o- 0 0

and because (I) is commutative, Tr 0 'T (o-) = Troll. 0 t = a- 0 IT 0 t = cr.
0 0" Cr 0- 0-

Now, let a- be an arbitrary element of
S0

(X) and suppose

To(o-')
has been defined for all o-l< a- in such a manner that condi-

tions (o) and (i) are satisfied, i. e. , To(o-') Bq and

Tr 0 T (a-') = cr'. We distinguish two cases in defining T0 (0-):
# 0

0- A(CF.1) for any o- < cr;

(T E A(a-") for some el < cr.

In case 1) we define T0
(cr) as above, i. e., let t to be the

cr

first cross-section of the induced bundle in (I) and define

T (o-) h o t . Then T (a) is a lifting of o- to Bq.
0 Cr 0-

In case 2), let 0-1 be the base of A(o-"), i. e. , the first ele-

ment in A(cr"), and let ci) be the base of J(cr', o-), so that

V
cr = Uo o-r. Since cr' is the base of A(cr"), o-' < o-" < a- so that

T (cr') is defined. Let t Bq be the cross-section in-
o-' 0 cr,

13

duced by the map
T0 (cr') : A Bq and the bundle map h/ --*Bq.

0 cr.. G-1 '



A -The bundle map (1,1u ) B Bq of (II) and the cross-section
o- o-

t induce a unique cross-section t : Bq making the follow-
o- 0 o-

ing diagram commutative (5, p. 12):

Bq (1, u )> Bq,

We define T (cr) h ot B and IT o T 0-) = 0- again fol-
0 a- a- 0 0

lows from (I).

By transfinite induction we have0 defined on all of S0
(X)

and satisfying condition (o) T0 (o-)(cr) : A Bq, condition (i)

Tr o = and condition (ii) (vacuously). It remains to show that
0

condition (iii) is satisfied.

Before showing this, we wish to make two remarks.

Firstly, the map To(c-) : --- Bq together with the bundle

map h Bq Bq uniquely determines a cross-section t :
a- o- Cr V o-

such that T(o-) = h ct If d: x is the diagonal
o o- cr 0 0 0

map, then t is defined by to_ = (1, To( )) d, This will also be
0-

true of the maps T (a-) : A Bq to be defined later. The cross-

section determined by T (a-) and h will hereafter be designated

by to_, and we shall use the representation 'T (a-)0-) = h t with-
Cr Cr

out additional comment.

Secondly, if 0-, 0 E A(cr"), with o-11 the base of A(cr"),

14



V v-1and if a- = o cr" and o--1 = o o-II, then o- = u ov o CFI. By

our definitions and diagram 1110 = (1,a) oto_it and

Consequently, whenever we have the relation a- = w o a', we have

the companion relation t = (1,W). t This will also be true for

dimensions otherother than zero, because our definitions will be similar,

and we shall have a commutative diagram (III) corresponding to

VNow, let a- = u a-t-, a-, TIE S0 (X) and let
-1

Tr (crICA )) = Bc110-1(p
0 0

A-1 A A-1so that t = (1,a) 0 (1,v ) t = 0, uov )0 t .

Cr'

We have the commutative diagram:

A

BC110-1 A ) Bq

(1V0)
0

ha

Bq Bq
o-1 0, -

A A-1Consequently, T0(. crl) = To(a-) h t ho- o (1, u) o (1, u ) o t
cr

A A= u o h o t = u o T (a-') and condition (iii), the equivariance ofa-' a-' 0

is satisfied.
TO,

We now extend
To

to all of C0 (X) by linearity and note that

since conditions (o), (i), (ii) and (iii) are satisfied on the generators

of Co(X), namely on So(X), and Trii, 3 and To are homo-

morphisms, then conditions (o), (i), (ii) and (iii) are satisfied by the

map To C 0(X) C 0(0).

15

t = (1, V) 0 0-11'



We now proceed to our inductive step. Thus, we assume that

T : C (X) C (Bq) has been defined for all m for whichm m

0 < m< p < q, satisfying the conditions (o) T (o-) A Bq for

each

(iii) = T us/

if m m #

crE S (X), (1) Tr# T = lc oc), (ii) a T = T a , andmm m-1 m
whenever these expressions are defined.

Let o- be the first element of S (X). For each (p-1)-face

Th,C10-(j) Of 0-, T / is defined and induces a cross-p-i p- 1

A
.thsection t in the bundle Bq(L) be the

0- 0- 13-1.
Let (i)

1

(p-1)-face of A . We then have the commutative diagram:

(ei, 1)
> BcIIA (1) C Bq-1=tr4

J-J
V p 1°-

1
A A

ei
A

P-1 P '

iSince eis a homeomorphism, we may define a cross-section
iti A Bq I A ) by ti = (e1, 1) t (,) (ei )-1 . iThus, t s a

o- p o- p o- cr

thcross-section of the part of the bundle Bq A over the (p-1)-

face of A

If the ti /s fit together, i. e. , if they are equal on their corn-
, o-

mon domains, then we may define a cross-section t.
cr

(i)by t. IA = t'. This condition is superfluous, of course, forp cr

p = ti..

(V)

over A

Before showing that the tils do in fact fit together, we
verifyo-

16



the following facts which are collected together as a lemma due to

their frequent use.

Lemma Ill. 1: Let Tm.. 1 : Cm_ (X) Cm- (B)and

Tin : Cm(X) --Cm(B(1) be homomorphisms satisfying

Tm-1 : Sm-1(X) ---.-Srn-1(13(1) and T S (X)
Sm(Bc1).

Letin in
p E S (X) and let t and h be defined as before. Then

a) the following diagram is commutative:

(VI) i
(em, 1) P h

Rq Pc
(i)

Furthermore, consider the conditions (i) Tro T (p ) = p and (ii)

a T (p) = Tm-1am(p) and the diagram:m m

(VII) t

BC1(0
AP

Am- 1

(ei '1)
13q1A(i)

m

Then b) if conditions (i) and (ii) are satisfied, then diagram (VII) is

commutative;

c) if diagram (VII) is commutative, then conditions (i) and (ii)

17



are satisfied,

18

Proof: To prove a), let (s, b) E B Cluj . Then h ) ((s, b)) = b.

But h (e1, 1)(s, b)) h ((ei (s), b)) b. Thus, h (1) h o (ei ,1).
P m P P m

For b) we have from (ii) 8T(p) = (-1)iTm(p) o ei
i=0

m .

, ,= Z (-1)1T tP° ei / = T a(p). Since T and T takem-1 n-i M - 1 M m-1i=0

simplexes into simplexes, this equation implies that

ik
Tm(p) o em = Tm- 1

(po e for some pairings
ik and jk' Sup-rn

ikpose that Tm(p) e em = Tm- 1
(p e) some . Then

( ) implies that p o em = p o eik so that T ( e =±T (p e )
rn m m-1 m

= T (p) 0 e k. Thus T (p) 0 e1
Tm- 1

(p o ei ) for all i, and

hence hot ee h
p m (0 t . By part a) we have

p

h ot oei =ho(ci,l)ot(ii. Let E APPmP mp.

b and 1-3 in

t o e' (s) = (e' (s), b) and (e, 1) o t (s) = (e (s ), b) for some1

Then hot oe (s)=-b=b= h (ei 4:),(s)
P P rn P P

so that t a ei = (o , 1) a t (4) , as was to be shown.
p m

m-1 Then



For part c) we haveaTm(p) = E 1 T (p) o e
i=0

M M m .

=E (-1)1h o t 0 ei E (-1) h (e , 1) o t ((;) = E (-1)h (0 t (i)

i= 0 P m .

1=0 P i=0 P

=Tm-1(&p). Q. E. D.

