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Abstract

Background: The role and clinical value of ERβ1 expression is controversial and recent data demonstrates that

many ERβ antibodies are insensitive and/or non-specific. Therefore, we sought to comprehensively characterize

ERβ1 expression across all sub-types of breast cancer using a validated antibody and determine the roles of this receptor

in mediating response to multiple forms of endocrine therapy both in the presence and absence of ERα expression.

Methods: Nuclear and cytoplasmic expression patterns of ERβ1 were analyzed in three patient cohorts, including a

retrospective analysis of a prospective adjuvant tamoxifen study and a triple negative breast cancer cohort. To

investigate the utility of therapeutically targeting ERβ1, we generated multiple ERβ1 expressing cell model systems and

determined their proliferative responses following anti-estrogenic or ERβ-specific agonist exposure.

Results: Nuclear ERβ1 was shown to be expressed across all major sub-types of breast cancer, including 25% of triple

negative breast cancers and 33% of ER-positive tumors, and was associated with significantly improved outcomes in

ERα-positive tamoxifen-treated patients. In agreement with these observations, ERβ1 expression sensitized ERα-positive

breast cancer cells to the anti-cancer effects of selective estrogen receptor modulators (SERMs). However, in the absence

of ERα expression, ERβ-specific agonists potently inhibited cell proliferation rates while anti-estrogenic therapies were

ineffective.

Conclusions: Using a validated antibody, we have confirmed that nuclear ERβ1 expression is commonly present in

breast cancer and is prognostic in tamoxifen-treated patients. Using multiple breast cancer cell lines, ERβ appears to be a

novel therapeutic target. However, the efficacy of SERMs and ERβ-specific agonists differ as a function of ERα expression.
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Background
The global incidence of breast cancer has grown from

1980 to 2010 at an annual rate of 3.1%. In 2010, there

were 1.65 million women diagnosed with breast cancer

and 425,000 deaths caused by this disease [1]. Despite

the substantial advances in understanding breast cancer

biology, the clinical management of women with this

disease continues to rely almost solely on the tumoral

expression of estrogen receptor alpha (ERα), progester-

one receptor (PR) and epidermal growth factor receptor

2 (HER2). ERα is expressed in approximately 70% of all

breast tumors and is the basis for the use of selective es-

trogen receptor modulators (SERMs) and aromatase in-

hibitors (AIs), which substantially reduce the risk for

disease recurrence and prolong patient survival. Despite

the discovery of a second form of the ER, ERβ1, more

than 15 years ago [2,3], the endocrine sensitivity and ER

status of breast tumors continues to be clinically defined

exclusively by ERα expression [4-6].
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Like ERα, ERβ1 is a member of the nuclear receptor

superfamily of proteins that functions as a ligand-

mediated transcription factor [3]. The DNA binding do-

mains of ERα and ERβ1 share 96% homology at the

amino acid level, however, the remainder of the protein

domains are highly divergent with the hinge region, AF1

domain, and ligand binding domain sharing only 30%,

30% and 53% conservation respectively [3,7]. A number

of microarray studies from our laboratory and others

have demonstrated that these two proteins function dif-

ferently in response to both estrogen and anti-estrogens

[8-14]. Consistent with these data, the genome wide

chromatin binding profiles, or cistromes, of ERα and

ERβ1 share only 40% overlap following short term estro-

gen treatment [14].

While ERβ is highly expressed in normal breast tissue

[15-21], a number of immunohistochemistry-based stud-

ies have demonstrated conflicting data with regard to

ERβ expression in breast tumors. For example, the fre-

quency of ERβ expression in breast tumors has been

reported to range from 17-100% [15,18,21-35] and from

13-83% in ERα negative breast cancer [17,24,29,30,33,36].

With regard to the biological functions of ERβ, a number

of studies have shown that the presence of this receptor

correlates with improved rates of recurrence, disease-free

survival and overall survival [22,24-27,37-41] while others

indicate little to no correlation [28,30,38] or even worse

prognosis [33,42-44]. Lastly, several studies have reported

that the presence of ERβ in breast tumors increases the ef-

fectiveness of tamoxifen therapy [36,45-48] or aromatase

inhibitor therapy [47,49]. For these reasons, the expression

profiles and biological functions of ERβ in human breast

tumors remains unclear and has limited its utility as a

prognostic and/or predictive biomarker for this disease. A

potential reason for the conflicting data relates to the

known existence of at least 4 different ERβ splice variants

(ERβ2-5) in human breast tumors whose biological func-

tions largely remain unknown. Additionally, a recent re-

port by our laboratory and others suggests that some of

the inconsistencies regarding the prevalence of ERβ in

breast tumors may be related to the use of non-specific

and/or insensitive ERβ antibodies [20,50].

For these reasons, we sought to further characterize

the expression patterns of ERβ1 across multiple breast

cancer sub-types using a validated antibody. This par-

ticular antibody (PPG5/10) has been shown by us and

others to detect only the full-length form of this receptor

and is highly sensitive and specific in immunohisto-

chemical studies [20,50,51]. Here, we have examined nu-

clear and cytoplasmic ERβ1 expression levels in over 400

breast tumors and have correlated these levels with

other prognostic biomarkers and/or known patient out-

comes. Our results demonstrate that ERβ1 is expressed

across all tumor sub-types, including triple negative

breast cancers (TNBC), and is significantly associated

with improved patient outcomes in women taking tam-

oxifen for adjuvant therapy of resected, ERα-positive,

early stage breast cancer. Based on these observations,

we explored the utility of therapeutically targeting ERβ1

using ERβ-specific agonists and multiple anti-estrogenic

compounds in both ERα-positive and ERα-negative

breast cancers using a number of cell model systems.

Our results demonstrate that targeting this receptor re-

sults in potent anti-proliferative effects in multiple

breast cancer sub-types. However, the effectiveness of

these two classes of drugs varies dramatically as a func-

tion of ERα status.

