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Abstract
It is well known that there is a correspondence between convolutional codes and
discrete-time linear systems over finite fields. In this paper, we employ the linear
systems representation of a convolutional code to develop a decoding algorithm for
convolutional codes over the erasure channel. In this kind of channel, which is impor-
tant due to its use for data transmissionover the Internet, the receiver knows if a received
symbol is correct. We study the decoding problem using the state space description
of a convolutional code, and this provides in a natural way additional information.
With respect to previously known decoding algorithms, our new algorithm has the
advantage that it is able to reduce the decoding delay as well as the computational
effort in the erasure recovery process. We describe which properties a convolutional
code should have in order to obtain a good decoding performance and illustrate it with
an example.

Keywords Convolutional codes · Linear systems · Decoding · Erasure channel

1 Introduction

In modern communication, especially over the Internet, the erasure channel is widely
used for data transmission. In this type of channel, the receiver knows if an arrived
symbol is correct, as each symbol either arrives correctly or is erased. For example,
over the Internet messages are transmitted using packets and each packet comes with
a check sum. The receiver knows that a packet is correct when the check sum is
correct. Otherwise a packet is corrupted or simply is lost during transmission. An
especially suitable class of codes for transmission over an erasure channel is the
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class of convolutional codes [13]. It is known that convolutional codes are closely
related to discrete-time linear systems over finite fields, in fact each convolutional code
has a so-called input-state-output (ISO) representation via such a linear system [17,
18]. This correspondence was also used in [4–6] to study concatenated convolutional
codes. Moreover, the connection between linear systems and convolutional codes was
investigated in amore general setup in [22],wheremultidimensional codes and systems
over finite rings were considered.

Hence, decoding of a convolutional code can be viewed as finding the trajectory
(consisting of input and output) of the corresponding linear system that is in some sense
closest to the received data. The underlying distance measure one uses to identify the
closest trajectory (i.e., the closest codeword) depends on the kind of channel that is used
for data transmission. This decoding process can also be interpreted as minimizing a
cost function attached to the corresponding linear system, whichmeasures the distance
of a received word to a codeword or the distance of a measured trajectory to a possible
trajectory, respectively. For the Euclidean metric over the field of real numbers R, this
is nothing else than solving the classical LQproblem, i.e., minimizing the cost function∑N−1

i=0 ||ui − ûi ||2 + ||yi − ŷi ||2, where û ∈ (Rm)N and ŷ ∈ (Rp)N are received and
one wants to find an input u ∈ (Rm)N and corresponding output y ∈ (Rp)N of the
linear system such that this cost function is minimized. This problem is relatively easy
to solve, and it is known how to approach it for quite some time, see, e.g., [10, Chapter
3.5.3].

However, for the setting of classical coding theory, where usually the Hamming
metric over finite fields is used, it turns out to be in general a hard problem to minimize
the corresponding cost function

∑N−1
i=0 wt(ui − ûi )+wt(yi − ŷi ) with û, u ∈ (Fm)N

and ŷ, y ∈ (Fp)N for some finite field F. The methods used to solve the LQ problem
cannot be applied since the Hammingmetric is not induced by a positive definite scalar
product. However, the problem becomes much easier for transmission over an erasure
channel as done with convolutional codes in this paper. In this setting, one introduces
an additional symbol ∗ that stands for an erasure and considers F ∪ {∗} as set of
symbols for the decoding. The Hamming metric can easily be extended to this new
symbol space, andwe are going tominimize the same cost function. The big advantage
when decoding over an erasure channel is that we know that all received symbols, i.e.,
all symbols except ∗ in û and v̂, are correct and we only have to find a way to replace
the unknowns ∗ be the original values to bring the cost function to its minimal value,
which equals the number of erasures. It depends on the number of erasures if unique
decoding is possible or if one gets a list of possible codewords. In this paper, we
focus on unique decoding, i.e., we present an erasure decoding algorithm that skips
part of the sequence if there are too many erasures such that unique decoding is not
possible. Our algorithm exploits the ISO representation of a convolutional code via
linear systems to recover the erasures in the received sequence. With respect to other
erasure decoding algorithms for convolutional codes that can be found in the literature
[1,16,20], our systems theoretic approach has the advantage that the computational
effort and the decoding delay can be reduced.

