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Abstract. Substitution ciphers can be quite weak when the probability 

distribution of the message letters is distinctly non-uniform. A time- 

honoured solution to remove this weakness is to "split" each high-pro 

bability letter into a number of "homophones" and use a substitution 

cipher for the resulting extended alphabet. Here the performance of a 

homophonic cipher is studied from a 'Shannon-theoretic point cif view. 

The key and message equivocations (conditional entropies given the i" 

tercepted cryptogram) are computed both for finite-length messages and 

"very long" messages. The results obtained are strictly related to 

those found by Blom and Dunham for substitution ciphers. The key space 

of a homophonic cipher is specified carefully, so as to avoid misunder 

standings which appear to have occurred on this subject. 
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1. Introduction. 

Simple substitution ciphers (s.s.c.'s) are probably theoldesttype 

of ciphers put to work, and yet they are still in good health in the 

form of (individually weak) components of (hopefully good) complex 

cipher system (e.q. the Data Encryption Standard). The key of a S.S.C. 

is a permutation of the message-letter alphabet A={al,a2,...,aSI, ' s22; 

once a key is chosen each single letter output by the message source 

is replaced by its substitute. S.s.c.'s have been studied rather deeply 

in the last decade; cf. /I, 2, 3/; in the first two papers the strength 

of a cipher is assessed by evaluating the equivocations ("uncertainties") 

on side of the spy who has intercepted a cryptogram (key equivocation 

or message equivocation, according whether the spy is interested in 

finding out the correct key or the correct message); in /3/ the error 

probabilities are evaluated when the spy uses the best statistical pro 

cedure to recover the correct key or message from the intercepted cryp 

togram. Further work on s.s.c.'s is done in /4/, which contains a discus 

sion on the role of the "Shannon-theoretic approach" to cryptography 

and, more generally, on the relevance of purely statistical cryptogra 

phic models. 

A S . S . C .  is very weak when the probability distribution (p.d.1 P 

ruling the message source, which we assume to be memoryless and station 

ary, is distinctly non-uniform; ( P={p,,p2,...,ps,, 1 pi>O, lpi=l; ufi 

specified summations are meant over all values of the index). A time- 

honoured solution to remove this weakness is to make use of a cryptogram- 

letter alphabet C of size t larger than s, the size of the message-let 

ter alphabet; for example, the letters of C might be the ordered couples 

of message letters. Then any large probability p. can be broken down 

by associating to the corresponding letter ai many possible cryptogram 

substitutes, ti, say: each time a. occurs in the message one of these 

is chosen at randcx and actually substituted for a,. The resulting ci 

pher is called a kornophonic cipher (or, rather, a simple, that is single- 

letter, homophonic cipher; a more formal description is given below). 

Homophonic ciphers, which are a generalization of s.s.c.'s (refound 

for t.=l, 16iZs, that is, essentially, when d = C  ) have been recently 

I 

- 

1 
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studied in /5/. In this paper we take the equivocation approach to 

assess the strength of homophonic ciphers, thereby generalizing the 

work done in /1/ and /2/ €or s.s.c.'s. 

A mathematical tool which we shall use is the notion of an exact 

=. Consider A , the set of the s sequences of length n built over A ;  
n n 

an exact type (of order n over A )  is a subset of A" made up of a sequence 

together with all its permutations.0f course, if (n ,n .,n 1 is the 

composition of any of these sequences, n being the number of occug 

rences of letter a., (n.20, lni=n), the size of the corresponding exact 

type is the multinomial coefficient n!/n,!n !. ..n !. Statisticians will 

recognize here an obvious link with the notion of sufficient statistic; 

we simply stress that the sequences of an exact type have all the same 

probability. A powerful technique based on aspptotically tight bounds 

for the size and the probability of exact types has been made popular 

in the circle of information theorists by the fundamental textbook / 6 / .  

This technique is applied in / 3 /  to the error probability approach to 

s.s.c.'s and in/7/ to the equivocation approach to the same ciphers. 

