
Open access to the Proceedings of the 
27th USENIX Security Symposium 

is sponsored by USENIX.

Erays: Reverse Engineering Ethereum’s 
Opaque Smart Contracts

Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller,  
and Michael Bailey, University of Illinois, Urbana-Champaign

https://www.usenix.org/conference/usenixsecurity18/presentation/zhou

This paper is included in the Proceedings of the 
27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

978-1-939133-04-5



Erays: Reverse Engineering Ethereum’s Opaque Smart Contracts

Yi Zhou Deepak Kumar Surya Bakshi Joshua Mason Andrew Miller Michael Bailey

University of Illinois, Urbana-Champaign

Abstract
Interacting with Ethereum smart contracts can have po-
tentially devastating financial consequences. In light of
this, several regulatory bodies have called for a need to
audit smart contracts for security and correctness guar-
antees. Unfortunately, auditing smart contracts that do
not have readily available source code can be challeng-
ing, and there are currently few tools available that aid in
this process. Such contracts remain opaque to auditors.
To address this, we present Erays, a reverse engineering
tool for smart contracts. Erays takes in smart contract
from the Ethereum blockchain, and produces high-level
pseudocode suitable for manual analysis. We show how
Erays can be used to provide insight into several contract
properties, such as code complexity and code reuse in
the ecosystem. We then leverage Erays to link contracts
with no previously available source code to public source
code, thus reducing the overall opacity in the ecosys-
tem. Finally, we demonstrate how Erays can be used for
reverse-engineering in four case studies: high-value multi-
signature wallets, arbitrage bots, exchange accounts, and
finally, a popular smart-contract game, Cryptokitties. We
conclude with a discussion regarding the value of reverse
engineering in the smart contract ecosystem, and how
Erays can be leveraged to address the challenges that lie
ahead.

1 Introduction

Smart contracts are programs that facilitate trackable, ir-
reversible digital transactions. Smart contracts are promi-
nently featured in Ethereum, the second largest cryptocur-
rency. In 2018, Ethereum smart contracts hold over $10 B
USD1. These can be used to facilitate a wide array of
tasks, such as crowdfunding, decentralized exchanges,
and supply-chain tracking [32].

1At the time of writing in February 2018 the Ethereum to USD
conversion is approximately $1.2 K USD per ETH

Unfortunately, smart contracts are historically error-
prone [14, 24, 52] and there is a potential high financial
risk associated with interacting with smart contracts. As
a result, smart contracts have attracted the attention of
several regulatory bodies, including the FTC [18] and the
SEC [43], which are intent on auditing these contracts to
prevent unintended financial consequences. Many smart
contracts do not have readily linkable public source code
available, making them opaque to auditors.

To better understand opaque smart contracts, we
present Erays, a reverse engineering tool for Ethereum
smart contracts. Erays takes as input a compiled Ethereum
Virtual Machine (EVM) smart contract without modifi-
cation from the blockchain, and returns high-level pseu-
docode suitable for manual analysis. To build Erays, we
apply a number of well-known program analysis algo-
rithms and techniques. Notably, we transform EVM from
a stack-based language to a register based machine to ease
readability of the output for the end-user.

We next turn to measuring the Ethereum smart con-
tract ecosystem, leveraging Erays to provide insight into
code complexity and code reuse. We crawl the Ethereum
blockchain for all contracts and collect a total of 34 K
unique smart contracts up until January 3rd, 2018. Of
these, 26 K (77.3%) have no readily available source code.
These contracts are involved with 12.7 M (31.6%) trans-
actions, and hold $3 B USD.

We next leverage Erays to demonstrate how it can be
used to link smart contracts that have no readily available
source code to publicly available source code. We build a
“fuzzy hash” mechanism that can compare two smart con-
tracts and identify whether a function in one contract has
similar syntactic structure to functions in another contract.
Using this technique, we are able to map a median 50% of
functions and 14.7% of instructions per opaque contract,
giving immediate partial insight to opaque contracts in
the ecosystem.

Finally, we show how Erays works as a reverse en-
gineering tool applied to four case studies—high-value

USENIX Association 27th USENIX Security Symposium    1371



multi-signature wallets, arbitrage bots, exchange accounts,
and finally, a popular smart contract game, Cryptokit-
ties. In investigating high-value wallets, we were able
to reverse engineer the access control policies of a large,
commercial exchange. We find some standard policies,
however, also uncover ad-hoc security devices involving
timers and deposits. In studying arbitrage contracts, we
find examples of new obfuscation techniques. We then
successfully reverse engineer the opaque portion of code
from the Cryptokitties game, which plays a role in en-
suring fair gameplay. In all of these cases, we find that
opacity is expected and sometimes important to the cor-
rect functionality of these contracts. In light of this, we
posit that smart contract developers may be expecting to
achieve “security by obscurity” by withholding their high
level code.

We conclude with a discussion of the value of audits,
reverse engineering, and where Erays can aid in solving
the growing needs of the Ethereum community. We hope
Erays will prove useful to the security and cryptocurrency
communities to address the challenges that lie ahead.

2 Background

Blockchains and Cryptocurrencies. A blockchain is
a distributed network that maintains a globally consis-
tent log of transactions. Public blockchains, such as Bit-
coin [40] and Ethereum [50], are typically implemented
as open peer-to-peer networks, based on proof-of-work
mining. Cryptocurrencies are virtual currencies imple-
mented on a public blockchain, where the transactions are
digitally signed messages that transfer balances from one
user account (i.e., public key) to another.

Ethereum Smart Contracts. In addition to user ac-
counts, Ethereum also features smart contract accounts.
A contract account is associated with a fragment of exe-
cutable code, located at an address. Smart contracts make
up approximately 5% of the total Ethereum accounts, ac-
count for 31.2% of the overall transactions, and hold 9.4%
of total Ether in their balances.

A smart contract is executed when a user submits a
transaction with the contract as the recipient. Users in-
clude payload data in the transaction, which in turn is
provided as input to the smart contract program. A con-
tract is arranged as a collection of functions, which users
can invoke. A contract can also trigger the execution of
another smart contract through a CALL instruction that
sends a message, similar to a remote procedure call in
other programming paradigms.

Smart contract execution must be replicated by validat-
ing nodes on the network. To prevent resource exhaustion,
users that create transactions must pay an amount of gas
for every opcode executed, which translates to certain

amount of Ether depending on a market rate.
Contracts are executed in a virtual environment known

as the Ethereum Virtual Machine (EVM). EVM defines a
machine language called EVM bytecode, which includes
approximately 150 opcodes [50]. EVM is a stack-based
machine, where opcodes read and write from an operand
stack. EVM further provides memory and storage for
additional functionality. Memory is specified as an array
used to store volatile data during contract execution. Stor-
age is a key-value store indexed by 256-bit values (one
EVM-word). Unlike memory, storage persists across the
execution history of a contract and is stored as a part of
the global blockchain state.

Developers typically write smart contract code in high-
level languages, which are then compiled into EVM byte-
code. In 2018, the most popular programming language
for Ethereum smart contracts is Solidity [7]. Solidity
syntax is heavily influenced by Javascript and C++, and
supports a number of complex language features, such as
inheritance, libraries, and user-defined types.

Ethereum-based Tokens. In addition to the built-in
Ether currency, the Ethereum blockchain is also widely
used as a host for “tokens”, which are separate currency-
like instruments built on top of a smart contract. There are
currently more than 33 K such contracts on the Ethereum
network. Tokens can be traded as currencies on a va-
riety of market exchanges. Together, the total market
capitalization of tokens exceeds $60 B USD.2 Tokens to-
day are used to support a variety of functions, such as
crowd-funding and exchanges.

3 Opacity in Smart Contracts

The bytecode for every smart contract is readily available
on the blockchain. However, bytecode alone is is difficult
to read and understand, limiting its use in effectively
determining what a smart contract does. We begin our
analysis of smart contracts by first investigating how many
contracts can not be immediately linked back to source
code, and characterizing how important those contracts
are in the ecosystem.

