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1 Introduction and overview

Recently the problem of classifying gapped phases of matter whose ground state is short-

range entangled1 (SRE phases) has received a lot of attention. Two gapped local Hamilto-

nians (or gapped systems) are said to lie in the same gapped phase if there is a continuous

family of gapped systems that interpolates between them. In the context of systems with a

global symmetry G, a phase with symmetry G is defined by requiring the family of Hamil-

tonians to be symmetric. Gapped phases can be divided into two broad classes, bosonic

and fermionic, depending on whether the fundamental degrees of freedom are bosons or

fermions. The bosonic SRE phases are in many ways simpler, and there has been a sub-

stantial progress in their classification. In particular, it has been proposed in [3] that

D-dimensional bosonic SRE phases with a finite internal symmetry G are classified by the

abelian group HD+1(BG,U(1)). Here BG is the classifying space of G, and D is the di-

mension of space (thus the dimension of spacetime is D+1). Later it was noticed that some

SRE phases in spatial dimension 3 are not captured by the group cohomology classifica-

tion [4], and it was proposed by one of the authors that the classification can be improved

by replacing ordinary cohomology of BG with a particular generalized cohomology theory

(the stable cobordism) [5] (see also [1, 6]). For D ≤ 2 all classification schemes agree. In

1There are at least two common definitions of short-range entanglement. Here, we follow [1] in defining

SRE as invertibility. The notion of an SPT (defined and discussed below) captures the other definition [2].
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fact one can use the matrix product representation of SRE states to prove that D = 1

bosonic SRE phases are classified by H2(BG,U(1)) [7]. The D = 1 fermionic SRE phases

have also been classified [8]. The D = 0 case is even simpler.

One promising avenue for extending these results to higher dimensions is via equivari-

ant Topological Quantum Field Theory (TQFT). It is an attractive conjecture that a large

class of gapped phases is described at large scales by a TQFT. It is widely believed that

if the large-volume limit of a quantum system exists, then its long distance behavior is

described by an effective field theory. For a gapped system, which has no long wavelength

propagating degrees of freedom, the effective theory is a TQFT. Gapped systems in the

same phase are expected to share a single long distance effective description, or at least

their effective descriptions can be continuously connected. If this is the case, then there is

a one-to-one correspondence between gapped phases and deformation classes of TQFTs.2

Both gapped phases and TQFTs can be tensored, and each set has a neutral element

1 corresponding to the trivial phase or TQFT. This operation makes each set into a com-

mutative monoid (a set with an associative and commutative binary operation and a unit).

An element Φ of a monoid is said to be invertible if there exists an element Φ̄ such that

Φ ◦ Φ̄ = Φ̄ ◦ Φ = 1. Thus it makes sense to talk about invertible gapped phases and

invertible TQFTs. The set of invertible elements forms an abelian group. According to

one definition of SRE phases [1], an invertible gapped phase is the same as an SRE phase;

that is, a gapped system φ in a phase Φ is an SRE if there exists another gapped system φ̄

in Φ̄ such that φ⊗ φ̄ can be deformed to the trivial (product state) system without closing

the gap. If one believes into the correspondence between gapped phases and TQFTs, the

classification of SRE phases is reduced to the classification of invertible TQFTs up to a

continuous deformation.

Consider now phases with a symmetry G. These also form a commutative monoid,

and forgetting the symmetry gives us a map to the monoid of all phases. Phases with a

symmetry G are mapped to the neutral element under this map are usually called SPT

phases. Note that it is not clear from this definition whether SPT phases with a symmetry

G are invertible as G-symmetric phases, but it is believed to be true. SRE phases with a

symmetry G are conjectured to correspond to invertible G-equivariant TQFTs.

While classifying TQFTs in D > 1 is unrealistic, classifying invertible ones is much

simpler. In fact, using the known algebraic description of equivariant TQFTs in D = 0,

1 and 2, it is easy to check that in these dimensions invertible G-equivariant TQFTs are

classified by HD+1(BG,U(1)), provided the group G does not act on spacetime. But if

some elements of G involve time-reversal, the problem is more complicated. From the

TQFT viewpoint, time-reversal symmetry means that the theory can be defined on unori-

entable spacetimes. The difficulty is that an algebraic description of unoriented equivariant

TQFTs is not known even in low dimensions. The main goal of this paper is to provide

such an algebraic description in D = 0 and 1 and to show that invertible equivariant

TQFTs are classified by twisted group cohomology HD+1(BG,U(1)ρ), where ρ : G→Z2

2There are exceptions to this rule, however, due to the existence of phases with non-vanishing thermal

Hall conductivity. These only occur in D = 2mod 4, where there exist gravitational Chern-Simons terms.
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is a homomorphism which tells us which elements of G are time-reversing and which are

not. This agrees with the proposal of [3]. It is likely that this method can be extended to

D = 2. In higher dimensions an algebraic description of general TQFTs is prohibitively

complicated, and this approach to classifying SRE phases becomes impractical. Note that

equivariant TQFTs which are not necessarily invertible are interesting in their own right,

as they describe Symmetry Enhanced Topological (SET) phases.

In section 2 we deal with the case of a finite symmetry G which acts trivially on

spacetime. We recall algebraic descriptions of oriented equivariant TQFTs in D ≤ 2 and

show that invertible equivariant TQFTs are classified by elements of HD+1(BG,U(1)). All

of this is either trivial (D = 0) or well-known to experts (D = 1 and 2).

In section 3 we consider unoriented equivariant TQFT in D = 0 and the corresponding

SRE phases with time-reversing symmetries.

In section 4 we formulate axioms of unoriented equivariant TQFT in D = 1 by ex-

tending Turaev’s axioms in the oriented case [11]. We show how these axioms lead to a

generalization of Turaev’s G-crossed algebra, which we call ρ-twisted G-crossed algebra.

We prove that every ρ-twisted G-crossed algebra gives rise to an unoriented equivariant

TQFT. Finally we show that invertible TQFTs in D = 1 give rise to ρ-twisted 2-cocycles on

BG, and that conversely to every element of H2(BG,U(1)ρ) one can associate a ρ-twisted

G-crossed algebra which is unique up to isotopy.

It would be interesting to give an algebraic description of D = 2 unoriented equivariant

TQFTs and show that in the invertible case they are classified by H3(BG,U(1)ρ). The

first step is to categorify our algebraic description of D = 1 unoriented equivariant TQFT

by replacing vector spaces with categories, linear maps with functors, and equalities with

isomorphisms. The nontrivial part is to find a complete set of coherence conditions between

isomorphisms analogous to the pentagon and hexagon conditions in the oriented case which

ensure consistency under gluing.