Now, to show that the ti's fit together, let A
(i) and A

(i)

have a common face, say A(i)(k) = A(i)(k ). Then

ei o ek =e j (1)(k) ando so that )= o- t t_ °lbw = row) .

p p- 1 p p- 1

By definition, ti 1 (i)(k) (el, 1) 0 t (i) 0 (ei )
0- P P

11 (i)(k)

= (eip, 1) 0 t op) 1 pp_i . (epi)-11 A (i)(k). Our induction hypotheses (o),
P

1 (k)

(i) and (ii) imply by Lemma III. 1, b) that t aft) 1

= (ek 1) to_0(4) o (ek -1. Also, the two preceeding equations
p-1' p- 1

hold when the pair k is replaced by the pair, j, Hence

k 1 i -1 ( )(k)
ti 1

(i)(k)
=

k(e, 1) (e , 1) t totio o (e ) o (e ) IA
o- p P-1

, i k , i k - (i)(k)= te o e , I) 0 t
o- p

04(4) 0 (e0 ep-1 I Ap p-1

= (e..3 0
f -1

, 1) 0 t tha) 0 (eJ e'MO = tj I

WU)
p p-1 o- P P-1 0- p

ti 's do in fact agree on their common domains. We define
o-

by t.1 A (i) = t.t : A
a- p. CF o- p

Ap(k) k

and the
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We recall that since the fibre
Vn, n-q of the induced bundle

Bcr-'p is (q-1)-connected, the cross-section t. over can

be extended to a cross-section over A . Let t be the first such
0-

extension, and define T (o-) h o t A Bq. Then condition (i)
o- o- p

Tr oT (o-) z-- cr follows again from the commutativity of (I).

By the definition of t,
o-

tive:

i(e, 1)
Bq P q (1)

Bq(i) >
o-

B1

Ap
C

o- 0"

t041

I

1 it , rl
0-

(i)A A C A
P-1 ei P P

P

the following diagrams are commuta-

Hence by Lemma III. 1, (c), condition (ii) a T (o-) = T
1

a (o-) is
P P P- P

satisfied.

Now let o- be an arbitrary element of S (X) and suppose

T ( ) has been defined for all o-' < 0- satisfying conditions ( ), (i)

and (ii). We again distinguish two cases in defining T (o-):

1) A(c)-°) for any 0° < , 1. e. , o- is not J- equivalent to

any o-' < o-;

20



2) Cr E A(o- ) for some

In case 1) we define T(o-) precisely as we did above for the

first element of S (X). Hence, for each (p-1)-face cr(i) of o-

we get a cross-section t (e1, 1) t (ei)-1 over the (p-1)-
o- o-

face A
(i) of A and the ti 's fit together to give a cross-

,section t. over the boundary A of A . We let t be the
Cr P P a-

fir st cross-section over A which is an extension of t and de-
P °-

fine T (o-) = h o t : A Bq. Then conditions (i) and (ii) are sat-
P cr. Cr p

isfied exactly as before.

v AIn case 2), let o-' be the base of A(cr") and (u,u) the base

of J(cr', cr) so that o- = o o-l. Since 0-1 is the base of A(cr"),

cr' < o-"< o-, and T (0-') is defined. Let t , :A ---,- Bq be the
Cr p Cf.,

cross-section induced by T (o-') so that T (a-') = h o t . We
P P cr' o-'

let t be the cross-section of the bundle Bqi- A induced by the
o- o- p

A-1bundle map (1, u ) and cross-section t,, so that the following
0-

diagram is commutative:

(III)

We define

lows from diagram (I).

T (o-) = h t A Bq and as before, condition (i) fol-
a- ci p

In order to show condition (ii), we shall show that

21

IT" <



t ei
=(e1, 1) t (i) and then apply Lemma III. 1, c).

cr P P

We have the commutative diagram

BqBq I o-°(A )

(IV) ho_
Cr'

Bq >Bq .
cr'

(I,

By our inductive hypothesis on T1 and Lemma III. 1, b),
i i

t , . e = (e', 1) 0 t). Hence, by (III ) and (III ) we have
cr P P P-1 P

tcr
0 ei A= (1, u) . t 0 ei = (1,U.). (ei,1) 0 t 40 = (ei,1).(1,ii)ot (i)

P I P P Cr ' P cr-

= (ei, 1) . t 0 , and thus t . ei = (ei, 1) . t 0) , as was to be
P o- P P Cr

shown.

By tran.sfin.ite induction, we have T defined on all of S (X),

satisfying conditions (o), (i) and (ii).

Now let CY, Cri e S (X), with o- = i.Z o Cr' . Then t = (1,UA)o t i

P cr Cr

so that using (IV ) we have T (ii.. cr') = T (a-) = h . t
P P P cr CT

A-1 A A= h . (1, G.) 0 (1, u ) ot =u. h . t =u0T (cr°) and conditiona-o- 0-1 CFI P

(iii) is satisfied.

We now extend T to all of C (X) by linearity and note that
P P

since conditions (o), (i), (ii) and (iii) are satisfied on the generators

of C (X), namely S (X), and nil, a and T are homomorph-

isms, conditions (o), (i), (ii) and (iii) are satisfied by the map

T C (X) C (Bq)
P P

22



sion map Y,C qB induces an isomorphism

23

The above construction of an equivariant lifting of C (X) to

C (Bq) fails on dimension q+1. For let p A
q+1

X. Then us-

(i)ing conditions (o), (i) and (ii) for T (p ) and applying Lemma III. 1 ,

b), the cross-sections t over the q-faces A
(i) of A de-
q+1 q+1

fined by t1 = (e
1,

1)
t(31) (eiq+1

)-1 fit together as before toq+

give a cross-section t. over the boundary
q+1

of
q+1.

Be-

cause
Trq(Vn, n-q) 0, the cross- section t. may not be extend-

ible to a cross-section over all of
t,q+1. Hence we meet with an

obstruction.

We now define a singular cochain CT E C (X-Z2 ) which we,

show is equivariant, is a cocycle, and obstructs equivariant exten-

sions of T , in the sense that if there is an equivariant extension

Tq+1' then
CT =0.

Let p :
q+1

X be a (q+1)-singular simplex of X and let

t, be the cross-section over,q+1 in the bundle Bq A , as
p q+1

described above. The obstruction to extending t, to a cross-

section over all of A
q+1

is a cocycle c(t.) E Cq+1(6, , Tr (V ))
P q+1 q n,n-q

which is defined as follows (5, p. 148-151).

The oriented boundaryq+1 of A
q+1

is homeornorphic to

the oriented q-sphere Sq, so that t. : :6,
q+1

uniquely deter-
p P

mines an element {tP.} E Tr q(Bc1). Choosing a point S E A
q+1,

say
P

the leading vertex, and letting
Ys be the fibre over s, the inclu-

Tr (Y ) -n- (Bq). Since
q s q p



Ys
is homeomorphic to Vn,

we have an isomorphism

Tr(V)-,r, 1T(Y). Letting [t.] be the element of Trq(V
q n,n-q q s ri, n-q)

corresponding to {t.} under the above isomorphisms, the cocycle

c(t, ) is defined by c(t
)(Aq+1

) = [t.].
p

th
As noted in Chapter I, the Stiefel manifold Vn,

had

homotopy group isomorphic to either Z or Z2. Let

rTrq(Vn,n-q)---. Z2 be the unique non-zero homomorphism.

For each p :q+1 X, we define () = r(c(t)(
p q+1)

= r([ti5]). Extending CT to all of Cco_1(X) by linearity we have a

(q+1) singular cochain CT E C1 (X; Z
2).

Theorem III. 2: The cochain
CT

E Cq+1(X1 Z2) obstructs the

equivariant extension of T .

Proof: Let
Tq+1

be an equivariant extension of T , i. e.,
q

Tq+1
is a homomorphism from C (X) --.

Cq+1
(0) such that

q+1

(o) Tq+1(p) : A
q+1

for all p E Sq+1(X), (i)TrioTrin.= lc (x),
s'i q+1

Go aq+1'Tq+1 = Tqa q+1
and (iii)i.loT =T . il. whenever these ex-

q+1 q+1

pressions are defined. For each p : A
q+1

.X, T+1(P) induces

a cross-section tp q+1
Bq. By Lemma III. 1, b), the following

diagram is commutative:

24



(ei , I)
Bq

q+1 Bq> BclIA(i) r-.__.(0 p q+1P PA

1ti t
t13(i)

1
P P

(i)
A > Aq+1 C A q+1q ei

q+1

Therefore, t is an extension of the cross-section t. over

Aq+1,
so that c(t.) = 0. Consequently, cT (p) = r(c(t. )(A )) = O.

p q+1

Q. E. D.

Because of Theorem III. 2, we call
cT

the obstruction co-

chain of T.

Theorem III. 3: The obstruction cochain cT
is equivariant.

Proof: We must show that if p, p' e Sq+1(X) with p = u

then
cT

(p) = CT (p'). It therefore suffices to show that

r ({t }) = ({t, }). Now, p = o p
(i)

(i)'implies that p = u pf .

