
Hydrol. Earth Syst. Sci., 22, 3515–3532, 2018

https://doi.org/10.5194/hess-22-3515-2018

© Author(s) 2018. This work is distributed under

the Creative Commons Attribution 4.0 License.

ERA-5 and ERA-Interim driven ISBA land surface model

simulations: which one performs better?

Clement Albergel1, Emanuel Dutra2, Simon Munier1, Jean-Christophe Calvet1, Joaquin Munoz-Sabater3,

Patricia de Rosnay3, and Gianpaolo Balsamo3

1CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
2Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
3ECMWF, Reading, UK

Correspondence: Clement Albergel (clement.albergel@meteo.fr)

Received: 7 March 2018 – Discussion started: 5 April 2018

Accepted: 17 June 2018 – Published: 28 June 2018

Abstract. The European Centre for Medium-Range Weather

Forecasts (ECMWF) recently released the first 7-year seg-

ment of its latest atmospheric reanalysis: ERA-5 over the pe-

riod 2010–2016. ERA-5 has important changes relative to the

former ERA-Interim atmospheric reanalysis including higher

spatial and temporal resolutions as well as a more recent

model and data assimilation system. ERA-5 is foreseen to

replace ERA-Interim reanalysis and one of the main goals

of this study is to assess whether ERA-5 can enhance the

simulation performances with respect to ERA-Interim when

it is used to force a land surface model (LSM). To that end,

both ERA-5 and ERA-Interim are used to force the ISBA (In-

teractions between Soil, Biosphere, and Atmosphere) LSM

fully coupled with the Total Runoff Integrating Pathways

(TRIP) scheme adapted for the CNRM (Centre National de

Recherches Météorologiques) continental hydrological sys-

tem within the SURFEX (SURFace Externalisée) modelling

platform of Météo-France. Simulations cover the 2010–2016

period at half a degree spatial resolution.

The ERA-5 impact on ISBA LSM relative to ERA-Interim

is evaluated using remote sensing and in situ observations

covering a substantial part of the land surface storage and

fluxes over the continental US domain. The remote sensing

observations include (i) satellite-driven model estimates of

land evapotranspiration, (ii) upscaled ground-based observa-

tions of gross primary production, (iii) satellite-derived esti-

mates of surface soil moisture and (iv) satellite-derived es-

timates of leaf area index (LAI). The in situ observations

cover (i) soil moisture, (ii) turbulent heat fluxes, (iii) river dis-

charges and (iv) snow depth. ERA-5 leads to a consistent im-

provement over ERA-Interim as verified by the use of these

eight independent observations of different land status and of

the model simulations forced by ERA-5 when compared with

ERA-Interim. This is particularly evident for the land surface

variables linked to the terrestrial hydrological cycle, while

variables linked to vegetation are less impacted. Results also

indicate that while precipitation provides, to a large extent,

improvements in surface fields (e.g. large improvement in the

representation of river discharge and snow depth), the other

atmospheric variables play an important role, contributing to

the overall improvements. These results highlight the impor-

tance of enhanced meteorological forcing quality provided

by the new ERA-5 reanalysis, which will pave the way for

a new generation of land-surface developments and applica-

tions.

1 Introduction

Observing and simulating the response of land biophysical

variables to extreme events is a major scientific challenge in

relation to the adaptation to climate change. To that end, land

surface models (LSMs) constrained by high-quality gridded

atmospheric variables and coupled with river-routing mod-

els are essential (Schellekens et al., 2017; Dirmeyer et al.,

2006). Such LSMs should represent land surface biogeo-

physical variables like surface and root zone soil moisture

(SSM and RZSM, respectively), biomass, and leaf area in-

dex (LAI) in a way that is fully consistent with the rep-

resentation of surface and energy flux as well as river dis-

Published by Copernicus Publications on behalf of the European Geosciences Union.



3516 C. Albergel et al.: ERA-5 and ERA-Interim driven ISBA land surface model simulations

charge simulations. Land surface simulations, such as those

from the Global Soil Wetness Project (GSWP, Dirmeyer et

al., 2002, 2006; Dirmeyer, 2011), combined with seasonal

forecasting systems have been of paramount importance in

triggering progress in land-related predictability as docu-

mented in the Global Land–Atmosphere Coupling Experi-

ments (GLACE; Koster et al., 2009a, 2011). The land surface

state estimates used in those studies were generally obtained

with offline (or stand-alone) model simulations, forced by

3-hourly meteorological fields from atmospheric reanalysis.

In the past decade, several improved global atmospheric re-

analyses of the satellite era (1979–onwards) have been pro-

duced that enable new applications of offline land surface

simulations. Amongst them are NASA’s Modern Era Retro-

spective Analysis for Research and Applications (MERRA;

Rienecker et al., 2011, and MERRA2; Gelaro et al., 2017)

as well as ECMWF’s (European Centre for Medium-Range

Weather Forecasts) Interim reanalysis (ERA-Interim; Dee et

al., 2011). Their offline use in either LSMs or land data

assimilation system (LDAS), with or without meteorologi-

cal corrections (e.g. precipitations), led to global land sur-

face variables (LSVs) reanalysis data sets that can support,

for example water resources analysis (Schellekens et al.,

2017), like MERRA-Land and MERRA2-Land (Reichle et

al., 2011, 2017), ERA-Interim/Land (Balsamo et al., 2015),

the forthcoming ERA5-Land (Muñoz-Sabater et al., 2018),

the North American LDAS (NLDAS; Mitchell et al., 2004),

the Global LDAS (GLDAS; Rodell et al., 2004) and LDAS-

Monde (Albergel et al., 2017). The quality of those offline

land surface simulations relies on the accuracy of the forcing

and of the realism of the LSM itself (Balsamo et al., 2015).

ECMWF recently released the first 7-year segment of its

latest atmospheric reanalysis: ERA-5 over the period 2010–

2016. ERA-5 has important changes relative to the former

ERA-Interim atmospheric reanalysis including higher spa-

tial and temporal resolutions as well as a better global bal-

ance of precipitation and evaporation. As ERA-5 will eventu-

ally replace the ERA-Interim reanalysis assessing its ability

to force a LSM with respect to ERA-Interim is highly rele-

vant. In this study, ERA-5, ERA-Interim and a combination

of both (ERA-5 with precipitation of ERA-Interim) are used

to constrain the CO2-responsive version of the Interactions

between Soil, Biosphere, and Atmosphere (ISBA; Noilhan

and Mahfouf, 1996; Calvet et al., 1998, 2004; Gibelin et al.,

2006) LSM fully coupled with the CNRM (Centre National

de Recherches Météorologiques) version of the Total Runoff

Integrating Pathways (TRIP; Oki et al., 1998) continental hy-

drological system (CTRIP hereafter; Decharme et al., 2010)

within the SURFEX (SURFace Externalisée; Masson et al.,

2013) modelling system of Météo-France. The ISBA mod-

els leaf-scale physiological processes and plant growth, with

transfer of water and heat through the soil relying on a mul-

tilayer diffusion scheme.

In this study, SURFEX is applied over a data-rich area:

North America (latitudes from 20.0 to 55.0◦ N, longitudes

from 130.0 to 60.0◦ W) for the period 2010–2016. ERA-

5 added values with respect to ERA-Interim are assessed

by providing verification and diagnostics comparing ISBA

LSV outputs when forced by either ERA-5, ERA-Interim,

ERA-5 with ERA-Interim precipitations to several in situ

measurement data sets or satellite-derived estimates of Earth

observations. Specifically, in situ measurements of (i) soil

moisture from the USCRN (US Climate Reference Network;

Bell et al., 2013) spanning the United States of America

and (ii) turbulent heat fluxes from FLUXNET-2015 (http:

//fluxnet.fluxdata.org/data/fluxnet2015-dataset/, last access:

June 2018) are used in the evaluation, together with (iii) river

discharges from the United States Geophysical Survey

(USGS; https://waterwatch.usgs.gov/, last access: June 2018)

and (iv) snow depth measurements from the Global Histori-

cal Climatology Network (GHCN; Menne et al., 2012a, b).