Since this paper was submitted to the arXiv, there have been several developments.

Freed and Hopkins [19] proved a theorem relating invertible unitary TQFTs and stable

cobordisms. For D = 1 it reduces to the statement that invertible unitary equivariant

TQFTs are classified by elements of H2(BG,U(1)ρ). More recently Bhardwaj [20] gener-

alized the Turaev-Viro construction of equivariant D = 2 TQFTs to the unoriented case.

A.K. would like to thank V. Ostrik for helpful discussions. The work of A.K. was

supported by the Simons Foundation. The work of A.T. was supported in part by the

U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award

Number DE-SC0011632.

2 Oriented equivariant TQFT

2.1 D = 0

A D = 0 TQFT is ordinary quantum mechanics with zero Hamiltonian and is completely

determined by its space of states (a finite-dimensional complex vector space V ). Equiv-

ariant TQFT is merely a vector space V with an action of G. Since G is finite, this

representation is unitarizable (unitary for a suitable choice of inner product on V ). The
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trivial equivariant TQFT corresponds to V = C with a trivial action of G. Equivari-

ant TQFTs which are invertible with respect to the tensor product are one-dimensional

representations of G, i.e., elements of H1(BG,C∗) ≃ H1(BG,U(1)).

2.2 D = 1

D = 1 TQFTs are in one-one correspondence with commutative Frobenius algebras [9]

(see [10] for a nice exposition, including various generalizations). The vector space A un-

derlying the algebra is the space of states of the TQFT on a circle. The state-operator

correspondence identifies A with the space of local operators, which is clearly a commuta-

tive algebra. The Frobenius structure is a non-degenerate bilinear inner product

η(a, b) ∈ C, a, b ∈ A, (2.1)

satisfying η(ab, c) = η(a, bc). It is a combination of the usual sesquilinear Hilbert space

inner product and the anti-linear CPT transformation:

η(a, b) = (CPTa, b). (2.2)

The trivial D = 1 TQFT has A ≃ C and η(1, 1) = 1. An invertible TQFT has A ≃ C,

and thus is completely determined by η(1, 1) ∈ C
∗ = C\{0}. If we are interested only in

classifying TQFTs up to isotopy (i.e. up to continuous deformations), then all these TQFTs

can be identified (since π0(C
∗) is trivial). If we identify invertible TQFTs and SRE phases,

this means that in the absence of symmetry there are no nontrivial D = 1 SRE phases.

To incorporate a symmetry G, we need to consider G-equivariant D = 1 TQFTs. G-

equivariance means that we can couple the theory to an arbitrary G-bundle. The precise

definition of equivariant TQFT will be recalled in section 3. For now, we only need the

algebraic description of such TQFTs due to Turaev [11]. He defines a G-crossed algebra

as a Frobenius algebra (A = ⊕g∈GAg, η) together with a homomorphism α : G→AutA

such that

Ag · Ah ⊂ Agh and 1 ∈ A1. (2.3)

η(Ag,Ah) = 0 if gh 6= 1. (2.4)

αh(Ag) ⊂ Ahgh−1 . (2.5)

α preserves η and αh|Ah
= id. (2.6)

∀ψg ∈ Ag, ψh ∈ Ah we have ψg · ψh = αg(ψh) · ψg. (2.7)

∀g ∈ G let ξgi and ξig be dual bases in Ag and Ag−1 . Then
∑

i

αh(ξ
g
i )ξ

i
g =

∑

j

ξhj αg(ξ
j
h), ∀g, h ∈ G. (2.8)

Let us make a few remarks about this definition. Ag is the g-twisted sector of the space

of states on a circle, and αh describes the action of G on the space of states. If G is abelian,

it acts on each twisted sector separately, but in general it mixes different twisted sectors.

The penultimate axiom shows that A is not commutative, but is twisted-commutative. The

last axiom arises from considering a punctured torus with twists by g and h along the two
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generators of its fundamental group and computing the corresponding state in two different

ways. This axiom, together with the Frobenius condition η(a, bc) = η(ab, c), implies

dimAg = Trαg|A1 . (2.9)

Both sides of this equality compute the partition function of a torus twisted by g along one

direction and by 1 along the other direction. On the left-hand side, the direction twisted by

g is regarded as space and the direction twisted by 1 is regarded as time. On the right-hand

side, it is the other way around. Since the right-hand side is a character of a finite group

G, we get an inequality 0 < dimAg ≤ dimA1. That is, twisting by g cannot increase the

number of states.

In particular, let us consider an invertible G-equivariant TQFT. Then A1 ≃ C, and

therefore Ag ≃ C for all g ∈ G. If we choose a basis vector ℓh in each Ah, we see that the

algebra structure is given by a collection of complex numbers b(g, h) such that

ℓg · ℓh = b(g, h) · ℓgh. (2.10)

Twisted commutativity of A implies that b(g, h) is nonzero for all g, h and fixes αh in terms

of b. Associativity of multiplication implies that b is a 2-cocycle, and changing a basis in

Ag changes it by a coboundary. The rest of the axioms are easily checked. With b fixed,

the only freedom left is the choice of the inner product η; all such choices lead to isotopic

TQFTs, which means that isotopy classes of invertible oriented equivariant D = 1 TQFTs

are classified by [b] ∈ H2(BG,C∗) ≃ H2(BG,U(1)). This result has been proved in [11].

2.3 D = 2

When studying oriented D = 2 TQFTs, one usually assumes that the space of local opera-

tors (i.e. the vector space attached to S2) is one-dimensional, and thus the algebra of local

operators is isomorphic to C. If one is interested only in unitarizable TQFTs, one does not

lose much by focusing on this special case. Indeed, it is easy to show that if the TQFT

is unitarizable (i.e. the bilinear inner product arises from a Hermitian inner product and

an antilinear CPT symmetry), the algebra of local operators is semisimple. It is also com-

mutative, and therefore isomorphic to a sum of several copies of C. The generators of this

algebra label different superselection sectors, and one might as well focus on a single sector

where all but one generator act trivially. The argument applies equally well for all D > 0,

but in D = 1 it is traditional to allow the algebra of local operators to be non-semisimple,

in view of string theory applications which require one to consider non-unitary TQFTs.

