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Equivariant Whitney immersion theorem

A. Wasserman has proved in 1969 a generalization of the classical
Whitney immersion theorem to the case of G-manifolds (G being a compact
Lie group). In the present note another equivariant Whitney theorem is
proved for a compact G-manifold and & finite. In that case our theorem
implies Wasserman’s result.

I wish to thank R. Rubinsztein for pointing out some errors in the
first conception of this paper and for his ecritical observations.

Let @ be a finite group. Let us begin with some remarks on G-maps.
Suppose that H is a subgroup of @, X is a topological space and G/H x X
i8 a G-space with obvious G-action (frivial on X). Let ¥ be a G-space and
f: G/H X X—-Y be a G-map. Since f is equivariant, we get f(H/H X X)
<¥Y? (Y? = {y e Y: G, > H}). Therefore we may define a map f: X—>¥Z
by the formula f(#) = f(H/H, »). On the other hand, let f: X—YH be
any map. Define f: G/H—Y by the formula f(gH/H,s) = gf(x) for
zeX, gel. B

LEMMA 1. In the above situation the correspondence f—f yields an
isomorphism of sets: G-maps(G/H x X, Y) and Maps(X, YH).

For detailed proof see [4].

Suppose that M is the m-dimensional C* manifold with a smooth
action of G. If m € ME, then T, M is a representation of H. Let T, M
= @®1,(V)V, where V iz an irreducible representation of H, 1,(V) its
multiple in 7,,M. Then by I(M, V) we¢ denote max1?,(V). Note that
UM, V)< n. meM

Let M be compact. We are already prepared to formulate the first
theorem.

THEOREM 1. If the representation W satisfies the following condition:
Jor every subgroup H of G such that there ewists the point m € M with @,, = H
and every dirreducible representation V of H with 1(M, V) % 0, the in-
equality
(*) UW,V)>dim ME+1(M, V)dim V

holds, then there exists a G-immersion f: M—>W.
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Proof. The set M is compact, therefore it has the structure of the
finite G-CW complex (see [6] for the proof). We construct the immersion
by an induction on G-cells atbached. Let (H) be the maximal orbit type
on M, G/H x d 0-dimensional cell, f*: d—-WZ any map. We define an
H-equivariant monomorphism @,: ;M W, afterwards ¢,: TM|qgs—W by
the formula @q(v,;) = g@o(9™ " v,q), Where v,; € T ;M. A small neighbour-
hood of the orbit Gd in M is G-diffeomorphic to a neighbourhood of the
base in the normal bundle v(Gd, M) (see [2]). By means of the map exp
we obtain the immersion from a G-neighbourhood of the orbit Gd in W.
Let us denote it by f°. Suppose that M*~! is (i —1)-dimensional invariant
skeleton of M and ¢ an i-dimensional G-cell. Assume that we have al-
ready defined an immersion f~! from a G-neighbourhood U;_, , of M*~'u

g
U | 0. We extend this map to the immersion f3} which will be defined
k=1 P+l
on a G-neighbourhood of M*~*u | of.
i=1
Let 0}, = 0p11\0,0},,, where 0,0}, is the open invariant neigh-
bourhood of dq},,, on which we have defined the immersion f, . Observe
that @,, ~ G/K xD%; moreover, on 05,,, o~ G/K x8 ' we have the
map f which is a restriction of f;‘l. The map f is a G-immersion, thus
f: 871> WE is an immersion. We also have the map @ defined to be
equal to Tf}~! restricted to K /K x 8!, which has rank n = dim M in
every point of §8°~!. We want to extend that map to the monomorphism
vi TM |gxxpi~WE xW. But:

TM gt 22 D' XToM o~ DX T M5 x vo( M5, M) (0 € D¥).

Let @, =@ be restricted to S xT,MX, @, = p restricted to S'x
X vo(ME, M). Observe that the image of @, is contained in WX x WK,
We look for an extension of @, t0 y,: D' X ToMEX->WE x WE guch that
¥,|ppi is 2 map tangent to the immersion § being the extension of f over
the disk Df. The obstruction to extending lies in ;_,(V%), where »x
= dim M¥, k = dim WX, V% is the Stiefel manifold of x-frames in an
Euclidean k-dimensional space (see [3]). This obstruction wvanishes if
t < k—x. That inequality follows from condition (*) which for trivial
irreducible representation B of the group K has the form 2dim M%X
< dim WX (in that case I{M, R) = dim M%),

