cm ptm

E. MARCHOW (Poznań) and W. PULIKOWSKI

Equivariant Whitney immersion theorem

A. Wasserman has proved in 1969 a generalization of the classical Whitney immersion theorem to the case of G-manifolds (G being a compact Lie group). In the present note another equivariant Whitney theorem is proved for a compact G-manifold and G finite. In that case our theorem implies Wasserman's result.

I wish to thank R. Rubinsztein for pointing out some errors in the first conception of this paper and for his critical observations.

Let G be a finite group. Let us begin with some remarks on G-maps. Suppose that H is a subgroup of G, X is a topological space and $G/H \times X$ is a G-space with obvious G-action (trivial on X). Let Y be a G-space and $f: G/H \times X \to Y$ be a G-map. Since f is equivariant, we get $f(H/H \times X)$ $\subset Y^H$ $(Y^H = \{y \in Y: G_y \ge H\})$. Therefore we may define a map $\overline{f}: X \to Y^H$ by the formula $\overline{f}(x) = f(H/H, x)$. On the other hand, let $\overline{f}: X \to Y^H$ be any map. Define $f: G/H \to Y$ by the formula $f(gH/H, x) = g\overline{f}(x)$ for $x \in X, g \in G$.

LEMMA 1. In the above situation the correspondence $f \rightarrow \overline{f}$ yields an isomorphism of sets: G-maps $(G/H \times X, Y)$ and Maps (X, Y^H) .

For detailed proof see [4].

Suppose that M is the *n*-dimensional C^{∞} manifold with a smooth action of G. If $m \in M^{H}$, then $T_{m}M$ is a representation of H. Let $T_{m}M = \bigoplus l_{m}(V)V$, where V is an irreducible representation of H, $l_{m}(V)$ its multiple in $T_{m}M$. Then by l(M, V) we denote $\max_{m \in M} l_{m}(V)$. Note that $l(M, V) \leq n$.

Let M be compact. We are already prepared to formulate the first theorem.

THEOREM 1. If the representation W satisfies the following condition: for every subgroup H of G such that there exists the point $m \in M$ with $G_m = H$ and every irreducible representation V of H with $l(M, V) \neq 0$, the inequality

(*) $l(W, V) \ge \dim M^H + l(M, V) \dim V$

holds, then there exists a G-immersion $f: M \rightarrow W$.

Proof. The set M is compact, therefore it has the structure of the finite G-CW complex (see [5] for the proof). We construct the immersion by an induction on G-cells attached. Let (H) be the maximal orbit type on M, $G/H \times d$ 0-dimensional cell, $\bar{f}^0: d \to W^H$ any map. We define an H-equivariant monomorphism $\bar{\varphi}_0: T_d M \to W$, afterwards $\varphi_0: TM|_{Gd} \to W$ by the formula $\varphi_0(v_{gd}) = g\bar{\varphi}_0(g^{-1}v_{gd})$, where $v_{gd} \in T_{gd}M$. A small neighbourhood of the orbit Gd in M is G-diffeomorphic to a neighbourhood of the base in the normal bundle $\nu(\text{Gd}, M)$ (see [2]). By means of the map exp we obtain the immersion from a G-neighbourhood of the orbit Gd in W. Let us denote it by f_1^0 . Suppose that M^{i-1} is (i-1)-dimensional invariant skeleton of M and σ_k^i an i-dimensional G-cell. Assume that we have already defined an immersion f_p^{i-1} from a G-neighbourhood $U_{i-1,p}$ of $M^{i-1} \cup \bigcup_{k=1}^{p} \sigma_k^i$. We extend this map to the immersion f_{p+1}^{i-1} which will be defined on a G-neighbourhood of $M^{i-1} \cup \bigcup_{i=1}^{p} \sigma_k^i$.