1 2 ' * *  s 

i 

1 1 

2 S 

Before going to mathematical developments, we have to give a more 

formal description of a homophonic cipher. Two alphabets, A and C 

={c, ,c2,. . . ,c 
bet; also s integers are given which sum to t: tl,t 2,...,t , t.21, 
lti=t. A key is specified by giving s disjoint subsets of C of size 

5' 1 

t>s, are given, C being the cryptogram-letter alpha t' 

s 1  

and t respectively. Each time letter a. is output by the tl 't2,. - 
message source, one of the t, letters of the i-th subset is chosen with 

(conditional) probability 1 /t. and is substituted for letter a. - The 
knowledge of the key is enough to reconstruct the correct message from 

any of the possible corresponding cryptograms. Before transmission 

begins, a key is chosen at random and independently of the message 

output by the source; the key is communicated to the legitimate receiver 

via a secure special channel; ("at random" means that the key is a 

uniform random variable, or r.v., over the set of all possible keys). 

The cryptogram is eerived from the message and sent over the normal 

unsafe channel, where it is intercepted by the spy. 

1 

1 1 

We find it convenient to give a more careful description of the key 

of a homophonic cicher. Such a key can be represented by a sequence in 
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t 
A with composition (tl,t *,...,t )(alphabet letter a. occurs t 

times, Iti=t). The meaning of this representation is that if a 

j-th component of the sequence, then c .  is a possible substitute for 

a. under the given key. We shall actually identify each possible key 

wrth the corresponding sequence in At, so that'for us the set of keys 

will be an exact type in A . Clearly the number of all keys for a homo 
phonic cipher ( A ,  C; tlrt2,...lt ) is the multinomial coefficient 

S i 

i 
is the 

1 

t 

S 
t!/t,!t2! ".tS! 

As shown in / 5 / ,  a homophonic cipher induces a S.S.C. in a quite 

natural way. A presentation follows which suits our purposes. Take an 

extended alphabet Y={~,~u~,...,u~]with the same size t as the crypt2 

gram alphabet C;although it would not be restrictive to take U=C we 

keep them separate for the sake of notational clarity. The elements Of 

U will be denoted at places by symbols like a.., lSiSs, l5jSt - in 
other words in U each message letter a. is duplicated t. times: the 

letters a. are called the homophones of letter a.. No ambiguity should 

result from the fact that thelettersof U have two names, e .g .  u is 

also called a,. for some i and some j .  A dummy memoryless and stationary 

source with alphabet U ,  called the extended source, is now built in the 

following way: each time the message source outputs a letter a l S i < S l  

the extended source outputs a letter a. , lSjLt., with (conditional) 
uniform probability; then the (absolute) probability of letter aij is 

pi/ti. We call Pi the p.d. made up of these probabilities; P* rules the 

statistical behaviour of the extended source. Note also that the output 

of the message source is a deterministic function of the simultaneous 

output of the extended source. 

1 7  i' 

1 

11 1 

1 

1 3  

i' 

11 

Take now the S.S.C. ( U ,  C), whose t! keys can be represented (cf. 
t above) as sequences in U where each letter occurs exactly once. To any 

key for ( U ,  C) we can associate a key for ( A ,  C; t,,t2, ..., t ) replacing 

each a , .  in the LJb sequence by a,. A homophonic cipher can be put to 
1 3  

work in the following way, which is readily shown to be equivalent to 

the original description. A key is chosen for the S.S.C. (U, C ) .  The 

message source is set going together with the extended source syncronized 

with it-The key is applied to the extenderi message to give the cryptogram. 

From this key a "short" key can be obtained as above to be communicated 

A. s 
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to the legitimate receiver. The "short" key applied to the cryptogram 

does not allow the legitimate receiver to recover the extended message, 

but it does allow him to recover the original message over A ,  which is 

what he needs to know. The key for the S.S.C. ( 2 ,  C )  is a uniform r.v. 

K* with t! values, while the "short" key for the homophonic cipher is 

a uniform r.v. K with t!/t !t !...t ! values. We shall also write 

, where J is again a uniform r.v., this time with t,!t2! ... t ! K*=(K, J) 

values, which identifies K*'once K is known; note that K and J are 

independent, as it appears from the values of the respective probabili 

ties. K, J and K* will be referred to as the actual key, the supplemen 

tary key and the extended key. We stress the distinction between K and 

K*: it is the former which is the "true" key of the homophonic cipher, 

while K* contains the "redundant information" J; cf. the discussion 

at the end of section 4 .  