Methods
Study cohorts

For this study, 3 distinct patient cohorts were utilized to

examine the prevalence of ERβ1 expression across mul-

tiple breast tumor sub-types and to determine its associ-

ation with other prognostic biomarkers and response to

endocrine therapy. The first cohort (C1) is a retrospect-

ively assembled cohort of 184 women who underwent

primary breast cancer surgery at Mayo Clinic Rochester

between 2001 and 2008. The second cohort (C2) is a

retrospectively assembled cohort of 68 patients who

underwent primary breast cancer surgery between 1998

and 2011 at Mayo Clinic Scottsdale, selected for the

presence of TNBC on central pathology testing. The

third cohort (C3) is a secondary analysis of a prospective

adjuvant tamoxifen study in postmenopausal women

with early stage ERα-positive breast cancer (North Central

Cancer Treatment Group (NCCTG) Trial 89-30-52)) who

were randomized to adjuvant treatment with tamoxifen

(20 mg per day orally for 5 years) plus fluoxymesterone

(10 mg orally twice per day for 1 year) and who had a

tumor specimen available from their primary surgery (177

of 258 eligible patients) [52]. All patients enrolled in this

study provided informed consent and the use of patient

tumor samples for immunohistochemical analysis was

approved by the Institutional Review Board at Mayo Clinic

(protocol #: 13–000585). Patient characteristics within

these three cohorts are shown in Table 1 and the molecu-

lar and histologic subtypes represented within each cohort

is shown in Table 2.

Tissue microarrays and IHC testing of patient samples

Tissue microarrays (TMAs) were constructed for co-

horts C1 and C2 using three 0.6 mm tissue cores col-

lected from areas of invasive breast cancer on each

tissue block. Five micron sections were cut for immuno-

staining and analysis as previously described [20]. Full

tumor sections from cohort C3 were processed in an

identical manner. For HER2 staining, the HercepTest

kit (Dako, Carpinteria, CA) was utilized following the
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manufacturers protocol. All other IHC stains were per-

formed on a Leica Bond III stainer using the following

antibodies: 1) A monoclonal ERβ1 PPG5/10 antibody;

1:75 dilution (Thermo Scientific, Waltham, MA), 2) a

monoclonal ERα 1D5 antibody; 1:300 dilution (Dako,

Carpinteria, CA), 3) a monoclonal PgR 636 antibody;

1:800 dilution (Dako) and 4) a monoclonal Ki67 MIB-1

antibody; 1:300 dilution (Dako). ERα and PgR positivity

was determined using standard procedures. Ki67 was

scored as previously described [53]. The monoclonal ERβ1

antibody used in this study has been shown to be highly

specific and sensitive for detection of only the full-length

form of this receptor in IHC studies [20,50,51]. Specific-

ally, we have utilized multiple cell model systems which

either transiently express ERβ1, or stably express this re-

ceptor under the control of a doxycycline inducible pro-

moter, to fully characterize the detection methods and

optimal dilution of the PPG5/10 antibody for IHC pur-

poses [20]. Additionally, we have shown that this antibody

does not cross-react with ERα or any of the ERβ splice

variant forms [20]. Finally, this antibody was compared to

multiple other commercially available ERβ specific anti-

bodies and was shown to be one of the best for use in

IHC studies using human breast tissue [50]. All slides

were reviewed by a dedicated breast cancer pathologist

and ERβ1 protein levels were evaluated in both nuclei and

cytoplasm. Pathological categorization of ERβ1 levels was

determined as a sum of the extent and intensity scores.

The extent of staining was scored as follows: 0: less than

1% positive cells, 1: 1%-25%, 2: 26%-50%, 3: 51%-75% and

4: 76%-100%. Intensity of staining was scored as none (0),

weak (1), moderate (2) or strong (3). The resulting scores

were grouped into 3 categories, namely, ERβ1-negative/

low (0–2), ERβ1-moderate (3–5) and ERβ1-high (6–7)

and the percentage of tumors falling into these three

groups for both nuclear and cytoplasmic staining are indi-

cated throughout this manuscript. A representative tumor

determined to be ERβ1-negative, moderate and high is

shown in Figure 1 for both nuclear and cytoplasmic

localization.

Cell culture, chemicals and reagents

Parental and ERβ1-expressing MCF7 cells [12] and

doxycycline-inducible Hs578T-ERβ1 cells [8] were cul-

tured as previously described. Doxycycline-inducible

ERβ1-expressing MDA-MB-231 cell lines were estab-

lished using the T-REx™ System (Invitrogen) as previ-

ously described [9] and were maintained in DMEM/F12

medium supplemented with 10% FBS, 1% AA, 5 mg/L

blasticidin S and 500 mg/L zeocin. Charcoal-stripped

fetal bovine serum (CS-FBS) was purchased from Gemini

Bio-Products (West Sacramento, CA). 17β-estradiol (E2),

(Z)-tamoxifen, (Z)-4-hydroxy-tamoxifen and doxycycline

(Dox) were purchased from Sigma-Aldrich (St. Louis, MO).