Note that the image of @, is contained in WX x WKL — W. We
look for an extension of @, to p,: D' X vo(ME, M)—W. Such an extension
exists by assumption (x) and Lemma 2 (bellow) applied to each irre-
ducible representation separately. '

Thus we have the K-equivariant monomorphism y: D'x T M >WEXx W
covering the immersion §: D*>WXE, We choose a neighbourhood U of
D! so small that the map exp is a diffeomorphism of a neighbourhood
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of the base in the normal bundle »(D', M) with U. By means of the map
exp we obtain an immersion §" of U in W (and G-immersion ¢': GU->W
by equivariantness). Note that §' [y, =F = f3 gy TF |Gy = Tfl gy
We can choose an open neighbourhood ¥V of 8! in UnU,_, , such that
V <« UnU,_,, and homotopy G;: UNU,_, ,—~W such that

(a) for every ¢, G, is the immersion,

(b) (G,, I'q,) = (§', T§') on any small neighbourhood of (UNT,_, ,),

(e) (61, TG Iy = (f, Tf)ly (f =f;;‘1iUnU, 1,,)

(d) (6, TG) (@) = (7', T7') (@) if (7, T§")(2) = (f, Tf)(w) (see [3],
Lemma 2.5).

1,p

Let Z < U be a ncighbourhood of D! such that ZnU,_,, = V.
We define
) . p+1
U‘l:—l,ﬂ-}—l = U'-—l,pUGZ > J’fl—lU U O'II:
: k=1

ey i we Uy,
g' () if xe@GZ.

Let m: K-—~N be a vector bundle over N with the fibre [V, where V
is an irreducible representation of @, N is a trivial G-space and ! is a nat-
ural number. Then Hom(E,tV) is a G-bundle over N with the fibre
Hom(az Y(n), tV). Suppose that € is a closed subspace of N,s: C
—Hom(E, tV) is an equivariant non-singular section (it means that s(¢)
i3 an equivariant monomorphism for every ¢ e ().

THEOREM. If ¢t > dim N 4-1dim V, then s can be ewtended to an equi-
variant non-singular section 5: N—Hom(E, V).

This theorem is a special case of Theorem 2.1 in {7].

Let B = D'x IV be a trivial G-bundle, W a trivial contractible
G-space, and I' a representation of G containing exactly { copies of V.
Let ¢ be a ¢ monomorphism

and 1’,1 (@) =

Bl -~ W xF

L

R 4

LEMMA 2. If 1 > i +1dim V, then the monomorphism ¢ can be extended
to the monomorphism of G-bundles y: E—W x F.

Proof. Obviously, ¢(87!'x1V) c W xtV; thus it is sufficient to
show that ¢ = %-¢ can be extended over the disk (& is 2 homotopy con-
tracting W to ). But we have the same situation in the theorem above:

E]Si_l—»tV
| |

Y A4
STl sy
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412 E. Marchow and W. Pulikowski

CORROLARY 1. If M can be immersed in tW, then M can be immersed
in 2n'W (Proposition L.1 in [7]).

Proof. The representation 2#W satisfies condition (x): if H
is a subgroup of G such that there exists the point m € M with G,, = H
and V is an irreducible representation of H and I(M,V) %0, then
i(M, V)V has an H-monomorphism in {W. Thus V has an H-monomor-
phism in W and 1(2aW, V) > 20 > dim MY -1(M, V)dim V.

THEOREM 2. If M and W salisfy the assumptions of Theorem 1, then
every smooth G-map g: M—W can be C*-approzimated by o G-immersion.
The approximation is also uniform.

Proof. From Theorem 1 we know that there exists an immersion
f: M—W. The approximation § will be of the form § = g+ df, where

ke
6 = efsup N, f(x), Npf(@) = D 1D fp(¢™ )| and ¢: B*—M is a local coor-
j=0

zeM
dinate chart. Let m € M and ¢ be the local coordinate chart such that

¢(0) = m; the vectors 0/0x; (1 = 1,...,n) span the space T, M. Note
that the vectors

Tmf(é%) = [%t— (0), ..., —gg‘:— (O)] (where s = dim W)

are lineary independent in W. We define an isomorphism A4: W->W
and show that the vectors A-T,,7(0/0x,) are independent; thus also
T, G(0/0x;) are lineary independcnt.