3.1 Collecting and Compiling Contracts
In order to investigate contracts with missing source code,
we first collect all Ethereum smart contracts from the
beginning of the blockchain through January 3rd, 2018.
This resulted in 1,024,886 contract instances. Not all of
these contracts have unique bytecode. After removing
duplicates, we find only 34,328 unique contracts, which
is a 97% reduction in contracts from the original set.

2At the time of writing in February 2018, the Ethereum to USD
conversion is approximately $1.2 K USD per ETH.

1372    27th USENIX Security Symposium USENIX Association



Type Contracts Transactions Balance (Ether)

Total 1,024,886 40,380,705 (100%) 9,884,533 (100%)
Unique 34,328 40,380,705 (100%) 9,884,533 (100%)

Opaque 26,594 12,753,734 (31.6%) 2,559,745 (25.9%)
Transparent 7,734 27,626,971 (68.4%) 7,324,788 (74.1%)

Table 1: Opacity in Ethereum Blockchain—We show the opacity of contracts in the Ethereum blockchain, as well as the number
of transactions and Ether in each category. Although opaque contracts make up 77.3% of unique contracts, they only account for
31.6% of the transactions and 25.9% of the Ether held by contracts.

In order to determine how many blockchain contracts
have readily accessibly source code, we turned to Ether-
scan [3]. Etherscan has become the de facto source for
Ethereum blockchain exploration. Etherscan offers a use-
ful feature called “verified” contracts, where contract writ-
ers can publish source code associated with blockchain
contracts. Etherscan then independently verifies that the
compiled source code produces exactly the bytecode avail-
able at a given address. Etherscan then makes the verified
source available to the public. We scraped Etherscan for
all verified contracts as of January 3rd, 2018, collecting a
total of 10,387 Solidity files.

We then compiled the Etherscan verified contracts to
determine exact bytecode matches with blockchain con-
tracts. Etherscan provides the precise compiler version
for each verified source file, so to begin, we compiled
each source file with its provided compiler version. From
these, we collected 7.5 K unique binaries. To identify
variants of contracts that were compiled with older ver-
sions of the Solidity compiler, we aggregated every major
compiler version from v0.1.3 to v0.4.19 and compiled
each contract with every version. In total, from the seed
set of 10.4 K source files, we collected 88.4 K unique
binaries across 35 compiler versions.

3.2 Opacity

We next investigated contract opacity in the Ethereum
ecosystem today. Of the 1 M contract instances, we could
not successfully match 965 K, or 96.5% to any compiled
source code. We find that of the 34 K unique contracts,
we are able to successfully match 7.7 K ( 22.7%) of con-
tracts. Unfortunately, this leaves 77.3% of unique con-
tracts opaque.

We next turn to the question of how important these
77.3% of contracts are to the ecosystem. To quantify
importance, we use two metrics: the amount of money
stored in each contract, and the transaction volume (by
number of transactions) with each contract. Table 1 shows
a breakdown of the contracts in our dataset by these two
metrics. Although opaque contracts make up most of the
smart contracts in the ecosystem, we find that they are
in the minority by both transaction volume and balance.

Opaque contracts are transacted with 12.7 M times, com-
pared with transparent contracts, which are transacted
with 27.6 M times. In addition, opaque contracts only
hold $3.1 B USD, while transparent contracts hold $7.3 B
USD. Although it appears that transparency in the ecosys-
tem prevails, the fact remains that 12.7 M interactions
with contracts and a total of $3.1 B USD are held in con-
tracts for which auditors and regulators have no insight
into.

4 System Design

In order to investigate opaque contracts in the Ethereum
ecosystem, we introduce Erays, an EVM reverse engi-
neering tool. Erays takes a hex encoded contract as input
and transforms it into human readable expressions. In this
section, we describe the transformations Erays makes in
order to build human-readable representations of smart
contracts.

4.1 Disassembly and Basic Block Identifi-
cation

In the first stage, we disassemble the hex string into EVM
instructions, and then partition these instructions into
basic blocks. A basic block is a linear code sequence
with a single entry point and single exit point [9]. We
generate the instructions using a straightforward linear
sweep [42]. Starting from the first byte in the hex string,
each byte is sequentially decoded into the corresponding
instruction.

Next, we aggregate instructions into their resultant
basic blocks. These are derived through two simple
rules. Instructions that alter the control flow (i.e., exits or
branches) mark block exit, while the special instruction
JUMPDEST marks block entry. When all block entries and
exits are identified, basic block partitioning is complete.
Code Block 1 shows an example of this transformation.

4.2 Control Flow Graph Recovery
In this stage, we recover the control flow graph (CFG) [9]
from the basic blocks. A CFG is a directed graph where

USENIX Association 27th USENIX Security Symposium    1373



hex instruction
b0:

6000 PUSH1 0x60
54 SLOAD
600a PUSH1 0xa
6008 PUSH1 0x8
56 JUMP

b1:
5b JUMPDEST
56 JUMP

...

Code Block 1: Assembly Code— We show (part of the) input
hex string disassembled and then divided into basic blocks.

each node represents a basic block and each edge denotes
a branch between two blocks. In a directed edge b0 →
b1, we refer to b1 as the successor of b0. At its core,
recovering a CFG from basic blocks requires identifying
the successor(s) of each basic block.

To determine the successor(s) for a basic block b, we
need to examine the last instruction in the block. There
are three cases:

1. An instruction that does not alter control flow
2. An instruction that halts execution (STOP, REVERT,

INVALID, RETURN, SELFDESTRUCT)
3. An instruction that branches (JUMP, JUMPI)

In the first case, control simply flows to the next block
in the sequence, making that block the successor of b.
In the second case, since the execution is terminated, b
would have no successor. In the last case, the successor
depends on the target address of the branch instruction,
which requires closer scrutiny.

Indirect branches present a challenge when determin-
ing the target address [46]. In a direct branch, the destina-
tion address is derived within the basic block and thus can
be computed easily. In an indirect branch, however, the
destination address is placed on the stack before entering
a block. Consider block b1 in Code Block 1. As men-
tioned, the destination address is on the top of the stack
upon entering the block. We therefore cannot determine
the destination address from block b1 alone.

To address this issue with indirect branches, we model
the stack state in our CFG recovery algorithm, shown
in Code Block 2. The algorithm follows a conventional
pattern for CFG recovery [46]: we analyze a basic block,
identify its successors, add them to the CFG, then recur-
sively analyze the successors.

When analyzing a block, we model the stack effects
of instructions. The PUSH instructions are modeled with
concrete values placed on the stack. All other instructions
are modeled only insofar as their effect on stack height.

explore(block, stack):
if stack seen at block:

return
mark stack as seen at block

for instruction in block:
update stack with instruction

save stack state

if block ends with jump:
successor_block = stack.resolve_jump
add successor_block to CFG
explore(successor_block, stack)

if block falls to subsequent_block:
revert stack state
add subsequent_block to CFG
explore(subsequent_block, stack)

Code Block 2: CFG Recovery Algorithm— We analyze a
basic block, identify its successors, add them to the CFG, then
recursively analyze the successors

Consider the first two instructions in block b0 in Code
Block 1. Suppose we start with an empty stack at the
block entry. The first instruction PUSH1 0x60 will push
the constant 0x60 on the stack. The second instruction
SLOAD will consume the 0x60 to load an unknown value
from storage.

Using this stack model, we effectively emulate through
the CFG, triggering all reachable code blocks. At each
block entrance reached, we compare the current stack im-
age with stack images observed thus far. If a stack image
has already been recorded, the block would continue to a
path that has already been explored, and so the recovery
algorithm backtracks.

4.3 Lifting

In this stage, we lift EVM’s stack-based instructions into
a register-based instructions. The register-based instruc-
tions preserve most operations defined in the EVM specifi-
cation. Additionally, a few new operations are introduced
to make the representation more concise and understand-
able:
INTCALL, INTRET: These two instructions call and re-

turn from an internal function, respectively. Unlike ex-
ternal functions invoked through CALL, internal functions
are implicitly triggered through JUMP instructions. We
heuristically identify the internal function calls 3, which
allows further simplification of the CFG.
ASSERT: As in many high level languages, this instruc-

tion asserts a condition. The solidity compiler inserts

3The details of the heuristic are included in the Appendix A.