We have seen that the latter equation implies that t = t .

Therefore t. = (I, ot.. Hence, r({t.}) r({(1,-11.)0t. })
13'

= r (i, a) ({t. })
r({t.T

}),* pl P

duces an isomorphism of the homotopy groups.
Q. E. D.

Alternate Proof: Suppose p = u p? A
q+1

X. Then as

25

since the homeomorphism (1, in-

above t. = (1, u) 0 t. so that t. is the cross-section induced by



A - Ithe bundle map (1,u ) and cross-section t.1. Then by the nat-

urality of the obstruction cocycle c (t . ) (5, p. 168),

c(t,) =
1#

c(t. ) = c(t, ) and hence cT(p) = cT(pi).P Q. E. D.

26

Now, let p : A --.-X be a singular m-simplex of X, andm

let K(p) = {o-: cr is a face of p}. Let K(Am) be the finite simpli-

cial complex consisting of A and all of its proper faces. There ism

a natural identification of K(p) with K() which we now de-m

scribe. If A is a p-face of A , there are face maps

ek k-1 k
A for k=p+1, p+2,...,m such that

im im- 1
Ap =em em-1 ... e p+1(A ). Let a-' be the p-face of p

p+1 p

i im p+1defined by cri = p . e ..... e Then the association Ai -- Crim p+I ' 13

is a bijection between K(A ) and K(p) which respects face oper-m
th iations in the sense that if (Ai )(k) is the (p-1)-face of A

P P
(k) k thand (Ai ) is associated with 0-k , then cr is the k (p-1)-

P

face of a-'.

The above allows us to identify K(p) with the finite simplicial

complex K(Am). This identification is assumed for m=q+2 in

the proof of the following theorem, and we shall use K(p) and

K(Aq+2) interchangeably.

Theorem III. 4: The equivariant obstruction cochain is a cocycle.



Proof: Let p --X be given. Define a (q+1)-simplicial

cochain of K(p) with values in Z by (p (0) cT(p(i)).

Then
5cT(p) cT(8p) = (kap) = 64(p), so that 6cT(p) = 0 if and

only if 5 1(p) = 0.

We prove that q(p) = 0 by showing that is an obstruction

cochain for a cross-section f over the q- skeleton of K(1, q+2) in

the bundle Bq -4- A and is therefore a cocycle.
P q+2

Let A(m)(k) = em 0 ek (A ) be a q-face ofL . Weq+2 q+2 q+1 q

then have the following commutative diagram:

t (04)

(ek , 1) (em , 1)
q+1 q+2

Bq

e
k
q+1

0,0

eq+1

A q+2

27

(m)(k)where t (,)(A) is induced by T (p ). Therefore we have for
P q

(m)(k)each q.-faceA of A
q+2 a cross-section tmk of the partq+2

m)
A
((k)of the bundle Bq over defined by

p q+2 q+2
mk m k

0 (em 0 ek )-1.t = (e 0 e , 1) 0 t 1 )q+2 9+1 p C'n)(4 q+2 q+1

iNow, suppose two q-faces A and AJ of A have a
q q q+2

common (q-1)-face. Then there is a (q+1)-face A
(m) of Aq+2 q+2
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(m)such that Ai and Ai are faces of is q+2 . Thus let
q q

A = A (m)(i) and A
j = A (m)(i) ijhave a common (q-1)-face, A

q- 1.q q+2 q q+2

We define a cross-section t (4.,) of the part of the bundle
P

q --
(k) k k -1

q+ 1 q+1
B.- A

In")
over , ,

P
by t()I A

q+1
= (eq+1,1) a tp(m)(4) . (eq+ ) .

Then in the bundle Bq A , we define a cross-section of the
p ci+ 2

part of the bundle over the boundary A
(4-1) byof A

(m)
q+1 q+ 1

tm = (em , 1 ) . t (A) . (em )-11 A (141)
.q+2 P q+2 q+2

We see that

r
k -1 m -1 (m)(k)tIll A (111)(k) rn k(e 1) . (e ,
q+1 q+21) a t (0/X4.) 0 (e) a (e ) 1 A

q+2 q+2 q+1 P q+2
.

mil= mk. Consequently, t A l = tm I A13 = tmi 1 A
ijt . Thus,

q- I q- 1

the cross-sections tmk of the parts of the bundle Bq ---- A
p q+2

over A q+2
fit together to give a cross-section f of the part of

the bundle over the q-skeleton of K(Aq+2).
Furthermore, for each

m m -1 (rn.)
A (m), f1 A

(1--:1) = (e q+2, 1) . tp(A) . (eq+2) 1 A
q+2

.
q+2 q+2

Now, the obstruction to extending f to a cross-section over

the (q+1)- skeleton of K(Aq+2)
is a (q+1)-cocycle c(f). Let A

(m)
q+2

be a (q+1)-simplex of K(Aq+2).
Then f : A (M.) 0- Bq determines

q+2 p

an element of Tr q(Bc1),
and this element is by definition c(f)(A(m)).

P q+2

But (rn) m ,em )-1 lis(m) so thatf 1 A q+2 = (e q+2, 1) . tp(4,) (
q+2 i q+2

c(f)(AZ) = {(errq1+2, 1)o t} E Tr q(Bc1). Hence the obstruction cocycle
P

(rn)(k)

of f with values in Z2 is r(c(f)) and r(c )(A (m))q+2

= ra(emq+2, 1) a tp(4,)}) = ratp(A)}) since the homeomorphism (emq+2,1)

induces an isomorphism of the homotopy groups.

) (IT1 )Consequently, (p ) = cT(p
) = r([t frn) = rat (4,)}) =



r (c(f)(q-1-2A (m))), e. , = r(c(f)) and is an obstruction co-

cycle. Q. E. D.

We now wish to show that the equivariant obstruction cocycle is

natural with respect to equivariant bundle maps. We recall that a

vector bundle map f = i) (63 , J) (s,, J') is equivariant iff for

each u = (uv,i1) J there is a u' = J' such that io Iva =ix'of
A A A Aand f o u = u' o f whenever these expressions are defined. Also,

the associated bundle maps ( 65q, ( G 'q, J') are equivariant in

this same sense.

Before proving naturality, we establish the following two lem-

mas.

Lemma III. 5: If f = (4 ;') : 63q --' CB'q is a bundle map and

T'P
: C (X') --.- C (Big) is defined for 0 < p < q satisfying

P P

(o') Tp' (cr) : 6.13 -- Btq for cre Sp(X'), (i1) .Trd . T; = 1, ,,,,, and
`jWI' /

(ii.') a T' = T' a , then there is a T : C (X) --*C (13q) definedpp P-1 P P P P

for 0< p< q and satisfying (o) T (o-) : A Bq for ITE S (X),
P P P_ _

Tp = 1,
,V-`",,

(ii) apTp = Tip_ lap, and (iii) i'# . Tp = Tp7 . flit.`)
Proof: Our proof is by induction on the dimension p.

First, for dimension 0, let o- : A X be an arbitrary
0

singular zero-simplex of X and consider the commutative diagram:

(i) Tr
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(VIII())

X<
o-

114.

Bq
(1, lei foe-

>Bryr I° cr

1
tt
f 0 cr

A
0 1

>i:0 . >XI
fc.(T

o (r)

where the cross-section C., is induced by To1(1 o-) so thatfoci-

T' (f cr) = tx1 Let t A be the cross-section in-0 foci I0 CT. CT 0 0-

duced by tt. and the bundle map (1,1), so that for each s A 0,f o °-

with (1, 1)s = (1, 1)17r0:1 (s), we have t(s) [(1,i)srl tiro (r.

We define
To(o-)

=h ot : Bq and condition (i) follows
0- 0- U

immediately from diagram (VIII& and the fact that t is a cross-

section. Also, condition (ii) is vacuously satisfied.

To check condition (iii), let SE 0. Then fo
T0 (or)(s)

= h 0 t (s) = h [(1,I)srl tt (s). But
cr 0- fo

hcr(s, b) = 1(b) = ht. ir(s, 1(b)) = h'10 0 (1, b) for all (s, b) E Bc10_.

Hence, 0 To(cr)(s) =h' (1,1)0{(i,1)j- 1 Of% (s) = hieo 0 tio cr(s)

= Tba. Tx.), i. e. , 1 e To(o-) = TTo 0 i(o-).