The following are also used: (i) satellite-driven model es-

timates of land evapotranspiration from the Global Land

Evaporation Amsterdam Model (GLEAM; Martens et al.,

2017), (ii) upscaled ground-based observations of gross pri-

mary production (GPP) from the FLUXCOM project (Jung

et al., 2017), (iii) satellite-derived estimates of surface soil

moisture (SSM) from the Climate Change Initiative (CCI) of

the European Space Agency (ESA CCI SSM v4; Dorigo et

al., 2015, 2017) and (iv) satellite-derived estimates of LAI

from the Copernicus Global Land Service program (CGLS;

http://land.copernicus.eu/global/, last access: June 2018).

Section 2 presents the details of two atmospheric reanaly-

ses data sets (ERA-Interim and ERA-5), the SURFEX model

configuration and the evaluation strategy with the observa-

tional data sets. Section 3 provides a set of statistical diag-

nostics to assess and evaluate the impact of ERA-5 on ISBA

with respect to ERA-Interim. Finally, Sect. 4 provides per-

spectives and future research directions.

2 Methodology

2.1 ERA-Interim and ERA-5 reanalyses

ERA-Interim is a global atmospheric reanalysis produced by

ECMWF (Dee et al., 2011). It uses the integrated forecast

system (IFS) version 31r1 (more information at https:

//www.ecmwf.int/en/forecasts/documentation-and-support/

changes-ecmwf-model/ifs-documentation, last access: June

2018) with a spatial resolution of about 80 km (T255)

and with analyses available for 00:00, 06:00, 12:00 and

18:00 UTC. It covers the period from 1 January 1979

onward and continues to be extended forward in near-real

time (with a delay of approximately 1 month). Reanalyses

merge observations and model forecasts in data assimilation

methods to provide an accurate and reliable description of

the climate over the last few decades. Berrisford et al. (2009)

provide a detailed description of the ERA-Interim product

archive. ERA-5 (Hersbach and Dee, 2016) is the latest and
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fifth generation of European reanalyses produced by the

ECMWF and a key element of the EU-funded Copernicus

Climate Change Service (C3S). It is expected that ERA-5

will replace the production of the current ERA-Interim

reanalysis (Dee et al., 2011) before the end of 2018, from

1979 to close to the Near Real Time (NRT) period, i.e. in

ERA-5 regular routine updates will be conducted to keep

close to NRT. In a second phase, an extension back to 1950

is also expected. ERA-5 adds different characteristics to

ERA-Interim reanalysis, which makes it richer in term of

climate information.

ERA-5 uses one of the most recent versions of the Earth

system model and data assimilation methods applied at

ECMWF, which makes it able to use modern parameteri-

zations of Earth processes compared to older versions used

in ERA-Interim. For instance, developments were done at

ECMWF which allows the reanalysis to use a variational

bias scheme not only for satellite observations but also for

ozone, aircraft and surface pressure data. ERA-5 also ben-

efits from reprocessed data sets that were not ready yet dur-

ing the production of ERA-Interim. Two other important fea-

tures of ERA-5 are the improved temporal and spatial reso-

lutions: from 6-hourly in ERA-Interim to hourly in ERA-5,

and from 79 km in the horizontal dimension and 60 levels in

the vertical to 31 km and 137 levels in ERA-5. Finally, ERA-

5 also provides an estimate of uncertainty through the use

of a 10-member ensemble of data assimilations (EDA) at a

coarser resolution (63 km horizontal resolution) and 3-hourly

frequency.

2.2 SURFEX modelling system

2.2.1 The ISBA land surface model

This study makes use of the CO2-responsive version of the

ISBA LSM included in the open-access SURFEX modelling

platform of Météo-France (Masson et al., 2013). The most re-

cent version of SURFEX (version 8.1) is used with the “NIT”

biomass option for ISBA. The latter simulates the diurnal cy-

cle of water and carbon fluxes, plant growth, and key vegeta-

tion variables like LAI and above-ground biomass on a daily

basis. It can be coupled to the CTRIP river-routing model

in order to simulate streamflow. In this version of ISBA, a

single-source energy budget of a soil–vegetation compos-

ite is computed. Also, the ISBA parameters are defined for

12 generic land surface patches, which include nine plant

functional types (needle leaf trees, evergreen broadleaf trees,

deciduous broadleaf trees, C3 crops, C4 crops, C4 irrigated

crops, herbaceous, tropical herbaceous and wetlands), bare

soil, rocks, and permanent snow and ice surfaces. A more

comprehensive model description can be found in Masson et

al. (2013).

ISBA accounts for the atmospheric CO2 concentration on

stomatal aperture (Calvet et al., 1998, 2004; Gibelin et al.,

2006). Also, photosynthesis and its coupling with stomatal

conductance on a leaf level are accounted for. The vegetation

net assimilation of CO2 is estimated and used as an input to

a simple vegetation growth submodel able to predict LAI:

photosynthesis drives the dynamic evolution of the vegeta-

tion biomass and LAI variables in response to atmospheric

and climate conditions. During the growing phase, enhanced

photosynthesis corresponds to a CO2 uptake, which leads to

vegetation growth. In contrast, lack of photosynthesis leads

to higher mortality rates. The GPP is defined as the carbon

uptake while the ecosystem respiration (RECO) is the release

of CO2, the difference between these two quantities being

the net ecosystem CO2 exchange (NEE). Evaporation due to

(i) plant transpiration, (ii) liquid water intercepted by leaves,

(iii) liquid water contained in top soil layers and (iv) the sub-

limation of snow and soil ice are combined to represent the

total evaporative flux.

The ISBA 12-layer explicit snow scheme (Boon and

Etchevers, 2001; Decharme et al., 2016) and its multilayer

soil diffusion scheme (ISBA-Dif) are used. The later is based

on the mixed form of the Richards equation (Richards, 1931)

and explicitly solves the one-dimensional Fourier law. It also

incorporates soil freezing processes developed by Boone et

al. (2000) and Decharme et al. (2013). The total soil profile

is vertically discretized; both the temperature and moisture of

each soil layer are computed according to their textural and

hydrological characteristics. The Brookes and Corey model

(Brooks and Corey, 1966) determines the closed-form equa-

tions between the soil moisture and the soil hydrodynamic

parameters, including the hydraulic conductivity and the soil

matrix potential (Decharme et al., 2013). The default dis-

cretization with 14 layers over 12 m depth is used. The lower

boundary of each layer being: 0.01, 0.04, 0.1, 0.2, 0.4, 0.6,

0.8, 1, 1.5, 2, 3, 5, 8 and 12 m deep (see Fig. 1 of Decharme

et al., 2011). Amounts of clay, sand and organic carbon in

the soil determine the thermal and hydrodynamic soil prop-

erties (Decharme et al., 2016). They are taken from the Har-

monized World Soil Database (HWSD; Wieder et al., 2014).

As for hydrology, the infiltration, surface evaporation and to-

tal runoff are accounted for in the soil water balance. The

infiltration rate defines the discrepancy between the surface

runoff and the throughfall rate. The later being defined as the

sum of rainfall not intercepted by the canopy, dripping from

the canopy (i.e. interception reservoir) and snow melt water.

The soil evaporation affects only the superficial layer (top

1 cm) and is proportional to its relative humidity. Transpira-

tion water from the root zone (the region where the roots are

asymptotically distributed) follows the equations in Jackson

et al. (1996). Canal et al. (2014) provide more information

on the root density profile.

