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Abstract

Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many
conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to
developmental and neurological diseases, e.g. Alzheimer’s disease. Expression of mutant proteins disrupts protein folding in the
endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR).
The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase
expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of
genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated,
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1. Endoplasmic reticulum stress

In its broadest definition, stress is the response of any
system to perturbations of its normal state. For a cell
or organism these can be either life-enhancing changes,
e.g. feeding, or life-threatening changes, e.g. starvation
[1–3]. To apply this definition of stress to an organelle,
e.g. the ER, we have to address the following ques-
tions: what are the physiological functions of the ER
and how are they perturbated? Furthermore, we have
to understand how these perturbations are sensed and

how signals are transduced to initiate countermea
to restore the original state.

In eukaryotic cells the ER is the first compartmen
the secretory pathway. It is responsible for the syn
sis, modification and delivery of proteins to their pro
target sites within the secretory pathway and the e
cellular space. All secretory proteins enter the secre
pathway through the ER. In the ER, proteins fold
their native conformation and undergo a multitude
post-translational modifications, including asparag
linked glycosylation[4,5], and the formation of intra
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Fig. 1. Protein flux through the ER (orange) and principal activities of the UPR to couple the ER protein folding capacity with its protein folding
burden (blue). Abbreviations: ER – endoplasmic reticulum, ROS – reactive oxygen species.

and intermolecular disulfide bonds[6]. In a process
termed quality-control only correctly folded proteins
are exported to the Golgi complex (Fig. 1), while in-
completely folded proteins are retained in the ER to
complete the folding process or to be targeted for degra-
dation[7]. In addition, the ER is the site for the synthe-
sis of sterols and lipids[8]. In lower eukaryotes a major
portion of the cell wall is synthesized in the ER[9].

Disruption of any of these processes causes ER
stress. Historically, the focus is on ER stress caused
by disruption of protein folding, and little is currently
known about ER stress caused, for example, by aber-
rations in lipid metabolism, or disruption of cell wall
biogenesis. Proof of principle experiments established
that expression of mutant, folding-incompetent pro-
teins causes ER stress and an ER stress response, called

the unfolded protein response (UPR)[10–13]. This is
the biochemical basis for many ER storage diseases, in
which folding-incompetent proteins accumulate in the
ER[14,15]. In vivo protein folding requires a complex
ER-resident protein folding machinery. Exhaustion
of the capacity of this protein folding machinery by
over-expression of wild-type proteins, e.g. blood coag-
ulation factor VIII [16,17], or antithrombin III[18,19]
results in the accumulation of unfolded, aggregated
proteins in the ER and activation of the UPR. Recently,
many physiological conditions were identified in which
the demand on the ER-resident protein folding machin-
ery exceeds its capacity, e.g. differentiation of B-cells
into plasma cells, a cell type highly specialized in se-
cretion[20–22], viral infection[23,24], and, in plants,
the host’s response to a microbial infection[25,26].
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Two simple adaptive mechanisms are employed to
bring the folding capacity of the ER and its unfolded
protein burden into line and return the ER to its normal
physiological state (Fig. 1): (1) upregulation of the fold-
ing capacity of the ER through induction of ER-resident
molecular chaperones and foldases and an increase
in the size of the ER, and (2) down-regulation of the
biosynthetic load of the ER through shut-off of protein
synthesis on a transcriptional[27,28]and translational
level[29] and increased clearance of unfolded proteins
from the ER through upregulation of ER associated
degradation (ERAD;[30–32]). When these mecha-
nisms do not remedy the stress situation, apoptosis is
initiated in higher eukaryotic organisms, presumably
to eliminate unhealthy or infected cells[33,34].

UPR activity is also detected in cells that are
considered “unstressed”[35,36], that is, have not been
subjected to experimental manipulations that disrupt
protein folding in the ER. This basal UPR activity was
implicated in nutrient sensing and control of cellular
responses to fluctuations in nutrient levels[35,37,38].
These observations extend the physiological functions
of the UPR and are summarized at the end of this
review.

2. Principles of protein folding

To understand, why protein folding is very easily
disrupted, e.g. by the over-expression of WT proteins,
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competing pathways leading to conformations with
ever decreasing free energies until a transition state
is crossed[39]. Folding stops when the conformation
with the lowest free energy is reached. In many cases
this conformation is identical to the native conforma-
tion of the protein[39]. Thus, the primary amino acid
sequence of a protein is the major determinant for the
folding of the protein, a phenomenon first summarized
in Anfinsen’s dogma[40].

2.2. Kinetics

Kinetically, protein folding is initiated by a hy-
drophobic collapse, in which several hydrophobic side
chains shield each other from surrounding water[41].
Burial of electrostatic interactions, such as salt bridges
or hydrogen bonds, in the hydrophobic core limits
the number of possible conformations for the folding
protein, and is a major determinant in the folding
pathway[41]. Individual structures, e.g.�-helices or
�-turns fold within 0.1–1�s [42,43]. Small proteins
fold in less than 50�s [44,45] without significantly
populating intermediate states[46]. Compared to the
rate of protein folding, translation of mRNAs is slow
and proceeds at≈4–6 amino acid residues/s[47]. To
form secondary and tertiary structural elements in
which residues far apart in the amino acid sequence
interact, e.g.�-sheets or disulfide bonds, the preceding
residues must be maintained in a folding competent
state until the interacting partners are added to the
p the
h the
p
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p -
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nd why this is so detrimental to the ER, we brie
ummarize our current understanding of protein f
ng with focus on the ER. The ER is a major prot
olding compartment in an eukaryotic cell, second o
o the cytosol. Many principles governing protein fo
ng in the cytosol also apply to the ER and are sum
ized in this chapter.

.1. Thermodynamics

For any given protein the number of possi
onformations, as defined by the number of na
nd total interactions of its residues, is determ
y its amino acid sequence. Each conformation h
ertain free energy. Plotting of all free energies ve
heir corresponding conformations yields a distinc
nergy surface or landscape for the protein. On
nergy landscape the protein folds along sev
olypeptide chain. This problem is exacerbated by
igh protein concentration in vivo. For example,
rotein concentration in the ER is≈100 g/l (≈2 mM),
nd even the assembly of IgG heavy and light cha
hose concentration in the ER of an antibody secre
lasma cell is≈4–6�M, can in principle be a diffusion
ontrolled process[41]. Thus, it is necessary to shie
olding proteins displaying hydrophobic patch
n their surface from inadvertently colliding a

nteracting with other maturing and mature protein

. Protein folding in the ER

The ER differs significantly from the cytosol top
ogically, in its chemical composition, and in its prot
olding machinery. All these differences can sign
antly affect protein folding in the ER.
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3.1. Topology

The ER is a membrane surrounded compartment,
and its luminal space is topologically equivalent
to the extracellular space. Proteins destined for the
ER are directed to the ER through a predominantly
hydrophobic signal sequence and have to, either co-
or post-translationally, traverse the ER membrane
through the Sec61p complex[48–50]. The presence
and timing of cotranslocational signal sequence
cleavage with folding of the polypeptide chain affects
the folding pathway[51,52].

3.2. Chemical composition

As in the cytosol, the pH in the ER is near neutral
[53]. In mammalian cells the ER is the major site for
Ca2+ storage. ER luminal Ca2+ concentrations reach
5 mM, compared to 0.1�M in the cytosol[54]. ER
luminal Ca2+ concentrations rapidly and frequently
fluctuate as the ER Ca2+ pool is mobilized during
intracellular signaling[55]. Ca2+ can participate in
electrostatic interactions in proteins and through these
alters hydrophobic interactions. Thus, the effect of
fluctuations in the ER Ca2+ pool on protein folding
depends on the protein[56,57]. More importantly, the
majority of the ER-resident molecular chaperones and
foldases are vigorous Ca2+ binding proteins. Perturba-
tion of the ER Ca2+ pool affects their folding, activity

F ygen s ptor. Sub-
s

[58–60], and interactions with other chaperones
[61].

The major redox buffer in the cell is glutathione.
In the cytosol the ratio of reduced (GSH) to oxidized
glutathione (GSSG) is 30:1 to 100:1. In contrast, in
the ER this ratio is 1:1 to 3:1[62]. Disulfide bond
formation in the ER is catalyzed by protein disulfide
isomerases (PDI) (Fig. 2). Reduced PDI is recycled by
the FAD-dependent oxidases Ero1p[63–66]and Erv2p
[67,68]. A third FAD-dependent oxidase, Fmo1p also
contributes to disulfide bond formation[69]. The final
electron acceptor for Ero1p and Erv2p is O2 [65,66,68].
Peroxide and superoxide are minor electron accep-
tors for Ero1p[66]. Further, Ero1p is essential under
anaerobic conditions in yeast, suggesting that an alter-
native electron acceptor for Ero1p exists[66]. Thus,
uncoupling of Ero1p from its physiologic electron ac-
ceptor, e.g. during ER stress, may result in generation
of reactive oxygen species (Fig. 1).