We define
T0 on each singular zero-simplex on X as above

and extend
T0 to all of C0 (X) by linearity. Then conditions (o),

(i), (ii) and (iii) are satisfied since they are satisfied on the genera-

tors of Co(X), namely
SO(X)' andTr#, T0, 1 and 1% are

#

homomorphisms.

Suppose now that Tm: Cm(3q) has been defined for
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0 < m <p < q satisfying (o), (i), (ii) and (iii), and let o be an ar-

bitrary singular p- simplex of X. We have the following commuta-

tive diagram:

where again the cross-section U.
foci-

Tt(focr) =h. o . Let t : A Bq be the cross-section in-i0 It) 0- Cr p o-

duced by th and (1, so that for each s E A ,

t (s) = [(1, #f) ] 1 0 (s).
cr s f o o-

We define T (cr) =h ot :A Bq and condition (i) is againp o- o-

immediate. Condition (iii) follows exactly as in the case p = 0,

since the computations used make no reference to the dimension.

In order to show that condition (ii) is satisfied, we first recall

that conditions

ep
= (ei, 1) o by Lemma III. 1, b). We also have the re-Io 0- fo cr(L)

lation hi =r (e1, 1) by Lemma III. 1, a) and, by the defini-
o-a) o 0-

tions, f o h = h (I, 4
foci-

), (i') and (ii") on T imply that

Now let s E A . Then h
P-1 cr

-ho [(1, it) 1 U.o ei (s) h
o- (s) fo cr p

is induced by T' (fro cr) so that

ei )

(or o (epi , 1) o tto o_m(s)-1-1= i ht. .(e1, I) tL. (s) [f() 0 h3. wotk (JO=cro e (s) f 0 o- p fo (s) I .0- io



-1 4.= licra) 0 [(1, (s)] 0 11. cr()(s) = hcro 0 tu(i) (S ), i. e. , we have
i Ph t o e = h(4. t (.) for each i = 0, 1, , p. Consequently,a p a- o-

. P i Pa T (0-) E (..1)11- (c) el= E(-1)1h ot oe = E(-1)1h(i)ot
P (3- p o- cr-()i=0 i=0 i=0

P .

= (-1)1T (o-(i)) = T a (at and condition (ii) is satisfied.
i=0 p-1 p- 1 p

We define T on each singular p- simplex of X as above

and extend T to all of C (X) by linearity. Again, conditions

(o), (i), (ii) and (iii) are satisfied on the generators of C (X) and

each of Tr T" a If and is a homomorphism so that the condi-
p #

tions are satisfied for T C (X) C (B ).
P P Q. E. D.
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The set T = {T C (X) C (13q) : 0< p < q} is called the in-

duced lifting.

Lemma III. 6: If in Lemma III. 5, eq and erg have

pseudo-groupsJ and J°, respectively, and if 'T° and f =(f)

are both equivariant, then the induced lifting T is also equivariant.

Proof: Let a- : A X, 0 p < q, and suppose II a- is

defined for some (II, (1) E J. We must show that u. T (a) = T uo a),

i. Ae. , uoh ot = h o t, . Now, by definition, for each
a- a- u uocr

ASE A , t (s) = [(1, f) . Let C.).°) be an element in
P s-1

J' associatedassociated with u = i..1) in J by the equivariance of f.

A AThen for each SEA , uoh 0t u h [(1 f^.) ]-1. tr°,, (s) =
Gr C3- a-



A-1 1= u 0 ficr(s)] 0 hi., (s) (r(s)] 0 CI'
foo- foo- foo-

_1 (s)u.0-(s) u'ofocr u'ofoo- uocr(s)-1
, _ 1

= h, [(1, f) s] o (s) = o tv (s). Thus,
u0o- to goo- 1100- Uo0"

oh 0t =h.,t .
a- u o- u.00-

0 vro,(s)

ht,y V0 tirY V (S)
IOU00- I 01100-

Q. E. D.
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Thoerem III. 7: If f (fs; (e, J) (21, J') is an equivariant

vector bundle map, and T' is an equivariant lifting in (631q, .11) on

dimensions less than q + 1, 0 < q < n - 1, and if T is the induced

equivariant lifting in ( eq,
v#

then c = f (cTr).

Proof; Let p
Aq+1

X. Then f (cT')(p) cTI(fo p)

= r(e(tto tls)(Aci+i)) and
cT

(p) r(c(t)(.6 )). Therefore it suf-
p q+1

fices to show that c(tko is) c(t15). By the definition of the induced

lifting T, the following diagram is commutative:

Bq
(1, 'f%)

AP io p

t. tfr
p

Aq+1 1 >q+1

i. e. , the cross-section t, is induced by t!.. and the bundlefop

map (1, Consequently, by the naturality of the obstruction co-

cycle (5, p. 168-169), c(t) = 1#c(tL ) = c(tl,
).fopf o

We have shown above that with each equivariant lifting T in

Q. E. D.

(eq, J) on dimensions less than or equal to q, there is associated



an equivariant obstruction cocycle CT E Cq+1(X;Z2). We now wish

to show that the equivariant cohomology class of CT

Before we define d(T,7f), we note the following. Let

34

is independent

of the particular choice of equivariant lifting, i. e. , if T and T.

are equivariant liftings in ( eq, J) on dimensions less than q+1,

then CT and cT are equivariantly cohomologous. We do this by

defining an equivariant q-cochain d(T, T) E CCie(X;Z 2) which satisfies

Eld(T,71-) = c,.r - .

o- A X, m=q or q+1. Then in the induced bundle Bq A
cr

any two cross-sections t and t over the (q-1)-skeleton of
Cr

are homotopic (5, p. 181), and any such homotopy k gives

rise to a q-cochain d = d(t , k ) E Cq(is, , Tr (V
,CT CT IT CT m q n, n-q))' called

the deformation cochain, which satisfies the following condition. If
_

c(t ) and c(t- ) are the obstruction cocycles of t and t , then
Cr 0- CT 0-

6c1 = c(t ) - c(t) (5, p. 171-172). We suppose that for any given
Cr IT a-

_
cr : A -- X, m=q or q+1, and any two cross-sections t and tm Cr 0-

over the (q-1)-skeleton of A in the induced bundle Bq --.- A ,

M. 0- III

the set of homotopies k : t =LT is well-ordered.
a- o- 0-

Let Ot be the set of all base elements of S
q(X),

O= to- E S q(X ) : Cr is the base of some A(o-')} . We first define

d(T, T) on al by transfinite induction.

Thus, let o- be the first element of A . Then T (o-) and

T (o-) induce cross-sections t and r of the bundle Bq A .

o- o-



Let ko_ be the first homotopy of the restrictions of t and t
(T

to the (q-1)- skeleton i of p . Then k :t IA zt A gives
Cr 6 q o- q

rise to d ECq(Aq:Trq(Vn,n-q)) and we define d(T,T)(o-) = r(do_(Aq)),o-

where r is as before the unique epimorphism r Tr(Vn, n-q)q

Next, let o-' be the second element of CZ . We distinguish

two cases in defining CT:T-1(e):

cr' has no face of any dimension in common with

Ti has a face in common with cr

Note that for q=0, case 1) is the only possibility.

In case 1), we define d(T,T)(e) in the same way that we de-

fined CT, T")(a-), i. e., we let k be the first homotopy of the re-

strictions of the induced cross-sections t and to_to-'
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to the (q-1)-

skeleton A of A , d = d(t ,,) the corresponding defor-
q q e a-'

mation cochain, and define d(T,7T-)(crt) = r(d0_,(Aq))

Before discussing case 2), we prove the following lemma.

Lemma III. 8: For q > 1, let A
* be a proper subset of the

.faces of A . Let t and t be cross-sections over A in the
q a- a- q

* ,

I

*bundle Bq -- .- ,6, . Then any homotopy k : t I A = t A can be
IT q o- o- q o- q

extended to a hornotopy ka. : t = To_ .