The paper is structured as follows. In Sect. 2, we give the necessary background
on convolutional codes. In Sect. 3, we explain the correspondence of time-discrete
linear systems and convolutional codes. In Sect. 4, we present our decoding algorithm,
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describe which properties a convolutional code should have to perform well with our
algorithm and illustrate it with an example. In Sect. 5, we describe the advantages of
our algorithm, and in Sect. 6, we conclude with some remarks.

2 Convolutional codes

In this section, we start with some basics on convolutional codes.

Definition 1 An (n, k) convolutional code C is defined as an F[z]-submodule of F[z]n
of rank k. As F[z] is a principal ideal domain, every submodule is free and hence,
there exists a full column rank polynomial matrix G(z) ∈ F[z]n×k whose columns
constitute a basis of C, i.e.,

C = ImF[z]G(z)

= {G(z)u(z) | u(z) ∈ F[z]k}.

Such a polynomial matrix G is called a generator matrix of C. A basis of an F[z]-
submodule of F[z]n , and therefore also a generator matrix of a convolutional code, is
not unique. If G(z) and G̃(z) in F[z]n×k are two generator matrices of C, then one has
G(z) = G̃(z)U (z) for some unimodular matrixU (z) ∈ F[z]k×k (a unimodular matrix
is a polynomial matrix with a polynomial inverse).

Another important parameter of a convolutional code is its degree δ, which is
defined as the highest (polynomial) degree of the k×k minors of any generator matrix
G(z) of the code. An (n, k) convolutional code with degree δ is denoted as (n, k, δ)
convolutional code. If δ1, ..., δk are the column degrees (i.e., the largest degrees of any
entry of a fixed column) of G(z), then one has that δ ≤ δ1 + ... + δk . Moreover, there
always exists a generator matrix of C such that δ = δ1 + ... + δk and we call such a
generator matrix column reduced.

Furthermore, for the use over an erasure channel, it is a crucial property of a convolu-
tional code to benon-catastrophic. A convolutional code is said to be non-catastrophic
if one (and therefore each) of its generator matrices is right prime, i.e., if it admits a
polynomial left inverse. The following theorem shows why this property is so impor-
tant.

Theorem 1 [12, Theorem 1.2.8] Let C be an (n, k) convolutional code. Then, C is
non-catastrophic if and only if there exists a so-called parity-check matrix for C, i.e.,
a full row rank polynomial matrix H(z) ∈ F[z](n−k)×n such that

C = KerF[z]H(z)

= {v(z) ∈ F[z]n | H(z)v(z) = 0}.

Parity-check matrices are common to be used for decoding of convolutional codes
over the erasure channel. Recall that, when transmitting over this kind of channel,
each symbol is either received correctly or is not received at all. The first decoding
algorithm of convolutional codes over the erasure channel using parity-check matrices
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can be found in [20], variations of it in [1] or [11]. To investigate the capability of
error correction of convolutional codes, it is necessary to define distance measures for
these codes.

Therefore, we denote by the Hamming weight wt(v) of v ∈ F
n the number of

its nonzero components. For v(z) ∈ F[z]n with deg(v(z)) = r , we write v(z) =
vr + · · · + v0zr with vt ∈ F

n for t = 0, . . . , r and set vt = 0 ∈ F
n for t /∈ {0, . . . , r}.

For j ∈ N0, we define the j-th column distance of a convolutional code C as

dcj (C) := min
v(z)∈C

⎧
⎨

⎩

j∑

t=0

wt(vr−t ) | vr �= 0

⎫
⎬

⎭
.

The erasure correcting capability of a convolutional code increases with its column
distances, which are upper bounded as the following theorem shows.

Theorem 2 [8, Proposition 2.2] Let C be an (n, k, δ) convolutional code. Then, it
holds:

dcj (C) ≤ (n − k)( j + 1) + 1 for j ∈ N0.

It is well known that the column distances of a convolutional code could reach this
upper bound only up to j = L := ⌊

δ
k

⌋ +
⌊

δ
n−k

⌋
.