Let $\bar{\sigma}_{p+1}^i = \sigma_{p+1}^i \setminus \partial_e \sigma_{p+1}^i$, where $\partial_e \sigma_{p+1}^i$ is the open invariant neighbourhood of $\partial \sigma_{p+1}^i$ on which we have defined the immersion f_p^{i-1} . Observe that $\bar{\sigma}_{p+1}^i \cong G/K \times D^i$; moreover, on $\partial \bar{\sigma}_{p+1}^i \cong G/K \times S^{i-1}$ we have the map f which is a restriction of f_p^{i-1} . The map f is a G-immersion, thus $\bar{f}: S^{i-1} \to W^K$ is an immersion. We also have the map $\bar{\varphi}$ defined to be equal to Tf_p^{i-1} restricted to $K/K \times S^{i-1}$, which has rank $n = \dim M$ in every point of S^{i-1} . We want to extend that map to the monomorphism $\psi: TM|_{K/K \times D^i} \to W^K \times W$. But:

$$TM|_{K/K \times D^{i}} \cong D^{i} \times T_{0}M \cong D^{i}_{\ell} \times T_{0}M^{K} \times v_{0}(M^{K}, M) \quad (0 \in D^{i})$$

Let $\bar{\varphi}_1 = \bar{\varphi}$ be restricted to $S^{i-1} \times T_0 M^K$, $\bar{\varphi}_2 = \bar{\varphi}$ restricted to $S^{i-1} \times \times \nu_0(M^K, M)$. Observe that the image of $\bar{\varphi}_1$ is contained in $W^K \times W^K$. We look for an extension of $\bar{\varphi}_1$ to $\psi_1 \colon D^i \times T_0 M^K \to W^K \times W^K$ such that $\psi_1|_{TD^i}$ is a map tangent to the immersion \bar{g} being the extension of \bar{f} over the disk D^i . The obstruction to extending lies in $\pi_{i-1}(V^k_{\varkappa})$, where $\varkappa = \dim M^K$, $k = \dim W^K$, V^k_{\varkappa} is the Stiefel manifold of \varkappa -frames in an Euclidean k-dimensional space (see [3]). This obstruction vanishes if $i \leq k - \varkappa$. That inequality follows from condition (*) which for trivial irreducible representation R of the group K has the form $2\dim M^K \leq \dim W^K$ (in that case $l(M, R) = \dim M^K$).

Note that the image of $\overline{\varphi}_2$ is contained in $W^K \times W^{K\perp} = W$. We look for an extension of $\overline{\varphi}_2$ to φ_2 : $D^i \times r_0(M^K, M) \to W$. Such an extension exists by assumption (*) and Lemma 2 (bellow) applied to each irreducible representation separately.

Thus we have the *K*-equivariant monomorphism $\psi: D^i \times T_0 M \to W^K \times W$ covering the immersion $\bar{g}: D^i \to W^K$. We choose a neighbourhood U of D^i so small that the map exp is a diffeomorphism of a neighbourhood

of the base in the normal bundle $v(D^i, M)$ with U. By means of the map exp we obtain an immersion \bar{g}' of U in W (and G-immersion $g': GU \to W$ by equivariantness). Note that $\bar{g}'|_{S^{i-1}} = \bar{f} = f_p^{i-1}|_{S^{i-1}}, T\bar{g}'|_{S^{i-1}} = Tf|_{S^{i-1}}$. We can choose an open neighbourhood V of S^{i-1} in $U \cap U_{i-1,p}$ such that $\bar{V} \subset U \cap U_{i-1,p}$ and homotopy $G_i: U \cap U_{i-1,p} \to W$ such that

(a) for every t, G_t is the immersion,

(b) $(G_i, TG_i) = (\tilde{g}', T\bar{g}')$ on any small neighbourhood of $\partial (U \cap U_{i-1,p})$,

(c) $(G_1, TG_1)|_{\mathcal{V}} = (f, Tf)|_{\mathcal{V}} (f = f_p^{i-1}|_{U \cap U_{i-1,p}}),$

(d) $(G_t, TG_t)(x) = (\bar{g}', T\bar{g}')(x)$ if $(\bar{g}', T\bar{g}')(x) = (f, Tf)(x)$ (see [3], Lemma 2.5).