1374    27th USENIX Security Symposium USENIX Association



certain safety checks (e.g., array bounds checking) into
each produced compiled contract. In order to eliminate
redundant basic blocks, we replace these checks with
ASSERT.
NEQ, GEQ, LEQ, SL, SR: These instructions correspond

to “not equal”, “greater than or equal”, “less than or
equal”, "shift left", and “shift right”. While these op-
erations are not part of the original EVM instruction set,
the functionalities are frequently needed. These instruc-
tions allow us to collapse more verbose EVM instructions
equences (e.g., sequence EQ, ISZERO) into one NEQ in-
struction.
MOVE: This instruction copies a register value or a con-

stant value to a register. The instructions SWAP (swap two
stack items), DUP (duplicate a stack item) and PUSH (push
a stack item) are all translated into MOVE instructions.

To derive the registers on which the instructions oper-
ate, we map each stack word to a register, ranging from
$s0 to $s1023 because the EVM stack is specified to
have a maximum size of 1,024 words. Additionally, we
introduce two other registers in our intermediate repre-
sentation, namely $m and $t. The Solidity compiler uses
memory address 0x40 to store the free memory pointer.
Since that pointer is frequently accessed, we use $m to re-
place all references to that memory word. The $t register
is used as a temporary register for SWAP instructions.

Each instruction is then assigned appropriate registers
to replace its dependency on the stack. Consider the
instruction ADD as an example. ADD pops two words off of
the stack, adds them together, and pushes the result back
onto the stack. In our instruction, ADD reads from two
registers, adds the values, and writes back to a register.
Figure 1 shows both the stack and the registers during
an ADD operation. A key observation is that in order
to read and write the correct registers, the stack height
must be known [49]. In this example, the initial stack
height is three, so the ADD reads from $s1 and $s2, and
writes the result back to $s1. Our translation for this
instruction would be ADD $s1, $s2, $s1, where we
place the write_register before read_registers.

$s3
$s2 0x5
$s1 0x3 0x8
$s0 0x4 0x4

Figure 1: Lifting an ADD Instruction—We show both the stack
image and the registers before and after an ADD is executed. The
initial stack height is three, thus, ADD reads from $s1 and $s2,
and writes back the result to $s1.

Knowing the precise stack height is crucial to lifting.
As described previously, we collect the stack images for
each block during CFG recovery. Given the stack height

PUSH1 0x1 MOVE $s3, 0x1
SLOAD SLOAD $s3, [$s3]
DUP2 MOVE $s4, $s2
LT LT $s3, $s4, $s3
ISZERO ISZERO $s3, $s3
PUSH1 0x65 MOVE $s4, 0x65
JUMPI JUMPI $s4, $s3

Code Block 3: Lifting A BLock— We show a block of stack-
based instructions lifted to register-based instructions given
initial stack height of three.

SLOAD $s3, [0x1]
GEQ $s3, $s2, $s3
JUMPI 0x65, $s3

Code Block 4: Optimizing A Block—We show the optimized
version of Code Block 3.

at the block entrance, all the instructions within the block
can be lifted. Code Block 3 shows an example of a ba-
sic block being lifted given a stack height of three at the
block entrance. We note that the stack images recorded at
a block might disagree on height. In most cases, the dis-
crepancy arises from internal function, which is resolved
by introducing INTCALL. In other cases, we duplicate the
reused block for each unique height observed.

4.4 Optimization
During the optimization phase, we apply several com-
piler optimizations to our intermediate representation. We
mainly utilize data flow optimizations, including constant
folding, constant propagation, copy propagation and dead
code elimination. The details of these algorithms are out-
side the scope of this paper, but they are well described in
the literature [8, 38, 47].

The optimizations mentioned aim to simplify the code
body. A significant number of available EVM instructions
are dedicated to moving stack values. As a result, the
lifted code contains many MOVE instructions that simply
copy data around. These optimizations eliminate such
redundancy in the instructions. Code Block 4 shows the
optimized version of the block from Code Block 3. In
the example, all the MOVE instructions are eliminated. We
also note that the LT, ISZERO sequence is further reduced
to GEQ.

4.5 Aggregation
Aggregation aims to further simplify the produced inter-
mediate representation by replacing many instructions

USENIX Association 27th USENIX Security Symposium    1375



SLOAD $s3, [0x1] $s3 = S[0x1]
GEQ $s3, $s2, $s3 $s3 = $s2 ≥ $s3
JUMPI 0x65, $s3 if ($s3) goto 0x65

Code Block 5: Three-Address Form—We show the Code
Block 4 in three-address form.

with their analog, compact versions that we term “aggre-
gated expressions.” Unlike instructions, expressions can
be nested arbitrarily, bearing more resemblance to high
level languages.

To begin aggregation, instructions are converted into
expressions in three-address form [47]. Each expression
is a combination of an assignment and an operator, with
the write_register to the left of the assignment and
the operator along with the read_registers to the right
of the assignment. Code Block 5 shows the conversion.

Next, we aggregate expressions based on the definitions
and usages of registers. A definition is in the form $r =
RHS, where $r is a register and RHS is an expression. For
each subsequent usage of $r, we replace it with RHS as
long as it is valid to do so. We cease propagating a given
definition when either $r is redefined or any part of RHS
is redefined.

Combined with dead code elimination, the aggregation
process pushes the definitions down to their usages, pro-
ducing a more compact output. Consider the example in
Code Block 5, by aggregating the first expression into the
second one, and then the second into the third, the block
can be summarized into a single expression:

if ($s2 ≥ S[0x1]) goto 0x65

4.6 Control Flow Structure Recovery
We employ structural analysis [44] algorithms to recover
high level control constructs (control flow structure re-
covery). Constructs such as “while” and “if then else”
are recovered through pattern matching and collapsing
the CFG. If a region is found to be irreducible, we leave
the goto expression unchanged. Moreover, each external
function is separated by walking through a jump-table
like structure at the entrance of the CFG. Code Block 6
shows an external function as an example.

4.7 Validation
Erays transforms the contract into more readable expres-
sions. In order to make use of the expressions for fur-
ther analysis, we must first validate that they are correct.
The correctness is evaluated through testing. Given spe-
cific contract inputs, we “execute” our representation and

assert(0x0 == msg.value)
$s2 = c[0x4]
while (0x1) {
if ($s2 >= s[0x0])

break
if ($s2 <= 0xa) {
$s2 = 0x2 + $s2

}
$s2 = 0xc + $s2

}
m[$m] = $s2
return($m, (0x20 + $m) - $m)

Code Block 6: Structural Analysis—A simple example of the
final output of Erays, where control flow structures are recovered
from blocks of expressions.

check if it produces the correct outputs.
We use go-ethereum (Geth) to generate ground truth

for the expected behavior. By replaying an execution
(transaction), Geth outputs a debug trace, which is a se-
quence of execution steps. Each step is a snapshot of the
EVM machine state, which includes the opcode executed,
the program counter, the stack image, the memory image,
and the storage image.

We then “execute” our representation and confirm the
result is consistent with the debug trace. For that purpose,
we implement a virtual machine that runs our represen-
tations. During the execution, the arguments of an ex-
pression are first evaluated, then the operation itself is
executed given the arguments. There are three classes of
operations that need to be treated differently.

In the first case, the operations retrieve some inputs for
the contract. As an example, CALLDATALOAD fetches part
of the input data (calldata). Operations that are dependent
on the blockchain world state also fall into this category.
An example would be the BLOCKHASH, which fetches the
hash of a recently completed block. For this class of
operations, we look up the resultant value from the debug
trace. If an operation is missing in the trace (original trace
never issued such call), we mark it as a failure.

In the second case, the operations update the
blockchain (world) state. Such operations include storage
updates, contract creation, log updates and message calls.
We also consider RETURN as a member of this category.
These operations define the core semantics of a contract.
By making sure that all these operations are executed with
the right arguments (memory buffers are checked if appli-
cable), we ensure that our representation is correct. If our
execution ends up missing or adding any such operations,
we mark it as a failure.