(Z)-endoxifen was synthesized by the National Cancer

Institute (Bethesda, MD). The ERβ-specific agonists;

DPN, WAY200070, FERb 033 and Liquiritigenin, as well

Table 1 Patient characteristics and clinicopathological

variables for each of three cohorts

Patient characteristics Cohort 1 Cohort 2 Cohort 3

n = 184 n = 68 n = 177

median age (range) 58 (28–87) 60 (27–82) 68 (48–89)

Histology

Ductal 138 (75.0%) 52 (76.5%) 143 (80.8%)

Lobular 28 (15.2%) 0 16 (9.0%)

Other 18 (9.8%) 16 (23.5%) 18 (10.2%)

Receptor status

ERpos/PRpos or unknown 143 (77.3%) 0 177 (100%)

ERpos/PRneg 27 (14.6%) 0 0

ERneg/PRneg 14 (8.1%) 68 (100%) 0

Her2 status

positive 27 (14.7%) 0 15 (8.5%)

negative 145 (78.8%) 68 (100%) 160 (90.4%)

unknown 12 (6.5%) 0 2 (1.1%)

Max tumor dimension

0.1-2.0 cm 115 (62.5%) 42 (61.8%)

2.1-5.0 cm 51 (27.6%) 21 (30.9%)

5.1+ cm 18 (9.7%) 5 (7.4%) *

Number of positive nodes

0 112 (60.9%) 49 (73.5%) 110 (62.1%)

1-3 46 (25.0%) 14 (20.6%) 47 (26.6%)

4-9 16 (8.7%) 3 (4.4%) 13 (7.3%)

10+ 10 (5.4%) 1 (1.5%) 7 (4.0%)

unknown 0 1 (1.5%) 0

Nuclear Grade 3 45 (24.5%) 55 (80.9%) 41 (23.2%)

max Ki67 across all cores

not done 3 (1.6%) 6 (8.7%) 177 (100%)

0 – 10% 61 (33.2%) 16 (23.2%)

10.1 – 25% 59 (32.1%) 9 (13.0%)

25.1 – 50% 40 (21.7%) 6 (8.7%)

50.1-100% 21 (11.4%) 32 (46.4%)

ERβ1 nuclear expression

negative/low (0–2) 121 (65.7%) 51 (75.0%) 32 (18.1%)

moderate (3–5) 59 (32.1%) 17 (25.0%) 96 (54.2%)

high (6–7) 4 (2.2%) 0 49 (27.7%)

ERβ1 cytoplasmic expression

negative/low (0–2) 164 (89.1%) 45 (66.2%) 1 (0.6%)

moderate (3–5) 20 (10.9%) 21 (30.9%) 52 (29.4%)

high (6–7) 0 2 (2.9%) 124 (70.1%)

*tumor size collected as < 3 m vs. ≥ 3 cm: 140 (79.1%) vs. 37 (20.5%).
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Table 2 ERβ1 expression levels by morphology and subtype

ERβ1
expression

Cohort 1 n = 184** Cohort 2 n = 68 n = 177

Nucleus Cytoplasm Nucleus Cytoplasm Nucleus Cytoplasm

Molecular Subtype

Luminal A (ERα +/ HER2 -/ Ki67≤ 10) Neg/low 31 (18.3) 47 (25.5)

Moderate 18 (10.7) 3 (1.6)

High 1 (0.6) 0

Luminal B (ERα +/ HER2 -/ Ki67 > 10) Neg/low 59 (34.9) 76 (41.3)

Moderate 25 (14.8) 11 (6.0)

High 3 (1.8) 0

Her2+ Neg/low 20 (11,8) 24 (13.0)

Moderate 7 (4.1) 3 (1.6)

High 0 0

Triple Negative (ERα -/PR-/ HER2 -) Neg/low 1 (0.6) 5 (2.7) 51 (75.0) 45 (66.2)

Moderate 4 (2.4) 0 17 (25.0) 21 (30.9)

High 0 0 0 2 (2.9)

Histologic Subtype

Ductal Neg/low 93 (50.5) 120 (65.2) 39 (57.4) 34 (50.0) 28 (15.8) 0

Moderate 42 (22.8) 18 (9.8) 13 (19.1) 16 (23.5) 79 (44.6) 45 (25.4)

High 3 (1.6) 0 0 2 (2.9) 36 (20.3) 98 (55.4)

Lobular Neg/low 18 (9.8) 26 (14.1) 0 0 1 (0.6) 0

Moderate 9 (4.9) 2 (1.1) 0 0 10 (5.7) 3 (1.7)

High 1 (0.5) 0 0 0 5 (2.8) 13 (7.3)

Other Neg/low 10 (5.4) 18 (9.8) 12 (17.6) 11 (16.2) 3 (1.7) 1 (0.6)

Moderate 8 (4.4) 0 4 (5.9) 5 (7.4) 7 (4.0) 4 (2.3)

High 0 0 0 0 8 (4.5) 13 (7.3)

*ki67 not performed **unable to determine molecular subtype in 15 Cohort 1 pts.

Figure 1 Immunohistochemical staining for ERβ1 in human breast tumors. Representative images depicting tumors with negative/low,

moderate or high expression of nuclear and cytoplasmic ERβ1 as detected using the PPG5/10 antibody.
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as the pure ER antagonist ICI 182,780, were purchased

from Tocris Bioscience (Bristol, United Kingdom).

Real-time reverse transcription polymerase chain reaction

To confirm stable integration and doxycycline inducibil-

ity of ERβ1 in the MDA-MB-231 clonal cell lines, cells

were plated in 6-well tissue culture plates in the pres-

ence and absence of doxycycline (0.1 μg/ml). Following

24 hours of culture, total RNA was isolated using Trizol

reagent (Invitrogen), cDNA was synthesized and real-

time PCR using ERβ specific primers was performed as

previously described [54] and two clones (#4 and 12)

exhibiting substantial expression of ERβ1 were chosen

for further analysis. To confirm functionality of ERβ1, cells

were plated as described above using phenol red-free 10%

CS-FBS containing media and treated with ethanol or es-

tradiol (1nM) for 24 hours. RT-PCR was performed using

primers specific for the progesterone receptor (PR), PS2

and KLF10 as previously described [12].

Western blotting

MDA-MB-231-ERβ1 cell lines #4 and #12 were plated in

6-well plates in the presence and absence of doxycycline

for 24 hours. Cell lysates were harvested using NETN

buffer (150 mM NaCl, 1 mM EDTA, 20 mM Tris

[pH 8.0], 0.5% Nonidet P-40), protein concentrations

were determined using Bradford Reagent and western

blots were performed using Flag (M2, Sigma-Aldrich)

and α-Tubulin (DM 1A, Sigma-Aldrich) specific anti-

bodies as previously described [12].