Definition 2 [9, Definition 1.7] An (n, k, δ) convolutional code C is said to be maxi-
mum distance profile (MDP) if

dcj (C) = (n − k)( j + 1) + 1 for j = 0, . . . , L :=
⌊

δ

k

⌋

+
⌊

δ

n − k

⌋

If one has equality for some j0 ∈ N in Theorem 2, then one also has equality for
j ≤ j0, see [8]. Hence, it is sufficient to have equality for j = L to obtain an MDP
convolutional code. The following theorem presents criteria to check if a convolutional
code is MDP.

Theorem 3 [8, Theorem 2.4] Let C have a column reduced generator matrix G(z) =∑μ
i=0 Gi zi ∈ F[z]n×k and parity-check matrix H(z) = ∑ν

i=0 Hi zi ∈ F[z](n−k)×n.
The following statements are equivalent:

(i) dcj (C) = (n − k)( j + 1) + 1

(ii) Gc
j :=

⎡

⎢
⎣

G0 0
...

. . .

G j . . . G0

⎤

⎥
⎦where Gi ≡ 0 for i > μ has the property that every full size

minor that is not trivially zero, i.e., zero for all choices of G1, . . . ,G j , is nonzero.

(iii) Hc
j :=

⎡

⎢
⎣

H0 0
...

. . .

Hj . . . H0

⎤

⎥
⎦ with Hi ≡ 0 for i > ν has the property that every full size

minor that is not trivially zero is nonzero.

123



Mathematics of Control, Signals, and Systems (2021) 33:499–513 503

The erasure decoding capability of an MDP convolutional code is stated in the
following theorem.

Theorem 4 [20, Corollary 3.2] If for an (n, k, δ) MDP convolutional code C, in any
sliding window of length at most (L +1)n at most (L +1)(n− k) erasures occur, then
full error correction from left to right is possible.

3 The linear systems representation of a convolutional code

In this section, we consider discrete-time linear systems of the form

x(τ + 1) = Ax(τ ) + Bu(τ )

y(τ ) = Cx(τ ) + Du(τ ) (1)

with A ∈ F
s×s, B ∈ F

s×k,C ∈ F
(n−k)×s, D ∈ F

(n−k)×k , input u ∈ F
k , state vector

x ∈ F
s , output y ∈ F

n−k and s, τ ∈ N0. We identify this system with the matrix-
quadruple (A, B,C, D). The function T (z) = C(z I − A)−1B + D is called transfer
function of the linear system.

Definition 3 A linear system (1) is called

(a) reachable if for each ξ ∈ F
s there exist τ∗ ∈ N0 and a sequence of inputs

u(0), . . . , u(τ∗) ∈ F
k such that the sequence of states 0 = x(0), x(1), . . . , x(τ∗ +

1) generated by (1) satisfies x(τ∗ + 1) = ξ .
(b) observable if u(τ ) = ũ(τ ) and y(τ ) = ỹ(τ ) for all τ ∈ N0, i.e., Cx(τ ) = Cx̃(τ )

for all τ ∈ N0 implies x(τ ) = x̃(τ ) for all τ ∈ N0. This means that the knowledge
of the input and output sequences is sufficient to determine the sequence of states.

(c) minimal if it is reachable and observable.

Recall the following well-known characterization of reachability and observability.

Theorem 5 (Kalman test)A linear system (1) is reachable if and only if the reachability
matrix R(A, B) := [B, AB, . . . , As−1B] ∈ F

s×sk satisfies rk(R(A, B)) = s and

observable if and only if the observability matrixO(A,C) =
⎡

⎢
⎣

C
...

CAs−1

⎤

⎥
⎦ ∈ F

(n−k)s×s

satisfies rk(O(A, B)) = s.

Next, wewill explain how one can obtain a convolutional code from a linear system,
see [18]. First, for (A, B,C, D) ∈ F

s×s × F
s×k × F

(n−k)×s × F
(n−k)×k , we set

P(z) :=
[
z I − A 0s×(n−k) −B

−C In−k −D

]

.

The set of v(z) =
(
y(z)
u(z)

)

∈ F[z]n with y(z) ∈ F[z]n−k and u(z) ∈ F[z]k for which
there exists x(z) ∈ F[z]s with P(z) · [x(z) y(z) u(z)]� = 0 forms a submodule of
F[z]n of rank k and thus, an (n, k) convolutional code, denoted by C(A, B,C, D).
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Moreover, if one writes x(z) = x0zγ + · · · + xγ , y(z) = y0zγ + · · · + yγ and
u(z) = u0zγ + · · · + uγ with γ = max(deg(x), deg(y), deg(u)), it holds

xτ+1 = Axτ + Buτ

yτ = Cxτ + Duτ

(x�
τ , y�

τ , u�
τ ) = 0 for τ > γ.