1 2  S 

S 

- 

Let the r.v.'s M , U and C denote the first n letters output by n n  n 
the message source, the extended source and the cryptogram source, 

respectively. Some relations for relevant entropies are already im 

plicit from the foregoing: H(MnlUn)=O, H(IYnIK,C ) = O f  H(M IK)=H(Mn[K*)= 

=H(M , H(K,J)=H(X)+H(J) , etc. In the following section we shall aSSeSS 
the performance of a homophonic cipher by evaluating its equivocations. 

n n 

n 

2. The equivocations. 

The equivocations of interest are: H(KICn), the key equivocation, ' 

H(KIMn,Cn), the key appearance equivocation, interesting in the case 

of "chosen plain-text attacks", and, most important of the three, 

H(MnICn), the message equivocation. Since (Y, C) is a S.S.C. we already 

know a lot about its own equivocations, H(K*~c~), H(K*IUn,Cnl and 

H(UnlCn); cf. /1 ,2,7/. Only the first will be needed. Its value is 

where A=A (P,t, , t2,. . . , t ) =d !d2!. - .dh!, h being the number of distinct 
probabilities appearing in P*, the first d tiizes, the second d times, 

s 1  

1 2 



56 

etc.; d +d +...+ d =t; the r-summation is extended over all exact types 

T in U ; u is any sequence in T ; the &-summation is extended over 

all p.d.'s Q which are obtained by permuting the components of P*, 

including P* itself: these p.d.'s are only t!/A owing to ties in the 

components of P*; of course Q is the memoryless extension of Q over 

Un. The term log A is a constant; it is certainly non-zero for a strict 

ly homophonic cipher (one for which ttstl). The second term goes to 

zero and it is exactly zero when P*  is uniform and A achieves its 

maximum value log t! (cf. also section 3) - 

1 2  h n 
r -r r 

n 

Some simple identities are helpful. For example: H (K* 1 Cn) =H (KtJ I cn) = 

=H(KICn)+H(J/K,Cn); as H(K*[C ) is known, it will be enough to compute 

H(JIK,C ) and then use: 

(21 

Further: H(K,M ICn)=H(KiCn)+H(M IK,C )=H(K/C ) because Mn is a deter 

ministic function of key and cryptogram; and also H(K,M1lICn)=H(MnICn)+ 

+ H ( K ~ M ~ , c ~ )  - BY comparision (cf. / 2 / )  : 

n 

n 
H(KICn) = H(K*/C,) - H(J/K,Cn) 

n n n n 

( 3 )  H ( M ~ / c ~ )  = H ( K I c ~ )  - H ( K ~ M  n ,cn) 

Now we deal directly with H(J/K,C ) and H(KIM ,C ) n n n  
Theorem 1 .  

H(J/K,C = H(J) = liog ti! n 
Proof. Assume (k,j) and (k,i) are two extended keys for the S.S.C. 

(U, C) with the sane actual key k. With respect to each other these 

keys only scramble equiprobable homophones relative to the same message- 

alphabet letter. Therefore, for any cryptogram s, Prob{C =s/K*=(k, j )  := 
Prob{C =clK*=(k,i):. This means that C and J are conditionally indepen 

dent given K, and therefore H (J 1 K,C ) =H (J 1 K) - But we already know that n 
J and K are independent, so H(J/K)=H(J). To complete the theorem, recall 

that J is a uniforrn r.v. with t !t !...t ! values QED 1 2  S 

n 
n n 

In theorem 2 the r-summation is extended over all exact types T 
n 

1 11 

r 
in 11 

occur in the sequences of T , lsizs, Oih.St 1h.St-1. 

Theorem 2. 

and hi=h.(rr) is the number of distinct letters a,. which do not 

r 1 i' I 

H(KIMn,Cn) = lP*n(Trl lllog(lhi)! - lloghi!-l 
r - 

The non-zero terrrs in the summation are those for which at least two 

h.'s are positive, that is, at least two unequivalent homophones are 
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missing . 
Proof. Assume that a couple message-cryptogram, 5 ,  2,  is given of pos 
itive joint probability. Let us try to reconstruct the key, which is 

a sequence in A : e.g., if a. and ci are letters in the same position 

in the given couple, a is the j-th component of the key. However, gaps 

might be left because letter a. might not occur, or it might occur in 

correspondence to less than t distinct cryptogram letters. If h. denotes 

the number of times letter a. is missing in the partially reconstructed 

key, the number of possible keys left is (Ihi)i/h !ha! ... h !. Secause 
of symmetry each such key has the same conditional probability, and SO 

t 
1 

i 

1 

i 

1 

1 s 

H ( K l M  =m, C 'c) = log(Ih.)! - lloghi! n n -  
Note that the integers h. can be computed directly from the extendedsg 

quence goutput by theextended source, h, being simply the number Of 

distinct letters a. which do not occur in 1- Note also that the Set 
of g-sequences with given integers h. is a union of exact types. There 

fore, grouping together%-sequencesin the same type: 