Proliferation assays

In order to assess anchorage dependent cell prolifera-

tion, a crystal violet assay was utilized. This method is

well accepted to be reflective of cell number and does

not rely on measurements related to mitochondrial ac-

tivity or intracellular ATP levels that could be compro-

mised by treatments targeting ERβ which is known to be

expressed in mitochondria [55-59]. Briefly, cells were

plated in replicates of 8 at a density of 1000 cells per

well in 96-well tissue culture plates using 10% CS-FBS

containing phenol red-free medium. Twenty-four hours

after plating, cells were treated with indicated ligands.

Cell culture media was replaced every 3 days and crystal

violet staining was performed following 12 days of treat-

ment. Crystal violet staining was quantitated using a

plate reader set at a wavelength of 550 nm and replicates

were averaged among treatment groups.

Statistical analyses

Descriptive statistics were used to summarize nuclear and

cytoplasmic ERβ1 expression levels in each patient cohort.

The primary outcome of interest was the recurrence-free

interval defined as the time from randomization to

documentation of a local, regional, or distant breast recur-

rence. A stratified log-rank test with strata defined by

whether tumor size was ≥ 3 cm and lymph nodes were

positive for disease was used to determine whether the

recurrence-free interval differed with respect to nuclear or

cytoplasmic ERβ1 expression. For all real-time PCR and

proliferation assays, a two-sided Student’s t-test was uti-

lized. P-values < 0.05 were considered to be statistically

significant.

Results
Association of ERβ1 with other prognostic biomarkers

and tumor grade in an unselected patient cohort

In a cohort of 184 women with primary breast cancer

(C1), nuclear ERβ1 expression was determined to be

low/negative in 121 (65.7%), moderate in 59 (32.1%) and

high in 4 (2.2%) women (Table 1). This is in contrast to

cytoplasmic ERβ1 expression that was low/negative in

164 (89.1%) and moderate in 20 (10.9%) women with no

tumor exhibiting high cytoplasmic expression (Table 1).

The concordance between nuclear and cytoplasmic

ERβ1 expression was 66.3% (122/184). ERβ1 was de-

tected across all molecular and histologic subtypes of

breast cancer within this patient cohort (Table 2). Mod-

erate to high levels of nuclear ERβ1 expression were de-

tected in 56 of the 170 (32.9%) ERα-positive cases and 7

of the 14 (50.0%) ERα-negative cases (Table 3). In con-

trast, cytoplasmic ERβ1 expression was similar between

the ERα-positive and ERα-negative cancers with ap-

proximately 10% of these tumors having moderate to

high expression (Table 3). The distributions of nuclear

and cytoplasmic ERβ1 expression were similar between

HER2 positive and negative tumors; Ki67 low and high

tumors; high and low grade tumors; and cases with node

positive or negative disease (Table 3).

Expression of ERβ1 in triple negative breast cancers

Due to the low number of ERα-negative tumors in our

unselected patient cohort (C1), we leveraged another co-

hort of 68 cases (C2) with confirmed primary TNBC.

Nuclear ERβ1 expression was determined to be low/

negative in 51 (75.0%) and moderate in 17 (25.0%) tu-

mors (Table 1). This is similar to cytoplasmic ERβ1 ex-

pression that was low/negative in 45 (66.2%), moderate

in 21 (30.9%) and high in 2 (2.9%) tumors (Table 1). The

concordance between nuclear and cytoplasmic ERβ1 ex-

pression was 70.6% (48/68). Ki67 results were available

in 63 cases. Among the 16 cases whose Ki67 level was

not elevated (≤10%), 1 case had moderate levels of both

nuclear and cytoplasmic ERβ1 a second case had moder-

ate nuclear expression but negative/low cytoplasmic ex-

pression (Table 4). The remaining 14 cases with low

Ki67 levels had negative/low nuclear and cytoplasmic

ERβ1 expression (Table 4). In contrast, 25 (54.3%) of the
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46 cases with elevated Ki67 levels had moderate to high

ERβ1 expression in the nucleus and/or cytoplasm (Table 4).

ERβ and outcomes with adjuvant endocrine therapy

A cohort of 177 postmenopausal women with early stage

ERα-positive breast cancer enrolled onto NCCTG 89-

30-52 who were randomized to the adjuvant treatment

with tamoxifen plus fluoxymesterone arm (C3) was used

to assess whether ERβ1 expression is associated with the

likelihood of a breast cancer event (local, regional or dis-

tant recurrence). With a median length of follow-up of

19.5 years, 56 women are currently alive without disease

recurrence, 11 are alive having had disease recurrence

and/or a second primary cancer, 49 have died following

disease recurrence and/or a second primary cancer and

61 have died without disease recurrence or a second pri-

mary disease. Nuclear ERβ1 expression was determined

to be low/negative in 32 (18.1%), moderate in 96 (54.2%)

and high in 49 (27.7%) women (Table 1). In contrast,

cytoplasmic ERβ1 expression was determined to be low/

negative in 1 (0.6%), moderate in 52 (29.3%) and high in

124 (70.1%) women (Table 1). As was the case with the

other two cohorts, ERβ1 expression was detected across

all histologic subtypes of breast cancer (Table 2). The

recurrence-free interval (time to local, regional, distant

progression) was found to differ with respect to degree

Table 3 ERβ1 expression levels in a population of breast cancer patients diagnosed at Mayo Clinic Rochester (cohort 1)

and its association with other biomarkers, tumor grade and nodal status

Disease characteristics ERβ1 status Nucleus Cytoplasm

# of Pts. (%) # of Pts. (%)

ERα Positive (n = 170) Negative/Low 114 (67.1) 151 (88.8)