We are interested in unitarizable oriented D = 2 TQFTs, and therefore in this section

we assume that the space of local operators is C. Such theories are described by modular

tensor categories with vanishing central charge c ∈ Z/8 [12, 13]. (If the central charge

is nonzero, one gets a framed D = 2 TQFT). The data of a modular tensor category

attaches a vector space to every closed oriented 2-manifold, and a map of vector spaces to

every oriented bordism between such 2-manifolds. Similarly, oriented equivariant D = 2

TQFT is described by a G-modular category [14, 15]. Its definition is a categorification

of the notion of G-crossed algebra. In particular, for every g ∈ G one has a category
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Cg, and a bi-functor Cg × Ch→Cgh satisfying the associativity constraint. The data of a

G-modular category attaches a vector space to every closed oriented 2-manifold with a G-

bundle and a trivialization at a base point, and a map of vector spaces for every oriented

G-bordism between such 2-manifolds (i.e. to every oriented 3-manifold with a G-bundle

which “interpolates” between the two oriented 2-manifolds with G-bundles). Objects of

the category Cg represent quasi-particles in the g-twisted sector.

An invertible oriented equivariant D = 2 TQFT is described by a G-modular category

with C1 ≃ Vect, where Vect is the category of finite-dimensional vector spaces. This

condition ensures that for the trivial G-bundle the vector space attached to any oriented

2-manifold is one-dimensional. If the TQFT describes a gapped phase, its space of ground

states is non-degenerate for any topology. This is a hallmark of an SRE phase.

From C1 ≃ Vect one can deduce that Cg ≃ Vect for all g ∈ G. Indeed, by the definition

of a G-modular category [15], Cg is nonempty for all g ∈ G. Then proposition 4.58 in [16]

implies that Cg ≃ Vect. As a consequence, the vector space attached to any 2-manifold

with any G-bundle is one-dimensional. That is, there is no ground-state degeneracy even

after twisting by an arbitrary G-bundle.

Finally, proposition 4.61 in [16] tells us that in the invertible case C is entirely de-

termined by an element of H3(BG,C∗) ≃ H3(BG,U(1)). This agrees with the pro-

posal of [3] that D = 2 bosonic SRE phases with symmetry G are classified by elements

of H3(BG,U(1)).

3 Unoriented equivariant D = 0 TQFT

A homomorphism ρ : G→Z2 encodes whether a particular symmetry g preserves or reverses

the direction of time. We identify Z2 with {1,−1} and let ρ(g) = −1 if g is time-reversing

and ρ(g) = 1 otherwise. Recall that a ρ-twisted 1-cochain on BG is the same as a function

φ : G→U(1) satisfying

φ(gh) = φ(g)φ(h)ρ(g). (3.1)

Two twisted cochains φ(g) and ψ(g) are regarded as equivalent (i.e. cohomologous) if there

exists µ ∈ U(1) such that for all g ∈ G we have

ψ(g) = µρ(g)−1φ(g) =

{

φ(g), ρ(g) = 1

µ−2φ(g), ρ(g) = −1.
(3.2)

To each g ∈ G an equivariant D = 0 TQFT associates an operator on the vector space

V assigned to the point:

Λ(g) : V→V (3.3)

where Λ(g) is linear if ρ(g) = 1 and anti-linear if ρ(g) = −1. After choosing a basis in V ,

we can attach to every Λ(g) a complex non-degenerate matrix M(g), by letting

Λ(g) =

{

M(g), ρ(g) = 1

M(g)K, ρ(g) = −1.
(3.4)
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Here K : V→V is an operator which complex-conjugates the coordinates of a vector in the

chosen basis. The matrices M(g) do not form a complex representations of G, rather [17]:

M(gh) =

{

M(g)M(h), ρ(g) = 1

M(g)M(h)∗, ρ(g) = −1.
(3.5)

In the invertible case V ≃ C the matrices M(g) become elements of C∗, and (3.5) becomes

precisely the twisted cocycle condition for the C
∗-valued 1-cochain M(g), where Z2 acts

on C
∗ by complex conjugation.

We should also investigate the effect of a change of basis in V . In the invertible case,

if we replace the basis element ℓ ∈ V by λ−1ℓ, λ ∈ C
∗, the function M(g) transforms as

follows:

M(g) 7→

{

M(g), ρ(g) = 0

λ−1λ∗M(g), ρ(g) = 1.
(3.6)

This is precisely the shift of the twisted 1-cocycle M(g) by a twisted coboundary. Thus

equivalence classes of invertible unoriented equivariant D = 0 TQFTs are classified by

elements of the twisted cohomology group H1(BG,C∗
ρ) ≃ H1(BG,U(1)ρ).

4 Unoriented equivariant D = 1 TQFT

4.1 Definition of unoriented equivariant TQFT

For D > 0 we can avoid anti-linear operators by interpreting the orientation-reversing

symmetry as a parity symmetry (P or CP ). Since CPT is a symmetry of any local unitary

QFT, we do not loose generality by doing this. Thus ρ(g) = −1 if g reverses spatial

orientation and ρ(g) = 1 otherwise.

At first we will try to be as general as possible and do not fix the spatial dimension D.

Consider a finite group G together with a homomorphism ρ : G→Z2, and let G0 denote

the kernel of ρ. For any manifold X we will denote by o(X) its orientation bundle. Any

TQFT is defined as a functor from a geometric source category with a symmetric monoidal

structure to the category of finite-dimensional vector spaces Vect (or more generally, to a

symmetric monoidal category).

In the case of equivariant TQFT based on the pair (G, ρ), the source category C is

defined as follows. An object of C is a closed D-manifold M , a base point for every

connected component of M , a G-bundle E over M , a trivialization of G at every base

point, and a trivialization of o(M) ⊗ ρ(E) everywhere on M . Here, ρ(E) denotes the

Z2-bundle given by the quotient of E × Z2 by (e, x) ∼ (eg−1, ρ(g)x), and the last datum

expresses the fact that ρ(E) is isomorphic to the orientation bundle of X. A morphism of

C is an isomorphism class of a D+1-dimensional bordism N equipped with a G-bundle E

and a trivialization of o(N)⊗ρ(E), with every connected component of the boundary given

a base point and a trivialization of E there. Two such bundles are said to be isomorphic

if they are related by a bundle map that is an homeomorphism of the total space, covers

a homeomorphism of the base space, and preserves the trivialization and boundary data.

There is also a decomposition of the boundary into two disjoint parts, corresponding to the

– 7 –
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source and target of the morphism. Composition of morphisms is obvious. The symmetric

monoidal structure arises from the operation of disjoint union.