3.3. N-linked glycosylation

A multitude of post-translational modifications
occur in the ER:N-linked glycosylation, disulfide bond
formation, lipidation, hydroxylation, oligomerization,
etc. We will focus on general post-translational
modifications common to the majority of secreted
proteins, N-linked glycosylation and formation of
disulfide bonds (see above).N-linked glycosylation
ig. 2. Disulfide bond formation and generation of reactive ox
trate = unfolded or folded protein, or glutathione.
pecies by protein folding. Abbreviation: Acc – electron acce
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Fig. 3. Quality-control by the calnexin/calreticulin cycle. Abbreviations: CNX – calnexin, EDEM – ER degradation-enhancing�-mannosidase-
like protein, G – glucose, M – mannose, and UGGT – uridine diphosphate (UDP)-glucose:glycoprotein glucosyl transferase.

is initiated by transfer of a core oligosaccharide from
a membrane-bound dolichol phosphate anchor to
consensus Asn-X-Ser/Thr residues in the polypeptide
chain (Fig. 3; [4,5]). Glycosylation serves several
purposes in protein folding: first, due to the hydrophilic
nature of carbohydrates, glycosylation increases the
solubility of glycoproteins and defines the attachment
area for the surface of the protein. Second, due to
their large hydrated volume oligosaccharides shield
the attachment area from surrounding proteins. Third,
oligosaccharides interact with the peptide backbone
and stabilize its conformation[70]. Lastly, sequential
trimming of sugar residues is monitored by a lectin
machinery to report on the folding status of the protein
(Fig. 3; [7]). This calnexin/calreticulin cycle is one
arm of the quality-control machinery in the ER that
monitors protein conformations and dictates whether
a molecule is exported to the Golgi or targeted for
ERAD. Briefly, the monoglucosylated form of a

folding protein shuttles through several cycles of
de- and reglucosylation by�-glucosidase II and
uridine diphosphate (UDP)-glucose:glycoprotein glu-
cosyl transferase (UGGT) activities (Fig. 3; [7]). The
monoglucosylated form is retained in the ER via inter-
action with the lectins calnexin (CNX) and calreticulin
(CRT). UGGT preferentially recognizes the unfolded
conformation. Proteins are extracted from this cycle
after demannosylation by�(1,2)-mannosidase I
(Fig. 3). Compared to other oligosaccharide trimming
reactions in the ER, this reaction is slow[71], giving
the protein time to go through several folding cycles.
If folded correctly, the mannose-trimmed protein is
exported to the Golgi complex. If improperly folded,
reglucosylation by UGGT initiates interaction with
calnexin, transfer to the lectin Mnl1p/Htm1p/EDEM
(ER degradation-enhancing �-mannosidase-like
protein; [72–75]) and retrograde translocation to the
cytosol for degradation by the proteasome (Fig. 3).
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3.4. Protein folding machinery

The protein folding machinery of the ER con-
sists of three classes of proteins: foldases, molecular

Table 1
ER-resident molecular chaperones, foldases, and lectins

Class and name Function and reference

Chaperones, HSP70 class
BiP/GRP78/Kar2p Chaperone[270], translocation, folding sensor[127,129,130]
Lhs1p/Cer1p/Ssi1p/GRP170 Chaperone[76–79]

Chaperone[79]

Chaperones, DNA-J-like, HSP40 class
ERdj1/MTJ1 Co-chaperone regulating ATPase activity of BiP[92]
ERdj3/HEDJ/Scj1p Co-chaperone regulating ATPase activity of BiP[93–96]
ERdj4 Co-chaperone regulating ATPase activity of BiP[97]
ERdj5 Co-chaperone regulating ATPase activity of BiP[98]
Jem1p Co-chaperone regulating ATPase activity of BiP[102]
Sec63p Co-chaperone regulating ATPase activity of BiP, translocation[99–101]

Chaperones, GrpE-like
BAP Nucleotide exchange factor for BiP[103]
Sls1p/Sil1p Nucleotide exchange factor for BiP[105]

Chaperones, HSP90 class
GRP94/endoplasmin Chaperone[80]

Lectins
Calnexin Glycoprotein quality-control[271,272]
Calreticulin Glycoprotein quality-control[273]
Mnl1p/Htm1p/EDEM Glycoprotein degradation[72–75]

Carbohydrate processing enzymes
UGGT Folding sensor[7]

residu
residue
e resid
e resid

F

F

F

chaperones, and the lectins calnexin, calreticulin, and
EDEM (Table 1). Foldases are enzymes that catalyze
steps in protein folding to increase their rate. Prominent
examples arecis–trans peptidyl–prolyl isomerases
�-Glucosidase I Removal of terminal glucose
�-Glucosidase II Removal of terminal glucose
�-Mannosidase I Removal of terminal mannos
�-Mannosidase II Removal of terminal mannos
oldases, subclass disulfide isomerases
PDI Oxidoreductase[276]
ERp72 Oxidoreductase[277]
ERp61 Oxidoreductase[278]
ERp57 Oxidoreductase[278]
ERp44 Retention of Ero1� in ER [279]
Ero1p/Ero1�, Ero1� Oxidoreductase for PDI[63,64]
Erv2p Oxidoreductase for PDI[67,68]

oldases, subclass FAD-dependent oxidases
Fmo1p FAD-dependent oxidase[69]

oldases, peptidyl-prolyl isomerases
FKBP13 [280]
FKBP65 [281]
S-Cyclophilin [282]
CCYLP [283]
Cyclophilin B [284]
es from glycoproteins[274,275]
s from glycoproteins, release of glycoproteins from calnexin[274,275]

ues, extraction of glycoproteins from calnexin cycle
ues, extraction of glycoproteins from calnexin cycle
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(PPI/immunophilins) which catalyze thecis–trans
isomerization of peptidyl–prolyl bonds and PDIs
(see above). Molecular chaperones facilitate protein
folding by shielding unfolded regions from surround-
ing proteins. They do not enhance the rate of protein
folding. According to their cytosolic counterparts
they are classified into several groups: class HSP70
chaperones in the ER are BiP/GRP78/Kar2p, Lhs1p
(Cer1p/Ssi1p)[76–78], and GRP170[79]. BiP also
participates in the translocation of nascent polypep-
tide chains into the ER. The HSP90 class chaperone
GRP94/endoplasmin[80] recognizes a subset of pep-
tide substrates, in a manner coordinated with other
chaperones, e.g. BiP[81], and facilitates the dis-
play of immunogenic peptides on MHC class I com-
plexes[82]. In addition, PDI has disulfide-dependent
and -independent chaperone activity[83,84]. Preferen-
tial interaction of unfolded proteins with ER-resident
molecular chaperones constitutes the second arm of the
quality-control machinery in the ER.

4. Recognition of unfolded proteins

Thermodynamically, any conformation with a
higher free-energy than the native conformation is un-
folded. This is due to hydrophobic regions exposed on
the surface in the non-native conformation. Contact of
these residues with surrounding water increases the free
surface energy. In the native conformation these regions
a tion
o en-
t hat
i d as
u dif-
f cific
c one
o s
d spite
t both
d ch-
a al
m

4

s rm

Fig. 4. Quality-control by the BiP ADP–ATP-cycle.

BiP has high affinity for protein substrates (Fig. 4).
Substrates bound to BiP are locked in their conforma-
tion and stimulate the ATPase activity of BiP[85,86].
Affinity panning and binding assays with random
peptide libraries demonstrated that short hydrophobic
peptides, such as those forming�-strands deeply
buried in the protein core, are preferentially bound
by BiP [86,87]. The affinity for these peptides is low
(1–100 mM), allowing for a wide substrate spectrum.
Exchange of ADP with ATP releases the substrate from
BiP[85], which then progresses on its folding pathway.
Subsequent ATP-hydrolysis returns BiP into the ADP,
high affinity state (Fig. 4). Thus, by cycling through
the BiP ADP–ATP cycle a folding polypeptide chain
consumes ATP. Indeed, the folding of many secretory
proteins can be inhibited by depleting cellular ATP
levels [88–91]. Both reactions, nucleotide exchange
and ATP-hydrolysis are regulated by co-chaperones.
re buried in the protein core. However, this defini
f an unfolded protein is difficult to access experim

ally. Therefore, biochemically, conformations t
nteract with molecular chaperones are regarde
nfolded. However, different chaperones recognize

erent client proteins and many client–protein spe
haperones evolved to facilitate the folding of just
r a few proteins (Table 2). Thus, protein folding statu
epends on the chaperone under investigation. De

hese drawbacks there is large agreement between
efinitions of an unfolded protein where the me
nism of unfolded protein recognition by individu
olecular chaperones has been studied in detail.

.1. Recognition of unfolded proteins by BiP

BiP has anN-terminal ATPase and aC-terminal
ubstrate binding domain. In the ADP-bound fo
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Table 2
Specialized client–protein chaperone pairs in the ER

Factor Function Client–protein Organism/cell type Ref.

HSP47 Chaperone Procollagen Mammalian collagen
producing cells

[285]

Prolyl 4-hydroxylase Enzyme, chaperone Procollagen Mammalian cells [286]
Microsomal triglyceride

transfer protein
Assists translocation, assembly, and
secretion

Apolipoprotein B (apoB) Primarily liver cells
and intestinal cells

[287]

NinaA: cis–trans
peptidyl–prolyl
isomerase

Possibly chaperone and/or escort;
promotes ER secretion competence
through direct interaction

Rh1 and Rh2 rhodopsins Drosophila
photoreceptor cells

[288]

BOCA and Mesd Assembly and transport LDL-receptor Mammalian cells
Invariant chain Escort to prevent aggregation and

premature ligand binding and to
direct endosomal targeting

MHC class II Mammalian antigen
presenting cells

[289]

RAP Escort to prevent aggregation and
premature ligand binding

LDL receptor family Mammalian cells [290]

Neurophysin Escort Arginine vasopressin Magnocellular
neurons of the
hypothalamus

[14]

�-Catenin Targeting to the basal-lateral
membrane

E-cadherin Epithelial cells [291]

p24 Family Potential cargo receptors Invertase, Gas1p (S.
cerevisiae), many others

S. cerevisiae, C.
elegans, and
mammalian cells

[292]

LMAN1/ERGIC-53 Potential cargo receptor for
glycoproteins

Cathepsin C, blood clotting
factors V and VIII

Mammalian cells [293]

Lst1p Potential cargo receptor Plasma membrane
H+-ATPase Pma1p

S. cerevisiae [294]

Erv14p Potential cargo receptor Plasma membrane protein
Axl2p

S. cerevisiae [295]

Vma12p–Vma22p
complex

Promotes complex assembly Vacuolar H+-ATPase subunit
Vph1p

S. cerevisiae [296]

Chs7p Promotes ER secretion competence Chs3p, catalytic subunit of
chitin synthetase III