Both the surface runoff (the lateral subsurface flow in the

topsoil) and a free drainage condition at the bottom soil layer

contribute to ISBA total runoff. The Dunne runoff (i.e. when

no further soil moisture storage is available) and lateral sub-

surface flow from a subgrid distribution of the topography are

computed using a basic TOPMODEL approach. The Horton
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runoff (i.e. when rainfall has exceeded infiltration capacity)

is estimated from the maximum soil infiltration capacity and

a subgrid exponential distribution of the rainfall intensity.

2.2.2 The CTRIP hydrological system

CTRIP is driven by three prognostic equations correspond-

ing to (i) the groundwater, (ii) the surface stream water and

(iii) the seasonal floodplains. Streamflow velocity is com-

puted using the Manning formula as described in Decharme

et al. (2010). When the river water level overtops the river-

bank, it fills up the floodplain reservoir which empties when

the water level drops below this threshold (Decharme et al.,

2012). Occurrence of flooding impacts the ISBA soil hydrol-

ogy through infiltration, and it also influences the overlying

atmosphere via free surface-water evaporation and precipita-

tion interception. The groundwater scheme is based on the

two-dimensional groundwater flow equation for the piezo-

metric head (Vergnes and Decharme, 2012). Its coupling with

ISBA enables accounting for the presence of a water table un-

der the soil moisture column. It allows for upward capillary

fluxes into the soil (Vergnes et al., 2014). CTRIP is coupled

to ISBA through OASIS-MCT (Voldoire et al., 2017). Once a

day, ISBA provides CTRIP with updates on runoff, drainage,

groundwater and floodplain recharges, and CTRIP feedbacks

to ISBA the water table fall or rise, floodplain fraction, and

flood potential infiltration. The current CTRIP version con-

sists of a global streamflow network at 0.5◦ × 0.5◦ spatial

resolution.

2.3 Evaluation strategy and data sets

Three experiments are considered for the evaluation:

(i) SURFEX forced by ERA-Interim, all atmospheric vari-

ables interpolated to 0.5◦ × 0.5◦ spatial resolution (referred

as ei_S hereafter, the benchmark experiment); (ii) SURFEX

forced by ERA-5, all atmospheric variables interpolated at

0.5◦ × 0.5◦ spatial resolution except precipitation (rain and

snow interpolated to hourly time steps assuming a constant

flux) that comes from ERA-Interim (referred as e5ei_S here-

after); and (iii) SURFEX forced by ERA-5, all atmospheric

variables interpolated at 0.5◦ × 0.5◦ spatial resolution (re-

ferred as e5_S hereafter). A bilinear interpolation from the

native reanalysis grid to the regular grid has been used.

For all three experiments, the first year (2010) was spun up

20 times to allow the model to reach equilibrium. Comparing

e5_S to ei_S provides the overall improvements from ERA-

Interim to ERA-5. The idealized e5ei_S simulation was car-

ried out to assess the role of precipitation changes from ERA-

Interim to ERA-5.

This study makes use of several in situ measurement data

sets as well as satellite-derived estimates of Earth observa-

tions that are described in the next two sections. The dif-

ferent performance metrics used for the evaluation are also

described. Their choice is of crucial interest; it is governed

by the nature of the variable itself and is influenced by the

purpose of the investigation and its sensitivity to the con-

sidered variables (Stanski et al., 1989). No single metric or

statistic can capture all the attributes of environmental vari-

ables; some are robust with respect to some attributes while

insensitive to others (Entekhabi et al., 2010). While per-

formance metrics like the correlation coefficient (R), unbi-

ased root mean squared differences (ubRMSD), root mean

squared differences (RMSDs) and efficiency score (depend-

ing on the considered variable) are first applied to the three

simulations independently, metrics like the normalized infor-

mation contribution (NIC; e.g. Kumar et al., 2009) are then

used to quantify improvement or degradation from one data

set to another. Table 1 summarizes the different data sets used

for the evaluation and the performance metrics used.

2.3.1 In situ measurement of soil moisture, river

discharges, snow depth and fluxes

USCRN is a network of climate-monitoring stations main-

tained and operated by the National Oceanic and At-

mospheric Administration (NOAA). It aims at providing

climate-science-quality measurements of air temperature and

precipitation. To increase the network’s capability of mon-

itoring soil processes and drought, soil observations were

added to USCRN instrumentation. At each USCRN station

in the conterminous United States in 2011, the USCRN

team completed the installation of triplicate-configuration

soil moisture and soil temperature probes at five standard

depths (5, 10, 20, 50 and 100 cm) as prescribed by the World

Meteorological Organization. The 111 stations present data

between 2009 and 2016. Stations provide data at an hourly

time step. Similar to a prior study, data sets potentially af-

fected by frozen conditions were masked out using an ob-

served temperature threshold of 4 ◦C (e.g. Albergel et al.,

2013a). The second layer of soil of ISBA between 1 and

4 cm depth (the diffusion scheme is used in this study) is

compared to in situ measurements at 5 cm depth at a 3-

hourly time step (model output) between April and Septem-

ber in order to avoid frozen conditions as much as possible

. The ability of ei_S, e5ei_S and e5_S to reproduce surface

soil moisture variability is first assessed using the correla-

tion coefficient (R) and unbiased root mean square differ-

ences (ubRMSD). Climatology differences between model

and in situ observations make a direct comparison difficult

(Koster et al., 2009b). Soil moisture time series usually show

a strong seasonal pattern possibly increasing the skill val-

ues between modelled and observed data sets. To avoid sea-

sonal effects, monthly anomaly time series are calculated. At

each grid and observation point, the difference from the mean

is produced for a sliding window of 5 weeks, and the dif-

ference is scaled to the standard deviation as in Albergel et

al. (2013b). For each surface soil moisture estimate at day i,

a period F is defined, with F = [i −17, i +17] (correspond-

ing to a 5-week window). If at least five measurements are
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Table 1. Evaluation data sets and associated metrics used in this study.

Data sets used for the evaluation Source Associated metrics

In situ measurements of soil moisture

(USCRN; Bell et al., 2013)

https://www.ncdc.noaa.gov/crn R (on both volumetric and anomaly

time series)

ubRMSD

In situ measurements of streamflow (USGS) https://nwis.waterdata.usgs.

gov/nwis

Nash–Sutcliffe efficiency (NSE), normalized

information contribution (NIC) based on NSE,

ratio of simulated and observed streamflow (Q)

In situ measurements of snow depth (GHCN;

Menne et al., 2012a, b)

https://www.ncdc.noaa.gov/

climate-monitoring/

R, bias and ubRMSD

In situ measurements of sensible and latent heat

fluxes (FLUXNET-2015)

http://fluxnet.fluxdata.org/data/

fluxnet2015-dataset/

R, RMSD

Satellite-derived surface soil moisture (ESA

CCI SSM v4, Dorigo et al., 2015, 2017)

http://www.

esa-soilmoisture-cci.org

R (on both volumetric and anomaly time series)

Satellite-derived leaf area index (GEOV1; Baret

et al., 2013)

http://land.copernicus.eu/

global/

R and RMSD

Satellite-driven model estimates of land evapo-

transpiration (GLEAM; Martens et al., 2017)

http://www.gleam.eu R and RMSD

Upscaled estimates of gross primary production

(GPP; Jung et al., 2017)

https://www.bgc-jenna.mpg.de/

geodb/projects/Home.php

R and RMSD

available in this period, the average soil moisture value and

the standard deviation are calculated. Anomaly time series

reflect the time-integrated impact of antecedent meteorologi-

cal forcing. The latter is mainly reflected in the upper layer of

soil. The correlation coefficient is also computed for anomaly

time series (Rano). For correlations, the p value (a measure of

the correlation significance) is also calculated indicating the

significance of the test (as in Albergel et al., 2010), and only

cases where the p value is below 0.05 (i.e. the correlation

is not a coincidence) are retained. Stations with nonsignif-

icant R values can be considered suspect and are excluded

from the computation of the network average metrics. This

process may remove some reliable stations too (e.g. in areas

where the model might not realistically represent soil mois-

ture).