The rest of the operations fall into the third case. These
operations include the arithmetic operations, memory op-

1376    27th USENIX Security Symposium USENIX Association



erations, as well as all the new operations we introduce
in our representation. The semantics of the operations
are implemented in our virtual machine. As an example,
when executing $s3 = $s2 + $s3, we would load the
values from $s2 and $s3, sum them , modulo by 2256

(word size) and put the result in $s3. If our machine
encounters an exception during these operations, we mark
it as a failure.

We leverage historical transactions on the blockchain
to construct a set of tests. We start with the set of unique
contracts (34 K) described in Section 3. Then, for each
unique contract, we collect the most recent transaction
up to January 3rd, 2018. In total, we gathered 1̃5,855
transactions along with the corresponding contracts in our
test set. We note this is only 46% of all unique contracts—
the remaining were never transacted with.

If Erays fails to generate the representation in the first
place, we mark it as a “construction failure”. If our repre-
sentation behaves incorrectly, we mark it as a “validation
failure”. In total we fail 510 (3.22%) of the test set, among
which 196 are “construction failures” and 314 are ‘valida-
tion failures”.

4.8 Limitations

Erays is not a full decompiler that produces recompil-
able Solidity code. The major limitation is the readability
of the output. While the output is relatively straightfor-
ward when only common types are present (uint array,
address), Erays cannot succinctly capture operations on
complex types such as mapping (uint => string).
Erays’s implementation can be improved in a few ways.

Erays uses naive structural analysis for structure recov-
ery. There are several follow-up works on improving the
recovery process, including iterative refinement [41] and
pattern-independent structuring [51].

Erays does not perform variable recovery and type
recovery. Previous work in that area has been focusing
on x86 architecture [12, 30]. Though operating with
a different instruction set, Erays could draw from the
techniques.

5 Measuring Opaque Smart Contracts

In this section, we leverage Erays to provide insight on
code complexity and code reuse in the ecosystem. Further-
more, we demonstrate how Erays can be used to reduce
contract opacity. We run Erays on the 34 K unique con-
tracts found on the Ethereum blockchain. We fail to create
CFGs for 445 (1.3%) unique binaries, which we exclude
from our analysis.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  10  100  1000  10000

C
D

F 
Bl

oc
ks

Blocks in Unique Contracts

Figure 2: CDF Contract Blocks—We show the CDF of the
number of blocks in unique smart contracts. The median num-
ber of blocks is 100, which denote relatively small programs.
However, there is a long tail of very large contracts—the largest
contract contains a total of 13,045 basic blocks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F 
C

yc
lo

m
at

ic
 C

om
pl

ex
ity

% Functions with Cyclomatic Complexity > 10

Figure 3: Complexity of Contracts—We show the cyclomatic
complexity of contracts on the blockchain, by the fraction of
functions in each contract with complexity larger than 10. Only
34% of contracts have no functions in this criteria. The median is
0.3, with a long tail of contracts that have increasingly complex
functions.

 60

 80

 100

 120

 140

 160

10-2015 01-2016 04-2016 07-2016 10-2016 01-2017 04-2017 07-2017 10-2017 01-2018

 30

 40

 50

 60

 70

Av
er

ag
e 

Bl
oc

ks
 o

f C
on

tra
ct

s

Av
er

ag
e 

C
om

pl
ex

ity
 o

f C
on

tra
ct

s

Month

Blocks
Complexity

Figure 4: Longitudinal Complexity—We show the complex-
ity of unique contracts on the blockchain by the number of
blocks and overall McCabe complexity. Contracts have steadily
increased in the number of blocks over time, indicating larger
contracts today. Despite this, contracts have not increased in
overall McCabe complexity, indicating better code hygiene.

USENIX Association 27th USENIX Security Symposium    1377



5.1 Code Complexity

Our analysis tools give insight into the complexity of con-
tracts found on the blockchain. We begin by investigating
the number of blocks in Ethereum contracts (Figure 2).
Most contracts are fairly small—the median number of
blocks found in contracts is 100, and these blocks con-
tain a median 15 instructions. However, there is a long
tail of more complicated contracts. In the largest case,
one contract contains a total of 13,045 blocks. However,
we find that this contract is one entirely filled with STOP
instructions, which each terminate their own basic block.

Basic blocks only give one flavor of contract complex-
ity. Just as important are the edges and the connections
between the blocks in the CFG. To quantify this, we mea-
sure the cyclomatic complexity of each contract, which
is a popular software metric introduced by Thomas Mc-
Cabe [33]. Cyclomatic complexity measures the num-
ber of linearly independent paths in a given control flow
graph. McCabe suggested that a given function with cy-
clomatic complexity greater than 10 often needed to be
refactored or redone, due to unnecessary complexity and
an increased chance of errors in the program. Past work
has also noted a weak relationship between increased
cyclomatic complexity and software security [45].

Figure 3 shows a CDF McCabe complexity by the
fraction of functions in contracts with complexity > 10.
We find that 79% of unique contracts do not contain a
single function with complexity greater than 10, which
indicates that in addition to being small, many contracts
do not contain unnecessarily complex functionality. We
additionally observe that there is a long tail of complex
contracts, and in the worst case, a handful of contracts are
entirely filled with overly complex functions.

We finally investigate how code complexity has evolved
over time. Figure 4 shows both the number of blocks and
the McCabe complexity of new contracts over time. We
find that contracts are growing larger at a steady rate—
the average number of blocks in contracts published in
January 2018 is 170, which is 350% greater than the first
contracts published in late 2015. However, we were sur-
prised to find that McCabe complexity has not followed
a similar trend. Around January 2017, contract complex-
ity declined, and has been relatively stable since. This
indicates that contract writers are writing code with bet-
ter hygiene. We note that around this time, there was a
sharp rise in ERC20 Tokens on the Ethereum blockchain,
which tend to be larger contracts that contain an average
of 226 blocks. However, they are not particularly com-
plex, and have an average McCabe complexity of 51.6,
which is smaller than many contracts in the ecosystem.
ERC20 tokens make up 25% of the unique binaries in our
dataset.

5.2 Code Reuse

Erays groups basic blocks into its higher-level functions.
From these groupings, we can further compare the struc-
ture and code of functions across contracts, giving us a
useful metric for determining function similarity. To en-
able this measurement, we interpret a function as a “set of
blocks” and compare the sets across functions in different
contracts. Each block, however, may contain contract
specific data that would render the comparison useless,
such as specific return address information or constants
compiled into a block. In order to handle these cases,
we remove all references to constant data found in EVM
opcodes. As an example, consider the following code
block:

hex opcode reduced hex
6060 PUSH1 0x60 60
6040 PUSH1 0x40 60
52 MSTORE 52
6004 PUSH1 0x4 60
36 CALLDATASIZE 36
10 LT 10
61006c PUSH2 0x6c 61
57 JUMPI 57

This shows the original hex string, as well as the de-
coded opcode and the reduced hex after removing con-
stant values. We then take the hashes of the resultant
blocks as the “set” of blocks in a function, and compare
these sets in further analysis. From here on, we call this
resultant hash set a function “implementation”. We find
that there are a handful of implementations that are found
in many contracts; in the most extreme case, the most
popular function appears in 11K contracts. Unfortunately,
many of the functions with the same implementation are
not particularly interesting—many are simply public “get-
ter” methods for specific data types. For example, the
most popular function by implementation is the public
getter function for the uint256 data type.