S. cerevisiae [297]

Gsf2p Promotes ER secretion competence Hexose transporters Hxt1p
and Gal2p

S. cerevisiae [298]

Lag1p and Dgt1p Promotes ER secretion of
GPI-anchored proteins

GPI-anchored proteins Gas1p
and Yap3p

S. cerevisiae [299]

Shr3p Promotes ER secretion competence Amino acid permeases, e.g.
Hip1p and Gap1

S. cerevisiae [300]

ODR-4 and -8 Promotes ER secretion competence Odorant receptors ODR-10
and STR-2

C. elegansolfactory
neurons

[301]

BAP31 Promotes ER secretion competence Cellubrevin Mammalian cells [289]
Protective

protein/cathepsin A
Promotes ER secretion competence
through direct interaction and directs
lysosomal targeting

Neuraminidase and
�-galactosidase

Mammalian cells [302]

Tapasin Prevents ER exit of MHC class I
without bound antigenic peptide

MHC class I Mammalian cells [303]

Egasyn Mediates ER retention of target
molecule through KDEL-like ER
retention signal

�-Glucuronidase Mammalian cells [304]

Carboxylesterase Mediates ER retention of target
molecule through KDEL-like ER
retention signal

C-reactive protein Hepatocytes [305]

SCAP Retention of SREBP SREBP Mammalian cells [306]
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The DnaJ-like proteins MTJ1/ERdj1 [92],
ERdj3/HEDJ[93,94]/Scj1p[95,96], Erdj4 [97], Erdj5
[98], Sec63p[99–101], and Jem1p[102] stimulate
the ATPase activity of BiP, and the GrpE-like protein
BiP-associated protein (BAP)[103], and Sls1p[105]
stimulate the nucleotide exchange reaction. In vitro the
Km for ATP-binding by bovine HSP70 is 1–2�M in
the presence and absence of unfolded proteins. Since
the cytosolic ATP concentration is in the mM range,
nucleotide binding is not rate-limiting for the function
of cytosolic HSP70s. ATP is imported into the ER
via antiport with ADP and AMP[106]. ATP-import
may be limiting for the function of ER luminal HSP70
chaperones. The in vitro rate constants of nucleotide
exchange and ATP-hydrolysis by BiP are similar[107].
Thus, differential regulation of nucleotide exchange
and ATP-hydrolysis by co-chaperones in vivo may be
important for the regulation of BiP function.

BiP, as other HSP70s[107], cycles between a
monomeric and oligomeric state (Fig. 4; [108–111]).
In the oligomeric state BiP is post-translationally
modified by phosphorylation[108,112–114] and
ADP-ribosylation [115–117]. Only monomeric
unmodified BiP associates with unfolded proteins
[108,109]. Induction of unfolded proteins increased
the monomeric, unmodified BiP pool[109,118].
Therefore, it was suggested that modified oligomeric
BiP constitutes a storage pool from which BiP is
recruited to the monomeric pool by interaction with
unfolded proteins[119]. These events are the first
e the
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5. Transduction of the unfolded protein signal
across the ER membrane

Three transmembrane proteins transduce the un-
folded protein signal across the endoplasmic retic-
ulum membrane (Fig. 5). The ER luminal domains
of the type I transmembrane proteins IRE1 (inosi-
tol requiring 1)/ERN1 (ER to nucleus signaling 1)
and PERK [double-stranded RNA-activated protein
kinase (PKR)-like endoplasmic reticulum kinase]/
PEK [pancreatic eukaryotic initiation factor 2� (eIF2�)
kinase] are ER stress regulated oligomerization do-
mains [123–125]. However, the cytosolic domain
of IRE1 also possesses, albeit weaker, potential for
homodimerization[124]. The type II transmembrane
protein activating transcription factor 6 (ATF6) con-
tains two independent ER stress regulated Golgi local-
ization sequences (GLS)[126]. The luminal domains
of IRE1 and PERK show a small degree of homology
conserved throughout all eukaryotes, but no homol-
ogy exists with the luminal domain of ATF6. Func-
tional studies in yeast revealed that the ER luminal do-
mains of IRE1 and PERK are interchangeable and that
their function is evolutionarily conserved[127,128].
Surprisingly, their function can be completely substi-
tuted for by a non-homologous dimerization domain
in the bZIP proteins MafL and JunL[127]. In an in-
active state the luminal domains of IRE1 and PERK
are associated with BiP[129–131]. Upon ER stress,
BiP is competitively titrated from the luminal domains
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.2. Recognition of unfolded proteins by UGGT

In contrast to BiP, UGGT simultaneously recogni
wo features in an unfolded protein: exposed hydrop
ic sequences and the oligosaccharide moiety[120].
GGT recognizes the innermostN-acetylglucosamin

esidue of an linked oligosaccharide[121]. The struc
ural flexibility of this residue and neighboring ami
cid residues may be a key determinant in reco

ion of unfolded proteins by UGGT, since this resid
xtensively interacts with the polypeptide backb
f the protein[70]. However, the region judged
eing misfolded by UGGT and the oligosaccha
lucosylated by UGGT can be up to 4 nm ap

122].
f IRE1 and PERK by the huge excess of unfol
roteins in the ER lumen, resulting in oligomeri

ion of IRE1 and PERK[129,130]and activation o
hese proximal signal transducers. Consistent with
odel is that interactions of BiP with its substra
re transient. Further, the huge excess of BiP

RE1 and PERK is set-off by the low affinity of B
or its substrates. Thus, only small fluctuations in
ree BiP pool should be required for its release fr
RE1 and PERK. In IRE1� the domains required fo
ignaling, oligomerization, and BiP-binding partia
verlap (Fig. 5; [131]) and BiP may actually mask a

mportant oligomerization motif in IRE1� to keep it
n its monomeric, inactive state. However, in PE
he domains required for oligomerization and BiP
istinct (Fig. 5; [132]). Here BiP indirectly interfere
ith oligomerization either sterically or through
uction of a conformational change in the luminal
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Fig. 5. Principal architecture of the ER stress sensors IRE1, PERK, ABU, and ATF6. Orange bars represent regions sufficient for signal
transduction or oligomerization. Blue bars represent regions binding to BiP. A black box represents the signal peptide and the hatched box
depicts the region of limited homology between IRE1 and PERK. Abbreviations: bZIP – basic leucine zipper, CX3C – CX3CX3CX3C domain
(pfam 02363), GLS1 and GLS2 – Golgi localization sequences 1 and 2, TAD – transcriptional activation domain, and TM – transmembrane
domain. Drawings are not to scale.

main of PERK that inactivates the oligomerization do-
main.

ATF6 is regulated in a similar way by BiP as PERK
or IRE1 [126]. The major difference is that BiP does
not regulate the activity of oligomerization domains in
ATF6, but rather the activity of two independent and
redundant Golgi localization sequences, GLS1 and
GLS2. BiP binds to GLS1, but not to GLS2. In the
absence of BiP-binding GLS2 is dominant, resulting
in constitutive translocation of ATF6 to the Golgi and
ATF6 activation[126]. In addition, ATF6 is retained in
the ER by interaction with the lectin calreticulin[133].
Under ER stress conditions, newly synthesized ATF6
is underglycosylated, which abrogates its interaction
with calreticulin. Consistent with this model is the
observation that ATF6� mutants in which some of
its three glycosylation sites were destroyed are more
potent transcriptional activators than WT ATF6�

in a site-2 protease (S2P) dependent manner[133].
These are the first data, albeit indirect, that support
involvement of the calnexin/calreticulin cycle in
activation of the proximal ER stress transducers. Both
quality-control mechanisms operating in the ER, the
calnexin/calreticulin cycle and recognition of unfolded
proteins by BiP, regulate the activity of the proximal
stress transducer ATF6. However, the conservedN-
linked glycosylation site in yeast Ire1p was completely
dispensable for its function[127]. This suggests that
differential regulation of the three arms of the UPR,
ATF6, IRE1, and PERK exists to fine tune UPR
signaling to specific folding demands in the ER[134].

Candidates for additional metazoan ER stress sen-
sors are the activated in blocked UPR (ABU) genes, a
family of homologous type I transmembrane proteins
up-regulated in xbp-1 mutantCaenorhabditis elegans
[135,136].
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Fig. 6. Overview of protective ER stress signaling pathways.

6. Activation of protective responses by the
UPR

6.1. ATF6

Two homologous proteins, ATF6� and ATF6�/
CREB-RP/G13 exist in mammals (Fig. 5; [137]). ATF6
translocates to the Golgi complex after release of the
molecular chaperone BiP from its ER luminal do-
main (Fig. 6; [138]). Site-1 protease (S1P) cleaves
ATF6 in the luminal domain. TheN-terminal, mem-
brane anchored half is then cleaved by S2P[139–141].
These proteolytic reactions release the cytosolicN-
terminal portion of ATF6 encoding a basic leucine
zipper (bZIP) transcription factor. ATF6 binds to the
ATF/CRE element[142] and to the ER stress response
elements I and II (ERSE-I, CCAAT-N9-CCACG[143],
and ERSE-II, ATTGG-N-CCACG[144]). Binding of
ATF6 to ERSE-I requires NF-Y/CBF[145]. Impor-
tant targets regulated by ATF6 areBiP/GRP78, XBP-1,
CHOP/GADD153[141], P58IPK [146], and the mem-
brane protein Herp[144]. Gene profiling analysis using
overexpression of ATF6�(1-373)[147] and ATF6�(1-
392) [137] revealed that ATF6� and ATF� positively
regulate transcription of ER-resident molecular chaper-

ones and foldases. However, heterodimeric complexes
between ATF6� and ATF6� are a transcriptional re-
pressor of the BiP promoter[148]. In RNAi gene
knock-down experiments no specific targets for ATF6�
or ATF6� were identified, suggesting that pathways
redundant to the ATF6 pathway exist[149]. Further,
ATF6� interacts with the transactivation domain of
serum response factor (SRF) and antisense ATF6� re-
duced serum induction of reporter constructs[150].
Activation of the gene atrial natriuretic factor (ANF)
by ATF6 and SRF was proposed to be dependent on
phosphorylation of ATF6 by the stress response ki-
nase p38[151]. ATF6 forms a heterodimeric complex
with the basic helix-loop-helix (bHLH) transcription
factor sterol response element (SRE) binding protein
2 (SREBP2). This complex counters the lipogenic ef-
fects of SREBP2 by recruiting the histone deacetylase
complex 1 (HDAC1) to the SRE to repress transcription
[152].