Let us now specialize to the case D = 1. In this case the definition can be simplified,

because all 1d manifolds are orientable. Since we are given trivializations of E at all base

points, as well a trivialization of o(M) ⊗ ρ(E), we also have a trivialization of o(M) at

all base points. But since M is orientable, this means that we are given a trivialization

of o(M) everywhere, i.e. an orientation. Then ρ(E) is also trivialized everywhere, and the

G-bundle reduces to a G0-bundle. Thus the objects for C are exactly the same as in the

oriented equivariant TQFT with symmetry group G0. Morphisms are different however, for

example because unorientable bordisms are now allowed. Moreover, even when bordisms

are orientable, they are not given an orientation. More precisely, if the boundary of a

bordism is connected, there is a base point with an orientation on it, and one can use this

to extend orientation to the whole N . But if more than one base point is present, there is

no guarantee that orientations so obtained agree between each other. This will be discussed

in more detail below.

4.2 Algebraic description for D = 1

From the above definition we extract the following algebraic data. First of all, let M = S1.

As remarked above, S1 is actually oriented, and the structure group G is reduced to G0.

Thus unoriented equivariant TQFT assigns a vector space Ag to every g ∈ G0.

Now consider a cylinder regarded as a bordism from S1 to S1. It has two marked

points on the boundaries which we call p− and p+ (source and target). A G-bundle over

a cylinder trivialized over p− is determined by the holonomy around the source S1 and

thus is labeled by an element g ∈ G. We are also given a trivialization at p+, and the

holonomy along a path from p− to p+ gives a well-defined element h ∈ G. We know that

g ∈ G0, but h can be an arbitrary element of G. If ρ(h) = 1, the two trivializations of

ρ(E) obtained from the trivializations of E at p− and p+ agree. Then, since o(N)⊗ ρ(E)

is trivialized everywhere, the orientations at p− and p+ also agree, and the source and

target circles have the same orientation. Thus the source is labeled by g, and the target by

hgh−1, and the cylinder is assigned a map αh : Ag→Ahgh−1 . Similarly, if ρ(h) = −1, the

two orientations disagree, and the target is labeled by hg−1h−1, while the source is still

labeled by g. Such a cylinder is assigned a map αh : Ag→Ahg−1h−1 . We can summarize

both cases by saying that αh maps Ag to Ahgρ(g)h−1 . Since gluing two cylinders labeled by

(g, h) and (hgρ(g)h−1, h′) using the trivial identification of target and source circles gives

a cylinder labeled by (g, h′h), we must have αh′ ◦ αh = αh′h. In particular, each αh is

invertible.

In general, we note that if N is an orientable bordism, and the paths between base

points on different boundary components all lie in G0, the morphism becomes a morphism

in the oriented equivariant theory with symmetry group G0. Thus we get all the same

algebraic data as in the oriented G0-equivariant theory. That is, a G0-crossed algebra

A = ⊕g∈G0Ag, η : A⊗A→C, α : G0→AutA, (4.1)
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satisfying (2.3)–(2.8). In particular, for h ∈ G0 the map αh is an automorphism of A. On

the other hand, for h /∈ G0 the map αh is an anti-automorphism:

αh(ab) = αh(b)αh(a), ∀h /∈ G0, ∀a, b ∈ A. (4.2)

To see this, we compare the pants diagrams with cylinders attached either to the torso or

to the pant legs and note that for h /∈ G0 they are related by a reflection rather than the

identity homeomorphism.

Finally, in the unoriented case we have cross-cap states θg ∈ Ag2 , g /∈ G0. The state

θg, g /∈ G0, arises from a Möbius strip with an oriented boundary and a base point on

the boundary. The fundamental group of the Möbius strip is isomorphic to Z, where an

orientation-reversing generator is fixed once the orientation of the boundary has been fixed.

θg corresponds to a G-bundle whose holonomy along this generator is g.

The cross-cap states have the following properties:

αh∈G0(θg) = θhgh−1 and αh/∈G0
(θg) = θhg−1h−1 (4.3)

θg · ψk = αg(ψk) · θgk for all ψk ∈ Ak. (4.4)
∑

i

αg(ξ
i
gh)ξ

gh
i = θg · θh. (4.5)

The first of these properties is illustrated in figure 1. The vectors θhg(−1)h−1 and αh(θg)

are defined by the two pictures which happen to be related by an isotopy. The second

property arises from an isotopy of the punctured Möbius strip shown in figure 2. The third

property arises from the fact that a Klein bottle with two holes can be represented in two

apparently different ways: as a cylinder with an orientation-reversing twist, or as a cylinder

with an insertion of two cross-caps, see figure 3.

We will call the data (A, η, α, θg, g /∈ G0) a ρ-twisted G-crossed algebra.

Proposition 1. Unoriented equivariant D = 1 TQFTs with symmetry (G, ρ : G → Z2)

are in bijective correspondence with ρ-twisted G-crossed algebras (A, η, α, θg, g /∈ G0).

We have already explained how to assign this algebraic data to any unoriented equiv-

ariant D = 1 TQFT. The converse procedure is described in appendix A.

4.3 Invertible unoriented equivariant D = 1 TQFT

Let us now specialize to the invertible case. For an invertible unoriented equivariant D = 1

TQFT, the vector spaces Ag∈G0 are one-dimensional. After fixing a basis {ℓg}g∈G0 of A

so that η(ℓg, ℓg−1) = 1, the ρ-twisted G-crossed algebra is determined by nonzero complex

numbers θ(g), g /∈ G0, b(h, k), z(h, k), h, k ∈ G0, w(h, k), h /∈ G0, k ∈ G0 defined as follows:

mk,l(ℓk, ℓl) = b(k, l)ℓkl, θg = θ(g)ℓg2 ,

αh∈G0(ℓk) = z(h, k)ℓhkh−1 , αh/∈G0
(ℓk) = w(h, k)ℓhk−1h−1 . (4.6)

These numbers satisfy a number of identities due to the properties of A.
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g

h

∼=

hgh−1

(a) h ∈ G0.

g

h

∼=

hg−1h−1

(b) h /∈ G0.

Figure 1. Axiom (4.3).

Proposition 2. Invertible unoriented equivariant D = 1 TQFTs with symmetry (G, ρ) are

in bijective correspondence with elements of the ρ-twisted group cohomology H2(BG,U(1)ρ).