Proof: We can extend k trivially to a map
ci

* *
k : x I vA x {0} A x Ill such that k (s, 0) = t (s) andciq
k (s, 1) = t (s) for all s . Let K = A x I and

o-



L = P*x I v ,e1 x {0} Li 111. Then L is a closed subset of
q q q

K, and the pair (K, L) is a finitely triangulable pair. Therefore

we wish to show that a cross-section over L into Bg x I can
cr

be extended to a cross-section over K. By (5, p. 149), since

B xi is (q-1)-connected, the cross-section k
cr o-

Bq Bg , L' C
0

36

can be extended

A

The map i is a homeomorphism, and is the corresponding

bundle space homeomorphism. The inner vertical maps are those

induced by the outer vertical maps in each outer rectangle.

to a cross-section over L Kg, where Kg is the q- skeleton of

K. But the dimension of K is q, so that Kg = K = L Kg

and k can be extended to all of K.
Q. E. D.

Now, in case 2), we identify K(o-) and K(o) with the finite

simplicial complex K(s) as in the proof of Theorem III. 4. Let

L be the subcomplex of K(6, ) consisting of all those faces of 0"

which are in common with faces of cr'. Let L' be the corre-

sponding subcomplex for cr' and let IL I and I L' I be the cor-

responding subsets of P . Then IL) and IL') are homeo-
q

morphic and we have the following commutative diagram:



kt =
0- a- q a- q

d(T,71:)(o-) = r(cicr(Aq)).

have a common face, then the homotopy k in d =d(t
Cr CT I Cr I

be the first homotopy and define

to define d(T, T)(cr is the first extension of the partial homotopy

induced by ko_,, in d used to define d(T,Th(o-'1). We again
0-11

distinguish two cases in defining d(T, 7f)(a)

a has no face of any dimension in common with any < a;

a- has a face in common with some CT <

Note again that for q=0, case 1) is the only possibility.

In case 1) we define d(T,T)(cr) exactly as in case 1) of the de-

finition for the second element of OZ. Thus, we let
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The homotopy kcr tIqq together with diagram (IX)
;lc

induces a homotopy k : t By Lemira III. 8,
cr cr cr

this homotopy can be extended to a homotopy over all of 2i . Let

k, be the first such extension. Then as before, we have the defor-

mation cochain d E C qorq(Vn,n-q)) and we define
cr

d(T, i")(cr') r (dcr, (A q))

Now, let a be an arbitrary element of OZ. , and suppose

that d(T,717)(or') has been defined as above for all a-' < in such a

manner that the following is true. If au < CO and CT / I and CTI

I 'to_ ) used

In case 2), suppose a- has a certain p-face, 0< p < q - 1,

in common with some preceding element of 01 and let o-, be the
D

first such element of OZ . Let AL be the domain of this p-face
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n* .13*

of a-, and let k' be the homotopy of t and t over A
Cr CT Cr q

induced by the hom.otopy k used in defining d(T,71:)(o-1 ). By our
n*

inductive hypothesis, ki- then coincides with the homotopy induced

by k,1,k" , k" used in defining d(T,71")(cr"), for any a-' < a- which
cr a-

has the given p-face of o- as a face. If we carry out the above pro-

cedure for each m-face of a- which is common with an m-face of

. *
s om e o-1 < o- in O, and let A be the union of the domains of

all such m-faces, we obtain a homotopy k t IP t . By
a- o- q a- q

Lemma III. 8, this hom.otopy can be extended to all of P . Let k
cr

be the first such extension and let d = d(t , k ,T ) be the corre-
o- a- a- 0-

spondin.g deformation cochain. We define d(T,717)(a-) = r(d (Aq)).

By transfinite induction, we have d(T,T) defined on the subset

O of S (X) and satisfying the condition that if cr <o t in OZ.

and cr and a-I have a common p-face, 0< p< q-1, then the

homotopy k,, used to define d(T, when restricted to the

domain of this p-face is induced by the homotopy k used to define
o-

d(T, 71:) ( cr).

Now let o- be an arbitrary element of S (X), not in OZ

Let 0-1 E 07 be the base of A(o-) and (1\1, a) the base of J(o-1, o-).

We then have the following commutative diagram:

A-1
Bq

(15u ) Bq
a- cr I

tcrii t T
0-1

A A ,
1

(IX)



i. e. , t = (1, a) t and t = (1,u) t . Let k be the
0-v o- o- o-I

homotopy used to define d(T,717)(0-1) and let k t 12.N T. be
Cr Cr' q o- q

the induced homotopy. Then the deformation cochain

d = , k )e CcI(Aq;Trq(Vn, n-q)) is defined, and we define
o- a- Cr o-

d(T,--1)(o-) = r (dcr (A )).

We now have d(T,T) defined on all of S (X). Suppose that

a- and o-1 in S (X) have a common p-face, 0 < p < q-1, say_

a-13 = criP. Let CT- and a-1 be the bases of A(cr) and A(cri),

respectively, and (.;., a) and (r , .V) the bases of J(Tr, o-) and

J(0-t, cr'), respectively. Then and o-.1 in OZ. have a corn-

v-1 p v-1mon p-face, namely u a- = v 0 a-113

over the common p-face is induced by ka7. By our definition,

k and k over the common p-face are induced by k anda a-t a-

kl' respectively, so that finally, since (1A-1) is a homeo-
a-

morphism, k' over the common p-face is induced by k.
o- Cr

We extend d(T,T) to all of C (X) by linearity and we have

d(T, T.) E CcI(X;Z

Theorem III. 9: The q-cochain d(T, T) is equivariant.

Proof: Let o- = i TIE S (X). We must show that

d('T,717)(a-) = d(T,717)(0-1). Let o-11 e a be the base of A(o-) = A(cr1),

and 0, (N,vv, /.17,7) be the bases of J(o-", IT) and J(cr", a-1), re-

spectively. Then o- = ocr" and cr = 0 G-11 so that

so that if a- < 0-1, then
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V - 1 v V V -1- 1= V o W a-', Hence u =vow and V'. ) E J. We then

have the following commutative diagram:

(X)

Bq (1,

t
f f

(1 w ) q) B <--- -------2---- ---- B
0- 1 1 0- I

AA A

t t ---t
0- " 0-. I 0- 1

A<
1

By definition, d(T,T)(cr) = r(d(t , k ,T )us, )) where
0- 0- 0- CI

k t r is is induced by the left square in (X) from the
o- o- q cr q

homotopy kcr,, used to define d(T,71:)(o-"), and similarly

d(T,;17)(0-1) = r(d(t0.1, kcrt, Tirt )(A q)). Because the bundle maps are

homeomorphisms, k is induced from k by the bundle map
o- cr

^-1
(1, wo V ). Therefore,

and t . By the naturality of the deformation cochain (5,
o-I o-,

p. 172), d(t ,k ) 1#d(t , k ,T d(t, k
1

). Conse-
' (T o- crl cr cr o- o-

quently, d(T, '1:)(o-) = r (do_ (A q)) = r ((IT, ( Aq )) = d(T, ;F)(o- ).

Theorem III. 10: od(T,T) =CT -

t , k , and t are induced from t
0- 0- 0-

Proof: Let p A X. The cross-sections
q+1

over the q-skeleton of A in the bundle B A
(4+1 p q+1

Q. E. D.

t. and t,

are homo-
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topic as maps of the (q-1)-skeleton of
Aq+1,

and any such homotopy

k, gives rise to a deformation cochain d, = k.,1) E
P P P P

Cq(Aq+1; 1T q(Vn, n-q))-satisfying6d, =
c(tp,)



q+1
Now, 6d(T,E)(p) = d(T,71:)(ap) = (-1)1d(T, T)(p 1 )

i=0
q+1

= r( (-1)d w
Pi=0

)). Also, (c -c,)(p) = rac(t.)-c(T,)](A ))T T p p q+1

q+1 .

= r(6d,,(A ) = r( 27, (-1)1d. (A (i) )) for any deformation cochaln d,
p q+1 i=0 p q+1

defined as above. We shall construct a particular homotopy k,

below such that d, satisfies the relation ei# d, = d . for each
P

q+ 1 p r(t)

i=0, 1, ... , q+1. Then it will follow that d, (A (i) ) = ei# d, (A )
p q+1 q+1 p

q+1 q+1 I
= d (0 (A q), so that 8d(T, '7")(p) = r( E (-1)d (0(h ))= r( E (-1 ld.(Ai) ))

P P q p q+1i=0 i=0
= (c - c)( ), as was to be shown.

T

(i)
A > A c 1q ei q+1 q+1

q+1

Because the bundle map (e11, 1) is a homeomorphism, the homo-
q+

topy k (.) used to define d(T,'7)(p(i)) induces a homotopy ki, of
P` P

ithe maps .t. and t,i restricted to the (q-1)- skeleton of L1)
.