We next turn to investigate popular external functions
included in contracts, and the number of implementations
of each of those functions. As mentioned previously,
each external function is identified via a 4-byte signa-
ture in each solidity contract. Table 2 shows the top 10
function signatures found in our dataset. We note all of
the top functions are related to the ERC20 specification,
which ERC20 tokens must conform to [26]. Interest-
ingly, we find that although these functions appear in
several contracts, there are far fewer implementations of
each function. Some of these can be easily explained,
for example, the decimals() function is simply a ‘get-
ter” method for getting the precision of a token. Other
functions, however, are harder to explain. The function
transfer(address,uint256) typically contains busi-

1378    27th USENIX Security Symposium USENIX Association



Function Name Contracts Implementations

owner() 11,045 (32.2%) 63
balanceOf(address) 10,070 (29.3%) 240
transfer(address,uint256) 9,424 (27.5%) 1,759
name() 9,154 (26.7%) 109
symbol() 9.087 (26.4%) 120
decimals() 8,916 (26.0%) 96
totalSupply() 8,732 (25.4%) 200
allowance(address,address) 8,102 (23.6%) 152
transferFrom(address,address,uint256) 7,979 (23.2%) 1,441
approve(address,uint256) 7,713 (22.5%) 479

Table 2: Function Distribution—We show the distribution of functions in unique smart contracts. All of the top functions are
related to ERC20 tokens [26], which are required to implement a specific interface.

ness logic for a token that defines how token transfers
happen, and are somewhat custom. However, despite
appearing in 9.4 K contracts, there are only 1.4 K imple-
mentations in our dataset. This indicates many contracts
sharing the same implementation for such functions.

5.3 Reducing Contract Opacity
A useful product of Erays is the ability to identify the
functional similarity between two EVM contracts (Sec-
tion 5.2). We can extend this technique further to not
just investigate code reuse, but to reduce opacity in the
ecosystem. We do this by leveraging the compiled dataset
of 88.4 K binaries generated from verified Etherscan
source code as described in Section 3. From each of these
compiled binaries, we extract its functions, and then com-
pare function implementations pairwise from the com-
piled binaries to binaries collected from the blockchain.
An exact function match to a compiled function thus im-
mediately gives us the source code for that function from
its originating source file. We view this as similar to the
technique of “binary clone detection” [15,39], a technique
that overlays function symbols onto stripped binaries us-
ing a full binary.

We apply this technique to the opaque contracts on the
blockchain, i.e the ones that do not have easily linkable
source code. Among the 26 K unique opaque contracts,
we are able to reduce the opacity of the opaque contracts
to varying degrees. We are able to map a median 50%
of functions and 14.7% of instructions per opaque con-
tract. Notably, we reveal 2.4 K unique contracts that
we now have full source code for. These newly transpar-
ent contracts are what we call “frankenstein” contracts—
contracts for which source code comes from multiple
different contracts.

These techniques additionally improve the opacity in
the ecosystem for top contracts. Table 3 shows the top
10 contracts by balance held—the largest of which holds
a total of 737 K Ether. Of these contracts, five could not

be directly mapped to a verified source contract. After
applying Erays, we are able to successfully uncover an
average of 66% of the functions in each contract, and in
one case, match 100% of the functions in the contract
exactly. This contract holds a total of 488 K Ether, which
in 2018, is valued at 500 M USD.

6 Reverse Engineering Case Studies

In this section, we show how Erays can be used as a
reverse engineering tool in analyzing opaque Ethereum
smart contracts.

6.1 Access Control Policies of High-Value
Wallets

To begin our analysis, we investigate the opaque smart
contracts with the highest Ether balance. Using Erays,
we find that many of these are multisignature wallets that
require multiple individuals to approve any transaction—
a standard cryptocurrency security measure.

The opaque wallet with the largest balance con-
tains $597 M USD as of February 2018. Through
blockchain analysis using Etherscan, we observed that this
contract was accessed every week from the same account,
0xd244..., which belongs to Gemini, a large cryp-
tocurrency exchange.4 This address accesses two other
high value, opaque wallets in our dataset, with $381 M
and $164 M USD in balance, respectively.

We use Erays to reverse engineer these contracts, and
uncover their access control policies. We find that the
first two contracts are nearly identical. In order to with-
draw money from the wallet, they require two out of
three administrator signatures. Any party can call the

4Gemini used this address to vote in a public referendum on
Ethereum governance, see
https://web.archive.org/web/20180130153248/http://v1.carbonvote.
com/

USENIX Association 27th USENIX Security Symposium    1379

https://web.archive.org/web/20180130153248/http://v1.carbonvote.com/
https://web.archive.org/web/20180130153248/http://v1.carbonvote.com/


Code Hash Ether Contracts TXs Verified Opacity Reduction (number of functions)

375196a08a62ab4ddf550268a2279bf0bd3e7c56 737,021 1 8 5 87.5%
0fb47c13d3b1cdc3c44e2675009c6d5ed774f4dc 466,648 1 3504 5 100%
69d8021055765a22d2c56f67c3ac86bdfa594b69 373,023 1 225 3 –
a08cfc07745d615af72134e09936fdb9c90886af 84,920 1 151 5 89.5%
319ee480a443775a00e14cb9ecd73261d4114bee 76,281 3 7819 3 –
a8cc173d9aef2cf752e4bf5b229d224e17838128 67,747 3 83 3 –
037ca41c00d8e920388445d0d5ce03086e816137 67,317 1 20,742 3 –
20f46ba0d13affc396c62af9ee1ff633bc49d8b7 53,961 1 52 5 54.2%
88ec201907d7ba7cedf115abb92e18c41a4a745d 51,879 1 75 3 –
c5fbfc4b75ead59e98ff11acbf094830090eeee9 43,418 13 104 5 0%

Table 3: Top Contracts by Balance—We show the top 10 contracts by balance, as well as their transaction volume, whether they
matched exactly to verified code, and their opacity reduction after applying Erays if they did not match to source code. Of the top
contracts without source code, Erays was able to reduce their function opacity by an average of 66%.

requestWithdrawal method, however, the contract will
not release the funds until the approveWithdrawal func-
tion is invoked twice, with at least one invocation mes-
sage signed by an additional administrator. Thus far, the
approveWithdrawal transactions are initiated from a
different address than the administrators. One administra-
tor address has never been used, indicating that runtime
analysis would not adequately capture all of the aspects
of this contract.

The third Gemini contract contains a more complicated,
time-based access control policy. Withdrawals cannot be
approved immediately, but instead must remain pending
for a short period of time. Through Erays, we find that the
requestWithdrawal method in this contract features
a time dependency hazard, which is a known class of
Solidity hazards. When generating a unique identifier
for a new withdrawal, the contract uses the hash of both
a global counter as well as the hash of the previously
mined block. The dependence on the previous block hash
means that if a short “fork” happens in the blockchain,
two different log events for the same withdrawal may be
received by the exchange. The exchange must, as a result,
take special care in responding to such log messages on
the blockchain. We note that in the past, cryptocurrency
exchanges have failed to handle related hazards, resulting
in significant losses [21].

Access control policies used internally by financial ser-
vices would typically be private, not exposed to users or
the public. However, due to the public nature of Ethereum
bytecode, we have demonstrated the potential to audit
such policies when they are implemented as smart con-
tracts.

6.2 Exchange Accounts

We next investigate the contracts that appear most fre-
quently on the blockchain. We anticipated many of these
contracts would simply be copy-paste contracts based on
publicly accessible code—however, we were surprised

to find hundreds of thousands of identical contracts, all
opaque. We find that many of these contracts are associ-
ated with large exchanges that create one contract instance
for each user account.

Poloniex Exchange Wallets The largest cluster of
identical opaque contracts appears a total of 349,612 times
on the Ethereum blockchain. All of these contracts were
created by one address, 0xb42b...579, which is thought
to be associated with the Poloniex exchange.5 We reverse
engineer these contracts and uncover their underlying
structure. We find that Poloniex wallets define a customer
to whom all wallet deposits are ultimately paid. They
directly transfer Ether to the customer whenever Ether is
deposited into them, acting as an intermediary between
the Poloniex exchange and the customer.

Yunbi Token Wallets We found another cluster of con-
tracts that appeared 89,133 times on the blockchain, that
belongs to the Yunbi exchange. Through reverse engineer-
ing, we find that the wallets allow any address to deposit
Ether, but restrict withdrawal transactions to a whitelisted
administrator (Yunbi 0x42da...63dc). The administra-
tor can trigger Ether and token transfers from the wallet,
however, the tokens are transferred out of the balance of
the Yunbi exchange—the address of the depositor does
not ever own any tokens.