Furthermore, there exist X ∈ F[z]s×k,Y ∈ F[z](n−k)×k,U ∈ F[z]k×k such that

ker(P(z)) = im[X(z)� Y (z)� U (z)�]� andG(z) =
[
Y (z)
U (z)

]

is a generator matrix for

C withC(z I − A)−1B+D = Y (z)U (z)−1, i.e., one is able to obtain a factorization of
the transfer function of the linear system via the generator matrix of the corresponding
convolutional code, and in the case that this convolutional code is non-catastrophic,
one even obtains a coprime factorization of the transfer function.

On the other hand, for each (n, k, δ) convolutional code C, there exists (A, B,

C, D) ∈ F
s×s×F

s×k×F
(n−k)×s×F

(n−k)×k with s ≥ δ such that C = C(A, B,C, D).
In this case, (A, B,C, D) is called linear systems representation or input-state-output
(ISO) representation of C. Besides, one can always choose s = δ. In this case,
(A, B,C, D) is called a minimal representation of C.
Remark 1 In the coding literature state space descriptions were often done in a graph
theoretic manner using so-called trellis representations, see, e.g., [7]. However, espe-
cially over large finite fields it is hard to algebraically describe a decoding algorithm
and hence, a state space description as above is preferred.

The following theorems show how properties of a linear system are related to
properties of the corresponding convolutional code.

Theorem 6 [18, Theorems 2.9 and 2.10] (A, B,C, D) is a minimal representation of
C(A, B,C, D) if and only if it is reachable.

Theorem 7 [18, Lemma 2.11] Assume that (A, B,C, D) is reachable. Then, C(A, B,

C, D) is non-catastrophic if and only if (A, B,C, D) is observable.

4 Low-delay erasure decoding algorithm using the linear systems
representation

In this chapter, we develop our erasure decoding algorithm based on the ISO represen-
tation of the convolutional code. Some first ideas on decoding via this representation
can already be found in [21]. We adopt some of the ideas presented there and combine
them with new ideas to obtain a complete decoding algorithm.

Assume that we have a message M = [m�
0 · · · m�

γ ]� ∈ F
k(γ+1) with mi ∈ F

k

which is sent at time step i .Wewrite thismessage asm(z) = ∑γ

i=0 mγ−i zi and encode
it via a full rank, left prime, column reduced polynomial generator matrix G(z) =∑μ

i=0 Gμ−i zi ∈ F[z]n×k to obtain v(z) = G(z)m(z) ∈ F[z]n . We write v(z) =
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(
y(z)
u(z)

)

with y(z) = ∑μ+γ

i=0 yμ+γ−i zi ∈ F[z]n−k and u(z) = ∑μ+γ

i=0 uμ+γ−i zi ∈

F[z]k . As m0 is sent first, we first receive

(
y0
u0

)

= G0m0, in the next time step
(
y1
u1

)

= G1m0 + G0m1, and so on.

Remark 2 ISO representations are not the only way to describe a code in terms of a
linear system. There exists also the so-called driving variable representation (see [14]
or [15] for details), where the message m(z) is equal to u(z) (having the input vectors
of the system as coefficient vectors) and the codeword v(z) equals y(z) (having the
output vectors of the linear system as coefficient vectors). In this case, one gets a
rational generator matrix, which equals the transfer function of the linear system. But
to make sure that the state and the output of the linear system have finite support, one
has to impose restrictions on the input u(z). Since we do not want to put restrictions
on the message m(z), using ISO representations is more suitable for our aims than
using driving variable representations.

Moreover, that u(z) as part of the codeword has to follow algebraic restrictions will
be exploited to achieve one of the main advantages of our decoding algorithm, which
is introduced by the following proposition.

Proposition 1 For w ∈ N0, define Ew :=
⎡

⎢
⎣

CAγ+μB · · · CB
...

...