Moderate 52 (30.6) 19 (11.2)

High 4 (2.4) 0 (0)

Negative (n = 14) Negative/Low 7 (50.0) 13 (92.9)

Moderate 7 (50.0) 1 (7.1)

High 0 (0) 0 (0)

HER2 Positive (n = 27) Negative/Low 20 (74.1) 24 (88.9)

Moderate 7 (25.9) 3 (11.1)

High 0 (0) 0 (0)

Negative (n = 145) Negative/Low 94 (64.8) 131 (90.4)

Moderate 47 (32.4) 14 (9.7)

High 4 (2.8) 0

Ki67 ≤ 10% (61) Negative/Low 39 (63.9) 57 (93.4)

Moderate 21 (34.4) 4 (6.6)

High 1 (1.6) 0 (0)

> 10% (120) Negative/Low 79 (65.8) 104 (86.7)

Moderate 38 (31.7) 16 (13.3)

High 3 (2.5) 0 (0)

Tumor grade Grade 1–2 (136) Negative/Low 89 (65.4) 122 (89.7)

Moderate 44 (32.4) 14 (10.3)

High 3 (2.2) 0

Grade 3 (45) Negative/Low 31 (68.9) 41 (91.1)

Moderate 13 (28.9) 4 (8.9)

High 1 (2.2) 0 (0)

Nodal disease Present (72) Negative/Low 44 (61.1) 65 (90.3)

Moderate 24 (33.3) 7 (9.7)

High 4 (5.6) 0 (0)

Not present (112) Negative/Low 77 (68.8) 99 (88.4)

Moderate 35 (31.3) 13 (11.6)

High 0 (0) 0 (0)
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of nuclear ERβ1 expression (stratified log-rank test, ad-

justed for tumor size and node metastasis p = 0.023)

with 10 year recurrence-free rates of 74%, 84%, and 88%

for patients whose cancers had negative/low, moderate

and high levels of ERβ1, respectively (Figure 2). How-

ever, the recurrence-free interval was not found to differ

with respect to degree of cytoplasmic ERβ1 expression

(stratified log-rank test p = 0.623) with 10 year recurrence-

free rates of 82% and 84% for patients whose cancers had

moderate and high cytoplasmic expression of ERβ1, re-

spectively (Additional file 1: Figure S1).

Therapeutic targeting of ERβ1 in ERα positive breast

cancer cells

Based on the observation that ERβ1 expression is associ-

ated with lower rates of recurrence in ERα positive

breast cancer, we sought to further characterize the ef-

fects of multiple targeted therapies using a breast cancer

cell line designed to mimic this tumor sub-type. There-

fore, we utilized parental and ERβ1-expressing MCF7

cells previously developed in our laboratory [12]. As a

first step, we analyzed the role of ERβ1 in mediating the

pro-proliferative effects of 17-beta estradiol (estrogen)

and the anti-proliferative effects of anti-estrogenic com-

pounds. As expected, estrogen treatment was shown to

induce proliferation in both cell lines; however, the mag-

nitude of induction was decreased in ERβ1 expressing

cells (Figure 3A). Tamoxifen had no effect on estrogen-

induced proliferation rates regardless of ERβ1 expression

(Figure 3A). Interestingly, a low dose (10 nM) of 4HT

increased the proliferation rate of parental MCF7 cells

above that of estrogen treatment alone, an effect that

was not observed in cells expressing ERβ1 (Figure 3A).

Higher doses (100 nM) of endoxifen and 4HT, as well as

a low dose (10 nM) of ICI, resulted in almost complete

blockade of estrogen-induced proliferation in ERβ1-

expressing cells but not in parental cells expressing only

ERα (Figure 3A).

We next sought to determine if ERβ-specific agonists

modulated the proliferation rates of these cells in both

the presence and absence of estrogen treatment. In the

absence of estrogen (Figure 3B), low (10 nM) and mod-

erate (100 nM) doses of DPN induced proliferation in

both parental and ERβ1-expressing MCF7 cells. The

magnitude of induction following DPN treatment was

nearly identical to that of estrogen treatment in parental

MCF7 cells but less than that of estrogen in ERβ1-

expressing cells (Figure 3B). Low doses of WAY200070

and FERb 033 had little to no effect on the proliferation

rates of parental or ERβ1-expressing cells while higher

doses induced proliferation (Figure 3B). A similar pattern

was observed following treatment with liquiritigenin with

Figure 2 Increased nuclear ERβ1 expression is associated with prolonged recurrence-free interval in women treated with adjuvant

tamoxifen and fluoxymesterone therapy. Kaplan-Meier estimates of breast cancer recurrence-free interval in patients with negative/low,

moderate or high nuclear expression of ERβ1 are shown.

Table 4 ERβ1 expression levels in triple negative breast

tumors and its association with Ki67 expression levels

ERβ1 Status cytoplasm

Ki67 expression

ERβ1 Status Negative/Low Moderate High

Nucleus

Ki67 > 10% (46) Negative/Low 21 (45.6%) 11 (23.9%) 0

Moderate 4 (8.7%) 8 (17.4%) 2 (4.4%)

High 0 0 0

Ki67 ≤ 10% (16) Negative/Low 14 (87.5%) 0 0

Moderate 1 (6.3%) 1 (6.3%) 0

High 0 0 0
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Figure 3 (See legend on next page.)
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the exception that low doses of this compound were in-

hibitory regardless of ERβ1 expression (Figure 3B). When

each ERβ-specific agonist was administered in the pres-

ence of estrogen, the observed dose-dependent effects

were abrogated in both cell lines and the proliferation

rates of parental and ERβ1-expressing cells were either

equivalent or slightly greater than that of estrogen treat-

ment alone (Additional file 2: Figure S2).