Over the period 2010–2016, river discharge from ei_S,

e5ei_S and e5_S are compared to daily streamflow data

from the USGS http://nwis.waterdata.usgs.gov/nwis, last ac-

cess: June 2018). Data are chosen for subbasins with large

drainage areas (10 000 km2 or greater) and with a long ob-

servation time series (4 years or more). Smaller basins are

excluded due to the low resolution of CTRIP (0.5◦ × 0.5◦).

It is common to express observed and simulated river dis-

charge (Q) data in m3 s−1. Given that the observed drainage

areas may differ slightly from the simulated ones, specific

discharge in mm d−1 (the ratio of Q to the drainage area) is

used in this study, similarly to Albergel et al. (2017). Sta-

tions with drainage areas differing by more than 20 % from

the simulated ones are also discarded. This criterion aims to

ensure a meaningful comparison between observed and sim-

ulated values. It is necessary for coping with the significant

distortions in the model representation of the river network

that are caused by the coarse spatial resolution of the CTRIP

global river network (0.5◦ × 0.5◦). Impact on Q is evaluated

using the efficiency score (NSE; Nash and Sutcliffe, 1970).

NSE evaluates the model ability to represent the monthly dis-

charge dynamics and is given by

NSE = 1 −

T
∑

t=1

(

Qt
s − Qt

o

)2

T
∑

t=1

(

Qt
o − Qt

o

)2
, (1)

where Qt
s is the simulated river discharge (by either ei_S,

e5ei_S or e5_S) at time t and Qt
o is observed river discharge

at time t , T is the total number of days and Qt
o is the aver-

age observed discharge. NSE can vary between −∞ and 1.

A value of 1 corresponds to identical model predictions and

observed data. A value of 0 implies that the model predic-

tions have the same accuracy as the mean of the observed

data. Negative values indicate that the observed mean is a

more accurate predictor than the model simulation. Only sta-

tions with a NSE greater than −1 for the benchmark exper-

iment, ei_S, are considered, leading to 172 stations over the

considered domain. A normalized information contribution

(NIC; as in Kumar et al., 2009) measure is then computed to

quantify the improvement or degradation due to the specific

atmospheric reanalysis used to force ISBA. The NICNSE val-
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ues are computed for both e5_S and e5ei_S with respect to

ei_S as

NICNSE(e5;5ei) =
NSE(e5;e5ei) − NSE(ei)

1 − NSE(ei)
. (2)

The NICNSE metric provides a normalized measure of the

improvement through the use of either NSEe5ei or NSEe5

as a fraction of the maximum possible skill improvement

(1 − NSEei). Positive and negative NICNSE values indicate

improvements and degradations in either e5_S or e5ei_S rel-

ative to ei_S river discharge estimates, respectively. NICs

along with their 95 % confidence interval of the median de-

rived from a 10 000 samples bootstrapping are provided for

e5_S and e5ei_S. The ratio of simulated and observed river

discharges is also computed
(

Qt
s/Q

t
o

)

; the closer to 1 it is,

the better the simulated river discharges are.

The Global Historical Climatology Network (GHCN)

daily data set, developed to meet the needs of climate anal-

ysis and monitoring studies that require data at a daily time

resolution, contains records from over 75 000 stations in 179

countries and territories (Menne et al., 2012a, b). Numer-

ous daily variables are provided, including maximum and

minimum temperature, total daily precipitation, snowfall and

snow depth. In this study, over North America, stations with

daily snow depth data from 2010 to 2016, with less than

10 % missing and at least 15 days of snow presences per

year on average (to avoid using stations always reporting

zero snow depth) are used, it results in 1901 stations out of

2056. The ability of ei_S, e5ei_S and e5_S to reproduce snow

depth and its variability is assessed using the bias, correla-

tion coefficient (R) and unbiased root mean square difference

(ubRMSD).

Daily observations of sensible and latent heat fluxes from

the FLUXNET-2015 data set with at least 2 years of data

are used over the period 2010–2016 to evaluate the abil-

ity of e5_S, e5ei_S and ei_S to reproduce flux variabil-

ity. The FLUXNET-2015 data set includes data collected at

sites from multiple regional flux networks as well as sev-

eral improvements to the data quality control protocols and

the data processing pipeline (http://fluxnet.fluxdata.org/data/

fluxnet2015-dataset/). The 37 stations are retained for the

evaluations and two metrics are considered: R and RMSD.

Performance metrics are applied to each individual station

of each network; thereafter, network metrics are computed

by providing the median values of the statistics from the in-

dividual stations within each network. For each metric, the

95 % confidence interval of the median derived from a 10 000

samples bootstrapping is provided.

2.3.2 Satellite-derived estimates of surface soil

moisture, leaf area index, land

evapotranspiration and gross primary production

In response to the GCOS (Global Climate Observing System)

endorsement of soil moisture as an essential climate variable,

the European Space Agency Water Cycle Multimission Ob-

servation Strategy (WACMOS) project and Climate Change

Initiative (CCI; http://www.esa-soilmoisture-cci.org, last ac-

cess: June 2018) have supported the generation of a surface

soil moisture product based on multiple microwave sources

(ESA CCI SSM hereafter). The first version of the combined

product was released in June 2012 by the Vienna Univer-

sity of Technology (Liu et al., 2011, 2012; Wagner et al.,

2012). Several authors (e.g. Albergel et al., 2013a, b; Dorigo

et al., 2015, 2017) have highlighted the quality and stabil-

ity over time of the product. Despite some limitations, this

data set has already shown potential in assessing model per-

formance (e.g. Szczypta et al., 2014; van der Schrier et al.,

2013). In this study the combined ESA CCI SSM latest ver-

sion of the product (v4) is used. It merges SSM observations

from seven microwave radiometers (SMMR, SSM/I, TMI,

ASMR-E, WindSat, AMSR2, SMOS) and four scatterome-

ters (ERS-1, 2 AMI, MetOp-A and B ASCAT) into a com-

bined data set covering the period November 1978 to Decem-

ber 2016. Data are in volumetric (m3 m−3) units and quality

flags (snow coverage, temperature below 0◦C or dense vege-

tation) are provided. For a more comprehensive overview of

the product, see Dorigo et al. (2015, 2017). As topographic

relief is known to negatively affect remote sensing estimates

of soil moisture (Mätzler and Standley, 2000), the time series

for pixels whose average altitude exceeded 1500 m above sea

level were discarded. Data on pixels with urban land cover

fractions larger than 15 % were also discarded, to limit the ef-

fects of artificial surfaces. The altitude and urban area thresh-

olds were set according to Draper et al. (2011) and Barbu et

al. (2014), who processed satellite-based SSM retrievals for

data assimilation studies with the ISBA LSM. As for in situ

measurements of soil moisture, correlation is applied to both

the volumetric and anomaly time series.

The GEOV1 LAI used in this study is produced by the

European CGLS (http://land.copernicus.eu/global/) as evalu-

ated in Boussetta et al. (2015). The LAI observations are re-

trieved from the SPOT-VGT and then PROBA-V (from 1999

to present) satellite data according to the methodology pro-

posed by Baret et al. (2013). As in Barbu et al. (2014), the

1 km spatial resolution observations are interpolated by an

arithmetic average to the 0.5◦ model grid points, if at least

50 % of the observation grid points are observed (i.e. half

the maximum amount). LAI observations have a temporal

frequency of 10 days at best (in presence of clouds, no ob-

servations are available). Correlation and root mean squared

differences are used to assess the ability of ei_S, e5ei_S and

e5_S to reproduce LAI variability.