Twisted cohomology is the cohomology of the usual group cochain complex with respect

to the ρ-twisted coboundary maps

δnρ : Cn(G,U(1)) → Cn+1(G,U(1)). (4.7)

In degree 2, the ρ-twisted cocycle condition reads

a(g, h)a(gh, k) = a(h, k)ρ(g)a(g, hk) . (4.8)

A proof of proposition 2 is rather lengthy, see appendix B. But the map in one direction,

from twisted group cohomology to the set of algebraic data (4.6), is easy to describe:

b(k, l) = a(k, l) (4.9)

θ(g) = a(g, g) (4.10)

z(h, k) =
a(h, k)a(hk, h−1)

a(h, h−1)
(4.11)

w(h, k) =
a(h, k−1)a(hk−1, h−1)a(k, k−1)

a(h, h−1)
. (4.12)

To prove proposition 2, we must show that these numbers satisfy the TQFT axioms (4.2)–

(4.5) and that the map is injective and surjective.

A Proof of proposition 1

We have already shown that an unoriented equivariant D = 1 TQFT with symmetry (G, ρ)

has an underlying ρ-twisted G-crossed algebra (A, θg, αh). Oriented cobordisms and bundle

isomorphisms constitute a G0-crossed algebra A = ⊕g∈G0Ag, while crosscaps correspond to

states θg ∈ Ag2 and orientation-reversing homeomorphisms to algebra anti-automorphisms

αh : Ag → Ahg−1h−1 . It remains to show the converse: that from each such algebra we can

construct an unoriented equivariant TQFT with this underlying algebra. We generalize

the approaches of [10] and [18] to unoriented equivariant theories.
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g

k

1
1

gk

1

k

g
∼=

Figure 2. Axiom (4.4). To obtain the right figure from the left, the puncture with holonomy k is

pulled through the crosscap along the path with holonomy g.

g
# ∼=

h g
gh

Figure 3. Axiom (4.5). Two projective planes are punctured and sewed along their boundaries —

the diagonal lines — to obtain their connected sum, the Klein bottle.

We begin by defining the vector spaces assigned to simple objects P[g],x,t of the source

category C. To each circle S equipped with principal G-bundle P[g], basepoint x, local

trivialization t : P[g]|x → G, and global trivialization of o(S) ⊗ ρ(P[g]), assign the vector

space H(P[g],x,t) ∼= Ag where g is the holonomy of P[g] around S with respect to x and t.

Any object E can be factored into simple objects ⊔iP[gi],xi,ti and assigned a vector space

H(E) ∼= ⊗iH(P[gi],xi,ti). It is clear that H(E) does not depend on the factorization of E.

Next we consider the linear maps assigned to morphisms of simple objects. One type

of morphism α̃k : P[g],x,t → P[g],y,s arises from an isomorphism f of the bundle P[g] where

(y, s) = (f(x), (f−1)∗t). Realized as its mapping cylinder, f must have a global trivializa-

tion of o(S×I)⊗ρ(f). Since o(S×I) is trivial, so must be ρ(f), and so the holonomy of P[g]

along a positive path from (x, t) to (y, s) is an element k ∈ G0. We assign the linear map

αk : Ag → Akgk−1 to this morphism. The other type of morphism α̃h : P[g],x,t → P[g−1],y,s

arises from a bundle anti-isomorphism P[g] → P[g−1] whose restriction to the base circle is

not isotopic to the trivial homeomorphism. Since a bundle map of this type exchanges the

sheets of o(S), the holonomy of P[g−1] from (x, t) to (y, s) is an element h /∈ G0. We assign

the linear map αh : Ag → Ahg−1h−1 to α̃h. This assignment is well defined for isomorphism

classes of bundles, as the cylinder α̃kα̃g, related to α̃k by a Dehn twist, is assigned the

linear map αkαg, which equals αk when restricted to Ag by (2.6).

Now we wish to define linear maps for cobordisms (W,E0, E1). The strategy will be to

decompose W as a sequence of n elementary cobordisms (W i, Ei
0, E

i
1), sewn along bundle

(anti-)isomorphisms si : Ei
1 → Ei+1

0 with E0
0 = E0 and En

1 = E1. After assigning a

linear map to each W i, we assign their composition τ(W ) to W . We must then verify

that τ(W ) does not depend on the decomposition. Begin by considering the cobordism

of base spaces (N,M0,M1). By Sard’s lemma, there exists a smooth function f : N → I

such that f−1(0) = M0, f
−1(1) = M1, and f is Morse; that is, the gradient df vanishes

at finitely many critical points xi, the Hessian d2f is a non-degenerate quadratic form
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at all xi, and the critical values ci = f(xi) are distinct and not equal to 0 or 1. The

index ind(xi) is the number of negative eigenvalues of d2f at xi. Choose ti ∈ I such that

0 = t0 < c1 < t1 < · · · < cn < tn = 1. By the implicit function theorem, eachMti = f−1(ti)

is a disjoint union of mi circles, and Σi = f−1([ti−1, ti]) is a cobordism from Mti−1 to Mti

with a single critical point. The classification of surfaces tells us that Σi is homeomorphic

to a disjoint union of cylinders and one of five possibilities: a cap, a pair-of-pants, their

adjoints, and a twice-punctured real projective plane.

These spaces are base spaces for five classes of cobordisms W . Since any G-bundle over

the disk is trivial, there is a unique cobordism over the cap, to which we assign the linear

map η : A1 → C. A G-bundle over the pair-of-pants, based and trivialized at the critical

point, is almost determined by the holonomies k and l around the legs of the pants. We

assign to it the linear map mk,l : Ak ⊗Al → Akl. The orderings are related by conjugation

αl : Akl → Alk, and consistency requires that mk,l(ψk ⊗ ψl) = αkml,k(ψl ⊗ ψk), which

is enforced by the axioms (2.6) and (2.7) of the G0-crossed algebra A. The holonomies

determine the bundle up to cylinders α̃k sewn to the boundary circles, which were assigned

maps αk above. The next two maps are fixed by adjunction. The adjoint of η distinguishes

a state ψη ∈ A1 with the property that η(ψη) = 1. The adjoint pair-of-pants is assigned

a map ∆k,l(ψkl) =
∑

i ψklφ
i ⊗ φi where {φi} is a basis for Al and {φi} is a dual basis for

Al−1 . A G-bundle over the crosscap is specified (up to cylinders) by a holonomy g /∈ G0

around the orientation-reversing loop. We assign to it the linear map ψk 7→ mg2,k(θg⊗ψk),

determined by the distinguished state θg ∈ Ag2 .