CAγ+μ+wB · · · CAwB

⎤

⎥
⎦. One has,

Ew · [u�
0 , . . . , u�

γ+μ]� = 0 for all w ∈ N0.

Proof The proposition follows from the fact that ui = yi = 0 for i > γ + μ, which
implies

CAγ+μ+wBu0 + · · · + CAwBuγ+μ = 0

for w ∈ N0. 
�

Besides the result of Proposition 1, there are more equations that can be exploited
for a decoding algorithm, which we will present in the following.

Let (A, B,C, D) be the linear systems representation of the convolutional code
generated by G(z). Then, (y0, u0, . . . , y j , u j ) represents the beginning of a codeword
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if and only if

⎡

⎢
⎢
⎢
⎢
⎣

−I

D 0 . . . 0

CB
. . .

. . .
...

...
. . .

. . . 0
CA j−1B . . . CB D

⎤

⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y0
...

y j
u0
...

u j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−I D 0
0 CB −I D

0 CAB 0 CB
. . .

...
...

...
...

. . .
. . .

0 CA j−1B 0 CA j−2B . . . 0 CB −I D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎝

y0
u0
...

y j
u j

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0 (2)

It follows that if we assume that v0, . . . , vi−1 are known and vi contains erasures,
then we obtain

⎡

⎢
⎢
⎢
⎢
⎣

−I

D 0 . . . 0

CB
. . .

. . .
...

...
. . .

. . . 0
CA j−1B . . . CB D

⎤

⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yi
...

yi+ j

ui
...

ui+ j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= β (3)

where β is a known vector depending on v0, . . . , vi−1.

Define F0 := D and F j :=

⎡

⎢
⎢
⎢
⎢
⎣

D 0 . . . 0

CB
. . .

. . .
...

...
. . .

. . . 0
CA j−1B . . . CB D

⎤

⎥
⎥
⎥
⎥
⎦
for j ≥ 1.

Theorem 8 [9, Theorem 2.4] The quadruple (A, B,C, D) is the linear systems rep-
resentation of an MDP convolutional code if and only if each minor of FL which is
not trivially zero is nonzero.

Remark 3 The existence of MDP convolutional codes for all code parameters was
shown in [9]. Moreover, there exist general constructions ofMDP convolutional codes
in terms of generator or parity-check matrices, see, e.g., [3]. There exist no explicit
general constructions for MDP convolutional codes in terms of (A, B,C, D), but it
is possible to compute (A, B,C, D) from the generator matrix of the code (see, e.g.,
[17]).

Next, we will present equations that will help us to restart the decoding process in
case that there are too many erasures for recovery using the preceding equations. For
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i, j, l ∈ N0, one has

⎡

⎢
⎣

C
...

CA j

⎤

⎥
⎦ xi+l +

⎡

⎢
⎢
⎢
⎢
⎣

−I

D 0 . . . 0

CB
. . .

. . .
...

...
. . .

. . . 0
CA j−1B . . . CB D

⎤

⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yi+l
...

yi+l+ j

ui+l
...

ui+l+ j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 (4)

where

xi+l = Ai+l−1Bu0 + · · · + Bui+l−1 (5)

We assume that the erasure recovering process has to be done within time delay T , i.e.,
it is necessary thatmi can be recovered after one has received (with possible erasures)
v0, . . . , vi , . . . , vi+T .

Main Decoding Algorithm

1: Set i = −1.
2: Set l = 0. If vi contains erasures, go to 3 and if vi contains no erasures,
set i = i + 1 and repeat step 2.
3: Set j = 0.
4: If vi can be recovered solving the system of linear equations induced by
[−I | F j ] and vi , . . . , vi+ j (see (3)), go to 5, otherwise go to 6.
5: Recover the erasures in vi (and if possible also erasures in vi+1, . . . , vi+ j ), solving the
system of linear equations induced by (3). Replace the erased symbols with the correct symbols
and go back to 2.
6: If j = T , we go to 7. Otherwise, we set j = j + 1 and go back to 4.
7: Set l = l + 1.
8: Set j = 0.
9: If xi+l can be recovered solving the linear system of equations induced by (4) with xi+l and
the erased components of vi+l , . . . , vi+l+ j as unknowns, we go to 10. Otherwise, we go to 11.
10: Recover xi+l (and as much as possible of vi+l , . . . , vi+l+ j ) with the
help of (4).Set i = i + l and go back to 2.
11: If j = T , go back to 7. Otherwise set j = j + 1 and go back to 9.