The GLEAM product uses a set of algorithms to estimate

both terrestrial evaporation and RZSM based on satellite data

(Miralles et al., 2011). It is a useful validation tool to as-

sess model performance given that such quantities are diffi-

cult to measure directly on large scales. Potential evaporation

rates are constrained by satellite-derived SSM data, while the

global evaporation model in GLEAM is mainly driven by
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Figure 1. Seasonal time series of the six main land surface variables (LSVs) evaluated in this study over the whole domain for 2010–2016:

(a) river discharge, (b) snow depth, (c) leaf area index, (d) liquid soil moisture in the second layer of soil (1–4 cm depth), (e) evapotranspi-

ration and (f) gross primary production. LSVs simulated with SURFEX forced by ERA-Interim (ei_S) are in blue, by ERA-5 (e5_S) with

precipitation from ERA-Interim (e5ei_S) in green and by ERA-5 (e5_S) in red.

various microwave remote-sensing observations. It is now a

well established data set that has been widely used to study

land–atmosphere feedbacks (e.g. Miralles et al., 2014b; Guil-

lod et al., 2015), as well as trends and spatial variability in

the hydrological cycle (e.g. Jasechko et al., 2013; Greve et

al., 2014; Miralles et al., 2014a; Zhang et al., 2016). This

study makes use of the latest version available, v4.0. It is a

37-year data set spanning from 1980 to 2016 and is derived

from a variety of sources, such as vegetation optical depth

and snow water equivalent, satellite-derived SSM estimates,

reanalysis air temperature and radiation, and a multi-source

precipitation product (Martens et al., 2017). It is available

at a spatial resolution of 0.25◦ × 0.25◦. A full description

of the data set, including an extensive validation using mea-

surements from 64 eddy-covariance towers worldwide is pro-

vided by Martens et al. (2017). As for LAI, the correlation

and root mean squared differences are the two performance

metrics used to evaluate the representation of evapotranspi-

ration from the three data sets.

The final product used in this study is a daily GPP estimate

from the FLUXCOM project (Jung et al., 2017). It is an up-

scaled product derived from the FLUXNET. In FLUXCOM,

selected machine-learning-based regression tools that span

the full range of commonly applied algorithms (from model

tree ensembles to multiple adaptive regression splines, to ar-

tificial neural networks, and to kernel methods), and several

representatives of each family are used to provide a spatial

upscaling of GPP at regional to global scales. It is limited

to a 0.5◦ × 0.5◦ spatial resolution and a daily temporal reso-

lution over the period 1982–2013 (Tramontana et al., 2016).

FLUXCOM fluxes can be used as a way of benchmarking

LSMs on large scales (Jung et al., 2009, 2010, 2011; Beer

et al., 2010; Bonan et al., 2011; Slevin et al., 2017). The

product can be found at the Max Planck Institute for Biogeo-

chemistry data portal (https://www.bgc-jena.mpg.de/geodb/

projects/Home.php, last access: June 2018). Correlation and

root mean squared differences are the two performance met-

rics used to evaluate the representation of carbon uptake from

the three data sets.

3 Results

Seasonal time series of the six main LSVs evaluated in this

study over the whole domain for 2010–2016 are illustrated

on Fig. 1. They are (Fig. 1a) river discharge (although averag-

ing this variable over the whole domain has no real meaning,

it is certainly useful to appreciate the differences between

the three data sets), (Fig. 1b) snow depth, (Fig. 1c) leaf area

index, (Fig. 1d) liquid soil moisture in the second layer of
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Table 2. Comparison of surface soil moisture with in situ observations for ei_S, e5ei_S and e5_S over the period 2010–2016 (April to

September months are considered). Median correlations R (on volumetric and anomaly time series) and ubRMSD are given for the USCRN.

Scores are given for significant correlations with p values < 0.05.

Median R1 on volumetric time series, Median R3 on anomalies time series, Median ubRMSD1 (m3 m−3),

95 % confidence interval2 95 % confidence interval2 95 % confidence interval2

(% of stations for which this (% of stations for which this (% of stations for which this

configuration is the best) configuration is the best) configuration is the best)

ei_S 0.66 ± 0.02 (20 %) 0.53 ± 0.02 (15 %) 0.052 ± 0.003 (19 %)

e5ei_S 0.69 ± 0.02 (20 %) 0.54 ± 0.04 (10 %) 0.052 ± 0.002 (24 %)

e5_S 0.71 ± 0.02 (60 %) 0.58 ± 0.03 (75 %) 0.050 ± 0.003 (57 %)

1 Only for stations presenting significant R values on volumetric time series (p value < 0.05): 110 stations; 2 95% confidence interval of the median derived from

a 10 000 samples bootstrapping; 3 Only for stations presenting significant R values on anomaly time series (p value < 0.05): 107 stations

Figure 2. Maps of correlation (R) on volumetric time series (a) and anomaly time series (b) between in situ measurements at 5 cm depth from

the USCRN and the ISBA LSM within the SURFEX modelling platform forced by either ERA-Interim (ei_S), ERA-5 with ERA-Interim

precipitations (e5ei_S) or ERA-5 (e5_S). For each station presenting significant R (p values < 0.05), the simulation that presents the better

R values is represented. Star symbols are when ei_S presents the best value, circles when it is e5ei_S and downward pointing triangles when

it is e5_S. Panel (c) shows a histogram of R differences on volumetric time series, R(e5_S) − R(ei_S) in red and R(e5ei_S) − R(ei_S) in

green, median values of the differences are also reported. (d) Same as (c) for R values on anomaly time series.

soil (1–4 cm depth), (Fig. 1e) evapotranspiration and (Fig. 1f)

gross primary production. LSVs simulated with the ISBA

LSM forced by ERA-Interim (ei_S) are in blue, by ERA-5

with precipitation from ERA-Interim (e5ei_S) in green and

by ERA-5 (e5_S) in red. From Fig. 1, one can see that river

discharge, snow depth and surface soil moisture are the most

impacted by the use of ERA-5, suggesting that precipitation

is the main driver of the differences.

3.1 Evaluations using in situ measurements

This section presents the results of the comparison versus in

situ observations of LSVs from model simulations using ei-

ther ei_S, e5ei_S or e5_S starting with soil moisture. The

statistical scores for 2010–2016 surface soil moisture from

ei_S, e5ei_S and e5_S are presented in Table 2. Median

R values on volumetric time series (anomaly time series)

along with their 95 % confidence intervals are 0.66 ± 0.02

(0.53 ± 0.02), 0.69 ± 0.02 (0.54 ± 0.04) and 0.71 ± 0.02

(0.58 ± 0.03), while median ubRMSD are 0.052 ± 0.003,

0.052 ± 0.002 and 0.050 ± 0.003 for ei_S, e5ei_S and e5_S,
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Figure 3. (a) Scatter plot of efficiency scores between in situ and simulated river discharges Q; efficiency scores for Q simulated with

SURFEX forced either by ERA-5 but ERA-Interim precipitations (e5ei_S, green crosses) or ERA-5 (e5_S, red dots) as a function of efficiency

scores for Q simulated using ERA-Interim (ei_S). (b) Histograms of river discharge ratio for ei_S (Qr_ei, in blue), e5ei_S (Qr_e5ei, in green)

and e5_S (Qr_e5, in red). (c) Hydrograph for a river station in Louisiana (33.08◦ N, 1.52◦ W) representing scaled Q (using either observed

or simulated drainage areas), in situ data (black crosses), simulated river discharges from ei_S (blue solid line), e5ei_S (green solid line) and

e5_S (red solid line).

respectively. These results underline the better capability of

the ISBA LSM to represent surface soil moisture variability

when forced by the ERA-5 reanalysis. Also, the latest con-

figuration (e5_S) presents more stations with better R values

on volumetric time series (anomaly time series) than both

ei_S and e5ei, respectively 60 and 75 % (out of 110 and 107

stations, respectively). This is also reflected in Fig. 2, illus-

trating correlation values on volumetric time series (Fig. 2a)

and anomaly time series (Fig. 2b) on maps. Star symbols

represent stations for which ISBA LSM performs best when

forced by ERA-Interim, circles when it is forced by ERA-5

with ERA-Interim precipitations and downward pointing tri-

angles when it is forced by all ERA-5 atmospheric variables.