One may worry about a redundancy in the assignment of linear maps to composite

cobordisms. Whenever an elementary cobordism W i and its sewing maps si−1 and si can

be modified in a way that preserves the composite cobordism W , consistency requires that

τ(W ) is also preserved. The map si used to sew a cap or its adjoint into another cobordism

does not affect the composite cobordism. The consistency of the algebraic description

follows from the fact that αk and αh preserve η. Let W i be a pair-of-pants sewn along si−1

and si. Sewing instead along (α̃k ⊗ α̃k) ◦ si−1 and si ◦ α̃
−1
k does not change W . Since αk

is an automorphism of A, τ(W ) is also preserved. Let R be the bundle isomorphism that

exchanges two circles. Then (α̃h⊗ α̃h)◦R◦si−1 and si ◦ α̃
−1
h yield the same W . We require

α−1
h m(αh(ψl)⊗αh(ψk)) = mk,l(ψk⊗ψl), which is enforced by axiom (4.2). Let (W i, Ei

0, E
i
1)

be a twice-punctured real projective plane with holonomy g realized as a cobordism from

si−1 : P[k] → Ei
0 to si : E

i
1 → P[g2k]. There is a bundle isomorphism, covering a Dehn twist

of the base space, between this cobordism and a twice-punctured real projective plane

with holonomy g−1k−1 with sewing maps si−1 and si ◦ α̃g. By axioms (4.2) and (4.4), the

consistency condition αgm(θg−1k−1 ⊗ ψk) = mg2,k(θg ⊗ ψk) is fulfilled. Now consider the

Möbius strip with holonomy g /∈ G0 constructed by sewing a cap into the twice-punctured

real projective plane with holonomy g. Sewing this cobordism into another along si yields

the same composite cobordism related to the Möbius strip with holonomy hg−1h−1 sewn

along α̃h−1 ◦si by a bundle isomorphism that covers a Y-homeomorphism of the base space.

Axiom (4.3) encodes this relation in the algebraic data.

The linear map τ(W ) assigned to an arbitrary cobordismW is given by the composition

of maps assigned to its factors under Morse decomposition. It remains to show that τ(W )
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does not depend on the choice of Morse function. Any two Morse functions f0 and f1 are

related by a smooth family of functions fs that are Morse at all but finitely many values

of s. One possibility is that two critical points merge and annihilate for some s. Then fs
has a degenerate critical point. This situation only occurs when deforming a pair-of-pants

and an adjoint cap into a cylinder. For τ(W ) to be consistent over the deformation, we

require mk,1(ψk⊗ψη) = ψk. This condition is enforced by the axioms of A. The remaining

possibility is that two critical values coincide for some non-Morse value of s. We must

check, for each composition W of two elementary cobordisms, that all factorizations give

the same linear map. This situation occurs when both critical points have index 1, in which

case W has Euler characteristic χ(W ) =
∑

i(−1)ind(xi) = −2. Hence W is one of seven

cobordisms: a genus zero oriented cobordism from three circles to one, its adjoint, a genus

zero oriented cobordism from two circles to two, a twice-punctured torus from one circle to

one, a crosscap-pants cobordism from two circles to one, its adjoint, and a twice-punctured

Klein bottle from one circle to one.

The consistency of the first two cobordisms follows immediately from associativity of

multiplication. The remaining two oriented conditions have been proven in appendix A.3

of [10] and follow from the oriented axioms, notably (2.8). The next condition says that

moving a crosscap from the “torso” to a leg of the pair-of-pants is a consistent deformation

and also follows from associativity of multiplication. The Klein bottle has a decomposition

as a pair-of-pants glued along its two legs to an adjoint pair-of-pants as well as a decom-

position as a sphere with two crosscaps. The composite linear maps assigned to these

realizations are equal to the others by axiom (4.5). We have assigned a linear map to each

cobordism in terms of a Morse function f and have seen that this map is independent of

the choice of f . This completes the proof of proposition 1.

B Proof of proposition 2

Consider the map from 2-cochains a ∈ C2(G,U(1)) to TQFT data defined in (4.9)–(4.12).

If we restrict to the set Z2(G,U(1)ρ) of 2-cochains satisfying the ρ-twisted 2-cocycle condi-

tion (4.8), we obtain a map f from twisted cocycles to TQFT data. We show that numbers

in the image of f satisfy axioms (4.2)–(4.5), and so give rise to a consistent invertible un-

oriented equivariant TQFT.

For an invertible theory, these axioms can be written as

w(h, kl)b(k, l) = w(h, k)w(h, l)b(hl−1h−1, hk−1h−1)

w(h, g2)θ(g) = θ(hg−1h−1)

b(g2, k)θ(g) = b(gk−1g−1, gkgk)w(g, k)θ(gk)

b(g2hg−1, gh)w(g, h−1g−1) = θ(g)θ(h)b(g2, h2)b(h−1g−1, gh) .

It will be useful to impose a “cyclic-symmetric gauge” on the restriction of the cocycle

a to G0:

a(k, k−1) = 1, a(k, l) = a(l−1, k−1)−1, ∀ k, l ∈ G0.

We also fix some T ∈ G and impose the condition a(k, T ) = 1, k ∈ G0.
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Axiom (4.2):

w(h, kl)b(k, l) =
a(h, l−1k−1)a(hl−1k−1, h−1)a(kl, l−1k−1)

a(h, h−1)
a(k, l)

=
a(h, l−1k−1)

a(h, h−1)

a(hl−1, k−1h−1)

a(l−1, k−1)a(hl−1, k−1)a(k−1, h−1)

=
a(hl−1, k−1h−1)

a(h, h−1)a(k−1, h−1)
a(h, l−1)

=
a(h, l−1)

a(h, h−1)a(k−1, h−1)

a(hl−1h−1, hk−1h−1)a(h, k−1h−1)

a(hl−1h−1, h)

=
a(h, l−1)a(hl−1h−1, hk−1h−1)a(h, k−1h−1)

a(h, h−1)a(k−1, h−1)
a(h−1, h)a(hl−1, h−1)

=
a(h, l−1)a(hl−1, h−1)a(hl−1h−1, hk−1h−1)

a(h, h−1)a(h, h−1)
a(h, k−1)a(hk−1, h−1)

= w(h, k)w(h, l)b(hl−1h−1, hk−1h−1) .