Let $Z \subset U$ be a neighbourhood of D^i such that $Z \cap U_{i-1,p} = V$. We define

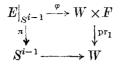
$$\begin{aligned} U_{i-1,p+1} &= U_{i-1,p} \cup GZ \supset M^{i-1} \cup \bigcup_{k=1}^{p+1} \sigma_k^p \\ \text{and} \quad f_{p+1}^{i-1}(x) &= \begin{cases} f_p^{i-1}(x) & \text{if} \quad x \in U_{i-1,p}, \\ g'(x) & \text{if} \quad x \in GZ. \end{cases} \end{aligned}$$

Let $\pi: E \to N$ be a vector bundle over N with the fibre lV, where V is an irreducible representation of G, N is a trivial G-space and l is a natural number. Then $\operatorname{Hom}(E, tV)$ is a G-bundle over N with the fibre $\operatorname{Hom}(\pi^{-1}(n), tV)$. Suppose that C is a closed subspace of $N, s: C \to \operatorname{Hom}(E, tV)$ is an equivariant non-singular section (it means that s(c) is an equivariant monomorphism for every $c \in C$).

THEOREM. If $t \ge \dim N + l \dim V$, then s can be extended to an equivariant non-singular section $\overline{s}: N \to \operatorname{Hom}(E, tV)$.

This theorem is a special case of Theorem 2.1 in [7].

Let $E = D^i \times lV$ be a trivial G-bundle, W a trivial contractible G-space, and F a representation of G containing exactly t copies of V. Let φ be a G monomorphism



LEMMA 2. If $t \ge i + l \dim V$, then the monomorphism φ can be extended to the monomorphism of G-bundles $\psi: E \rightarrow W \times F$.

Proof. Obviously, $\varphi(S^{i-1} \times lV) \subset W \times tV$; thus it is sufficient to show that $\varphi' = h \cdot \varphi$ can be extended over the disk (*h* is a homotopy contracting *W* to *). But we have the same situation in the theorem above:

$$\begin{array}{c} E|_{S^{i-1}} \rightarrow tV \\ \downarrow \\ S^{i-1} \longrightarrow * \end{array}$$

12 - Roczniki PTM Prace Mat. XX.2

CORROLARY 1. If M can be immersed in tW, then M can be immersed in 2nW (Proposition 1.1 in [7]).

Proof. The representation 2nW satisfies condition (*): if H is a subgroup of G such that there exists the point $m \in M$ with $G_m = H$ and V is an irreducible representation of H and $l(M, V) \neq 0$, then l(M, V)V has an H-monomorphism in tW. Thus V has an H-monomorphism in W and $l(2nW, V) \geq 2n \geq \dim M^H + l(M, V) \dim V$.

THEOREM 2. If M and W satisfy the assumptions of Theorem 1, then every smooth G-map g: $M \rightarrow W$ can be C^k -approximated by a G-immersion. The approximation is also uniform.

Proof. From Theorem 1 we know that there exists an immersion $f: M \to W$. The approximation \bar{g} will be of the form $\bar{g} = g + \delta f$, where $\delta = \varepsilon / \sup_{x \in M} N_k f(x), N_k f(x) = \sum_{j=0}^k \|D^j f \varphi(\varphi^{-1} x)\|$ and $\varphi: \mathbb{R}^n \to M$ is a local coordinate chart. Let $m \in M$ and φ be the local coordinate chart such that $\varphi(0) = m$; the vectors $\partial / \partial x_i$ (i = 1, ..., n) span the space $T_m M$. Note that the vectors

$$T_m f\left(\frac{\partial}{\partial x_i}\right) = \left[\frac{\partial f_1}{\partial x_i}(0), \dots, \frac{\partial f_s}{\partial x_i}(0)\right] \quad (\text{where } s = \dim W)$$

are lineary independent in W. We define an isomorphism $A: W \to W$ and show that the vectors $A \cdot T_m \bar{g}(\partial/\partial x_i)$ are independent; thus also $T_m \bar{g}(\partial/\partial x_i)$ are lineary independent.