6.2. IRE1

The IRE1 pathway regulates chaperone induction,
ERAD, and expansion of the ER in response to ER
stress (Fig. 6). Further, this pathway is evolutionarily
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the oldest pathway, since it is present in all eukaryotes,
and distinguished by unique features transducing the
stress signal.

6.2.1. Mechanism of signal transduction
IRE1 encodes an atypical type I transmembrane pro-

tein kinase endoribonuclease[153–155], consisting of
an ER luminal dimerization domain, and cytosolic ki-
nase and endoribonuclease domains. After dissociation
of BiP from the ER luminal domain, IRE1 oligomer-
izes[123–125]and activates its RNase domain by au-
tophosphorylation[123,124]. However, occupancy of
the ATP-binding pocket by ADP is sufficient for activa-
tion of the RNase domain after oligomerization[156].
Mutations in the RNase domain of Ire1p abolished acti-
vation of an ERP72 CAT reporter construct[157,158].
Transient transfection experiments with kinase- and
RNase-defective Ire1p indicate that two functional
RNase domains are required for signaling by Ire1p
[157]. The substrate for the Ire1p endoribonuclease was
first identified in yeast and is the mRNA for the bZIP
transcription factorHAC1 [159–161]. HAC1mRNA
is unusual for yeast as it has a large intron of 252 bp
located in the 3′-end of the mRNA. Activated Ire1p
cleaves both 5′- and 3′-exon–intron junctions inHAC1
mRNA [162–165]and generates 5′-OH and 3′-cyclic
PO4 ends (Fig. 7; [166]). tRNA ligase (Rlg1p/Trl1p)
joins both exons (Fig. 7; [167]). The ligase leaves a
2′-phosphate on the 5′-end of the joined junction[166]
that is removed by the NAD+-dependent phosphatase
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pool can be spliced[173]. However, since tRNA splic-
ing is nuclear[174,175], either a low level of cyto-
plasmic tRNA is sufficient forHAC1mRNA splicing,
tRNA ligase shuttles in stress conditions into the cyto-
plasm, or the cytoplasmicHAC1mRNA pool relocates
into the nucleus.

The HAC1 mRNA splicing reaction has two
consequences: expression of an alternativeC-terminus
with increased transcriptional activation potential
[176] and removal of a translational attenuator from
HAC1mRNA [173]. Base pairing between the 5′-UTR
of unsplicedHAC1mRNA and the intron represses
translation of the unspliced mRNA[173]. Unspliced
HAC1mRNA is found in association with polysomes
[172]. mRNAs are exported with their 5′-end first in
higher eukaryotes, which would allow for loading
of the mRNA with polyribosomes before secondary
structure elements are formed, which then trap the
loaded polyribosomes onHAC1mRNA [173]. These
observations raise the interesting questions how the
endonuclease accesses the splice junctions in polyso-
mal HAC1mRNA and if this recognition process is
controlled by ER stress.LHP1, the yeast gene encod-
ing the eukaryotic RNA-binding protein La implicated
in the metabolism and translation of RNA polymerase
III transcripts, e.g. tRNAs, was recently implicated
to facilitate translation of splicedHAC1 mRNA
[177].
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n an unusual reaction that generates nicotinamide
DP-ribose 1“-2”-cyclic phosphate (App-ribose >P)

170]. In summary, the mechanism ofHAC1mRNA
plicing is similar to pre-tRNA splicing[171]. In con-
rast to mRNA splicing or the self-splicing of grou
and II introns, this mechanism does not provide
xplanation for how the ligase distinguishes betw
xons and introns. In vitro, the HAC1 exons remain
ociated after cleavage of both exon–intron junct
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.2.2. Regulation of Ire1p
Yeast Ire1p is negatively regulated by the ph
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s a constitutive, or ER stress responsive activity, is
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Fig. 7. Mechanism ofHAC1mRNA and tRNA splicing in yeast, plants and mammals. Abbreviations: CPDase – cyclic phosphodiesterase,
ASTase – adenylyl synthetase.
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6.2.3. Role of IRE1 and HAC1 in regulation of
membrane proliferation

In cell types with high secretory capacity, e.g.
the pancreas, the liver, or plasma cells, a dramatic
proliferation of the ER and other membrane com-
partments is observed. Based on the following three
observations a role for the UPR in coordination of
the unfolded protein load in the ER and membrane
proliferation was proposed. First,ire1∆ and hac1∆
yeast strains are inositol auxotrophs[153,161].
Second, treatment of yeast with ER stress inducers
such as tunicamycin induces transcription ofINO1
encoding inositol-1-phosphate synthase, a key enzyme
in phospholipid biosynthesis (Fig. 8), in anIRE1- and
HAC1-dependent manner[32,184]. Third, induction
of membrane proliferation by expression of membrane
proteins is in some, but not all[185], cases dependent
on a functional UPR pathway[184,186,187]. Based on
these data, the UPR can (a) have a specialized function
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in increasing phospholipid biosynthesis and ER prolif-
eration in response to acute and/or severe ER stress, or
(b) generally, that is under all conditions, monitor and
regulate phospholipid biosynthesis and the biogenesis
of membrane compartments, e.g. through transcrip-
tional regulation ofINO1 [184]. This latter view has
recently been challenged. First, inire1∆ yeast grown
on glucose induction of two membrane proteins, the
integral peroxisomal membrane protein Pex15p and
the inner mitochondrial membrane protein Acr1p was
lethal. Both lethalities were rescued by growth on a
fatty acid, oleate[188]. This observation suggested
that an indirect mechanism is the cause for the lethal
phenotype. Second, activation ofINO1 by inositol
starvation was only modestly defective inire1∆ or
hac1∆ strains[184,189]. Upon 4 h inositol starvation
CDP-diacylglycerol levels inire1∆ andhac1∆ strains
were increased compared to WT, and phosphatidic acid
and phosphatidylinositol levels decreased. In a strain
ig. 8. Key reactions in phospholipid biosynthesis are catalyzed
n the cytosol are in blue, membrane-bound molecules, enzym
eactions at the ER membrane are in green. Phospholipids wh
ed, and arrows (↓ or ↑) indicate if their levels are decreased or i
he growth medium are in bold[8]. Abbreviations: Cho – choline, D
no – inositol, Ptd – phosphatidic acid or phosphatidyl, Ser – se
ER membrane. Water soluble molecules, enzymes, and enzym
d reactions at membrane compartments are in orange or red.
els are altered inire1∆ andhac1∆ strains during inositol starvation are
ed89]. Enzymes whose genes are repressed by inositol and cho
iacylglycerol, EtNH3

+ – ethanolamine, Glc – glucose, Gly – glyce
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with an overexpression of inositol (Opi−) phenotype
these changes were reversed and activation of the
INO1promoter by inositol starvation not affected by a
HAC1deletion[189]. Thus, the UPR does not directly
control expression ofINO1 in response to inositol
starvation. The changes in phospholipid levels seen in
ire1∆ andhac1∆ strains suggest a role for the UPR in
regulation of key metabolic reactions in phospholipid
metabolism at the ER membrane (Fig. 8).

6.2.4. The IRE1 pathway in higher eukaryotes
IRE1 is conserved throughout all eukaryotic king-

doms[127,128,153,155,190–192]. Mammals have two
copies ofIRE1, IRE1α [191] andIRE1β [193]. IRE1α
is ubiquitously expressed[135,191], and deletion
of IRE1α results in an embryonic lethal phenotype
between days 9.5 and 11.5 in mice[135]. Expression
of IRE1β is limited to the gut.Ire1β−/− mice are
viable, but are more susceptible to dextran sodium
sulfate induced colitis[194]. In plants,Arabidopsis
thalianahas two functional copies,IRE1-1and-2, and
a gene lacking the ER luminal domain[128], but there
is only one copy inOryza sativa(rice). This suggests
that IRE1-1and -2 have overlapping functions inA.
thaliana. The cytosolic domains of yeast Ire1p are
functional and can oligomerize[124]. It is therefore
possible that the truncated gene inA. thalianaencodes
a functional protein that may be involved in host
defenses, by analogy to RNase L[195].
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XBP-1u, in analogy to the small bZIP Maf proteins,
acts as a dominant negative for XBP-1s through
occupying the CRE-like element or through formation
of less potent and therefore inhibitory XBP-1u–XBP-
1s heterodimers. Degradation of XBP-1u by the
proteasome is necessary for efficient activation of the
UPR[149]. There is little known about the mechanism
of XBP-1 splicing. Despite their divergence, the
splice junctions inXBP-1 and HAC1 mRNA are
conserved[197,199]. However, it has not been directly
demonstrated that IRE1� or -� generate 2′,3′-cyclic
PO4 ends inXBP-1mRNA. Consistent with nuclear
localization ofXBP-1splicing in mammalian cells is
the convincing localization of mammalian Ire1� to the
inner leaflet of the nuclear envelope[199].