Axiom (4.3):

w(h, g2)θ(g) =
a(h, g−2)a(hg−2, h−1)a(g2, g−2)

a(h, h−1)
a(g, g)

=
a(hg−2, h−1)

a(h, h−1)
a(hg−1, g−1)a(h, g−1)a(g, g)a(g−1, g−1)

=
a(h, g−1)a(g, g)a(g−1, g−1)

a(h, h−1)
a(g−1, h−1)a(hg−1, g−1h−1)

=
a(hg−1h−1, hg−1h−1)a(h, g−1)a(g, g)a(g−1, g−1)

a(h, h−1)a(hgh−1, h)a(h, g−1h−1)
a(g−1, h−1)

=
a(hg−1h−1, hg−1h−1)a(g, g)a(g−1, g−1)

a(h, h−1)a(hgh−1, h)a(hg−1, h−1)

a(h, g−1)a(g−1, h−1)

a(h, g−1)a(g−1, h−1)

= a(hg−1h−1, hg−1h−1)

= θ(hg−1h−1) .

Axiom (4.4):

θ(g)a(g2, k) = θ(g)a(g2, k)
a(g, k)a(g, k−1)a(k, k−1)

a(g, g−1)

a(gk−1, k)

a(g−1, gk)

= θ(g)a(g2, k)a(g, k)
a(g, k−1)a(gk−1, g−1)

a(g, g−1)
a(gk−1g−1, gk)

=
a(g, k−1)a(gk−1, g−1)

a(g, g−1)
a(g, gk)a(gk−1g−1, gk)

= a(gk−1g−1, gkgk)
a(g, k−1)a(gk−1, g−1)

a(g, g−1)
a(gk, gk)

= b(gk−1g−1, gkgk)w(g, k)θ(gk) .

– 14 –



J
H
E
P
0
3
(
2
0
1
7
)
0
0
6

Axiom (4.5):

b(g2hg−1, gh)w(g, h−1g−1) = a(g2hg−1, gh)
a(g, gh)a(g2h, g−1)a(h−1g−1, gh)

a(g, g−1)

=
a(g, gh)

a(g, g−1)

a(g2h, h)

a(g−1, gh)
a(h−1g−1, gh)

=
a(g2, h)a(g, g)a(g, h)

a(g, g−1)a(g−1, gh)
a(g2h, h)a(h−1g−1, gh)

=
a(g, g)a(g, h)

a(g, g−1)a(g−1, gh)
a(g2, h2)a(h, h)a(h−1g−1, gh)

= a(g, g)a(h, h)a(g2, h2)a(h−1g−1, gh)

= θ(g)θ(h)b(g2, h2)b(h−1g−1, gh) .

We have shown that data in the image of f define consistent invertible unoriented

equivariant TQFTs. Both Z2(G,U(1)ρ) and the set of invertible unoriented equivairant

TQFTs are groups, and it is easy to see that f is a group homomorphism.

It remains to show that f is injective and surjective. Let (g, h, k) denote the twisted

cocycle condition (4.8). We construct a cocycle that solves (4.9)–(4.12), an inverse to f .

Consider the twisted cocycle condition for (k, T, T−1):

a(k, T )a(kT, T−1) = a(T, T−1) .

Taking into account a(k, T ) = 1, we get a(kT, T−1) = a(T, T−1). This also implies

a(Tk, T−1) = a(T, T−1). So in this gauge we get w(T, k) = a(T, k−1). Next consider

the twisted cocycle condition for (l, k, T ):

a(l, k)a(lk, T ) = a(l, kT )a(k, T ) .

Taking into account a(k, T ) = 1, we get a(l, kT ) = a(l, k). Since T−2 ∈ G0, this implies

a(k, T−1) = a(k, T−2). Next consider the twisted cocycle condition for (T, k, T−1):

a(T, k)a(Tk, T−1)a(k, T−1) = a(T, kT−1) .

Using previous results, this is equivalent to

a(T, kT−1) = a(k, T−2)a(T, T−1)a(T, k) .

Next consider the twisted cocycle condition for (T, l, k):

a(T l, k)a(T, l)a(l, k) = a(T, lk) .

Recall also that in our gauge a(T, l) = w(T, l−1). Then

a(T l, k)a(l, k)w(T, l−1) = w(T, k−1l−1) .

Since αgαh = αgh and by axiom (4.2), we see

a(T l, k) = w(T, k−1)a(T lT−1, TkT−1) .
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We have determined the components of the twisted cocycle where one argument is in

G0 and the other is not. We have also determined a(Tk, T−1) and a(T, kT−1) up to a single

term a(T, T−1). We can determine a(T l, kT−1) by requiring that a satisfies the twisted

cocycle condition (T, l, kT−1):

a(T l, kT−1)a(T, l)a(l, kT−1) = a(T, lkT−1) .

By construction, a is a 2-cochain that satisfies (4.9)–(4.12) as well as the (k, T, T−1),

(l, k, T−1), (T, k, T−1), (T, l, k), (l, k,m), and (T, l, kT−1) cocycle conditions. The compo-

nent a(T l,mT−1) is also determined by (T l, k, T−1), and equality of the two expressions

must hold if a is a cocycle:

a(T l, kT−1) = a(T lk, T−1)a(T l, k)a(k, T−1) .

In the above expression, apply the (T, lk, T−1) condition to the first term to obtain
a(T,lkT−1)

a(T,lk)a(lk,T−1)
. Hit the second term with (T, l, k) to obtain a(T,lk)

a(l,k)a(T,l) . Hit a(lk, T
−1) with

(l, k, T−1) to get a(l,kT−1)a(k,T−1)
a(l,k) . After cancellation, we are left with the first expression

for a(T l, kT−1).

To see injectivity of f , consider the trivial TQFT with b, w, θ trivial. The cocycle

solution has a(k, l) = 1 and a(k, lT ) = 1. We have a(T l, k) = w(T,k−1l−1)
a(l,k)w(T,l−1)

= 1 as well as

a(T l, kT−1) = a(T lk, T−1)a(T l, k)a(k, T−1) = θ(T−1) = 1

so the only the trivial cocycle corresponds to the trivial theory.

It remains to show that a satisfies the cocycle condition for all possible combinations

of arguments; in particular, we must show the (k, l,mT ), (kT, l,m), (k, lT,m), (k, lT,mT ),

(kT, l,mT ), (kT, lT,m), and (kT, lT,mT ) conditions. Consider the first condition:

a(k, l)a(kl,mT ) = a(l,mT )a(l, kmT ) .