Proof of correctness of the main decoding algorithm
Steps 1–6:
In steps 1–6, the algorithm recovers erasures forward withminimal possible delay j

butwith atmost time delay j = T as long as this is possible. For this recovery, equation
(3) is used and the erased components of yi , . . . , yi+ j , ui , . . . , ui+ j are considered
as unknown variables of the system of linear equations. To be able to proceed, it is
enough to recover yi , ui , but of course if it is already here possible to recover further
components, this should be done.
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Steps 7–11:
If the maximal delay j = T is reached in step 6, i.e., no further recovery within

the prescribed time delay is possible with steps 1–6, the algorithm tries to recover the
earliest possible of the unknown states of the corresponding linear system to be able
to restart the decoding process. As u0, . . . , ui−1 are known, the sequence of states is
known up to xi and the algorithm first tries to recover xi+1 with minimum possible
time delay j . Only if it is not possible to recover xi+l within the prescribed delay, the
algorithm tries to recover later states. For the recovery of xi+l , equation (4) is used.
Since we do not know xi+l , its components belong to the unknowns of this system of
linear equations together with the erased components of vi+l , . . . , vi+l+ j .

If xi+l can be recovered, the recovering process following steps 1–6 can be restarted
(even if parts of vi , . . . , vi+l−1 have to be declared as lost for the moment) since the
fact that xt+1 and yt for t ≥ i + l can be computed with the knowledge of xi+l and
ut for t ≥ i + l, implies that the recovery of ui , . . . , ui+l−1 is not necessary for the
recovery of further symbols (see also (5)). Hence, if at any point a state has been
successfully recovered, we can start again at the beginning of the algorithm.

Next, we want to exploit the result of Proposition 1 to finish the decoding process
before the end of the codeword sequence is reached, in case the received erasure pattern
allows for such an earlier termination. Therefore, we add a termination algorithm to our
main decoding algorithm. This termination algorithm receives at any time all known
symbols of all ui from the main algorithm.

Furthermore, Ẽw should denote the submatrix of Ew (as defined in Proposition 1)
consisting only of the columns corresponding to components of [u�

0 , . . . , u�
γ+μ] that

are not known yet.

Termination Algorithm

1: If there exists w ∈ {1, . . . , δ −1} such that Ẽw has full column rank, stop the main decoding
algorithm and go to step 2 of the termination algorithm, otherwise wait until more symbols
from the main algorithm are obtained.
2: Use the system of linear equations induced by the equation Ew · [u�

0 , . . . , u�
γ+μ]� =

0 to recover all erased components of [u�
0 , . . . , u�

γ+μ]�. Afterward, use (2) to obtain

[y�
0 , . . . , y�

γ+μ]�.

Proof of correctness of the termination algorithm
Each time, when new symbols arrive or some symbols have been successfully

recovered, Ẽw is updated in step 1 and it is checked if there are already enough
symbols known to recover the whole message with step 2. Due to the theorem of
Cayley–Hamilton, one only has to check Ẽw up to w = δ − 1, i.e., the number of
iterations is finite.

The equation Ew · [u�
0 , . . . , u�

γ+μ]� = 0 can be written as Ẽw · ũ = α, where ũ is

the vector consisting of all components of [u�
0 , . . . , u�

γ+μ]� that are unknown and α

can be computed with the help of the known components of [u�
0 , . . . , u�

γ+μ]�. If Ẽw
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has full column rank, the corresponding system of linear equations can be solved and
all components of ũ can be recovered.

Note that the termination algorithm works independently of delay constraints and
recovers all symbols, i.e., also symbols that had to be declared as lost in steps 7–11
of the main decoding algorithm. However, these symbols are recovered with delay
larger than T . On the other hand, it is possible that the termination algorithm also
recovers symbols that did not even arrive yet, i.e., in some sense it allows to recover
some symbols with “negative delay.”