Let

$$A^{-1} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & (0) & \dots & \frac{\partial f_1}{\partial x_n} & (0) & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \frac{\partial f_n}{\partial x_1} & (0) & \dots & \frac{\partial f_n}{\partial x_n} & (0) & 0 & \dots & 0 \\ \frac{\partial f_{n+1}}{\partial x_1} & (0) & \dots & \frac{\partial f_{n+1}}{\partial x_n} & (0) & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \frac{\partial f_s}{\partial x_1} & (0) & \dots & \frac{\partial f_s}{\partial x_n} & (0) & 0 & \dots & 0 & 1 \end{bmatrix}.$$

We may assume that the determinant of the matrix $\left(\frac{\partial f_j}{\partial x_i}(0)\right)$ $(1 \leq i, j \leq n)$ does not vanish, thus $|A| \neq 0$

$$A \circ T_m f\left(\frac{\partial}{\partial x_i}\right) = A \circ \left[\frac{\partial f_1}{\partial x_i} (0) \dots \frac{\partial f_s}{\partial x_i} (0)\right] = \begin{bmatrix} 0 \dots \\ i \end{bmatrix} = \begin{bmatrix} 0 \dots \\ i \end{bmatrix}$$

Equivariant Whitney immersion theorem

$$A \circ T_m \bar{g} \left(\frac{\partial}{\partial x_i} \right) = A \circ \left(\frac{\partial \bar{g}_j}{\partial x_i} \left(0 \right) \right) = A \circ \left(\frac{\partial g_j}{\partial x_i} \left(0 \right) \right) + \delta A \circ \left(\frac{\partial f_j}{\partial x_i} \left(0 \right) \right)$$

$$= A \circ \left(\frac{\partial g_j}{\partial x_i} \left(0 \right) \right) + \delta \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}.$$

Let *B* denote the matrix build up from initial *n* rows of $A \circ \left(\frac{\partial \bar{g}_j}{\partial x_i}(0)\right)$ and *C* be the matrix build up from initial *n* rows of $A \circ \left(\frac{\partial g_j}{\partial x_i}(0)\right)$. Note that |B| = 0 iff some eigenvalue Λ_i of *C* is equal to $-\delta$. If δ satisfies the inequality $0 < \delta < \min_i \{|\Lambda_i|: \Lambda_i \neq 0\}$, then the vectors $\frac{\partial \bar{g}_j}{\partial x_i}(0)$ $(1 \leq i, j \leq n)$ are lineary independent in *m* therefore also in a neighbourhood of *m*. The manifold *M* is compact thus we can choose a finite covering $\{U_k\}$ and numbers δ_k such that the map \bar{g} is an immersion on U_k for $\delta < \delta_k$. Let $\delta_0 = \min \delta_k$; the map \bar{g} is an immersion if $\delta < \delta_0$.

Let G be a finite group, W its representation, and M a compact n-dimensional G-manifold with the following property:

(**) every point $m \in M$ has a G-neighbourhood U_m and an equivariant embedding of U_m in $tW \setminus 0$ for some t.

CORROLARY 2. If M has property (**) and $s \ge 2n$, then every smooth map $f: M \to sW$ can be C^k uniformly approximated by an equivariant immersion. (Cf. [7], Corollary 1.10.)

Proof. It follows from (**) that l(M, V)V has an *H*-monomorphism in tW (*H* is a subgroup of *G* occurring on *M* and *V* is an irreducible representation of *H*). Thus it is easy to see that the representation sW satisfies condition (*).

EXAMPLE 1. Let \mathbb{Z}_2 acts on $\mathbb{R}^{n+1} = \mathbb{R}^{p+1} \times \mathbb{R}^{n-p}$ by reflection in \mathbb{R}^{p+1} and on $\mathbb{R}^{k+q} = \mathbb{R}^q \times \mathbb{R}^k$ by reflection in \mathbb{R}^q . We consider equivariant immersions of the unit sphere $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ with the induced \mathbb{Z}_2 action into \mathbb{R}^{k+q} . Since $(\mathbb{S}^n)^{\mathbb{Z}_2} = \mathbb{S}^p$, inequality (*) holds if

(a) $2p \leq q$. Since $(S^n)^e = S^n$, inequality (*) holds if

(b) $2n \leq k+q$ (for trivial group e).