H(K\Mn,Cn) = ]P*n(Tr) lI lorJ(lhi)  ! - llogh. 1 -  

1 

11 
1 

r 

Clearly the quantity inside square brackets is zero only when at most 

one h. is positive. This proves the last statement in the theorem. QED 

Note that the key-appearance equivocation is zero only for t=2, 

and then the homopnonic cipher is also a S.S.C. (s=t=2). 

Now ( 1 )  , (2) and (3), together with the two theorems, give the 

exact values of the equivocations H ( K / C  ) , H ( K I ? l  ,C and H(Mn[Cn). 
n n n  

3.Asymptotic results. 

It will be shown now that the key-appearance equivocation 

H ( K  131 ,C ) becomes negligible with increasinr? rcessage length n. 

Therefore for 1arTe n ' s  both H ( K i C  ) and €I(!.! ' C  ) are approximately 

equal to the constarLz cerm 

n n  

n n n  

log A - 1109 ti! 
("unremovable uncertainty") ; cf. also the observations below formula 

( 1 ) .  Note that the factors d. which appear in the definition of A (Cf. 

again ( 1 ) )  are made ~p summing one or more t ' s  bacause equivalent 
7 

i 
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homophones have all the same probability. So, as it should be, the 

unremovable uncertainty is non-negative. It is zero when only equiva 

lent homophones are equiprobable (the numbers d. and the numbers ti 

are the same up to their order). 
1 

Now we investigate the behaviour of H(K\M ,C ) as a function Of n n  
n. To extend the validity of theorem 3 below to the case t=2, when 

H ( K / M  ,C ) is z e r o ,  we adopt the (natural) convention that a term Of 

the form 

D=D(P,t ,t2,...,t ) =  pig (pi/ti+pf/tf)<l (D=l if and only if s=t=2). 

Theorem 3. 

n n  
exp{n\I--+c,\:, lim E = O f  means zero. We set n n  

1 s l S l < L ~ S  

H ( K ( M  ,C ) = exp{nllog(l-D)+EI;1j, lim E =O 

log 2 ZP* ( T ~ )  2 E ( K I M  ,c ) s log(t-i)! ~ P * ~ ( T ~ I  
r n n  r 

n n  n n  - 
Proof. Take tt3. We start with the obvious bounds: 

n 

the summations being restricted to types which correspond to non-zero 

terms in the summation of theorem 2 .  Denote by M(i,j;f,g) the set o f  

U -sequences such that a,. and a are missing in them; 15i<fSs,, 

lSjSti, 1SgSt.; Mli,j;f,g) isaunion of exact types. One has: 
7 

~P*~(T=) = P * ~ ( U T  = P*n(uM(i,j;f,g)); 
r r r  

n 
1 7  fg 

the sets in the latter union, which is not disjoint, are no more than 

(:I c(t-1) !-I2. One has also: 

P*n(M(i,l;f,l)) = p*n(M(i,j;f,g)) =(~-p;~-p* fl ln=(l-pi/ti-p f f  /t j n  

~*~(~(1,1;2,1) = (I-D) 

n n  

Assume that D is achieved, say, for i=1, f=2. Then: 
n n 

L P* (M(i,j:f,g)) 
and the bounds for H ( K I M  ,C ) can be relaxed to: 

n 
log 2 (I-D)” ~ H ( K I M ~ , C ~ ) ~ ( ~ )  II(t-1) r12 iog(t-i)! ( i - ~ )  