Exchange Splitting Contract We found several
opaque contracts thought to be gadgets used by the Gem-
ini4 and ShapeShift exchanges [23] to defend against
replay attacks following the hard fork between Ethereum
and Ethereum Classic. The contracts serve as a split-
ter that sits between the exchange and users depositing
to it, checking whether a user is depositing coins to the
Ethereum Classic chain or the Ethereum chain. Depend-
ing on which chain the transaction appears on, the Ether
value of the message is sent to a different address.

Opacity in communications with financial institutions
5An Ethereum Developer on Reddit communicated with Poloniex

regarding this address and confirmed it belongs to them.

1380    27th USENIX Security Symposium USENIX Association



over the Internet is expected practice—we do not see
the code that runs the online banking services we use.
This expectation has seemingly carried over to Ethereum
exchanges, but with unforeseen consequences: publicly
available bytecode for a particular program can be reverse
engineered, and made simpler with tools like Erays. An
expectation for opacity is dangerous, as it may lead to lax
attention to security details.

6.3 Arbitrage Bots on Etherdelta

We next leverage Erays to investigate the role of arbitrage
bots on EtherDelta [2], a popular decentralized exchange.
EtherDelta enables traders to deposit Ether or ERC20
tokens, and then create open offers to exchange their
currency for other currencies. EtherDelta is the largest
smart contract-based exchange by trade volume, with over
$7 million USD daily volume at the time of writing.

On occasion, arbitrage opportunities will appear on
EtherDelta, where simultaneously buying and selling a
token across two currencies can yield an immediate profit.
Such opportunities are short lived, since arbitrageurs com-
pete to take advantage of favorable trades as rapidly as
possible. A successful arbitrage requires making a pair
(or more) of simultaneous trades. In order to reduce risk,
many arbitrageurs have built Ethereum smart contracts
that send batch trades through EtherDelta. We use Erays
to reverse engineer these contracts and investigate their
inner-workings.

To begin, we built a list of 30 suspected arbitrage con-
tracts by scanning transactions within blocks 3,900,000
to block 4,416,600, and selected contracts that both make
internal calls to EtherDelta and generate two trade events
in a single transaction. To prune our list, we ran our simi-
larity metric (described in Section 5) over every pair of
the 30 contracts and found three clusters of highly similar
(> 50% similarity) contracts. We then reverse engineered
one representative contract from each group.

All three clusters of contracts share the same high-level
behavior. The arbitrageur initiates a trade by sending a
message to the contract, which first performs an access
control check to ensure that it is only invoked by the
contract’s original creator. Next, the contract queries
the availableVolume method in EtherDelta, to identify
how much of their open offer remains for a given trade.
For example, consider a trader who makes an offer of 10
Ether at a price of $1,000 USD. If 8 Ether were purchased,
availableVolume would return a value of 2. If the
contract finds there is sufficient balance on its open offer,
it then calls the trade function in EtherDelta twice, thus
executing the arbitrage trade. If either trade fails, the
entire transaction is aborted using the REVERT opcode.

Several arbitrage contracts we investigated exhibited
different variations of this behavior. Immediately be-

fore calling the trade function, one group of contracts
executes the testTrade function, presumably in an at-
tempt to reduce risk. However, since testTrade calls
the availableVolume function again, this is redundant
and wastes gas.6 Another group of contracts appears to
obscure the values of their method arguments by perform-
ing an XOR with a hardcoded mask. Such obfuscation is
presumably intended to prevent network nodes and other
arbitrageurs from front-running or interfering with their
transaction. However, this thin veneer becomes transpar-
ent through reverse engineering with Erays.

6.4 De-obfuscating Cryptokitties
Cryptokitties is a popular smart contract based trading
game on Ethereum. The game involves buying, breeding,
and selling virtual pets. As of January 29, 2018, the
top 10 “kitties” are worth more than $2.5 M combined.
During their peak, they were so popular that gas prices
and transaction confirmation times slowed heavily due to
Cryptokitties traffic [1, 28].

Although most of the Cryptokitties source code is pub-
lished, a central component of the game code is deliber-
ately kept opaque in order to alter the gameplay. Cryp-
tokitties contain an opaque function, mixGenes(uint32
matron, uint32):uint32, which creates a new kitty
by splicing together 32-byte genomes from each of two
“parents”. Kitties are assigned certain visual characteris-
tics based on their genome, and rare attributes can yield
very profitable kitties. The gameplay effect of opacity is
to make it challenging for users to “game” the gene splic-
ing contract in order to increase the chances of breeding
a rare cat. Although the high-level code is known to the
developers, the developers have committed to a policy of
not playing the game or utilizing this information. As
a final case study, we apply Erays to the Cryptokitties
contract.

With 3 hours of reverse engineering work using Erays,
we were able to create a Solidity contract whose output
exactly matches the output of the mixGenes function on
the blockchain. We find that the mixGenes function is
comprised of three main parts. The first selects the ran-
domness that will be used: if the hash of the input block
number is 0, it is masked with the current block number.
The new block number and its hash are concatenated with
the parent’s genes as input to the keccak256 hash func-
tion, whose output is used as the source of randomness
for the rest of the execution. Second, the genes of each
parent are split into 5 bit segments and mixed. For each
5-bit gene, one of the parents’ genes is chosen as the
output gene with 50% probability. Finally, a particular
gene is mutated with 25% probability if the larger of the

6See Chen et al [16] for a survey of underoptimization in Ethereum
contracts.

USENIX Association 27th USENIX Security Symposium    1381



two parents’ corresponding gene is less than 23 and with
12.5% probability otherwise.

Concurrent to our work in reverse engineering, at least
three other teams also attempted to reverse engineer the
mixGenes function [22, 27, 48]. Their analysis largely
leverages transaction tracing and blockchain analysis to
reverse engineer the “protocol” of the contract. Erays
does not rely on transaction data—it directly translates
the bytecode to high level pseudocode. As a result, un-
common or unused control paths that do not appear in
transaction traces, such as Cryptokitties mutations, can
be replicated faithfully.

Deliberate opacity does not serve the intended purpose
of black-boxing the gene mixing functionality. Recon-
structing the logic and control flow of the contract using
Erays, we identify two opportunities to exploit the game
with more effective husbandry. First, we can identify
kitties with genes valued 23 or greater which are less
likely to encounter random mutation when breeding. Sec-
ond, since randomness is chosen based on block hashes
at the time giveBirth is called, we can wait to submit
the giveBirth transaction until after a block hash that
results in favorable breeding.

7 Related Work

Program analysis. Our work is guided by existing
works in program analysis [9, 10, 38], as well as studies
in decompilation [17, 35, 41]. We draw valuable expe-
rience from existing optimization frameworks on JVM.
In particular, our system design is largely influenced by
Soot [49] and Marmot [25].

Blockchain measurement. Our work is closely re-
lated to prior efforts in measurement and analysis of
Ethereum and other public blockchains. Much of the
analysis on the Bitcoin blockchain has focused on clus-
tering transactions by usage patterns (e.g., gambling or
trading) [34] and measuring the performance of the un-
derlying peer-to-peer network [19, 20, 36, 37].

Bartoletti and Pompianu provide a taxonomy of the
transparent Ethereum contracts available from the Ether-
scan “verified source” dataset [13], whereas our work is
the first to analyze opaque contracts. Bartoletti et al. pro-
vide a survey of known smart contract vulnerabilities [11].

Comparison with existing Ethereum smart contract
analysis tools. Our reverse engineering tool is comple-
mentary to a wide range of existing tools in the Ethereum
ecosystem:
Symbolic Execution Engines. There are several symbolic
execution engines for Ethereum smart contracts, including
Oyente [31], Manticore [4], and Mythril [5]. These tools
also operate on EVM bytecode, they focus primarily on

detecting known classes of vulnerabilities, rather than
assisting reverse engineering.

Debuggers. Several tools provide debugging utilities, in-
cluding Remix [6] and Geth. Debuggers enable an analyst
to step through a trace of contract execution, which is help-
ful in understanding the contract. Although debugging at
the EVM opcode level is feasible, debugging with the aid
of higher level representations is preferable if available.