Development and characterization of MDA-MB-231-ERβ1

cell lines

Since approximately 25% of TNBC were shown to ex-

press nuclear ERβ1 (Table 1; cohort 2), we next sought

to determine whether expression of ERβ1 in MDA-MB-

231 cells, a well-characterized model of TNBC, would

alter the cell’s response to ERβ targeting treatments.

Two clonal cell lines (#4 and #12) exhibiting robust

doxycycline induced expression of ERβ1 mRNA and

protein were chosen for further analysis (Figure 4A). To

confirm that expression of ERβ1 was exclusively limited

to the presence of doxycycline and that the expressed re-

ceptor was functional, cells were treated with vehicle, es-

trogen (1 nM) or estrogen plus ICI (100 nM) for

24 hours and the expression profiles of known ERβ1 tar-

get genes were examined. As shown in Figure 4B, these

genes were significantly induced following estrogen

treatment in the presence of doxycycline, an effect that

was completely blocked by the addition of ICI. However,

these genes were not induced by estrogen in the absence

of doxycycline confirming that these cells do not en-

dogenously express any form of the estrogen receptor

(Figure 4B).

Effects of anti-estrogens and ERβ-specific agonists on the

proliferation rates of ERβ1-positive triple negative breast

cancer cells

We next performed a series of proliferation assays to deter-

mine which therapeutic strategies may be most effective

for the treatment of ERβ1 positive TNBC. Interestingly,

estrogen treatment (1 nM) was shown to substantially in-

hibit the proliferation rates of MDA-MB-231-ERβ1 cells

(Figure 5), an effect that was not observed in the absence of

doxycycline (data not shown). The addition of multiple

anti-estrogens significantly reversed the inhibitory effect of

estrogen in MDA-MB-231-ERβ1 cells (Figure 5A). In order

to ensure that these effects were not unique to the MD-

MB-231 cell line, identical assays were performed using

Hs578T-ERβ1 expressing cells [8]. Estrogen treatment

significantly repressed proliferation of Hs578T-ERβ1 cells,

effects that were reversed following the addition of endoxi-

fen, 4HT or ICI (Figure 5A). Similar responses were ob-

served in the MDA-MB-231-ERβ1 clonal cell line #12

(Additional file 3: Figure S3A).

Since estrogen treatment resulted in substantial re-

ductions in the proliferation rates of ERβ1-expressing

TNBC cells, we next analyzed the effects of multiple

ERβ-specific agonists in these two cell lines. All of the

ERβ-specific agonists tested significantly inhibited the

proliferation rates of MDA-MB-231-ERβ1 and Hs578T-

ERβ1 cells with DPN and WAY200070 eliciting the

greatest responses (Figure 5B). Nearly identical re-

sponses were observed in the MDA-MB-231-ERβ1

clonal cell line #12 (Additional file 3: Figure S3B).

Combinatorial treatment with 1 nM concentrations of

estrogen plus ERβ-specific agonists did not result in

greater anti-proliferative effects (data not shown).

Discussion
In this study, we have compared the nuclear and

cytoplasmic expression profiles of ERβ1 across multiple

sub-types of breast cancer and in a population of well

annotated patients treated with adjuvant endocrine ther-

apy. Our results have revealed that ERβ1 expression,

while present in nearly all normal breast epithelium, is

lost in many breast cancers. However, the expression of

ERβ1 is associated with substantially improved anti-

tumor effects in ERα-positive tamoxifen treated breast

cancer, as well as potent anti-proliferative effects

in vitro, confirming its role as a tumor suppressor. Inter-

estingly, the biological effects of therapeutically targeting

ERβ appear to be critically correlated with the presence

of ERα. In ERα-positive cell lines, expression of ERβ1

enhanced the anti-proliferative effects of anti-estrogenic

therapies including endoxifen, 4HT and ICI. However,

targeting ERβ with specific agonists in MCF7 cells was

not an effective treatment strategy and led to growth

stimulation in most instances, likely due to the known

cross-reactivity of these compounds with ERα at higher

concentrations (100 nM). In contrast, activation of ERβ1

with estrogen or ERβ-specific agonists was shown to

substantially repress TNBC cell proliferation rates while

the use of anti-estrogens was ineffective and in some

cases resulted in stimulation of cell proliferation. Taken

together, our studies have comprehensively analyzed the

protein expression profiles of ERβ1 across multiple breast

cancer sub-types and demonstrated critical roles for this

(See figure on previous page.)

Figure 3 Effects of anti-estrogenic (A) and ERβ agonist (B) treatment on the proliferation rates of MCF7 and MCF7-ERβ1 expressing

cells. Crystal violet assays were used to determine proliferation rates following indicated treatments for 12 days. P-values < 0.05 were considered

to be statistically significant. *Denotes significant difference between indicated treatment and vehicle control treated cells and # between

indicated treatment and estrogen treated cells.
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receptor in mediating the effectiveness of multiple thera-

peutic treatment strategies for breast cancer patients that

are related in part to the presence and absence of ERα

expression.

Using a well-validated and highly specific antibody and

a large cohort of unselected breast cancer patients, we

have shown that ERβ1 expression is lost in most cancers

as approximately 65% of all breast tumors were deter-

mined to be ERβ1-negative. When ERβ1 is expressed, it

can exhibit both nuclear and cytoplasmic localization in

tumor cells. These data are in agreement with the largest

study conducted to date that reported a frequency of

Figure 4 Characterization of MDA-MB-231-ERβ1 expressing cells. A). Real-time PCR and Western blot analysis of MDA-MB-231-ERβ1 clonal

cell lines # 4 and 12 indicating mRNA and protein expression levels of ERβ1 in the absence and presence of doxycycline (Dox). B). Real-time PCR

analysis of the progesterone receptor (PR), trefoil factor 1 (PS2) and Kruppel like factor 10 (KLF10) following indicated treatments for 24 hours.