Since a(k, lT ) = a(k, l) for all k, l ∈ G0 in our gauge, this follows from the G0 cocycle

condition. Now consider the third:

a(kT, l)a(kT l,m)a(l,m) = a(lT, km) .

Apply the (T, k, l) condition to the first term to get a(T,kl)
a(k,l)a(T,k) , the (T, kl,m) condition to

the second term to get a(T,klm)
a(kl,m)a(T,kl) , and the (T, k, lm) condition to the third term to get

a(T,lkm)a(T,m)
a(k,lm) . The desired condition is reduced to a known condition.

Now consider (Tk, l,mT−1):

a(Tk, l)a(Tkl,mT−1)a(l,mT−1) = a(Tk, lmT−1) .

The first term becomes a(T,kl)
a(T,k)a(k,l)

after (T, k, l), the second a(T,klmT−1)

a(T,kl)a(kl,mT−1)
after (T, kl,mT−1),

the third (a(k, l)a(kl,mT−1))−1 after (l,m, T−1), and the fourth a(T,klmT−1)

a(T,k)a(k,lmT−1)
after (T, k, lmT−1).

Everything cancels.
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Since a(kT, T−1) = a(T, T−1), we get the (l, lT, T−1) condition by applying (kl, T, T−1)

to a(klT, T−1). Then (k, lT,mT−1) reads

a(k, lT )a(klt,mT−1) = a(lT,mT−1)a(k, lTmT−1) .

The last term is just a(k, lTm) in our gauge and becomes a(k,lT )a(klT,m)
a(lT,m) after (k, lT,m).

a(klT,mT−1) becomes a(klTm,T−1)a(klT,m)
a(m,T−1)

after (klT,m, T−1), and a(lT,mT−1) becomes

a(lTm,T−1)a(lT,m)
a(m,T−1)

after (lT,m, T−1). We have seen that a(klTm, T−1) = a(T, T−1) =

a(lTm, T−1) so we are done.

The condition (k, lT, T−1) is shown by noting that a(k, lT ) = a(k, l) and a(klT, T−1) =

a(T, T−1) = a(lT, T−1). Consider the (k, T l,mT−1) condition:

a(k, T l)a(kT l,mT−1) = a(T l,mT−1)a(k, T lmT−1) .

Hit the second term with (kT l,m, T−1) to get a(kT lm, T−1)a(m,T−1)a(kT l,m) and

the fourth term with (k, T lm, T−1) to get a(kT lm,T−1)a(k,T lm)
a(T lm,T−1)

. Then a(kT l,m) becomes

a(k,T lm)a(T l,m)
a(k,TL) by (k, T l,m) and a(T lm, T−1) becomes a(T l,m)a(m,T−1)

a(T l,mT−1)
by (T, lm, T−1).

Consider (T, T, T ):

a(T 2, T )a(T, T )a(T, T ) = a(T, T 2) .

The first term vanishes, and we are left with θ(T )2 = w(T, T−2), which is true by ax-

iom (4.5) with g = h = T .

Consider (lT−1, T, T ):

a(lT−1, T )a(T, T ) = a(lT−1, T 2) .

The first term is just a(T−1,T )
a(l,T−1)

by (l, T−1, T ). The third is a(T−1,T 2)
a(l,T−1)

. The condition then

follows from (T, T, T ). Consider (T,mT−1, T ):

a(T,mT−1) = a(T,m)a(mT−1, T ) .

The first term becomes a(Tm, T−1)a(T,m)a(m,T−1) by (T,m, T−1) and the second be-

comes a(T−1,T )
a(m,T−1)

. We are left with a(Tm, T−1)a(T−1, T ) = 1. This is θ(T−1)θ(T ), which

vanishes by axiom (4.5). Now consider (kT, lT−1, T ):

a(kT, lT−1)a(lT−1) = a(kT, l) .

The first term is a(kT l, T−1)a(kT, l)a(l, T−1) by (kT, l, T−1) and the second is a(T−1,T )
a(l,T−1)

by

(l, T−1, T ). We are left with a(kT l, T−1)a(T−1, T ) = 1 which holds as before.

Start with the (T−1, T,mT−1) cocycle condition:

a(T−1, T )a(T,mT−1) = a(T−1, TmT−1) .

Apply (T,m, T−1) to the third term. It becomes a(Tm, T−1)a(T,m)a(m,T−1). Note

that a(T,m) = w(T,m−1)a(T,T−1)
a(Tm,T−1)

and that a(T−1, TmT−1) = w(T−1,Tm−1T−1)a(T−1,T )
a(mT−1,T )

. By

(m,T, T−1), we have a(mT−1, T ) = a(T−1,T )
a(m,T−1)

. The first equation becomes

w(T,m−1) = w(T−1, Tm−1T−1) .
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Since αTαT−1 = 1, this becomes w(T,m−1)w(T,m) = 1 which is true by axiom (4.2). This

proves the (T−1, T,mT−1) cocycle condition.

Now consider the (lT−1, T,m) condition:

a(lT−1, T )a(l,m)a(T,m) = a(lT−1, Tm) .

Hit the first term with (l, T−1, T ) to get a(T−1,T )

a(l,T−1)
and the fourth term with (l, T−1, Tm) to

get a(l,m)a(T−1,Tm)

a(l,T−1)
. Apply the new result (T−1, T,m) to a(T−1, Tm) to get a(T,m)a(T−1, T ).

Everything cancels. This proves (lT−1, T,m).

Now consider the (lT, kT,m) condition:

a(lT, kT )a(lTkT,m)a(kT,m) = a(lT, kTm) .

Hit the first term with (lT, k, T ), the second term with the new result (lTk, T,m), the third

term with (k, T,m), and the fourth term with (lT, k, Tm). Everything cancels.

Finally, check (kT, T−1l,mT ):

a(kT, T−1l)a(kl,m)a(T−1l,mT ) = a(kT, T−1lmT ) .

The last term becomes a(kT, T−1lm)a(T−1lm, T ) by (kT, T−1lm, T ). a(kT, T−1lm) becomes

a(kl,m)a(kT, T−1l)a(T−1l,m) by (kT, T−1l,m) and a(T−1lm, T ) becomes a(T−1l,mT )

a(T−1l,m)
by (T−1l,m, T ).

Everything cancels, proving the last cocycle condition (kT, lT,mT ).

This proves that each invertible unoriented equivariant TQFT arises from a twisted

2-cocycle. Since this twisted 2-cocycle gives an inverse to f , we have shown that f is

surjective. This completes the proof of proposition 2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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