Decompilers. Porosity is the only other decompiler we
know of that produces Solidity from EVM bytecode. We
ran Porosity over the 34 K unique contracts in our dataset
to evaluate how well it performs in comparison to Erays.
Porosity produces high-level source code without error
for only 1,818 (5.3%) unique contracts. In contrast, Er-
ays produces aggregated expression for 33,542 (97.7%).
Exploit Generator. TEETHER [29] is a tool that automat-
ically creates exploits on smart contracts. TEETHER is a
concurrent work with Erays.

8 Discussion

We have shown the feasibility of reverse engineering
opaque contracts on Ethereum blockchain. Reverse en-
gineering tools like Erays make it easier to reconstruct
high level source code even when none is available. We
envision that reverse engineering may be used by “white
hate” security teams or regulatory bodies in order to carry
out public audits of the Ethereum blockchain. Regardless,
reverse engineering remains expensive, and such audits
would be simplified if the high-level source were available
in the first place. We suggest that the Ethereum commu-
nity should adopt technical mechanisms and conventions
that increase the transparency of smart contract programs.
Etherscan’s verified source code is a step in the right di-
rection, but more work must be done in order to improve
transparency in the ecosystem.

Why are so many contracts opaque, given the ease
of publishing source code to Etherscan? In some cases,
opacity may be a deliberate decision in order to achieve
security through obscurity. Another explanation is that
publishing Solidity source code is not yet a strong default,
and infrastructure support is only partial. For example,
we are not aware of any other block explorer services
besides Etherscan that provides a Verified Source code
repository. Although Ethereum features a decentralized
standard called “Swarm” that supports publishing a con-
tract’s Application Bytecode Interface (ABI), including
the method signatures and argument types, this standard
does not include the full source code. This standard
should be extended to support high-level source code
as well.

1382    27th USENIX Security Symposium USENIX Association



9 Conclusion

Many Ethereum smart contracts on the blockchain are
opaque—they have no easily linkable source code. These
contracts control $3.1 B USD in balance, and are trans-
acted with a total of 12.7 M times. To investigate these
contracts, we introduced Erays, a reverse engineering
tool for EVM. Erays lifts EVM bytecode into higher
level representations suitable for manual analysis. We
first showed how Erays can be used to quantify code
complexity, identify code reuse, and reduce opacity in
the smart contract ecosystem. We then applied Erays to
four reverse-engineering case studies: high-value multi-
signature wallets, arbitrage bots, exchange accounts, and
finally, a popular smart contract game. We identified that
smart contract developers may be expecting obscurity for
the correct functionality of their contracts, and may be ex-
pecting to achieve “security by obscurity” in withholding
their high level code. We hope Erays will prove useful for
both the security and Ethereum communities in improving
the transparency in Ethereum.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation under contract CNS-151874, as well as
through gifts from CME Group and Jump Trading. The
work was additionally supported by the U.S. Department
of Homeland Security contract HSHQDC-17-J-00170.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of their employers or the
sponsors.

References
[1] Cryptokitties craze slows down transactions on ethereum. http://

www.bbc.com/news/technology-42237162.

[2] Etherdelta. https://etherdelta.com/.

[3] Etherscan. https://etherscan.io.

[4] Manticore. https://github.com/trailofbits/manticore.

[5] Mythril. https://github.com/ConsenSys/mythril.

[6] Remix. https://github.com/ethereum/remix.

[7] Soldity documentation. https://solidity.readthedocs.io/en/develop/.

[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[9] F. E. Allen. Control flow analysis. In ACM Sigplan Notices, 1970.

[10] F. E. Allen and J. Cocke. A program data flow analysis procedure.
Commun. ACM, 19(3):137–, Mar. 1976.

[11] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on
ethereum smart contracts sok. In Proceedings of the 6th Interna-
tional Conference on Principles of Security and Trust - Volume
10204, pages 164–186, New York, NY, USA, 2017. Springer-
Verlag New York, Inc.

[12] G. Balakrishnan and T. Reps. Divine: Discovering variables in
executables. In Proceedings of the 8th International Conference
on Verification, Model Checking, and Abstract Interpretation, VM-
CAI’07, pages 1–28, Berlin, Heidelberg, 2007. Springer-Verlag.

[13] M. Bartoletti and L. Pompianu. An empirical analysis of smart
contracts: platforms, applications, and design patterns. In Interna-
tional Conference on Financial Cryptography and Data Security,
pages 494–509. Springer, 2017.

[14] R. Browne. Accidental bug may have frozen 280 mil-
lion worth of digital coin ether in a cryptocurrency wal-
let. https://www.cnbc.com/2017/11/08/accidental-bug-may-have-
frozen-280-worth-of-ether-on-parity-wallet.html.

[15] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K.
Tan. Bingo: Cross-architecture cross-os binary search. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, pages 678–689,
New York, NY, USA, 2016. ACM.

[16] T. Chen, X. Li, X. Luo, and X. Zhang. Under-optimized smart
contracts devour your money. In Software Analysis, Evolution and
Reengineering (SANER), 2017 IEEE 24th International Confer-
ence on, pages 442–446. IEEE, 2017.

[17] C. Cifuentes and K. J. Gough. Decompilation of binary programs.
Softw. Pract. Exper., 25(7):811–829, July 1995.

[18] U. F. T. Commission. Know the risks before investing in cryptocur-
rencies. https://www.ftc.gov/news-events/blogs/business-blog/
2018/02/know-risks-investing-cryptocurrencies.

[19] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer, et al. On scaling decen-
tralized blockchains. In International Conference on Financial
Cryptography and Data Security, pages 106–125. Springer, 2016.

[20] C. Decker and R. Wattenhofer. Information propagation in the
bitcoin network. In Peer-to-Peer Computing (P2P), 2013 IEEE
Thirteenth International Conference on, pages 1–10. IEEE, 2013.

[21] C. Decker and R. Wattenhofer. Bitcoin transaction malleability
and mtgox. In European Symposium on Research in Computer
Security, pages 313–326. Springer, 2014.

[22] M. Dong. Towards cracking crypto kitties’ genetic
code. https://medium.com/@montedong/towards-cracking-
crypto-kitties-genetic-code-629fcd37b09b.

[23] Etherscan. Shapeshift exchange account. https://etherscan.io/
address/0x70faa28a6b8d6829a4b1e649d26ec9a2a39ba413.

[24] K. Finley. A 50 million dollar hack just showed that the dao was
all too human. https://www.wired.com/2016/06/50-million-hack-
just-showed-dao-human/, 2016.

[25] R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard, and
D. Tarditi. Marmot: An optimizing compiler for java. Softw.
Pract. Exper., 30(3):199–232, Mar. 2000.

[26] E. Foundation. Erc20 token standard. https://theethereum.wiki/w/
index.php/ERC20_Token_Standard.

[27] A. Hegyi. Cryptokitties genescience algorithm. https://medium.
com/@alexhegyi/cryptokitties-genescience-1f5b41963b0d.

[28] O. Kharif. Cryptokitties mania overwhelms ethereum net-
work’s processing. https://www.bloomberg.com/news/articles/
2017-12-04/cryptokitties-quickly-becomes-most-widely-used-
ethereum-app.

[29] J. Krupp and C. Rossow. teether: Gnawing at ethereum to auto-
matically exploit smart contracts. In 27th USENIX Security Sym-
posium (USENIX Security 18), Baltimore, MD, 2018. USENIX
Association.