In order to have a good performance for our algorithm, a convolutional code should
fulfill the following properties as good as possible:

1. The non-trivial minors of F j are nonzero for j = 1, . . . , T (important for steps
1–6 of the main algorithm).

2. The non-trivial minors of

⎡

⎢
⎣

C
... F j

C A j

⎤

⎥
⎦ are nonzero for j = 1, . . . , T (important

for steps 7–11 of the main algorithm).
3. For as many sets of columns of Ew as possible, there exists w = 1, . . . , δ − 1

such that these columns are linearly independent (important for the termination
algorithm).

It is difficult to ensure that all these three properties are perfectly fulfilled. However,
since these properties involve similar matrices, it seems to be a good attempt to con-
struct a convolutional code in such a way that some of the properties are fulfilled, and
then check how good the other properties are fulfilled. Clearly, if 2. is perfectly ful-
filled, then also 1. Furthermore, there already exist constructions for matrices having
all non-trivial minors nonzero (in the literature also referred to as superregular matri-
ces), see, e.g., [2,8,21]. Hence, to illustrate the performance of our algorithm with an
example, we will construct a convolutional code such that 2. is perfectly fulfilled and
then investigate how good 3. and 4. are fulfilled.

Example 1 We will construct a (5, 3, 2) convolutional code for decoding with maxi-
mum delay T = L = 1. Hence, we want to construct A,C ∈ F

2×2, B, D ∈ F
2×3

such that

[
C D 0
CA CB D

]

has all non-trivial minors nonzero for a suitable finite field

F. We use the construction for superregular matrices from [3] as well as the fact that
column permutation preserves superregularity to obtain that

[
C D 0
CA CB D

]

=

⎡

⎢
⎢
⎣

a8 a16 a a2 a4 0 0 0
a16 a32 a2 a4 a8 0 0 0
a64 a128 a8 a16 a32 a a2 a4

a128 a256 a16 a32 a64 a2 a4 a8

⎤

⎥
⎥
⎦ ,

where F = FpN with N > 330 and a is a primitive element of F, has the property that
all non-trivial minors are nonzero. We immediately obtain

D =
[
a a2 a4

a2 a4 a8

]

and C =
[
a8 a16

a16 a32

]
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and can compute

B = C−1(CB) =
[
1 0 −a32(a8 + 1)
0 1 a16(a16 + a8 + 1)

]

and

A = C−1(CA) = 1

a8 − 1

[
a64 − a112 a128 − a240

a104 − a48 a232 − a112

]

.

As B is full rank, (A, B,C, D) is a minimal ISO representation of an (5, 3, 2)
convolutional code C and since F1 is superregular, C is an MDP convolutional code.
Hence, in particular, it has to fulfill Theorem 3 (ii), which is not possible if G1 has
two columns that are identically zero. Hence, a generator matrix G of C has at most
one column degree that is equal to zero. Consequently, G has column degrees 1, 1, 0
since we assumed it to be a column reduced generator matrix and thus, the column
degrees of G have to sum up to δ = 2. Therefore, we obtain μ = 1.

Assume γ = 3 and that we receive the following:

y0 u0 y1 u1 y2 u2 y3 u3 y4 u4

∗ ∗ √ √ √ ∗ ∗ ∗ √ √ ∗ ∗ √ √ √ √ √ √ √ √ ∗ ∗ ∗ ∗ ∗

where ∗ symbolizes an erasure and
√

a received symbol.
Since C is MDP, it can recover n− k erasures out of n symbols or 2(n− k) erasures

out of 2n symbols (assuming that there are no erasures in front of this window of size
n or 2n, respectively). The steps of our algorithm with C and the above erasure pattern
would be the following.

First, the algorithm uses (3) with j = 0 to recover y0. Afterward, one realizes that
it is neither possible to recover y1 and u1 with (3) for j = 0 nor y1, u1, y2, u2 with
(3) for j = 1. The algorithm applies (4) with i = l = 1 trying to recover x2 and y2,
but this is not possible for j = 0, i.e., not before v3 has arrived. However, the matrix

consisting of the first column of

[
CA3B
CA4B

]

and all columns of

[
CB
CAB

]

has nonzero

determinant, and one can use the termination algorithm as soon as v3 has arrived,
implying that the recovery of x2 is not necessary anymore. It is possible to recover
the lost component of u1 as well as u4 before u4 and y4 were even sent, just with the
knowledge of the already known symbols of u0, u1, u2, u3 and with the information
that γ = 3, i.e., ui = yi = 0 for i > 4. Then, with the knowledge of u0, . . . , u4, it
is also possible to compute the erased components of y1 and y4. In summary, we are
able to recover the whole sequence but part of it only with a larger delay than actually
allowed. However, we were able to obtain u4, y4 already one time interval before these
vectors were sent, i.e., in some sense with delay −1.