Let
| 0f 0f §
— 0 o ...
0fn 0fn
7 (0) o, (0) 0 0
A7 =
afn'l 0fn+1
ak e —— (0 0
o, (0) o, (0)
af; s
6901() —a-mn-() 0 . 017

of.
We may assume that the determinant of the matrix (~]—[’— O))

(1<, j<n) does not vanish, thus [4; # 0

)\ af, dfs _
5}-) _Ao[awi ©) - (0)] =[0 ... 1...0],

Aonf(
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Aong(%) — Ao(g—gi (0)) =Ao(ag’ (0)) +6Ao(—§% (0))

0x; 5 0z,

1 0...0
¢ 1..0
dg; .\ b ... .
“AO(BE(O))J“S 00..1
0 0...0

. . s ag;

Let B denote the matrix build up from initial » rows of Ao o (0)

04

and C be the matrix build up from initial n rows of Ao (5% (0)). Note
4

that |B] = 0 iff some eigenvalue A; of C is equal to — 8. If & satisfies the

07;
s
< m) are lineary independent in m therefore also in @ neighbourhood
of m. The manifold M is compact thus we can choose a finite covering
{U,} and numbers &, such that the map 7 is an immersion on U, for

6 << 4. Let 8, = mind,; the map § is an immersion if §<< 4.
k

inequality 0 < 6 < min{|4,]: 4; 5 0}, then the vectors (0) A<4,j
k)

Let G be a finite group, W its representation, and M a compact
n-dimensional @-manifold with the following property:

(%)  every point m € M has a G-neighbourhood U, and an equivariant
embedding of U, in tWX\O0 for some t.

CORROLARY 2. If M has property (x*) and s> 2n, then every smooth
map f: M—>sW can be OF uniformly approwvimated by an equivariant im-
mersion. (Cf. [7], Corollary 1.10.)

Proof. It follows from (+x) that (M, V)V has an H-monomor-
phism in (W (H is a subgroup of G occurring on M and V is an irreducible
representation of H). Thus it is easy to see that the representation sW
satisfies condition (=). .

ExamPLE 1. Let Z, acts on B**' = RP*! x R"? by reflection in RP*!
and on RF*T = R*xRF by reflection in R? We consider equivariant
immersions of the unit sphere 8" c R**! with the induced Z, action
into R*t? Since (8™)?2 = 87, inequality (*) holds if

(a) 2p <gq.

Since (S")¢ = 8", inequality (x) holds if

(b) 2n < k+q (for trivial group e).

If R denote the non-trivial representation of Z,, then 1(8", B) = n—p
and I(R*¥*? R) = k. Inequality (=) holds if

(¢) n< k.
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Therefore, if inequalities (a), (b), (¢) hold, then every smooth Z,-map
f: 8"—>R™* (with the actions described above) can be approximated
by a Z,-immersion.

In particular, if we consider 8" with the antipodal action of Z, (it
means that p = —1), we only need the condition: 2n < k+q.

Let W be a representation of G.

DEFINITION. G-manifold M is said to be a W-manifold if for every
m e M its tangent space T, M is G,-isomorphic to W with the aection
resrticted to @,,. (For properties and applications of W-manifolds see [6].)

Observe that if M is a W-manifold, then (M, V) =I(W, V) for
every subgroup occurring on M and every V. In particular, every com-
ponent of M¥ has the dimension equal to dim W#. Thus the representa-
tion 2W satisfies condition (x) for an irreducible trivial representation
of every subgroup H occurring on M.

ExXAMPLE 2. Let V = kR®IR be the representation of Z, and let
M be a compact V-manifold. Any smooth Z,map f: M2V @®tR can
be C*.approximated by a Z,immersion for ¢> max{k—1, 0}.

Proof. It is sufficient to check condition (*) for a non-trivial rep-
resentation of Z,: 1(2V®IR, R) = 21+t>k+1 = dim MZ2 41,

Examere 3. Let W be a representation of Z,, p # 2 prime. Then
W =kR®kV,®... Dk,_;V,_,, where V; is a 2-dimensional repre-
sentation of Z, with the action:

[cos i, sinj@J o2r
- N P
—sinj6, cosjb
Suppose that M is a compaect W-manifold,
O’ ].f. k’i == O,
P, i ko0,
then :

Any Z,-map (smooth f: M—=2W ®ko (—D 8, V; can be approximated

by Z,-immersion.
p-1

Proof. Denote the representation 2W Pk 69 &V; by V.
If M% @ and d; # 0,thenl(V, V,) = 2k, +k = dim M? -k, dlan
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