USENIX Association 27th USENIX Security Symposium    1383

http://www.bbc.com/news/technology-42237162
http://www.bbc.com/news/technology-42237162
https://etherdelta.com/
https://etherscan.io
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://github.com/ethereum/remix
https://solidity.readthedocs.io/en/develop/
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://www.ftc.gov/news-events/blogs/business-blog/2018/02/know-risks-investing-cryptocurrencies
https://www.ftc.gov/news-events/blogs/business-blog/2018/02/know-risks-investing-cryptocurrencies
https://medium.com/@montedong/towards-cracking-crypto-kitties-genetic-code-629fcd37b09b
https://medium.com/@montedong/towards-cracking-crypto-kitties-genetic-code-629fcd37b09b
https://etherscan.io/address/0x70faa28a6b8d6829a4b1e649d26ec9a2a39ba413
https://etherscan.io/address/0x70faa28a6b8d6829a4b1e649d26ec9a2a39ba413
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://medium.com/@alexhegyi/cryptokitties-genescience-1f5b41963b0d
https://medium.com/@alexhegyi/cryptokitties-genescience-1f5b41963b0d
https://www.bloomberg.com/news/articles/2017-12-04/cryptokitties-quickly-becomes-most-widely-used-ethereum-app
https://www.bloomberg.com/news/articles/2017-12-04/cryptokitties-quickly-becomes-most-widely-used-ethereum-app
https://www.bloomberg.com/news/articles/2017-12-04/cryptokitties-quickly-becomes-most-widely-used-ethereum-app


[30] J. Lee, T. Avgerinos, and D. Brumley. Tie: Principled reverse
engineering of types in binary programs. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2011,
San Diego, California, USA, 6th February - 9th February 2011,
2011.

[31] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making
smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16,
pages 254–269, New York, NY, USA, 2016. ACM.

[32] R. Marvin. Blockchain in 2017: The year of smart con-
tracts. https://www.pcmag.com/article/350088/blockchain-in-
2017-the-year-of-smart-contracts.

[33] T. J. McCabe. A complexity measure. IEEE Transactions on
software Engineering.

[34] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage. A fistful of bitcoins: characterizing
payments among men with no names. In Proceedings of the 2013
conference on Internet measurement conference, pages 127–140.
ACM, 2013.

[35] J. Miecznikowski and L. Hendren. Decompiling java using staged
encapsulation. In Proceedings of the Eighth Working Conference
on Reverse Engineering (WCRE’01), WCRE ’01, pages 368–,
Washington, DC, USA, 2001. IEEE Computer Society.

[36] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring,
and B. Bhattacharjee. Discovering bitcoin’s public topology and
influential nodes. et al., 2015.

[37] T. Neudecker, P. Andelfinger, and H. Hartenstein. Timing analysis
for inferring the topology of the bitcoin peer-to-peer network.
In Ubiquitous Intelligence & Computing, Advanced and Trusted
Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World
Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016
Intl IEEE Conferences, pages 358–367. IEEE, 2016.

[38] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, Berlin, Heidelberg, 1999.

[39] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su.
Detecting code clones in binary executables. In Proceedings of
the Eighteenth International Symposium on Software Testing and
Analysis, ISSTA ’09, pages 117–128, New York, NY, USA, 2009.
ACM.

[40] s. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. https://bitcoin.org/bitcoin.pdf.

[41] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley. Native x86
decompilation using semantics-preserving structural analysis and
iterative control-flow structuring. In Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, pages 353–368, Berke-
ley, CA, USA, 2013. USENIX Association.

[42] B. Schwarz and G. A. Saumya Debray. Disassembly of executable
code revisited. In 9th IEEE Working Conference on Reverse
Engineering.

[43] U. Securities and E. Commission. Investor bulletin: Initial coin
offerings. https://www.sec.gov/oiea/investor-alerts-and-bulletins/
ib_coinofferings.

[44] M. Sharir. Structural analysis: A new approach to flow analysis
in optimizing compilers. Computer Languages, 5(3-4):141–153,
1980.

[45] Y. Shin and L. Williams. Is complexity really the enemy of soft-
ware security? In 4th ACM workshop on Quality of protection.

[46] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, et al. (state
of) the art of war: Offensive techniques in binary analysis. In
Security and Privacy (SP), 2016 IEEE Symposium on, pages 138–
157. IEEE, 2016.

[47] L. Torczon and K. Cooper. Engineering A Compiler. 2007.

[48] K. Turner. The cryptokitties genome project. https://medium.com/
@kaigani.

[49] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan. Soot - a java bytecode optimization framework. In 1999
conference of the Centre for Advanced Studies on Collaborative
research.

[50] G. Wood. Ethereum: A secure decentralised generalised transac-
tion ledger.

[51] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith. No
more gotos: Decompilation using pattern-independent control-
flow structuring and semantic-preserving transformations. In
22nd Annual Network and Distributed System Security Sympo-
sium, NDSS 2015, San Diego, California, USA, February 8-11,
2015, 2015.

[52] W. Zhao. 30 million: Ether reported stolen due to parity wal-
let breach. https://www.coindesk.com/30-million-ether-reported-
stolen-parity-wallet-breach/.

A Internal Function Identification

In our heuristic, an internal function is assumed to
have a single entry and a single exit. Consequently,
there are four basic blocks involved in an internal
call that we name caller_begin, callee_entry,
callee_exit and caller_end. The caller_begin
issues the call by branching to callee_entry, and even-
tually callee_exit returns to the caller by branching to
caller_end.

We note that callee may have multiple callers. As
a result, for an internal function, there is one pair of
callee_entry and callee_exit, but there may be mul-
tiple pairs of caller_begin and caller_end. Figure
5a illustrates an example callee with two callers.

We start by identifying callee_exit. We observe
that callee_exit would normally end with an indi-
rect branch, where the branch address is produced by
caller_begin. Moreover, callee_exit should have
more than one successors (the caller_ends).

We then correlate each caller_end with its
caller_begin. As mentioned previously, the branch
address produced by caller_begin guides the callee
to caller_end. During the CFG recovery, we keep
track of where each constant is generated, which enables
the correlation. As we identify the caller_begins, the
callee_entry is their common successor.

We then use INTCALL as an abstraction for the callee.
The subgraph for the callee is first extracted using the
CFG recovery algorithm. For each caller_begin, we
insert an INTCALL, and also replace its branch from
callee_entry to the corresponding caller_end. The
INTCALL, when “executed”, will transfer the control flow
to the callee. For the callee_exit, we insert an INTRET
to replace its indirect branch to caller_ends. The
INTRET, when “executed”, will transfer the control flow

1384    27th USENIX Security Symposium USENIX Association

https://www.pcmag.com/article/350088/blockchain-in-2017-the-year-of-smart-contracts
https://www.pcmag.com/article/350088/blockchain-in-2017-the-year-of-smart-contracts
https://bitcoin.org/bitcoin.pdf
https://www.sec.gov/oiea/investor-alerts-and-bulletins/ib_coinofferings
https://www.sec.gov/oiea/investor-alerts-and-bulletins/ib_coinofferings
https://medium.com/@kaigani
https://medium.com/@kaigani
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/


callee subgraph

caller_begin_0

callee_entry

call

caller_begin_1

call

callee_exit

caller_end_0

return

caller_end_1

return

(a) before callee is extracted

caller_begin_0

caller_end_0

caller_begin_1

caller_end_1

(b) after callee is extracted

Figure 5

delta, stack_size = 0, 0
for bytecode in sequence:

stack_size -= bytecode.delta
delta = min(delta, stack_size)
stack_size += bytecode.alpha

delta = -delta
alpha = stack_size + delta

Code Block 7: Computing the Delta and Alpha of a
Sequence

back to the caller. Figure 5b illustrates the transforma-
tions.

To make lifting possible, we also need to determine the
number of items popped off and pushed onto the stack
by INTCALL. In the EVM specification, these are referred
to as the delta (δ ) and alpha (α) of an operation. For
an INTCALL, they can be interpreted as the number of
arguments and return values.

We note that a sequence of bytecode instructions can
be viewed as a single operation, thus the delta and alpha
value of the sequence computed in the manner shown in 7.

The stack size is initialized to be zero upon entering the
sequence. When the it becomes negative, the sequence
is reading prepositioned values. Delta is therefore set to
the negation of the minimal stack size. The end stack size
indicates the number of values produced by the sequence,
but we also need to account for the values popped off the
stack. Therefore alpha is the end stack size plus the delta
value.

For an INTCALL, we select a path from callee_entry
to callee_exit, and compute its delta and alpha. We
note that in most cases, the return address is the first
argument (at the bottom of the initial stack) and will be
popped off eventually, which allows us to fully exhaust
the function arguments.

USENIX Association 27th USENIX Security Symposium    1385