If \tilde{R} denote the non-trivial representation of \mathbb{Z}_2 , then $l(S^n, \tilde{R}) = n - p$ and $l(R^{k+q}, \tilde{R}) = k$. Inequality (*) holds if

(c) $n \leq k$.

Therefore, if inequalities (a), (b), (c) hold, then every smooth \mathbb{Z}_2 -map $f: S^n \to \mathbb{R}^{q+k}$ (with the actions described above) can be approximated by a \mathbb{Z}_2 -immersion.

In particular, if we consider S^n with the antipodal action of \mathbb{Z}_2 (it means that p = -1), we only need the condition: $2n \leq k+q$.

Let W be a representation of G.

DEFINITION. *G*-manifold M is said to be a *W*-manifold if for every $m \in M$ its tangent space $T_m M$ is G_m -isomorphic to W with the action restricted to G_m . (For properties and applications of *W*-manifolds see [6].)

Observe that if M is a W-manifold, then l(M, V) = l(W, V) for every subgroup occurring on M and every V. In particular, every component of M^H has the dimension equal to dim W^H . Thus the representation 2W satisfies condition (*) for an irreducible trivial representation of every subgroup H occurring on M.

EXAMPLE 2. Let $V = kR \oplus l\tilde{R}$ be the representation of \mathbb{Z}_2 and let M be a compact V-manifold. Any smooth \mathbb{Z}_2 -map $f: M \to 2V \oplus t\tilde{R}$ can be C^k -approximated by a \mathbb{Z}_2 -immersion for $t \ge \max\{k-l, 0\}$.

Proof. It is sufficient to check condition (*) for a non-trivial representation of Z_2 : $l(2V \oplus t\tilde{R}, \tilde{R}) = 2l+t \ge k+l = \dim M^{\mathbb{Z}_2} + l$.

EXAMPLE 3. Let W be a representation of Z_p , $p \neq 2$ prime. Then $W = kR \oplus k_1 V_1 \oplus \ldots \oplus k_{p-1} V_{p-1}$, where V_j is a 2-dimensional representation of Z_p with the action:

$$egin{bmatrix} \cos j heta, & \sin j heta\ -\sin j heta, & \cos j heta \end{bmatrix}, \quad heta=rac{2\pi}{p}.$$

Suppose that M is a compact W-manifold,

$$\delta_i = egin{cases} 0, & ext{if} & k_i = 0, \ 1, & ext{if} & k_i
eq 0, \end{cases}$$

then:

Any Z_p -map (smooth) $f: M \to 2W \oplus k \circ \bigoplus_{i=1}^{p} \delta_i V_i$ can be approximated by Z_p -immersion.

Proof. Denote the representation $2W \oplus k \bigoplus_{i=1}^{p-1} \delta_i V_i$ by V. If $M^{\mathbb{Z}_p} \neq \emptyset$ and $\delta_i \neq 0$, then $l(V, V_i) = 2k_i + k = \dim M^p + k_i \dim V_i$.

References

[1] G.E. Bredon, Introduction to compact transformation groups, Academic Press, New York 1972.

- [2] K. Janich, Differenzierbare G-Mannigfaltigkeiten, Lecture Notes in Mathematics No. 59, Springer, Berlin 1968.
- [3] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), p. 242-276.
- [4] T. Matumoto, Equivariant cohomology theories on G-CW-complexes, Osaka J. Math. 10 (1973), p. 51-68.
- [5] -, Equivariant K-theory and Fredholm operators, J. Faculty Sci. Univ. Tokyo, Sec. IA, vol. 18, No. 1, p. 109-125.
- [6] W. Pulikowski, RO-graded G-bordism theory, Bull. Acad. Polon. Sci. 21. 11 (1973), p. 991-995.
- [7] A.G. Wasserman, Equivariant differential topology, Topology 8 (1969), p. 127-150.