A ligase with similar properties as yeast Rlg1p was
characterized in wheat germ[201–204]and inChlamy-
domonas[205,206]. Mammals have at least two ligase
activities, termed yeast-like tRNA ligase and HeLa cell
ligase (Fig. 7). In the yeast tRNA ligase-like reaction
the junction phosphate is derived from the�-phosphate
of GTP, whereas in the reaction catalyzed by HeLa cell
ligase the junction phosphate is derived from the phos-
phate backbone of the RNA substrate (Fig. 7; [207]).
This HeLa cell ligase has an approximate molecular
weight of 160 kDa and ligates several RNAs bearing 5′
hydroxyl and 2′,3′ cyclic phosphate termini in an ATP-
dependent reaction[208,209]. It should be straight-
forward to test if this ligase can joinXBP-1 exons.
Based on labeling experiments a yeast-like tRNA lig-
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he functional homologue forHAC1 is XBP-1
20,197–199]. XBP-1 is a bZIP transcription fact
f the ATF/CREB family and controls genes conta

ng a CRE (cAMP response element)-like elem
GATGACGTG(T/G)NNN(A/T)T] [200]. XBP-1
s essential for terminal B-cell differentiation[21].
ompounds that stimulate terminal B-cell differe
tion, e.g. lipopolysaccharides, also induced XB
plicing[20,22]. These observations raise the poss

ty that the UPR regulates B-cell differentiation. As
AC1, XBP-1splicing introduces a frame-shift and
lternativeC-terminus with increased transcription
ctivation potential. However, there is no differen

ranslational control of unspliced and splicedXBP-1
RNAs, XBP-1u and XBP-1s, respectively. Thus
se is present in mammalian cells[210]. The 2′-NAD+-
ependent phosphatase Tpt1p is conserved in bac
east, plants, and mammals[211,212]. In fact, human
RPT1 can complement a defect in yeast Tpt1p[212].

nterestingly, TRPT1 is primarily expressed in he
nd skeletal muscle[212].

.2.5. Targets of the IRE1 pathway
Genome profiling in yeast[32] and A. thaliana

27] and a genetic analysis in yeast[213] revealed
hat the IRE1 pathway, as the only major pathw
n these organisms, coordinates multiple aspec
he secretory pathway including chaperone induc
pregulation of ERAD genes[31,32,134], membran
iogenesis, and ER quality-control. In mamm
BP-1 regulates a subset of ER-resident molec
haperones[149]. It was recently shown that modera
RE1- andHAC1-independent transcriptional indu
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tion from a core promoter happens in response to ER
stress in yeast[214], suggesting that a second signal
transduction pathway exists in yeast that modulates
and augments activation of ER chaperone genes by
theIRE1–HAC1pathway in response to ER stress.

6.3. PERK

As IRE1, PERK is a type I transmembrane kinase
and activated by release of BiP from its ER luminal
domain. PERK then oligomerizes and phosphorylates
substrate proteins, eIF2� [29,215,216]and the bZIP
Cap‘n’Collar transcription factor Nrf2 (Fig. 6; [217]).
Phosphorylation of eIF2� by PERK shuts-off general
translation[29].Perk−/− cells are sensitive to ER stress
and are partially rescued by translation inhibitors, e.g.
cycloheximide[218]. Short-lived proteins are cleared
from the cell during inhibition of translation. An impor-
tant example is cyclin D1. Loss of cyclin D1 during ER
stress arrests mammalian cells in G1 [219–221]. In the
absence of PERK, eukaryotic cells, e.g. tunicamycin-
treated yeast cells, arrest in G2/M [222] dependent
on the function of the morphogenesis and pachytene
checkpoint kinase Swe1p[223].

Besides eIF2�, PERK also phosphorylates Nrf2
which contributes to survival of ER stress in mam-
malian cells. In unstressed cells, Nrf2 is found in an
inactive cytoplasmic complex with the cytoskeletal
anchor Keap1[217]. Upon ER stress PERK phosphory-
lates Nrf2 resulting in dissociation of the Nrf2–Keap1
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It is interesting to speculate here that this imbalance is
caused by uncoupling of the disulfide isomerase Ero1p
from its yet to be identified physiological substrate by
an elevated unfolded protein load of the ER.

Phosphorylation of eIF2� allows for preferential
translation of mRNAs encoding several short upstream
open reading frames (uORF,[228]). The mRNA for
ATF4 [37,218]is regulated in this way in mammalian
cells. ATF4 binds to the amino acid response ele-
ment [218]. Targets of ATF4 areCHOP, GADD34
[218,229,230]andATF3 [230]. ATF4 is also required
for expression of genes involved in amino acid import,
glutathione biosynthesis, and resistance to oxidative
stress[38]. ATF3 contributes to expression ofCHOP
andGADD34[230].

6.3.1. Regulation of PERK signaling
Translational inhibition by PERK is transient to

allow for recovery from ER stress, and to mount an ef-
ficient protective response to prolonged periods of ER
stress. Expression of the HSP40 co-chaperone P58IPK

is activated by ATF6 late in ER stress. P58IPK inhibits
PERK by binding to its kinase domain[146,231].
Nck-1 is an eIF2� phosphatase, however, regulation
of Nck-1 expression or activity in response to ER
stress still has to be determined[232]. GADD34 and
CreP regulate the phosphatase activity of protein
phosphatase 1 (PP1) through their homologous
C-terminal domains. PP1 accepts eIF2� as substrate.
CreP is a constitutive regulator of PP1[233], whereas
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omplex, nuclear localization of Nrf2 and activation
ranscription by Nrf2 through the antioxidant respo
lement (ARE)[224–226]. The ARE controls expre
ion of genes involved in the phase II metabolism
enobiotics, e.g. electrophilic thiol-reactive substan
hat mimic an oxidative insult. Genes regulated by
RE include the A1 and A2 subunits of glutathio
-transferase, NAD(P)H:quinone oxidoreduct
-glutamylcysteine synthetase, and UDP-glucuron

ransferase.Perk−/− cells accumulate reactive oxyg
pecies when exposed to ER stress[38] which suggest
hat the sensitivity ofNrf2−/− cells to ER stress[217]
esults from their impaired ability to respond to
xidative insult. The idea that an imbalance in the c
edox status is caused by ER stress is further supp
y the observation that the redox-sensitive transcrip

actor nF-�B is activated in response to ER stress,
hat this activation was inhibited by antioxidants[227].
xpression ofGADD34 is induced by ATF4 late i
R stress[234–236]. TheN-terminal 180 residues
ADD34 target the� isoform of PP1 to the ER[237].
hus, activation ofP58IPK andGADD34 late in ER
tress is a negative feedback mechanism that l
hut-off of translation through phosphorylation
IF2� by PERK to the early phase of ER stress. It
as to be determined how and if the action of AT
n theP58IPK promoter is delayed, and how and if
ction of GADD34 on PP1 is delayed.

.4. Modulation of a network of bZIP
ranscription factors by the UPR

Yeast [214] and plants, e.g.A. thaliana and rice
27], lack ATF6 and PERK. In these organisms
PR regulates the activity of one bZIP transcrip

actor,HAC1in yeast and its homologue in plants. T
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absence of ATF6 and PERK from plants shows that
these pathways are not required for multicellularity.
In mammalian cells the situation is strikingly different
and more complex. All three arms of the UPR, ATF6,
IRE1, and PERK feed into a complex network of bZIP

Table 3
bZIP transcription factors in the mammalian UPR (compiled from references[238,307–311])

bZIP protein Alias Preferred
DNA binding
site

Interaction partners Post-translational
modification

Targets

ATF3 LRF-1,
LRG-21,
CRG-5,
TI-241

ATF/CRE ATF2 (−/+), ATF3 (−), ATF4,
ATF7, C/EBP�, CHOP,
CREBPA, c-Jun (−/+ on
ATF/CRE),JunB (−/+) on
CRE,JunD (−/+ on CRE),
hepatitis B virus X protein (−),
HTLV-Tax, NF-�Bp50

ATF3 (−), CHOP
(−), E-selectin (−),
GADD34(+),
phosphoenolpyruvate
carboxylase (−)

ATF4 C/ATF,
CREB2,
mTR67,
TAXREB67

ATF/CRE,
ARE
(ATF4-Nrf2 )

ATF3, ATF7, B-ATF ,
C/EBP�, C/EBP�, C/EBP�,
C/EBP�, C/EBP�, CHOP,
CREBPA, Fos, FosB, HLF ,
Jun, JunD, cMaf, NFE2L1,
Nrf2 (+), p21SNFT, ZF, Zip
kinase, CBP, TBP, TFIIB,
RAP30 subunit of TFIIF, Tax,
�TrCp (F-box protein) (−),
Cdc34 (E2 ubiquitin ligase) (−)

PKA? (−) ATF3 (+), CHOP (+),
GADD34(+), amino
acid transport (+),
glutathione
biosynthesis (+),
resistance to oxidative
stress (+)

ATF6� ATF/CRE (+),
ERSE-I (+),
ERSE-II (+)

ATF6� (+), ATF6� (−)?,
XBP-1 (+), NF-Y/CBF (+),
SRF (+), SREBP2 (−)

p38 P (+) ANF (+), BiP (−/+),
CHOP (+), ER
chaperones,Herp (+)
P58IPK (+), XBP-1
(+)

ATF6� CREB-RP ERSE-I ATF6� (−)?,ATF6�, BiP (−/+), ER
NF-Y/C

C TF3, A
C/EBP�

BP� (−
BP� (−
A, DBP

N

X
X

A
r
a
A

transcription factors. Extensive crosstalk exists at this
level through the ability of bZIP proteins to regulate
each others activity through formation of activating or
repressing homo- and heterodimers (Table 3). In addi-
tion, the activity of a given bZIP dimer is influenced
G13 (−/+) ? (−/+) ?,
HOP CHOP-10,