P-values < 0.05 were considered to be statistically significant. *Denotes significant difference between indicated treatment and vehicle control

treated cells.
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Figure 5 Effects of anti-estrogenic (A) and ERβ agonist (B) treatment on the proliferation rates of MDA-MB-231-ERβ1 and Hs578t-ERβ1

cells. Crystal violet assays were used to determine proliferation rates following indicated treatments for 12 days. P-values < 0.05 were considered

to be statistically significant. *Denotes significant difference between indicated treatment and vehicle control treated cells and # between

indicated treatment and estrogen treated cells.
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39% for nuclear ERβ1 expression in ERα-positive inva-

sive breast cancers using the same antibody as was used

in this study (PPG5/10) [46]. Similar to our findings, this

study also did not find an association between ERβ1 ex-

pression and other clinicopathological factors [46]. How-

ever, it should be noted that others have reported

somewhat higher frequencies of ERβ1 positivity using

this antibody [26,29,30,45,60], and one study concluded

that ERβ1 was significantly associated with expression of

ERα and PR and inversely associated with HER2 overex-

pression [60]. We also detected ERβ1 expression across

all molecular and histologic subtypes of breast cancer.

This is in contrast to a recent publication by Huang

et al., in which they demonstrated that ERβ1 is only

expressed in lobular, and not ductal, carcinomas [21].

These discrepancies may be explained by the use of dif-

ferent antibody dilutions and detection techniques as

well as scoring criteria. In alignment with the study by

Novelli and colleagues (45), we utilized a conservative

approach and categorized tumors exhibiting low expres-

sion of ERβ1 as negative.

Although many studies have examined the expression

profiles of ERβ1 in ERα-positive tumors, fewer have re-

ported the frequencies of ERβ1 in ERα-negative tumors.

To our knowledge, the data reported here are the first to

analyze ERβ1 expression in a patient cohort of con-

firmed TNBC. Of the 68 TNBCs analyzed, 24%

expressed nuclear ERβ1 with approximately 34% exhibit-

ing cytoplasmic localization of this full-length receptor.

These results are consistent with previous reports, which

have suggested that between 24% and 44% of ERα nega-

tive tumors, but not necessarily TNBC, are ERβ positive

[23,30,33,61,62]. However, two other publications have

reported higher frequencies of ERβ in ERα-negative tu-

mors [32,63] although it should be noted that in both of

these studies, PR and HER2 status were not analyzed

and ERα status was determined by ligand binding assays,

not immunohistochemistry. None of these studies com-

mented on cytoplasmic expression of ERβ and some

studies utilized antibodies that are not specific for full

length ERβ and instead can cross-react with its splice

variant forms. In contrast to our data in ERα-positive tu-

mors, ERβ1 expression in TNBC was associated with

higher expression of Ki67 as has been reported by others

[30,32,33,64]. Taken together, these data suggest that the

functions of ERβ1 in the absence of ERα expression may

be substantially different. Additionally, it is possible that

Ki67 levels may vary in ERβ1-positive TNBC based

on menopausal status, a possibility that has yet to be

examined.

Using a well-annotated cohort of 177 ERα-positive

breast cancer patients who were treated with adjuvant

tamoxifen (20 mg/day for 5 years) plus fluoxymesterone

(10 mg orally twice per day for 1 year), we found that

increased expression of nuclear ERβ1 was associated

with prolonged recurrence-free interval. To our know-

ledge, our results are the first prospective-retrospective

study of the prognostic value of ERβ1 in patients treated

with tamoxifen in the adjuvant setting. These data are

consistent with previous studies that have utilized vari-

ous antibodies specific for full length ERβ1 and have

demonstrated that high expression correlates with in-

creased response to tamoxifen therapy [40,46,65], im-

proved disease free survival [22,25-27], longer overall

survival [27,36] and no relapse within 5 years [38]. Al-

though all of the patients included in this cohort were

ERα positive, a recent publication has also suggested

that ERβ1 may have additional predictive value for tam-

oxifen responsiveness in ERα negative tumors which ex-

press high levels of SRAP [48]. In contrast to prior

literature, we also analyzed cytoplasmic staining for

ERβ1 and demonstrated no association with the risk of

recurrence. While the basis for cytoplasmic localization

of ERβ1 is not well understood and remains somewhat

controversial, a number of reports have demonstrated

that ERβ1 is expressed in mitochondria [55-59] and it is

possible that this in part explains the detection of this

hormone receptor within this sub-cellular compartment.

Interestingly, a recent study has suggested that tamoxi-

fen resistance may develop by agonizing mitochondrial

ERβ1 resulting in up-regulation of MnSOD activity and

ultimately enhancing cell survival and growth [59]. This

could partially explain why cytoplasmic expression of

ERβ1 did not correlate with improved tamoxifen respon-

siveness, as was the case for nuclear ERβ1, in the cohort

of patients analyzed here. Additionally, these observa-

tions may explain why some studies (which did not dis-

tinguish between nuclear and cytoplasmic expression)

did not detect an association between ERβ expression

and outcomes in tamoxifen treated patients [28] while

one study actually reported a non-significant trend to-

wards increased recurrence rates in women with high

ERβ expression [30]. Overall, these results suggest that

determination of nuclear ERβ1 status will improve our

ability to predict an individual’s likelihood of response to

adjuvant tamoxifen therapy, effects which may be mag-

nified in the absence of cytoplasmic ERβ1.