P P q+1

Thus, we have a homotopy of the cross-sections t, and T. over
P P

41

Thus, it

satisfy the relations

0 < i <q+1,

(XI) t
Pw

remains only to define

ei# d, = dq+1 p

consider the commutative

(ei , 1)
q+1Bq --)Bcil

the homotopy

, 0 < i < q + 1.

diagram:

A (i) C
q+ 1

A

t.i. t.
P P

k. king d,

For a fixed

Bq I A
p q+1

AA

T.
P

.

P(4)

t(l)
P

p

i
ta

P
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the (q-1)- skeleton of each q-face of
Aq+1.

However, if A
(i) and
q+1

have is induced

Proof: Suppose there is an equivariant lifting

T C (X) C 03q) for 0< p < q + 1. Then by Theorem III. 2, the
P P

by the homotopy ko so that the homotopies k, and kj, agree

on this common (q-1)-face. Therefore, the homotopies k, fit to-

gether to give a homotopy Ica of the maps t, and T. over the

(q-1)-ske1eton of A . k, is defined by k. !AMU)
q+1 p p q+1 p q+1

I = ki, (i)(j) x I.

Furthermore, by the naturality of the deformation cochain

d, = d(t., ke, T.) and diagram (XI), ei* d, = d
P P P q+1 p pti Q. E. D.

We have shown that for each q, 0 < q < n-1, we can construct

an equivariant lifting in (eq, ,T) on dimensions less than q+1.

Using this equivariant lifting, we can define a cocycle cT E Ce (X;Z2)
and the equivariant cohomology class of

cT
is independent of the

choice of equivariant lifting.

Definition: The cohomology class ce(eq, J)E Hq+1(X;Z2 ) of
e

cT is called the equivariant characteristic cohomology class of

(e, It is the primary obstruction to an equivariant lifting in

eq.

Theorem 111.11: ce( , J) obstructs equivariant liftings in

( 63 , J ) on. dimension q+1.



q+1(X )equivariant obstruction cocycle cT E C
Ze, 2 is zero. There-

-fore, its equivariant cohomology class ce( eq, J) is also zero.

Q. E. D.

We now show that the equivariant characteristic cohomology

class is natural with respect to equivariant bundle maps.

Theorem III. 12: If f = f) : --4" (63°, ) is an equivari-

ant bundle map, then for each q, 0< q < n 1,

e(d3c1
_

C , J) = f'-(ce(e,n Jt)).

Proof: Let q be a fixed integer 0< q < n - 1. Let

: C (XI) C (Big) be an equivariant lifting in (eq, J.1) for
P P

0 < p < q and let T be the induced lifting in (63q, J). Then

and CT are representative cocycles of ce(e J') and

C-e( eq #,J). By Theorem 111.7,T = f (cT')' so that

-je( eq, = f*(--c-e(eq,J,)). Q. E. D.

r 0Let be the full subcategory of the category
v P. g. g

consisting of those objects (e, J) in
g.

which have trivial
q+1

holonomy. For each q > 0, we define the function We on

°P. g.
by
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q+1
=We (63, J)

0 e Hq+1(XZ ) otherwise.
2

(eq, J) if the dimension of e is greater than q;



Definition: The element
stthe (q+1) equivariant Stiefel-Whitney class of the object

For 0 < q < n - 1,

obstruction to a lifting in

wq41(±3, J)E Hq+I(X;Z )
e 2

q+1
We (63, J)

(eq,

Theorem III. 13: The equivariant Stiefel-Whitney classes are

natural with respect to the morphisms in 110
P. g.

Proof: Let f= (11 (6, J) (cs,, J) be a morphism be-

tween n-dimensional objects of IT Then q+1
We (6, JI) = 0

P.

-= We ce, J) for q > n - 1. For 0 < q < n - 1,

q+1= f (ce(rg JI)) =e(6q, J) = We (e, J) by Theorem III. 12.

Q. E. D.

If (63,J) is an object in the subcategory i of V--()
P. g.

then J = I and singular cohomology and equivariant cohomology
(13

of the base space coincide. Furthermore, every lifting T in

(eq,J ) is equivariant and gives rise to an equivariant obstruction

cocycle c .

For any two such liftings T and T in (Cf5q, ) the co-
_

chain d(T, T) is equivariant. Therefore, our definition of

W1(,We (Q3, I ) coincides with the definition of Wq+1(e) and we
(13

have the following.

Theorem III. 14: The function
Wq+1e

on

sion of the function Wq+1 on V-.

.)TO

v P. g.

(e,J).

is by definition the primary

r(wq+1 (6' , 3'))

is an exten-

44

is called



IV. THE CASE OF ALLOWABLE HOLONOMY

Let e (B, X, Tr) be an n-dimensional vector bundle and J

a pseudo-group of local bundle maps on 6 such that for each

x e X, the holonomy group of (6,J) at x is orientation

preserving and leaves a subspace
Bx

of Tr-
1 (x) of dimension at

least (n-1) fixed. With this restriction on the holonomy, we note
V A -1that if 0., e J, then for each x E domain u, u TT (x) and

v Tr (x) differ only on a one-dimensional subspace of 1T (x), and

-1ut (x) preserves orientation if and only if "vir-1(x) preserves

orientation.

For each q, 0 < q < n - 1, the corresponding holonomy group

of ( J) at x will be denoted by An element of

acts only on one and the same component of each vector in the (n-q)-

frames of the fibre Tr-1(x) =
Yx.

Now,
Yx

is homeomorphic to

V. For q > 0, the subset
Yx

of Y which is left point
n, n-q x

-

wise fixed by the action of can therefore be identified with

Vn-1 (n-1)-(q-1) Therefore, the first non-zero homotopy group of
,

Yx
is

Trq- I (Yx
) and

irq- 1 (Yx
) z TT

q- 1 (Vn- 1, (n-1)- (q- 1 ))
is iso-

morphic to either Z or
Z2*

Now let q be a fixed integer, 0 < q < n - 1, until stated
a *

otherwise, and let B = Then the pseudo-group J acts
X E X

n q
on the bundle B' denoted by 0101D , with trivial holonomy.

45
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Consequently, the pair (e*, J) is of the type considered in Chapter

III, and we may apply the results of that chapter. In particular, we
a*may define an equivariant lifting T : C (X) C (B' ) for

0< p < q - 1 and we suppose we have done so. We identify C( q*)

with its image in C (B ) under the monomorphism induced by the

inclusion Bq* C

Thus, forfor each p, 0 < p < q - 1, we have a homomorphism

T : C (X) C (13q) satisfying:
P P

(o) T (a-) A Bq for each OE S (X);

(i)Tr
# Tp 1Cp(X);

(Jo apTp Tp_ lap;

(iii) Tp. = Tp whenever these expressions are defined.

We shall define an extension (not necessarily equivariant)

T C (X) C (B ) of
Tq-1 in such a manner that the obstruction

q q q q

cochain c defined as before, is an equivariant cocycle. Thus,

we shall define a homomorphism
Tq

C
q(X)

(Bc1) satisfying:

(o) T (a-) : A Bq for ES (X);

It Tq = 1, ,,,;

aqTq =Tq- laq;
6cT = 0;

cT p) cT(p) for all p Aq+1 X and NAT° E J for

which w p is defined.

In order to define T , we shall again use transfinite induction.
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Hence, as in Chapters II and III, suppose S (X) = {o-: A --' X} is

well ordered, A(o-) = E S (X) : is J-equivalent to cr-}, and

each set A(o-) has as base the first element of A(cr). Also, let

J be well-ordered, J(cr, crt) = E J: e a- = crib and if

J(o-, o-') is non-empty, then its first element is the base of J(o-, ).

Let GT be the set of all base elements in S (X),

az = E S (X) : 0- is the base of some A(cri)}. We first define T

on the subset az of S (X).