To give also an example where state recovery is helpful, we will consider the same
code but assume a different erasure pattern, which should be as follows:
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y0 u0 y1 u1 y2 u2 y3 u3 y4 u4 y5 u5

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ √ √ √ √ ∗ ∗ √ √ √ √ ∗ ∗ √ √ ∗ ∗ √ √ √ √

Since v0 cannot be recovered with delay j = 0 or with delay j = 1, the algorithm
tries to recover x1, which, however, is also not possible with j = 0 or j = 1 due to too
many erasures. Therefore, the algorithm tries to recover x2, which is not possible with
j = 0 but with j = 1. v0 and v1 have to be declared as lost but it is possible to continue
with the decoding and to obtain the erased components of v2 and v3. Afterward, one
realizes that v4 cannot be recovered with j = 0 but with j = 1 and then, also v5 can
be decoded.

Sinceu0 andu1 are erased completely having6 components altogether, these vectors
can also not be recovered with the termination algorithm as Ẽw has at most 4 rows.
However, state recovery allowed us to restart the recovery process after these two
many erasures and hence enabled the decoding of the rest of the sequence.

5 Performance analysis

In this section, we will explain the two main advantages of our systems theoretic
decoding algorithm with respect to other existing erasure decoding algorithm for con-
volutional codes, namely the reduced decoding delay and the reduced computational
effort.

Our algorithm tries to recover the occurring erasures with smallest possible delay
by first trying to do the recovery in a window of size n, afterward in a window of size
2n, and so on. In contrast to this approach, the decoding algorithm in [20] first tries
to decode in the largest possible window of size (L + 1)n and only decreases this
window if it fails to recover all the erasures in the big window. This implies that the
decoding delay is always at least L . Moreover, it is computationally less complex and
less costly to do several decoding steps in small windows than one decoding step in
a larger window whose size is the sum of the sizes of the smaller windows since it
is easier to solve several small than one large linear system of equations. The idea of
improving this aspect of the algorithm from [20] is not new and can be found in several
other papers (see [1,16]). In the following, we will illustrate the two main advantages
that our algorithm has with respect to these papers.

5.1 Reduced complexity due to echelon form of systems of equations

The complexity of our and previous erasure decoding algorithms for convolutional
codes is determined by the complexity of solving a linear system with (n − k)(T + 1)
equations and e ≤ (n− k)(T +1) unknowns. For a general linear system of equations
of these dimensions, the complexity is O(((n − k)(T + 1))0.8 · e2) according to [19].

By using our linear systems approach, the systems of equations we have to solve
for erasure recovery are parts of linear systems that are already in echelon form, see
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(3). Due to this form, the erasures in the vectors yi , . . . , yi+T can be neglected for
the complexity analysis (as you can obtain any erased component of any yi that has
the possibility to be recovered directly from (3)) and one only has to consider the
erasures contained in the vectors ui , . . . , ui+T . If we write e = e1 + e2 where e1
denotes the number of erasures in yi , . . . , yi+T and e2 denotes the number of erasures
in ui , . . . , ui+T , this reduces the complexity to O(((n−k)(T +1))0.8 ·e22). Especially,
when we transmit over a channel with a statistic that implies that it is more likely to
get erasures in the yi than in the ui , this is an enormous reduction of complexity since
we obtained that the decoding complexity is quadratic in the number of erasures.

5.2 Reduced decoding delay due to termination algorithm

Aswe already observed in our example, the use of the termination algorithm can make
it possible to obtain symbols that were not even sent yet, i.e., in some sense we are able
to "look into the future" and terminate the decoding before the end of the transmission.
This is of course an additional considerable reduction of the decoding delay.

6 Conclusion

In this paper, we presented an erasure decoding algorithm for convolutional codes
employing their linear systems representation. We observed that this algorithm is able
to reduce the decoding delay and the computational effort in comparison with previous
algorithms.
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