Both maps in Fig. 2 are dominated by downward pointing

triangles. Figure 2c and d show histograms of R differences

on volumetric (anomaly) time series for soil moisture from

e5_S (in red) e5ei_S (in green) with respect to ei_S, median

values of the differences are also reported.

The 172 out of 344 gauging stations retained for the eval-

uation according to the criteria described in the methodology

section present NSE scores in the [−1, 1] interval. Figure 3

presents the performance of each data set for this pool of

stations. Figure 3a is a scatter plot of NSE scores between

in situ and simulated river discharges Q; NSE scores for

Q simulated with either ERA-5 but ERA-Interim precipi-

tations (e5ei_S, green crosses) or ERA-5 (e5_S, red dots)

as a function of NSE scores for Q simulated using ERA-

Interim (ei_S). When considering e5_S, almost all the red

dots are above the 1 : 1 diagonal, suggesting a general im-

provement from the use of e5_S. For a large part, e5ei_S

green crosses are above this diagonal, suggesting that the

improvement in e5_S does not only come from precipita-

tion but also from other variables. Median NSE values are

0.06 ± 0.06, 0.12 ± 0.07 and 0.24 ± 0.05 for ei_S, e5ei_S

and e5_S, respectively. Figure 3b shows an histogram of river

discharge ratio for ei_S (Qr_ei in blue), e5ei_S (Qr_e5ei in

green) and e5_S (Qr_e5 in red), median values are 0.67, 075

and 0.77, respectively. While all three experiments underes-

timate Q (a value of 1 being a perfect match), the use of

e5ei_S and e5_S leads to better results. Finally, Fig. 3c illus-

trates hydrographs for a river station in Louisiana (33.08◦ N,

−93.85◦ W) representing scaled Q (using either observed or

simulated drainage areas), in situ data (black crosses), sim-

ulated river discharges from ei_S (blue solid line), e5ei_S

(green solid line) and e5_S (red solid line). From this hy-

drograph, the added value of e5_S is clear, particularly for

the 2011 and 2015 main events. NSE scores are 0.47, 0.61

and 0.76 for ei_S, e5ei_S and e5_S, respectively. Figure 4 il-

lustrates the added value of using e5_S (panel a) or e5ei_S

(panel b) with respect to ei_S. For 156 out of the pool of

172 stations, NICNSE values computed using e5_S with re-

spect to ei_S are positive (large blue circles) showing a gen-
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Figure 4. Normalized information contribution scores based on efficiency scores (NICNSE) (a) e5_S with respect to ei_S and (b) e5ei_S

with respect to ei_S. Small dots represent stations for which the benchmark experiment (ei_S) present efficiency scores less than −1, large

circles when it presents values more than −1. Positive values (blue large circles) suggest an improvement over ei_S, negative values (red

large circles) a degradation. For sack of clarity, a factor of 100 has been applied to NIC.

Figure 5. Mean snow depth bias for December–January–February in ei_S (a) and differences between e5ei_S and ei_S (b), e5_S and

e5ei_S (c), and e5_S and ei_5 (d).

eral improvement from the use of e5_S (representing 91 %

of the stations) with a median NICNSE value of 14 % ± 0.05.

When considering e5ei_S versus ei_S, they are still 118

(69 %) with a median NICNSE value of 4 % ± 0.02 suggest-

ing that the improvement in e5_S does not only come from

precipitation but also from other variables. It is also worth-

noticing that stations where a score degradation is observed

(large red circles) are located in areas known for irrigation,

which is not represented in ISBA. All scores computed for

seasons (December–January–February, March–April–May,

June–July–August, September–October–November) suggest

the same ranking (not shown).

The mean snow depth bias of ei_S (see Fig. 5) highlights

a clear underestimation of winter snow depth accumulation

mainly over the Rocky Mountains. This is likely a result

of the underestimation of snowfall by ei_S associated with

an overestimation of snow melt due to the coarse resolution

of the ei_S reflected in a smooth topography. The replace-

ment of all forcing variables by e5_S but keeping ei_S pre-

cipitation (e5ei_S, Fig. 5b) shows a slight increase in snow

depth. This result justifies the above hypothesis that part

of the snow underestimation is also due to temperature is-

sues linked with a coarse model orography. Moving to the

full e5_S forcing, there is a clear increase in snow depth

when compared with both ei_S and e5ei_S forced simula-

tions resulting from an increase in snowfall in e5_S. Fig-

ure 6 presents the mean seasonal cycle of bias and ubRMSD

(Fig. 6a) and correlations (Fig. 6b) over the period 2010–

2016. In addition to the added values of e5_S in terms of

the mean snow depth already presented in Fig. 5, the tem-

poral variability and random errors are also improved. Com-

parably with what was discussed for the mean bias, e5ei_S

shows some benefits when compared with ei_S in terms

of ubRMSD and correlation (median bias, ubRMSD and R

values of e5ei_S over the whole period are −1.70 ± 0.33,

7.40 ± 0.65 and 0.77 ± 0.01 cm, respectively, for ei_S they

are −2.11 ± 0.33, 7.58 ± 0.65 and 0.75 ± 0.01 cm, respec-

tively), while e5_S has a clear improvement in ubRMSD

and correlation (median bias, ubRMSD and R values of

e5_ei over the whole period are −0.64 ± 0.19, 7.00 ± 0.65
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Figure 6. (a) Mean seasonal cycle of the bias (dashed lines) and ubRMSD (solid lines) averaged over all stations and (b) the mean seasonal

cycle of the correlations for ei_S (in blue), e5ei_S (in green) and e5_S (in red).

Table 3. Comparison of snow depth with in situ measurements, median Bias, ubRMSD and R values are given for the three seasons affected

by snow (SON, DJF, MAM) and for the whole period (All). SON, DJF and MAM stand for September–October–November, December–

January–February and March–April–May, respectively.

Median bias (cm)1, Median ubRMSD (cm)1, Median R1,

95 % confidence interval2 95 % confidence interval2 95 % confidence interval2

(% of stations for which this (% of stations for which this (% of stations for which this

configuration is the best) configuration is the best) configuration is the best)

ei_S SON −0.27 ± 0.04 (13 %) 2.05 ± 0.17 (13 %) 0.70 ± 0.01 (21 %)

DJF −6.28 ± 0.86 (11 %) 10.34 ± 0.63 (17 %) 0.72 ± 0.01 (20 %)

MAM −1.90 ± 0.33 (15 %) 7.82 ± 0.79 (17 %) 0.65 ± 0.01 (18 %)

All −2.11 ± 0.33 (11 %) 7.58 ± 0.65 (14 %) 0.75 ± 0.01 (19 %)

e5ei_S SON −0.25 ± 0.04 (12 %) 2.03 ± 0.15 (10 %) 0.74 ± 0.01 (23 %)

DJF −4.84 ± 0.80 (14 %) 9.98 ± 0.50 (14 %) 0.75 ± 0.01 (21 %)

MAM −1.49 ± 0.33 (14 %) 7.61 ± 0.76 (13 %) 0.69 ± 0.02 (22 %)

All −1.70 ± 0.33 (14 %) 7.40 ± 0.65 (14 %) 0.77 ± 0.01 (20 %)

e5_S SON −0.14 ± 0.03 (76 %) 1.83 ± 0.14 (77 %) 0.79 ± 0.01 (56 %)

DJF −1.70 ± 0.44 (75 %) 9.64 ± 0.46 (69 %) 0.80 ± 0.01 (59 %)