Let a- e at and consider the induced bundle B A and

bundle mapmap h : Bq Bq as before. Then exactly as in the induc-

tionstep of the definition of T in Chapter III, for each (q-1)-face

a- of a- we get a cross-section ti = (ei, 1) e tc44:). (eq)
o-

over

(i)the (q- 1 )-face in the induced bundle, and these fit together to

give a cross-section t. over A the boundary of t . Be..
-

cause the fibre V is (q-1)-connected, t. can be extendedn, n.-q a-

to a cross-section over all of A . Let t
a-

sion and define 'T (a-) = h t : Bq. Then also as before,

if o T (o--) cr and a T (a-) = Tq-1 qo-).q q
This defines T on the subset az of S (X). Now let

cr: A X be an arbitrary element of S (X). If a- E ,i. e,,
if a- is the base of some A(o-/), then T (cr) has been defined

above. If crin, then there is a unique element TT Eat for

which cr E A(a-1). Let (il,i1) be the base of J(o-', cr) and define

be the first such exten-



AT (a-) =a0-i- (art): A Bq. Then Tr 0T (cr) = ouoT (cri)

= uo Tro T (crf) = u o o-1 = a- and condition (i) is satisfied.
AAlso, since Tq- is equivariant, we have u# o Tq- 1

(ao-t)
1

= Tq #(thr so that aTq(cr) = 8(i)..Tq(0-9= 0 al-q(a-t)

= 0 Tq_1(90-1) = Tq-
1

o (a0-) = Tq- 1a(0 o-' ) = Tq-1a (a) and condi-

tion (ii) is satisfied.

The above defines T on S (X) satisfying conditions (o), ( )

d (ii). We extend T to all of C (X) by linearity and note that

conditions (o), (i) and (ii) are satisfied since Tq and a are

homomorphisx-ns.

Before discussing conditions (iii) and (iv) concerning the cochain

cT' we note the following. In the definition of T , we relied on

the equivariance of T
q

to show that condition M.) was satisfied.
- 1

The fact that Tq-1 could be defined equivariantly depended on the

fact that the holonomy group of (63, J) at x E X leaves an

(n- 1 )-dimens ional subspace of 7-1(x) pointwise fixed. Therefor e,

we see that the construction of this section does not extend to vector

bundles with pseudo-group (e, J) where the holonomy groups do

not leave at least an (n-1)-dimensional subspace of the fibre pointwise

fixed.

Now, the cochain
cT E C(X;Z2) is defined precisely as

in Chapter III. Thus, for p A
q+1

X, the cross-sections over

(i)the q-faces A
q+1

of A
q+1

in the bundle Bq
q+1

A , induced by
p
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qthe cross-sections t : A --' , fit together to give a cross-
p ,./ q B /JO

section t, : The obstruction cocycle
p q+1 P

(c Et,) Cq+1(Aq+1' Tr(V n-q)) is then defined by c(t, )(q n, A )
P p q+1

= [tp.] E Trq(Vn, n-q), and we define cT(p) = r(c(t.)(q+1A ) = rat]).
p P

Theorem IV. 1: The cochain CT obstructs the equivariant ex-

tension of T .

Proof: The proof is identical to that of Theorem 111.2, since the

equivariance of T played no part in the proof.

We state condition (iii) in the form of a theorem.

Theorem IV. 2: The cochain

Proof: The proof is identical to that of Theorem 111.4, since

the equiva.riance of 7 played no part in the proof. Q. E. D.

We precede the proof of condition (iv) by the following lemma.

Lemma IV. 3: Let p A
q+1

X and p = p,(a) E J.

Then under the present holonomy assumptions, the following diagram

is h.omotopy commutative:

Bq (Li].)
> Bq

t, I I t,pt

>q+1 1 q+1

49

CT
is a cocycle.
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Proof: In order to show (1, ii) 0 t. z- t. , it suffices to show
P f3'

that for each 0 < i < q, (1, co 0 t. 1 A (i) -= t . I A (i) r el(A (1) ).,
p q+1 ii op q+1 q+1

where (A (i) )6 is the boundary of A
(i) for since Tq-1 is

q+1 q+1'

equivariant, we actually have (1, a 0) . t. (i) r . tv I (A(i) )*. Re-.
p q+1 11.015 q+1

call that t. I A (1)
= ti =(ei , 1) o t ,,, 0 (ei )-1 so that it suffices to

p q+1 p q+1 fp./ q+1

show (1, a) 0 (ei 1)0 t ., = (ei 1) o tv rel ,,i, . Thus, let i
q+1, p(', q+1, uow., q

be a fixed integer, 0< i < q.

For each o- : A -4^ X, t = (1, T (o-)) o d, where d A xA
q q q

is the diagonal map. Hence it is sufficient to show that

(1, a) 0 (ei+1, 1) o (1 T (p(i)
,

) = (ei 0 T q(p(i)))
q q q+1

A(ei 1'T (op(i))) rel d(2 ) and hence to show u T (pM)q+ q

T rel .

Now, let o- be the base of A(pM), (W,,) the base ofA

J(cr, pM). Then by definition, T (p()) = w o T (a-). Also,A

q q
V (i) vu o p E L'N.(p ) so that u o p = v o cr, and if 0'., .i.r) is the base

of J(cr, i.#10 p(i)), then T 0.0 p (1)
A) = v . T (o-). Therefore

q q
(i.) A Al- (i) V V V-1 v (i)Tq(p ) = w 0 v o T (tvio p(i)). But P =wo cr=w, v o u o p

q
v .-- 1 6-1 VA y A A - iso that w and we have (u, u) and (u, v o w ) in J

and 'N) o w o T (p(i)) = T CIO p(i)).
A A

A
11), 61, 11) E J and u o Tq(p(i)) = o p (1))

vBy the above, it is therefore sufficient to show that if (u, u),
A

V A -1 '1-'
(U., L.1.) E J, then u ou T (p(i) ) z T (pM) rel . We do this by

exhibiting a homotopy.

A
A A-1Let vow =u so that



1 2-. (i)Let F be defined on A X 1 by F(s,t)= WI ouoT (p )(s))
q q

+ (1-t)(T (p(0)(s)). Thus
A 1

F(s, 0) = T (pCO)(s), F(s, 1 ) = ii lo u 0 T((1)
q q q

^-1 A

so that F is a homotopy between T
q

(p(i)) and u . u 0 T q(p(i)).

Furthermore F is a homotopy relative to A because for
:4,SE1 , T (p(i))(s) is inY the subspace of Y) fixed

q q p")(s)' o (s)

A - 1
A_

under the action of the holonomy group, and u 0 u lYpw(s) E Jp(o(s).

A-1 LI- (i)Hence for SE2), , u o u oT (p )(s) = T (p(i))(s) and
q q q

F(s, t) = T (p(i))(s) for all t EI.
q

We wish to show that F is a homotopy in Bq, e. , that

F : A x I ..-Bc1 or F(s, t) is an (n-q)-frame for each s E A
q qps.t E I. Let B ((s) be the fibre in B over (0()

BiikP il,)s,
is

13'

homeomorphic to Rn. The holonomy group ,I)
(0 (s)

leaves an
P

* -(n-1)-dimensional subspace B)
(s)

fixed. Let Bp()(s) = R1 R
P

and6)() = Rn-1 x {0}.Ps
Now, the (n-q)-frame T (p(0 )(s) can be written

T (p(i)(s) = (v1 +v1 , v2z+v_,... , vn-q+ vn-q) where

vk = (vlk' vn- 1, k' 0) and vk = (0, 0, , 0, vnk). Let
cia

I

Y(
p14(s

E'1 By our assumption concerning holonomy,
)

cl) ( p )(s ) ) ) =
(v1+ , vn-q+ avn-q) for some positive real num-
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her a.

Thus, F(S,t) = t av +av )+
(1-t)(v1+v1 +v

l
)n-q n-q n-q n-q

it suffices to show that the following matrix is of maximal rank (n-q):

= (v1+ ( at+ 1-0 vi, . , vn-q + (at+ 1 -t)vn- q
). To show F(s,t) E Bq,



(P)

We know that the matrix

v11 v vl, n- 1 in

V=

V =

1 vn-q, n-1 vn-q,n

is of rank (n-q), so that (p) has an (n-q) by (n-q) submatrix

V with non-zero determinant. If this submatrix is of the form

V vl .

1, in-q1

then V is also a submatrix of (a) and (a) has rank (n-q).