This ends the proof.  QED 

Observe that the proof of the theorem implicitly gives asymptotically 

tight bounds for E which are independent of P(t23): n -1 -1 S - 2  n log log 2 5 E 2 n log{(2) Y(t-1)!1 log(t-l)!i n - - 
The parameter D which appears in theorem 3 does not coincide with 

the corresponding parameter obtained by Dunham /2/ f o r  the key appear 

ance equivocation R(K* / U  ,C of the S.S.C. ( L r f  C )  . He proved that 
H ( K * i U 1 1 , C n ) = e x p { n ~ l o g ( 1 - D ) + 6 - / : ,  lim E = O f  where 6 is the sum of the 
two smallest components of P*; since these components may be relative 

to equivalent homophones, one has DSD. 

c n  
- rb n n  

.. 
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The asymptotic behaviour of H(K*/C 1 is well-known (cf. / 1  , 7 / )  , 
and so we have all we need. We shall write down explicitly the asy; 

ptotic formula for H(M I C  ) , the most complex (and in a way the most 

relevant) of the three equivocations: 

n n  n n n  

n 

n n  

H ( M  Ic ) = H ( K I C  - H ( K I M  ,c = log A ' -  liog ti! 

-- It q n n n  + exp{nrlog(1-B)+6;\:- - exp{n/log(l-D)+E-/;, - lim 6 =lim E =o 
B=B(P,tl ,t2,... ,t ) is defined as min(Jp./t.-/p./t.) , the minimum 

S 1 1  3 3  
being taken over all distinct P*-probabilities, 15i, j l s ,  pi/ti*p ./t - 
B is set equal to 1 for P* uniform , so that the corresponding expo 

nential term becomes zero. Of course, if B<D, one can write the message 

equivocation as: 

3 j '  

H ( M  n n  IC = log A - %log ti! + exp{n~log(l-B)+6~1), - lim &:=of  

H(MnICn) = log A - llog ti! - exp{njlog(l-D)+E'-I:, - lim E'=O. 

while, if B>D, one has instead: 

n- n n  

4 .  Final remarks. 

At the beginning of section 3 it has already been pointed out that, 

for  large message lengths n, both the key and the message equivocation 

are approximately equal to the "unremovable uncertainty" log A-Ilog ti ! 2 0 .  

The condition for the unremovable uncertainty to be zero is that only 

equivalent homophones are equiprobable. An advantageous situation is 

found instead when P* is uniform (all the homophones are equiprobable); 

then the homophonic cipher is said to be matched (cf. / 5 / )  and the u~ 

removable uncertainty equals log t!-Ilog(tpi) !, tp. integers. In prin 

ciple, when the components of P, the p.d. of the message source, are 

rational, one can always achieve P* uniform for a sufficiently large 

cryptogram-alphabet size t; however, alphabet extension runs counter 

to complexity requirements (it also leads to the growth of the term 

llog ti!). Once a threshold T>s is given, always assuming that the 

cipher will be used for a long time, one should judiciously choose 

the parameters t,t ,t2,...,t , sStST, in order to achieve a large UG 
removable uncertainty. Were it not so, the performances of the homophonic 

cipher might even be worse than those of the S.S.C. ( A ,  A )  for the Same 

1 

1 S 
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message source, for example when equal probabilities p and p are split 

to give distinct probabilities p./t. and p /t so that letters a and 

a 

phonic cipher. 

i 1 
1 1  j 1' i 

become statistically distinguishable only in the case of the homo 
j 

Assume a cipher system (KIM ,C ) is given. We call two keys k and n 
h indistinguishable when T-l (c)=T-'(c) for all cryptograms 5, of any 
length (Tk ( - 1  denotes the cryptogram-to-message transformation deter 

mined by key k; note that in the case of a homophonic cipher the me2 

sage-to-cryptogram transformation T ( * )  is not deterministically de 

fined). The spy (and also the authorized receiver, for that) is integ 

ested only in the equivalence class of indidinguishable keys to which 

k belongs, rather than in k itself. Sometimes the extended key, K*, has 

been misinterpreted as the "true" key of a (strictly) homophonic cipher. 

If one neglects the fact that distinct extended keys with the same 

actual key are indistinguishable, one is lead to give over-optimistic 

evaluations of the cipher's performances. In particular, the negative 

term -1log ti!, which appears both in key and message equivocation, is 

ignored. Our description of the various types of "keys" in terms of 

suitable exact types makes it transparent why the "true" key of a homo 

phonic cipher is precisely the actual key, K. Distinct actual keys are 

always distinguishable. 

k h -1 

k 
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