Gadd153
ATF2, A
B-ATF ,
(−), C/E
(−), C/E
CREBP

MafG , MafK , p
TEF, LAP (−)

rf2 NFE2LE ARE
(Nrf2-ATF4 ,
Nrf2-MafK ),
MARE
(heterodimer
with small
Maf)

ATF4 (+), c-Jun
JunD (+), MafG
(−/+), Keap (−)

BP-1u TREB5 CRE-like (−) ATF6?
BP-1s TREB5 CRE-like (+) ATF6 (+)

TF/CRE – TGACGT(C/A)(G/A), ARE – (G/C)TGAC/TN3GC(A/G), ER
ecognition element (MARE) – TGCTGAC(G)TCAGCA, and CRE-like –
re indicated with a “+” or “−”, respectively. bZIP proteins are in bold
bbreviations: P – phosphorylation.
BF (+) chaperones (−/+)
TF4, ATF7,

(−), C/EBP�

/+), C/EBP�

), CHOP?,
, Fos, HLF ,

p38 P DOC1(carbonic
anhydrase VI),DOC4
(similar toDrosophila
melanogaster
Tenm/Odz), DOC6,
21SNFT, apoptosis

(+), JunB (+),
(−), MafK

ERK P (+), p38 P
(+), PERK P (+),
PKC P (+)

Oxidative stress,
inducible genes, phase
II xenobiotics
response genes

ER chaperones (−)
ER chaperones (+)

SE-I – CCAAT-N9-CCACG, ERSE-II – AATTGG-N-CCACG, Maf
GATGACGTG(T/G)N3(A/T)T. Activating and repressing activities

. A question mark indicates conflicting data reported in the literature.
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by the promoter element to which it is bound. A com-
prehensive leucine zipper protein array has identified
most of the potentials for heterodimer formation[238].
Many of the homo- or heterodimeric bZIP protein com-
plexes are either activators or competitive repressors of
transcription. However, the identity of individual com-
plexes formed in ER stressed cells, their activity, and
the influence of individual promoter elements on their
activity, are only incompletely known to date. Further,
it is reasonable that the consequences of the UPR
are adjusted to the needs of individual cell types, e.g.
plasma cells or pancreatic�-cells, through cell-type
dependent modulation of the bZIP protein network.

Information on the cooperation of the ATF6, IRE1,
and PERK pathways has been collected in gene
profiling studies. Cells deficient in XBP-1 and ATF6�
were significantly impaired in induction of UPR tar-
get genes, suggesting at least partial redundancy in
function for these bZIP transcription factors[149].
Interestingly, the ATF6 pathway is activated before the
XBP-1 pathway, thus creating a time window in which
the ATF6-mediated response tries to remedy the stress
situation in the ER solely through chaperone induction.
Upon prolonged stress the XBP-1 pathway then further

. Abbre

augments chaperone induction and also up-regulates
the capacity of ERAD[134].

7. Signal transduction by the UPR – apoptosis

Two major pathways control apoptosis – an intrinsic
pathway responding to intracellular insults, e.g. DNA
damage, and an extrinsic pathway responding to ex-
tracellular stimuli (Fig. 9). The extrinsic pathway is
triggered by self-association of cell surface receptors,
recruitment of caspases, mainly caspase-8, and initia-
tion of a caspase cascade. The intrinsic pathway is con-
trolled by a balance between proapoptotic BH3-only
proteins, e.g. Bad, Bak, and Bax, and anti-apoptopic
proteins, e.g. Bcl-2 proteins. The BH3-only proteins
Bak and Bax act on the mitochondrial membrane re-
sulting in release of cytochromec. Cytochromec then
facilitates formation of a complex between Apaf-1 and
procaspase-9, subsequent activation of a caspase cas-
cade, and activation of the executioner caspase caspase-
3 [34]. Apoptosis in response to ER stress is a response
specific to metazoan cells. Topologically, the ER lu-
men is equivalent to the extracellular space. Thus, it is
Fig. 9. Apoptotic pathways regulated by the UPR
 viation: IMP – inner mitochondrial membrane potential.
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not surprising that ER stress activates a combination of
intrinsic and extrinsic apoptotic pathways.

7.1. Intrinsic pathways

In response to ER stress Bak and Bax undergo
conformational changes and/or oligomerization at the
ER membrane[239], resulting in Ca2+ release from
the ER lumen by ER-localized Bak. Perturbation of
Ca2+ pools activates calpain in the cytosol, which con-
verts ER-localized procaspase-12 to caspase-12[54].
Activated caspase-12 then initiates a caspase cascade
through cleavage of procaspase-9 and -3 by caspase-9
[240,241]. Surprisingly, this pathway is independent of
Apaf-1 [241] and mitochondrial cytochromec release
[240]. Ca2+ released from the ER is rapidly taken up
by mitochondria[242], where it may lead to collapse
of the inner membrane potential, and subsequent initi-
ation of apoptosis. Overexpression of Bcl-XL and viral
mitochondrial inhibitor of apoptosis (vMIA) blocked
depolarization of the inner mitochondrial membrane in
response to ER stress[243]. The antiapoptotic effects
of Bcl-2 [244,245]are suppressed by downregulation
of Bcl-2 transcription by the transcription factor
CHOP [246]. Expression ofCHOP in ER stress is
up-regulated by ATF6[229], and preferential synthesis
of ATF4 [218,229] after phosphorylation of eIF2�
by PERK [37,218]. Supporting the importance of
these pathways in ER stress initiated apoptosis are
the observations thatcaspase-12−/− cells [247] and
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to mitochondria upon ER stress, resulting in release of
cytochromec. ER stress induced apoptosis is attenu-
ated in c-Abl deficient cells[251].

7.2. Extrinsic pathways

In response to ER stress IRE1 forms a
heterotrimeric complex with TRAF2 and the apoptosis
signal-regulating kinase 1 (ASK1) and activates c-Jun
amino-terminal kinase[135] and cell death[252]. In
addition, c-JunN-terminal inhibitory kinase (JIK) as-
sociates with IRE1 and promotes phosphorylation and
association of TRAF2 with IRE1[249]. The utilization
of both intrinsic and extrinsic pathways to execute
apoptosis in response to insults to the ER indicates that
not all insults are equal, and that the ER organelle has
intra- and extracellular properties. Indeed, different
insults on the ER cause apoptosis through preferential
activation of extrinsic and intrinsic pathways[253].

8. Endoplasmic reticulum storage diseases

Diseases caused by malfunction of any aspect of the
ER fall into one of the following classes (Table 4).

I. Mutant cargo molecules: Mutations affecting
the fold of cargo molecules result in retention
of the cargo in the ER. Four subclasses exist,
depending on whether the mutants are functional
or non-functional, and if they are susceptible to
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hop−/− cells [246,248] are partially resistant t
poptosis.

Tumor necrosis factor receptor-associated fac
TRAF2) promotes clustering of and is released f
rocaspase-12 upon ER stress, presumably by se

ering IRE1 [249]. Clustering of procaspase-12 w
roposed to be a prerequisite for its subsequen

ivation [249]. Procaspase-12 expression is upre
ated by ER stress[250] and caspase-12 can activ
rocaspase-12 in overexpression experiments[240].
urther, procaspase-12 is activated by caspase-7

ts relocation from the cytosol to the ER[250]. Acti-
ation of procaspase-12 by ER stress is inhibited
inding to the microsome-associated protein MAG
to procaspase-12[240]. It remains to be establish

ow caspase-7, and association of procaspase-12
AGE-3 are regulated by ER stress. In addition, the

osine kinase c-Abl localizes to the ER and transloc
-

ERAD. Mutants not susceptible to ERAD c
exhibit dominant properties, e.g. disruption of
formation of multimeric complexes, or disrupti
of the ER[14]:
I.A. The mutants are functional, retained

the ER because they do not pass qua
control criteria, and susceptible to ERA
A prominent example is cystic fibros
caused by a mutation in the cystic fib
sis transmembrane conductance regu
(CFTR) [254]. Therapeutic approaches
treat these diseases include expressio
the wild-type (WT) protein, manipulatio
of the ER quality-control machinery, a
the development of chemical chapero
tailored towards the mutant protein[255].

I.B. The mutants are non-functional, retain
in the ER, but susceptible to ERAD. A
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example is�1-antitrypsin deficiency[256].
Therapeutic approaches include the expres-
sion of the WT protein and the development
of chemical chaperones.

Table 4
Endoplasmic reticulum storage diseases

Type/disease Class Affected protein Ref.