MAM −0.57 ± 0.22 (71 %) 7.43 ± 0.79 (70 %) 0.76 ± 0.01 (60 %)

All −0.64 ± 0.19 (75 %) 7.00 ± 0.65 (72 %) 0.82 ± 0.01 (61 %)

1 only for stations presenting more than 80 % of (daily) data; 1901 out of 2056 stations. 2 95 % confidence interval of the median derived from a

10 000 samples bootstrapping.

and 0.82 ± 0.01 cm, respectively). The improvements on the

snow depth simulations are consistent throughout the entire

snow-cover season (see Fig. 6a and b) with a maximum im-

provement from January to March. These results highlight

the cumulative effect of the forcing quality on the snow depth

simulation. Finally Table 3 presents scores from the compar-

ison of snow depth with in situ measurements; median bias,

ubRMSD and R values are given for the three seasons af-

fected by snow (September–October–November, December–

January–February and March–April–May) and for the whole

period. e5_S always presents better scores when compared to

ei_S and it is always the configuration presenting the highest

percentage of stations with the best scores. Looking at the

95 % confidence interval, for the correlation and bias, it is

clear that the changes are significant.

Results from the comparisons between ei_S, e5ei_S, e5_S

and in situ sensible and latent flux measurements are pre-

sented in Table 4 and illustrated by Fig. 7. The 37 stations

present significant correlation values (at p value < 0.05). For

sensible heat flux, median correlation and RMSD values are

0.62 ± 0.11, 0.62 ± 0.11 and 0.65 ± 0.11 and 39.58 ± 3.71,

32.89 ± 3.86 and 32.73 ± 2.61 W m−2 for ei_S, e5ei_S and

e5_S, respectively. For latent heat flux, they are 0.63 ± 0.05,

0.62 ± 0.07 and 0.70 ± 0.04 and 39.00 ± 5.38, 37.12 ± 4.37

and 36.66 ± 4.94 W m−2, respectively. As for surface soil

moisture, river discharge and snow depth, e5_S presents bet-

ter results than e5ei_S and ei_S. At the station level, Fig. 7

illustrates scatter plots of correlations and RMSD for sen-

sible and latent heat flux from ei_S, e5ei_S, e5_S against in

situ measurements of sensible (Fig. 7a for correlation, Fig. 7c
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Table 4. Comparison of sensible (H) and latent (LE) heat flux with in situ observations for ei_S, e5ei_S and e5_S. Median correlations (R)

and median RMSD are given for the FLUXNET stations. Scores are given for significant correlations with p values < 0.05.

H median R1, H median RMSD1 W m−2, LE median R1, LE median RMSD1 W m−2,

95 % confidence interval2 95 % confidence interval2 95 % confidence interval2 95 % confidence interval2

(% of stations for which this (% of stations for which this (% of stations for which this (% of stations for which this

configuration is the best) configuration is the best) configuration is the best) configuration is the best)

ei_S 0.62 ± 0.11 (8 %) 39.58 ± 3.71 (5 %) 0.63 ± 0.05 (8 %) 39.00 ± 5.38 (16 %)

e5ei_S 0.62 ± 0.11 (27 %) 32.89 ± 3.86 (27%) 0.62 ± 0.07 (11 %) 37.12 ± 4.37 (22 %)

e5_S 0.65 ± 0.11 (65 %) 32.73 ± 2.61 (68 %) 0.70 ± 0.04 (81 %) 36.66 ± 4.94 (62 %)

1 only for stations presenting significant R values (p value < 0.05): 37 stations; 2 95 % confidence interval of the median derived from a 10 000 samples bootstrapping

Figure 7. Scatter plots illustrating evaluation of ei_S, e5ei_S and

e5_S against in situ measurements of sensible (a for correlation, c

for RMSD) and latent (b for correlation, d for RMSD) heat flux.

Scores for either e5ei_S (green dots) or e5_S (in red) are presented

as a function of those for ei_S.

for RMSD) and latent (Fig. 7b for correlation, Fig. 7d for

RMSD) heat flux. Scores for either e5ei_S (green dots) or

e5_S (in red) are presented as a function of those for ei_S.

When looking at the correlations, almost all of e5_S and

e5ei_S symbols (in red and green, respectively, in Fig. 7a, c)

are above the 1 : 1 diagonal indicating that e5_S and e5ei_S

better represent sensible and latent heat flux than ei_S. The

same tendency is observed for RMSD with most of the sym-

bols below the 1 : 1 diagonal. If RMSD values are compa-

rable for e5_S and e5ei_S, R values are clearly higher for

e5_S.

3.2 Evaluations using satellite-derived estimates

Figure 8 illustrates the comparison between ESA CCI SSM

v4 and soil moisture from the ISBA second layer of soil over

2010–2016. Figure 8a shows seasonal correlations on volu-

metric time series and Fig. 8b on anomaly time series. Scores

for ISBA LSM forced by ERA-Interim (ei_S) are in blue,

ERA-5 but with precipitation from ERA-Interim (e5ei_S) in

green and ERA-5 (e5_S) in red. From Fig. 8a, one can ap-

preciate the added value of using ERA-5 atmospheric forc-

ing particularly from April to September. It is also interest-

ing to notice that when using all ERA-5 atmospheric fields

except for the precipitation, a similar added value is notice-

able suggesting that all improvements from ERA-5 do not

only come from precipitation. However, when evaluating the

short-term variability of soil moisture (i.e. removing the sea-

sonal effect), it is really ERA-5 that provides the best results.

Correlation on volumetric (anomaly) time series for all grid

points put together over 2010–2016 are 0.668 (0.464), 0.682

(0.468) and 0.689 (0.490) for ei_S, e5ei_S and e5_S, respec-

tively. Additionally to the global seasonal scores, Fig. 8c

and d present maps of correlation differences between soil

moisture from e5_S and ei_S on volumetric time series and

anomaly time series, respectively. Grey areas represent ar-

eas that were flagged out for elevation greater than 1500 m

above sea level. As visible on Fig. 8c and d, the use of ERA-

5 mainly leads to improvements all over the considered do-

main. Focusing on correlation differences, (Re5−Rei) on vol-

umetric (or anomaly) time series, 68 % (77 %) of the values

are positive – indicating an improvement from e5_S – with

median values of 4.5 % (4.11 %) and include values up to

40 % (45 %). It shows the added value of using ERA-5 to

force ISBA LSM compared to ERA-Interim.

Figure 9 illustrates seasonal scores between ISBA LSM

forced by either ERA-Interim (ei_S in blue), ERA-5 but

ERA-Interim precipitation (e5ei_S in green) or ERA-5 (e5_S

in red) for the following variables: (Fig. 9a, b) evapotran-

spiration estimates from the GLEAM project over 2010–

2016, (Fig. 9c, d) upscaled GPP from the FLUXCOM project

over 2010–2013 and (Fig. 9e, f) LAI estimates from the

CGLS project over 2010–2016. The left column (Fig. 9a, c

and e) are for RMSDs and the right column (Fig. 9b, d

and e) for correlations. For evapotranspiration, and to a lesser

extend GPP, one can notice a decrease in RMSD when

using ERA-5 atmospheric reanalysis compared to ERA-

Interim atmospheric reanalysis; however, it fails at improving

LAI. Considering evapotranspiration, correlation (RMSD)

values for all grid points put together over 2010–2016
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Figure 8. Seasonal correlations for (a) volumetric time series and (b) anomaly time series between surface soil moisture (SSM) estimates

from the ESA CCI project (ESA CCI SSM v4) and soil moisture from the second layer of soil of the ISBA LSM forced by ERA-Interim

(ei_S, in blue), ERA-5 but with precipitation from ERA-Interim (e5ei_S, in green) and ERA-5 (e5_S, in red) over the period 2010–2016.