Given that ERβ1 is expressed in both ERα-positive and

ERα-negative breast tumors, we sought to compare a

number of different therapeutic strategies to determine

which might be most effective for the treatment of pa-

tients with ERβ1-positive breast cancer. Using MCF7-

ERβ1 and Hs578T-ERβ1 cell lines previously developed

in our laboratory [8,12], as well as a newly developed

MDA-MB-231-ERβ1 cell line whose characterization is

described in the present manuscript, we performed cell

proliferation assays using anti-estrogenic compounds as

well as ERβ-specific agonists. In the ERα-positive MCF7
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cell line, ERβ1 expression was shown to diminish the

pro-proliferative effects of estrogen, a phenomenon

reported previously in ERα-positive cells [66-68]. These

results are consistent with the observation that ERα-

positive/ERβ1-positive tumors typically have reduced ex-

pression of Ki67 relative to ERα-positive/ERβ1-negative

tumors. Additionally, ERβ1 expression in these cells en-

hanced the anti-estrogenic effect of endoxifen, 4HT, and

ICI. These data are also consistent with previous reports

by our laboratory [12] and others [68-70] demonstrating

that ERβ1 expression improves the anti-proliferative ef-

fects of 4HT, raloxifene and ICI in vitro. These data also

correlate with our present studies demonstrating that

moderate to high expression of ERβ1 in human breast

cancers is associated with improved patient outcomes

following tamoxifen therapy.

Treatment of MCF7-ERβ1 cells with 4 different ERβ-

specific agonists resulted in variable effects on cell pro-

liferation. Moderate (100 nM) concentrations of all of

the ERβ-specific agonists led to induction of cell prolif-

eration. These effects were also observed in the parental

MCF7 cell line which does not express ERβ1 and are

therefore highly likely to occur through the known acti-

vation of ERα at these doses [71,72]. Low (10 nM) con-

centrations of these compounds were shown to have

minimal effects on cell proliferation rates with the ex-

ception liquiritigenin which actually inhibited MCF7-

ERβ1 cell proliferation following 12 days of treatment.

However, a nearly identical effect was observed in the

parental cell line suggesting that ERβ1 is not responsible

for mediating this inhibitory effect. Our results are con-

sistent with previous reports demonstrating that low

concentrations of WAY200070 and DPN have little to

no effect on the proliferation rates of T47D parental or

ERβ1 expressing cells [66,73,74] while higher concentra-

tions of DPN were shown to stimulate proliferation rates

above that of vehicle control treated cells [66]. Taken to-

gether, these studies suggest that the use of modern day

ERβ-specific agonists for ERβ1-positive tumors is highly

unlikely to be beneficial in the treatment of breast tu-

mors which also express ERα. Instead, the utilization of

anti-estrogenic therapies is likely to remain a superior

choice for this sub-type of breast cancer; at least until

more specific and potent ERβ-specific agonists are

developed.

In contrast to the results observed in ERα-expressing

breast cancer cells, estrogen treatment of two different

TNBC lines which were engineered to express ERβ1 led

to substantial reductions in cell proliferation rates. These

results are consistent with previous reports from our la-

boratory and others demonstrating that expression of

ERβ1 in TNBC cells can lead to suppression of both basal

and/or estrogen-mediated proliferation rates [8,75,76]. As

expected, the addition of anti-estrogens such as endoxifen,

4HT, and ICI blocked these estrogen-mediated effects.

However, our present data are the first to demonstrate

that the use of ERβ-specific agonists in ERβ1-positive

TNBC cells can elicit at least equivalent anti-proliferative

effects compared to estrogen treatment alone. As might

be expected, combinatorial treatments of estrogen plus

ERβ-specific agonists did not result in additive or syner-

gistic effects confirming that these compounds function

specifically through ERβ1 in our model systems. Overall,

our results indicate that further study of ERβ-targeted

therapies is warranted for the treatment of patients with

ERβ1-positive TNBC, a subgroup of patients with ex-

tremely poor outcomes and for which no form of a tar-

geted cancer therapy is currently available.

Conclusions
In summary, we have examined the expression patterns of

ERβ1 across all sub-types of breast cancer using a highly

specific and sensitive monoclonal antibody and have reaf-

firmed the importance of ERβ1 as a tumor suppressor. Spe-

cifically, nuclear expression of ERβ1 is associated with

significantly improved outcomes in women treated with ad-

juvant tamoxifen therapy and these observations were con-

firmed in cell proliferation assays which demonstrated that

ERβ1 expression in ERα-positive MCF7 cells significantly

improved their responsiveness to anti-estrogenic therapies.

However, activation of ERβ1 with either estrogen or ERβ-

specific agonists was shown to result in substantial inhib-

ition of cell proliferation in TNBC cells. These results lay

the foundation for future studies aimed at analyzing the

anti-tumor activity of ERβ-agonists for the treatment of

ERβ1-positive TNBC. The outcomes of such studies could

have a dramatic impact on our ability to offer alternative

therapies and more effectively treat individuals with this

form of the disease.

Additional files

Additional file 1: Figure S1. Cytoplasmic expression of ERβ1 is not

associated with differences in recurrence-free interval in women treated

with adjuvant tamoxifen and fluoxymesterone therapy. Kaplan-Meier

estimates of breast cancer recurrence-free interval in patients with

moderate or high cytoplasmic expression of ERb are shown.

Additional file 2: Figure S2. Effects of ERβ agonist + estrogen

treatment on the proliferation rates of MCF7 and MCF7-ERβ1 expressing

cells. Crystal violet assays were used to determine proliferation rates

following indicated treatments for 12 days. P-values < 0.05 were

considered to be statistically significant. *Denotes significant difference

between indicated treatment and vehicle control treated cells and

#between indicated treatment and estrogen treated cells.

Additional file 3: Figure S3. Effects of anti-estrogenic (A) and ERβ

agonist (B) treatment on the proliferation rates of MDA-MB-231-ERβ1 cells

(clone #12). Crystal violet assays were used to determine proliferation

rates following indicated treatments for 12 days. P-values < 0.05 were

considered to be statistically significant. *Denotes significant difference

between indicated treatment and vehicle control treated cells and

#between indicated treatment and estrogen treated cells.
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