Cystic fibrosis I.A. CFTR [254]
Diabetes mellitus I.A. Insulin receptor [312]
Albinism/tyrosinase deficiency I.B. Tyrosinase [15]
�1-Antitrypsin deficiency without liver disease I.B. �1-Antitrypsin [15]
Cardiovascular diseases I.B. Lipoprotein(a) [313]
Congenital hypothyroidism I.B. Thyroglobulin [14,15]

I.B. Thyroid peroxidase [314–316]
I.B. Thyroxine binding globulin [317,318]

Familial hyperchylomicronemia I.B. Lipoprotein lipase [14]
Familial isolated hypoparathyroidism I.B. Preproparathyroid hormone [319]
Global polyendocrinopathy associated with obesity and infertility

(fat/fatmouse)
I.B. Carboxypeptidase E [320,321]

Hemophilia A I.B. Factor VIII [322]
Hypercholesterolemia I.B. LDL receptor [14]
Laron dwarfism I.B. Growth hormone receptor [323]
Diabetes insipidus I.B./I.D. Arginine vasopressin (AVP) [14,15,257]

I.B. AVP receptor 2 [14,15]
I.B. aquaporin-2 [14,15]

Obesity I.B. Prohormone convertase 1 [15]
Osteogenesis imperfecta I.B./I.D. Type I procollagen [14,257]

I.B. Decorin [324]
Parkinsonism, autosomal recessive juvenile I.B. Pae I receptor [325]
Protein C deficiency I.B. Protein C [15]
Spondyloepiphyseal dysplasia due to hypochondrogenesis I.B. Type II procollagen [326]
von Willebrand disease I.B. von Willebrand factor [327]
S
� I.
�

C
D I.D. Insulin 2 [258]
P
P
A

C

B
C
D
H
W
P

C
f

I.C. The mutants are functional, retained in the
ER and not susceptible to ERAD. Diseases
that would fall into this class are currently
not known.
pondyloperipheral dysplasia
-Amyloid toxicity

1-Antitrypsin deficiency with liver disease
harcot-Marie-Tooth disease
iabetes mellitus in the Akita mouse

elizaeus-Merzbacher leukodystrophy
re-senile dementia/myoclonus
betalipoproteinemia

ombined coagulation factors V and VIII deficiency
II

ipolar disorder
olitis (mouse model)
iabetes mellitus (mouse model)
ypoglycemia (mouse model)
ollcott-Rallison syndrome
olyglutamine diseases (dentatorubral-pallidoluysian atrophy,
Huntington’s disease, spinobulbar muscular atrophy,
spinocerebellar ataxia)

IV

lasses are defined in the text. For class II diseases the WT proteins
ollowed by the mutated protein responsible for the loss of expression
I.B./I.D. Type II collagen [328]
D. �-Amyloid [247]
I.D. �1-Antitrypsin [256]
I.D. Peripheral myelin protein PMP22 [257]
I.D. Proteolipid protein [257]
I.D. Neuroserpin [257]

II. Apolipoprotein B/microsomal
triglyceride transfer protein

[14]

II. Factor V, factor VIII/LMAN1 [260]
. Factor V, factor VIII/MCFD2 [261]
III. XBP-1 [264]
III. IRE1� [194]

III. PERK [263]
III. eIF2� [37]

III. PERK [262]
. Proteasome [252]

whose loss of expression is the primary cause for the disease are listed first,
of the aforementioned proteins.
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I.D. The mutants are non-functional, retained
in the ER and not susceptible to ERAD.
Loss-of-function of the protein in its usual
cellular compartment or the extracellular
space is eclipsed by disruption of the ER
and subsequent initiation of apoptosis[257].
These are usually dominant diseases and
associated with increased ER-chaperone
levels. Examples are�-amyloid toxicity
[247] and autosomal dominant diabetes in
the Akita mouse[258,259].

II. A defective ER folding and transport machinery
prevents wild-type proteins from reaching their
destination: These can be very specific defects
affecting just a single protein due to the fact that
many specific client–chaperone pairs have evolved
(Table 2). A prominent example is a combined
factors V and VIII deficiency in patients with
mutations in the LMAN1–MCFD2 lectin complex
[260,261]required for the transport of factors V
and VIII from the ER to the Golgi complex.

III. Defective UPR signaling: These diseases are
caused by loss of one arm of the UPR, e.g.
through mutation of a proximal or downstream
gene involved in the UPR. Early-infancy insulin-
dependent diabetes (Wolcott-Rallison syndrome)
is caused by a kinase defective mutation in
PERK [262]. In addition,Perk−/− mice develop
diabetes mellitus[263]. A mouse model in which
a Ser51Ala mutation in eIF2� that abolishes
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acid proteasome inhibitor bortezomib, can be em-
ployed as a therapeutic concept for certain cancers
derived from secretory cell types, e.g. myelomas
and lymphomas derived from B-cells[265].

9. The UPR in “unstressed” cells

There is nothing such as a totally unstressed cell.
There is only a minimal level of stress[1]. Indeed,
yeast defective in the UPR and ERAD are synthetic
lethal [31,32]. The level ofHAC1mRNA splicing in
yeast in exponentially growing cultures ranges from
3 to 30%[35,36]. Both observations suggest that an
unfolded protein load sufficient to activate the UPR
exists in otherwise “unstressed” cells. Minor changes
in the unfolded protein load or stress level should
be an informative tool for a cell to access its overall
metabolic state (Fig. 10). This is illustrated by the
observation that, in yeast, the level ofHAC1splicing
in exponentially growing cells correlates with the
quality of the carbon source. It is low on preferred,
fermentable carbon sources, e.g.d-glucose, high on
non-fermentable C-sources, e.g. acetate or ethanol,
and intermediate on disaccharides such asd-maltose
[35,36]. Furthermore,HAC1-splicing is also regulated
by nitrogen. In nitrogen-rich conditionsHAC1mRNA
is processed, whereasHAC1 splicing stops very
rapidly after induction of complete nitrogen starvation
[35]. This information is integrated into decision
making of yeast cells in response to their nutritional
s of
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phosphorylation of eIF2� by PERK, and othe
eIF2� kinases, displays a pancreatic� cell defec
and defective gluconeogenesis leading to le
hypoglycemia [37]. Mutations in the XBP-1
promoter which affect its autostimulation a
associated with bipolar disorder[264].

V. Inhibition of adaptive responses regulated by
UPR: Polyglutamine repeats cause proteaso
dysfunction, thus eliminating one arm of t
UPR and subsequent activation of apopt
through ASK1[252]. Examples for polyglutamin
diseases are neurodegenerative diseases
Huntington’s disease, spinobulbar muscular a
phy, dentatorubral-pallidoluysian atrophy, and
spinocerebellar ataxias (SCAs 1, 2, 6, 7, 17,
SCA3/Machado-Joseph disease)[252]. Lastly, the
same concept, inhibition of proteasomal func
with small inhibitors, e.g. the dipeptidyl boron
.

tatus (Fig. 10A). Diploid budding yeast enter one
wo developmental programs in response to nitro
tarvation, pseudohyphal growth or sporulation[266].
seudohyphal growth is a directional growth form
east allowing this organism to forage for nutrie
uring starvation[267]. Sporulation yields a long

ived and stress-resistant metabolically quiescent a
ontaining four haploid spores[268]. Genetic and pha
acological experiments with drugs that disrupt p

ein folding in the ER, e.g. tunicamycin, demonstra
hat Hac1ip is a negative regulator of both nitrog
tarvation induced differentiation programs (Fig. 10A)
35]. Thus, increased synthesis of Hac1ip in nitrogen-
ich conditions represses nitrogen starvation respo
n yeast. In mammals, activation of ATF4 through
ERK pathway, and subsequent activation of am
cid biosynthetic genes by ATF4 may constitute a fe
ack loop to anticipate the loss of amino acids from
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Fig. 10. The balance between ER protein folding capacity and folding need as a sensor for the nutritional state of the cell. (A) Nutrient sensing in
yeast and (B) glucose sensing in�-cells. Two models (center and right) can explain how nutrients regulateHAC1mRNA splicing (A) or PERK
(B). In the first model (center), high nitrogen concentrations (center) are responsible for an increased influx of nascent unfolded polypeptide
chains into the ER and activation of Ire1p (A). High glucose concentrations stimulate protein folding through increased synthesis of ATP and
oligosaccharides, resulting in inactivation of PERK and stimulation of protein synthesis (B). In the second model (right) the activity of Ire1p
and PERK is directly modulated in response to nutrient availability. Abbreviation: PH – pseudohyphal.
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cell through secretion[38]. Thus, a role for the UPR in
regulation of nitrogen metabolism and nitrogen star-
vation responses is conserved from yeast to mammals.

The same concept, monitoring small fluctuations
in the unfolded protein load as an indicator of the
metabolic state of the cell, was proposed to work in
glucose-regulated synthesis of proinsulin in pancre-
atic�-cells[37]. In low glucose, protein folding in the
ER is inefficient, since ATP-generation from glucose
and synthesis of the core oligosaccharide are impaired
[269]. This activates the UPR and PERK shuts-off
translation, including translation of proinsulin mRNA.
When glucose levels rise ATP generation and glycosy-
lation become more efficient resulting in inactivation
of the UPR, resumption of translation, again including
proinsulin mRNA. Thus, the UPR would contribute to
glucose sensing in pancreatic�-cells (Fig. 10B) [37].
�-cells may be predisposed to this sensing mecha-
nism due to increased levels of IRE1[129] and PERK
[215], which allow for the detection of smaller fluctu-
ations in the free BiP pool by IRE1 and PERK. Con-
sistent with this model is the� cell defect observed in
Ser51Ala/Ser51Ala eIF2� mice[37] and the observa-
tion thatPerk−/− mice develop diabetes mellitus[263].
Both observations show that glucose sensing by�-cells
is perturbated in these animals. However, proinsulin
translation in response to glucose in islets isolated from
WT PERK andPerk−/− mice was very similar in vitro
[263]. Thus, it still needs to be determined if PERK
activity responds to fluctuations in the glucose level.
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by the UPR remodels the network of bZIP transcription
factors downstream of its proximal ER membrane
resident signal transducers. An interesting aspect here
is that cell-type specific bZIP transcription factor ex-
pression patterns may modulate downstream signaling
events in the UPR to adjust these to the specific needs
of individual cell types. Further, in the metazoan UPR
all three arms of the UPR transduce protective and
apoptotic signals. Are both signals transduced at the
same time or do slightly different stimuli, or cell-type
specific modulations of signal generation at the ER
membrane, generate different signals? How would
signaling specificity in the UPR then be achieved,
maintained, and regulated? Finally, UPR signaling has
for a long time been thought of to be only responsible to
balance the folding capacity of the ER with its biosyn-
thetic load. Recent observations show that signaling
by the UPR extends beyond this limited scope[35,37].
In addition to its well recognized function the UPR
also monitors the biosynthetic activity of the ER as
an indicator for the overall metabolic state of the cell.
Thus, UPR signaling is integrated into the regulation of
physiological events not previously associated with the
ER, e.g. the regulation of starvation and differentiation
responses[35,37]. Here, the next critical step clearly is
to identify the points of signal integration, and to show
that loss-of-function mutations at this point abolish
regulation of these responses by the UPR.
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aken together, these observations in yeast and m
als uncover a second physiological function for
PR. In addition to keeping the biosynthetic bur
nd biosynthetic capacity of the ER in line, the U
lso monitors the biosynthetic activity of the ER

nform the cell about its overall metabolic state. T
nformation, provided by the UPR, is then integra
nto decision making to changes in the nutritional
ironment of the cell, e.g. severe starvation in yea

0. Future directions

The regulation of signaling pathways and me
nisms of signal transduction from the ER to
ucleus have been characterized in considerable d
owever, only limited information and even less
erstanding is available for how the signal gener
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A flavoprotein oxidase defines a new endoplasmic reticu
pathway for biosynthetic disulphide bond formation, Nat. C
Biol. 3 (2001) 874–882.
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M. Schröder, R.J. Kaufman / Mutation Research 569 (2005) 29–63 63

quired for localization of amino acid permeases in yeast, Cell
71 (1992) 463–478.