Maps of correlation differences between soil moisture from e5_S and ei_S for volumetric time series (c) and anomaly time series (d) are

shown, areas in red represent an improvement from the use of ERA-5. Grey areas represent areas that were flagged out for elevation greater

than 1500 m above sea level.

are 0.786 (0.927 kg m−2 d−1), 0.778 (0.917 kg m−2 d−1)

and 0.795 (0.889 kg m−2 d−1) for ei_S, e5ei_S and e5_S,

respectively. They are 0.726 (2.429 kg m−2 d−1), 0.733

(2.167 kg m−2 d−1) and 0.734 (2.227 kg m−2 d−1) for GPP

and 0.715 (1.050 m2 m−2), 0.710 (1.026 m2 m−2) and 0.697

(1.079 m2 m−2) for LAI, respectively.

Improvements (in red) and degradations (in blue) from

the use of ERA-5 in the ISBA LSM with respect to ERA-

Interim for evapotranspiration, GPP and LAI are illustrated

by Fig. 10 (respectively from top to bottom). Figure 10a, c

and e show RMSD differences while Fig. 10b, d and f show R

differences. Both differences in RMSD and R values suggest

an improvement from the use of ERA-5 as the two figures are

mainly dominated by red colours, RMSD and R represent 56

and 53 % of the domain, respectively for evapotranspiration

(Fig. 10a, b), 60 and 69 % for GPP (Fig. 10c, d), but only 47

and 44 % for LAI (Fig. 10e, f).

4 Discussion and conclusions

This study assesses the ability of the recently released

ERA-5 atmospheric reanalysis to force the ISBA land sur-

face model (LSM) with respect to ERA-Interim reanaly-

sis over North America for 2010–2016. The results pre-

sented above using the three atmospheric reanalysis data

sets (ERA-Interim, ei_S; ERA-5 but with precipitation from

ERA-Interim, e5ei_S; and ERA-5, e5_S, with all meteoro-

logical variables) to force the ISBA LSM provide two impor-

tant insights: (i) firstly the use of ERA-5 leads to significant

improvements in the representation of the land surface vari-

ables (LSVs) linked to the terrestrial water cycle assessed in

this study (surface soil moisture, river discharges, snow depth

and turbulent fluxes) but failed impacting LSVs linked to the

vegetation cycle (carbon uptake and LAI). Even when they

are small, improvements are systematic when using ERA-

5. (ii) Secondly, if most of the improvements seem to come

from a better representation of the precipitation in ERA-5,

the e5ei_S experiment also presents improvements with re-

spect to the ei_S experiment and suggests that the other me-

teorological forcing from ERA-5 are better represented too.

However, it is acknowledged that the use of 3-hourly ERA-

Interim liquid and solid precipitations rescaled at an hourly

time step in ERA-5 might have sometimes led to inconsistent

configurations (e.g. precipitations while having a very strong

net radiation).

ERA-5 has a great potential to further improve the rep-

resentation of LSVs if used to force offline LDAS. In re-

cent years, several LDAS have emerged at different spatial

scales, (i) regional like the Coupled Land Vegetation LDAS

(CLVLDAS; Sawada and Koike, 2014, Sawada et al., 2015)

www.hydrol-earth-syst-sci.net/22/3515/2018/ Hydrol. Earth Syst. Sci., 22, 3515–3532, 2018
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Figure 9. Seasonal scores between ISBA LSM within SURFEX

forced by either ERA-Interim (ei_S, in blue), ERA-5 but ERA-

Interim precipitation (e5ei_S, in green) or ERA-5 (e5_S, in red) and

(a, b) evapotranspiration estimates from the GLEAM project over

the period 2010–2016, (c, d) upscaled GPP from the FLUXCOM

project over 2010–2013 and (e, f) LAI estimates from the CGLS

project over 2010–2016. The left column (a, c, e) are for RMSD

and the right column (b, d, e) are for correlations.

and the Famine Early Warning Systems Network (FEWS-

NET) LDAS (FLDAS; McNally et al., 2017), (ii) continen-

tal like the North American LDAS (NLDAS; Mitchell et al.,

2004; Xia et al., 2012) and the National Climate Assessment

LDAS (NCA-LDAS; Kumar et al., 2018), and (iii) global

like the Global Land Data assimilation (GLDAS; Rodell et

al., 2004) and more recently LDAS-Monde (Albergel et al.,

2017, 2018). LDAS-Monde is a global capacity system able

to sequentially assimilate satellite-derived estimates of sur-

face soil moisture and LAI. Albergel et al. (2017) found that

the main improvements of their analysis (i.e. with assimi-

lation) when compared to an open-loop experiment (simple

model run) were linked to vegetation variables and the as-

similation of vegetation estimates. They have also proposed

further advances on a better use of satellite-based microwave

data in the assimilation system. Having LDAS-Monde anal-

ysis forced by ERA-5 atmospheric forcing should both com-

bine the strengths of an improved atmospheric reanalysis on

the terrestrial water cycle and of the assimilation of satellite-

derived products on the vegetation cycle. Effort will now be

concentrated on the use of ERA-5 and strengthening LDAS-

Monde through the direct assimilation of satellite-based soil

moisture and vegetation properties from microwave remote

sensing. It will enable fostering links with potential applica-

tions like climate reanalysis of the LSVs as well as going

from a monitoring system of the LSVs and extreme events

(like agricultural drought) to a forecasting system. Prelim-

inary results suggest that a LSV forecast initialized by an

analysis is more robust than one initialized by a simple model

run (Albergel et al., 2018). Preliminary tests over Europe

also indicate similar benefits from the use of ERA-5 (not

shown). When the whole ERA-5 period will be available

(1979–present), in addition to the availability of the ERA-

5 10-member ensemble of data assimilation (at lower spatial

and temporal resolutions though), it will be possible to de-

velop a global long-term ensemble of LSV reanalysis forced

by high quality atmospheric data. It will make it possible pro-

viding uncertainties in the representation of the atmospheric

forcing, while LSVs may require special considerations and

perturbation methods. Capturing those uncertainties coming

from the simplifications and assumptions in the LSM is of

paramount interest for many applications from monitoring to

forecasting.

Data availability. The ERA-Interim (ERA-I) and ERA-5 datasets

are distributed by ECMWF (http://apps.ecmwf.int/datasets/,

ECMWF, last access: June 2018). The ECOCLIMAP dataset is

distributed by CNRM (https://opensource.umr-cnrm.fr/projects/

ecoclimap, CNRM, 2013). The SURFEX model code is dis-

tributed by CNRM (http://www.umr-cnrm.fr/surfex/, CNRM,

2016). The satellite-derived LAI GEOV1 observations are

freely accessible from the Copernicus Global Land Service

(http://land.copernicus.eu/global/; last access: June 2018). The

ESA CCI surface soil moisture dataset is distributed by ESA

(http://www.esa-soilmoisture-cci.org/, last access: June 2018,

Dorigo et al., 2017). The satellite-driven model estimates of land

evapotranspiration are freely accessible at http://www.gleam.eu

(last access: June 2018; Martens et al., 2017). The upscaled

estimates of gross primary production are freely accessible

at https://www.bgc-jenna.mpg.de/geodb/projects/Home.php

(last access: June 2018; Jung et al., 2017). In situ

measurements of soil moisture are freely available at

https://www.ncdc.noaa.gov/crn (last access: June 2018; Bell

et al., 2013). In situ measurements of streamflow are freely

available at https://nwis.waterdata.usgs.gov/nwis (last access: June

2018, USGS). In situ measurements of snow depth are freely

available at https://www.ncdc.noaa.gov/climate-monitoring/ (last

access: June 2018; Menne et al., 2012a, b). In situ measurements

of sensible and latent heat fluxes (FLUXNET-2015) are freely

available at http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/

(last access: June 2018).
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