If the subrnatrix V is of the formvvin1,11 v1, in-q-1
. .

vn-q, i vn-q, i vn- q, n

then consider the following submatrix of (a):
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(a)
v11

v_n-q, 1 ...

vl, n-1

vn-q, n-1

(ta+ 1 - t)v

_
(ta+ 1 - t)vn- q, n

vn-q,
i1

.. vn-q,
in-q



Vt

vl, i
1 n-q-1

(ta+ 1 -t)vi

i
(ta+ 1 -t)vn-q,

1
vn-q, in-q- 1

Then, determinant of Vt = det Vt = (ta+ 1-t) det V so that det Vt = 0

if and only if ta + 1 - t = t(a-1) + 1 = 0. But, a > 0 and t E I

implies that t(a-1) > -1. Therefore, det Vt 4 0 and (a) is of

rank (n-q). Q. E. D.

We now prove condition (iv) as a theorem.

Theorem IV. 4: The obstruction cocycle
cT

is equivariant.

Proof: Let p' = p :q+ 1 X. Then the elements

1({ , t.} and {t,1} in Tr q(Bq ) are equal by Lemma IV. 3.p

Hence, the elements [(1, ix) t.] and [t are equal in 7V (V
q n,n-q).

Because (1,) is a homeomorphism, it induces an isomorphism

(1, on the homotopy groups. Therefore, cT(p) r(c(t0Aq+1))

r=
)([(1,a).t.} = r ([ .]) r([t,]). But also, r({(1, t,])

P

= r([t. ,]) = cT (p I). Thus, cT (p) = cT (p1). Q. E. D.

We next show that the equivariant obstruction cocycle is natural

with respect to equivariant bundle maps. This fact is contained in the

following theorem.
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Theorem IV. 5: Let f (f,f): ( e, J) (et, J') be an
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fqequivariant bundle map. Let T' : C (X') ---'. Cp (B ) be an equivar-p p

iant lifting for 0< p < q - 1 and let
Tq

: C
q

(X') --. C q(B1c1) be an

extension of T' which yields an equivariant obstruction cocycleq-1

CT' E Cq+1(X;Z2 ). Then the induced lifting T :C (X) ..- C (Bc1),e P P P

0 < p < q, given by Lemma III. 5 is such that T is equivariant for
P

v
0< p < q - 1, f#(c) =

cT, and c is equivariant.

Proof: The fact that T is equivariant for 0 < p < q - 1

follows exactly as in Lemma III. 6.

Let p
q+1

X. By the definition of the induced lifting,

the following diagram is commutative:

Bq (l, f)
> By..

P I. p

t. tl, .
P

'1'
f op

A
q+1 1 q+1

Therefore, as in the proof of Theorem III. 7, c(tis o)= c(tt so that
v#CT(P) = r(c(t0Lq+1)) = r(c(q.0(4+1))= cr(io p), i. e. ,

cT
= f (lc

' T

Finally, let p' = ia.' . p : L X. Since f is equivariant,
q+1

there is a it' E J' such that f o ii = 'II' of. Therefore

cT(iiop) = cTi(fouop) = cT'(u'ofop) = cT'(flop) since cT' is equivari-

ant. Consequently,
cT

op)
cT

(p). Q. E. D.

We have now shown that with every equivariant lifting T in



d E C (A
q,

Tr(V
q n, n-q and we define d(T, T)(o-) = r(d0_ (Aq)).
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(¢3 , J) on dimensions less than or equal to q - 1, we may define

an extension T which yields an equivariant obstruction cocycle

CT E Cq+1(X;Z2). We now wish to show that the equivariant cohomol-

ogy class of CT is independent of the particular equivariant lifting

on dimension less than q and the extension T, as long as T

yields an equivariant obstruction cocycle.

Thus, suppose T, T :c (Bc1) are equivariant lift-
P P P

ings for 0< p < q - 1, and T
q

,

Tq
C

q(X)
CB (q) are exten-

sions which yield equivariant obstruction cocyclescT , c. We
T

shall define an equivariant q-cochain d(T,T) E CCI(X; Z2) such that

6d(T,T) = CT - C.

The cochain d (T, 71: ) is defined precisely as in Chapter III.

Thus, for TEO/ , a-: A ---.- X, we associate the cross-sections
q

t and induced by T (cr) and T (o-) and let
Cr q q

k : t ro, =T. I A be the first homotopy satisfying the condition
a- a- q o- q

that if cr < cr and a-? and o- have a common face, then the

homotopy k to the domain of this common face is in-

duced by the homotopy k' used to define d(T,T)(o-'). Associated
o-

with t , k and T is the deformation cochain
Cr Cr 0-

If CT E S (X) -0? i. e. , a- is not a base element in S (X),

V Athen there is a unique o-' ()T.-6 such that cr.' E A(cr). Let (u, u) be

the base element of J(o-', o-). Then k the homotopy used to



5 6

define d(T, T)(o-'), and the bundle map (1, ir 1) : Bq BC!, induce

a homotopy k t z t . This yields the deformation co-
o- a- q o- q

chain d, and we define d(T, T) (a-) = r
(do-

(A q)).o-

This defines d(T, 70 on S (X), satisfying the condition that

if Cr and cr' have a common face and k and k are the
o-

homotopies used to define d(T,T)(o-) and d(T, '1°)(cr 1), then the

homotopy k restricted to the domain of the common face, is in-
cr

duced by k,.

We extend d(T,T) to all of C (X) by linearity, and we have

d(T,717) E Cq(X;Z2).

Because the definition of d(T, T) depends upon what occurs on

dimension (q- 1), and
Tq- 1

and
Tq- 1

are equivariant, the

proof of the following theorem is identical to the proof of Theorem

III. 9.

Theorem IV. 6: The q-cochain d(T, T) is equivariant.

Since CTcT and d(T, 'I") are defined precisely as in Chap-

ter III, the following theorem is proved exactly as is Theorem III. 10.

Theorem IV. 7: 5d(T,E) = CT - CT.

We have now shown that for each q, 0< q < n -1, we can con-

struct an equivariant lifting in (eq,J) on dimensions less than q,

and an extension to dimension q which yields a cocycle



sq

Theorem IV. 8: If f = : (63, J)

ant bundle map, then for each q, 0< q < n-1,

-Ce(eq, = 11*(e(d3tcl,

Wq+1

J') is an equivari-

Proof: The proof is identical to that of Theorem 111.12, except

that we refer to Theorem IV. 5 rather than Theorem III. 7.
Q. E. D.

Let V1 -be the full subcategory of the category .il
PP. g. .

consisting of those objects (63, J) in .-ir
g-

for which the holo-
P.

nomy group .3c of (63,J) at each x e X is orientation preserv-

ing and leaves a subspace of Tr-1(x) of dimension at least (n-1)

poin.twise fixed, when the dimension of (63, J) is n. For each

W'q> 0, we define the function We on by
P. g.

e(
eq, J) if the dimension of (43,J) is greater

than q;

EHq+1(XZ ) otherwise.e 2
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q+1
cT E Ce (X;Z 2). Furthermore, the equivariant cohomology class of

CT is independent of the particular equivariant lifting and extension

to dimension q.

q+1Definition: The cohomology class ce( eq, J) E He (X;Z2)

CT is called the equivariant characteristic cohomology class of

(eq, J). It is the primary obstruction to an equivariant lifting in



W1Theorem IV. 10: The function
We

sion of the function Wq+1 on if .

on is an exten-
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Definition: The element Wq+1 (e , J) E On (X;
Z2 ) is callede

the (q+1)2! equivariant Stiefel-Whitney class of the object (63 , J).

Theorem IV. 9: The equivariant Stiefel-Whitney classes are

natural with respect to the morphisms in VP. g.

Proof: The proof is identical to the proof of Theorem 111.13,

except that we refer to Theorem IV. 8 rather than Theorem 111.12.

Q. E. D.

W'As in Chapter III, the definition of
We (e , I ) for an ob-

ject (63 ,1 ) E U- coincides with the definition of Wq+1 (63 ).

Therefore we have the following.



BIBLIOGRAPHY

Eilenberg, Samuel and Norman Steenrod. Foundations of algebraic
topology. Princeton, Princeton University Press, 1952. 328 p.

Milnor, John. Lectures on characteristic classes. Notes by
James Stasheff, Princeton, Princeton University Press, 1957.
144 p.

Smith, J. Wolfgang. The Euler class of generalized vector bund-
les. Acta Mathematica 115:51-81. 1966.

Spanier, Edwin H. Algebraic topology. New York, McGraw-
Hill, 1966. 528 p.

Steenrod, Norman. The topology of fibre bundles. Princeton,
Princeton University Press, 1951. 229 p.

59