[301] N.D. Dwyer, E.R. Troemel, P. Sengupta, C.I. Bargmann,
Odorant receptor localization to olfactory cilia is mediated by
ODR-4, a novel membrane-associated protein, Cell 93 (1998)
455–466.

[302] A. van der Spoel, E. Bonten, A. d’Azzo, Transport of human
lysosomal neuraminidase to mature lysosomes requires pro-
tective protein/cathepsin A, EMBO J. 17 (1998) 1588–1597.

[303] B. Ortmann, J. Copeman, P.J. Lehner, B. Sadasivan, J.A. Her-
berg, A.G. Grandea, S.R. Riddell, R. Tampe, T. Spies, J.
Trowsdale, P. Cresswell, A critical role for tapasin in the as-
sembly and function of multimeric MHC class I–TAP com-
plexes, Science 277 (1997) 1306–1309.

[304] L. Zhen, M.E. Rusiniak, R.T. Swank, The�-glucuronidase
propeptide contains a serpin-related octamer necessary for
complex formation with egasyn esterase and for retention
within the endoplasmic reticulum, J. Biol. Chem. 270 (1995)
11912–11920.

[305] S. Macintyre, D. Samols, P. Dailey, Two carboxylesterases
bind C-reactive protein within the endoplasmic reticulum and
regulate its secretion during the acute phase response, J. Biol.
Chem. 269 (1994) 24496–24503.

[306] A.J. Brown, L. Sun, J.D. Feramisco, M.S. Brown, J.L. Gold-
stein, Cholesterol addition to ER membranes alters conforma-
tion of SCAP, the SREBP escort protein that regulates choles-
terol metabolism, Mol. Cell 10 (2002) 237–245.

[307] H.C. Hurst, Transcription factors. 1: bZIP proteins, Protein
Profile 1 (1994) 123–168.

[308] H.C. Hurst, Transcription factors 1: bZIP proteins, Protein
Profile 2 (1995) 101–168.

[309] T. Hai, C.D. Wolfgang, D.K. Marsee, A.E. Allen, U.
Sivaprasad, ATF3 and stress responses, Gene Expr. 7 (1999)
321–335.

[310] T. Hai, M.G. Hartman, The molecular biology and nomencla-
sive
ing
273

Ya-
ork

ors,

re-
ulin-

rd,
the
n(a)
6.
ux,
.A.
the
caus-
4.
n-
de

causing hereditary goitrous hypothyroidism, Thyroid 3 (1993)
143–159.

[316] R.S. Carvalho, J.E. Scott, D.M. Suga, E.H. Yen, Stimulation
of signal transduction pathways in osteoblasts by mechanical
strain potentiated by parathyroid hormone, J. Bone Miner. Res.
9 (1994) 999–1011.

[317] Y. Miura, Y. Mori, F. Kambe, Y. Tani, Y. Oiso, H. Seo, Impaired
intracellular transport contributes to partial thyroxine-binding
globulin deficiency in a Japanese family, J. Clin. Endocrinol.
Metab. 79 (1994) 740–744.

[318] Y. Miura, F. Kambe, I. Yamamori, Y. Mori, Y. Tani, Y. Murata,
Y. Oiso, H. Seo, A truncated thyroxine-binding globulin due
to a frameshift mutation is retained within the rough endoplas-
mic reticulum: a possible mechanism of complete thyroxine-
binding globulin deficiency in Japanese, J. Clin. Endocrinol.
Metab. 78 (1994) 283–287.

[319] A. Arnold, S.A. Horst, T.J. Gardella, H. Baba, M.A. Levine,
H.M. Kronenberg, Mutation of the signal peptide-encoding
region of the preproparathyroid hormone gene in familial
isolated hypoparathyroidism, J. Clin. Invest. 86 (1990)
1084–1087.

[320] J.K. Naggert, L.D. Fricker, O. Varlamov, P.M. Nishina, Y.
Rouille, D.F. Steiner, R.J. Carroll, B.J. Paigen, E.H. Leiter,
Hyperproinsulinaemia in obese fat/fat mice associated with a
carboxypeptidase E mutation which reduces enzyme activity,
Nat. Genet. 10 (1995) 135–142.

[321] O. Varlamov, E.H. Leiter, L. Fricker, Induced and spontaneous
mutations at Ser202 of carboxypeptidase E. Effect on enzyme
expression, activity, and intracellular routing, J. Biol. Chem.
271 (1996) 13981–13986.

[322] S.W. Pipe, R.J. Kaufman, Factor VIII C2 domain missense
mutations exhibit defective trafficking of biologically func-
tional proteins, J. Biol. Chem. 271 (1996) 25671–25676.

[323] P. Duquesnoy, M.L. Sobrier, S. Amselem, M. Goossens, De-
fective membrane expression of human growth hormone (GH)

roc.

.
corin
. Med.

R.
tide,

strate

in,

n-

y, G.
ille-
he D3
41.
ger,
1)

m. J.
ture of the activating transcription factor/cAMP respon
element binding family of transcription factors: activat
transcription factor proteins and homeostasis, Gene
(2001) 1–11.

[311] H. Motohashi, T. O’Connor, F. Katsuoka, J.D. Engel, M.
mamoto, Integration and diversity of the regulatory netw
composed of Maf and CNC families of transcription fact
Gene 294 (2002) 1–12.

[312] S.I. Taylor, Lilly Lecture: molecular mechanisms of insulin
sistance. Lessons from patients with mutations in the ins
receptor gene, Diabetes 41 (1992) 1473–1490.

[313] A.L. White, J.E. Hixson, D.L. Rainwater, R.E. Lanfo
Molecular basis for “null”lipoprotein(a) phenotypes and
influence of apolipoprotein(a) size on plasma lipoprotei
level in the baboon, J. Biol. Chem. 269 (1994) 9060–906

[314] M.J. Abramowicz, H.M. Targovnik, V. Varela, P. Cocha
L. Krawiec, M.A. Pisarev, F.V. Propato, G. Juvenal, H
Chester, G. Vassart, Identification of a mutation in
coding sequence of the human thyroid peroxidase gene
ing congenital goiter, J. Clin. Invest. 90 (1992) 1200–120

[315] G.A. Medeiros-Neto, A.E. Billerbeck, B.L. Wajche
berg, H.M. Targovnik, Defective organification of iodi
receptor causes Laron-type GH insensitivity syndrome, P
Natl. Acad. Sci. U.S.A. 88 (1991) 10272–10276.

[324] K.M. Dyne, M. Valli, A. Forlino, M. Mottes, H. Kresse, G
Cetta, Deficient expression of the small proteoglycan de
in a case of severe/lethal osteogenesis imperfecta, Am. J
Genet. 63 (1996) 161–166.

[325] Y. Imai, M. Soda, H. Inoue, N. Hattori, Y. Mizuno,
Takahashi, An unfolded putative transmembrane polypep
which can lead to endoplasmic reticulum stress, is a sub
of Parkin, Cell 105 (2001) 891–902.

[326] R. Bogaert, G.E. Tiller, M.A. Weis, H.E. Gruber, D.L. Rimo
D.H. Cohn, D.R. Eyre, An amino acid substitution (Gly853→
Glu) in the collagen�1(II) chain produces hypochondroge
esis, J. Biol. Chem. 267 (1992) 22522–22526.

[327] J.C. Eikenboom, T. Matsushita, P.H. Reitsma, E.A. Tule
Castaman, E. Briet, J.E. Sadler, Dominant type 1 von W
brand disease caused by mutated cysteine residues in t
domain of von Willebrand factor, Blood 88 (1996) 2433–24

[328] B. Zabel, K. Hilbert, H. Stoss, A. Superti-Furga, J. Spran
A. Winterpacht, A specific collagen type II gene (COL2A
mutation presenting as spondyloperipheral dysplasia, A
Med. Genet. 63 (1996) 123–128.


	ER stress and the unfolded protein response
	Endoplasmic reticulum stress
	Principles of protein folding
	Thermodynamics
	Kinetics

	Protein folding in the ER
	Topology
	Chemical composition
	N-linked glycosylation
	Protein folding machinery

	Recognition of unfolded proteins
	Recognition of unfolded proteins by BiP
	Recognition of unfolded proteins by UGGT

	Transduction of the unfolded protein signal across the ER membrane
	Activation of protective responses by the UPR
	ATF6
	IRE1
	Mechanism of signal transduction
	Regulation of Ire1p
	Role of IRE1 and HAC1 in regulation of membrane proliferation
	The IRE1 pathway in higher eukaryotes
	Targets of the IRE1 pathway

	PERK
	Regulation of PERK signaling

	Modulation of a network of bZIP transcription factors by the UPR

	Signal transduction by the UPR - apoptosis
	Intrinsic pathways
	Extrinsic pathways

	Endoplasmic reticulum storage diseases
	The UPR in "unstressed" cells
	Future directions
	Acknowledgments
	References


