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Abstract

An Erdős-Ko-Rado-type theorem was established by Bollobás and Leader for
q-signed sets and by Ku and Leader for partial permutations. In this paper, we es-
tablish an LYM-type inequality for partial permutations, and prove Ku and Leader’s
conjecture on maximal k-uniform intersecting families of partial permutations. Sim-
ilar results on general colored sets are presented.

1 Introduction

Erdős, Ko and Rado proved in 1961 [10] that a family of pairwise intersecting k-subsets
of an n-set cannot have more members than the family of k-subsets all of which contain a
given element a, say, provided k ≤ bn

2
c. Bollobás in 1973 [3] established a stronger result—

an LYM-type inequality, which says that if A is an intersecting antichain of subsets of
an n-set, then

∑

k≥1
fk

(n−1

k−1
)

≤ 1, where fk denotes the number of sets in A of size k

with k ≤ n/2. This inequality implies the Erdős-Ko-Rado Theorem. The original LYM
inequality says that if A is an antichain of subsets of an n-set, then

∑n

k=0
fk

(n

k)
≤ 1, which

yields a simple proof of Sperner’s Theorem that |A| =
∑n

k=0 fk ≤
(

n

[n
2
]

)

. This proof is

due independently to Lubell, Yamamoto and Meschalkin, and therefore the inequality is
known as the LYM-inequality (see [9] for detail).

In 1972 Katona presented a rather simple proof of the Erdős-Ko-Rado Theorem. By
his technique one can usually establish an LYM-type inequality. By employing Katona’s
technique, in 1997, Bollobás and Leader [4] presented an Erdős-Ko-Rado theorem for q-
signed sets where q ≥ 2. A q-signed k-set is a pair (A, f), where A ⊆ [n] is a k-set and f
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is a function from A to [q]. A family F of q-signed k-sets is intersecting if for any (A, f),
(B, g) ∈ F there exists x ∈ A ∩ B such that f(x) = g(x).

Theorem 1.1 (Bollobás and Leader) Fix a positive integer k ≤ n, and let F be an
intersecting family of q-signed k-sets on [n], where q ≥ 2. Then |F| ≤

(

n−1
k−1

)

qk−1. Unless
q = 2 and k = n, equality holds if and only if F consists of all q-signed k-sets (A, f) such
that x0 ∈ A and f(x0) = ε0 for some fixed x0 ∈ [n], ε0 ∈ [q].

Note that a q-signed set can be reformulated as an element of a generalized Boolean
algebra. Let M1, M2, . . . , Mn be n pairwise disjoint sets of the same cardinality q, say
Mi = {xi,1, . . . , xi,q}, i = 1, . . . , n. The associated generalized Boolean algebra is defined
to be the family

B(n, q) = {C ⊆ M1 ∪ M2 ∪ · · · ∪ Mn : |C ∩ Mi| ≤ 1, i = 1, . . . , n} (1)

ordered by containment. Given a k-set C ∈ B(n, q), say C = {xi1,j1, . . . , xik ,jk
}, we define

a unique q-signed k-set (A, f), where A = {i1, . . . , ik} and f(it) = jt for t = 1, . . . , k.
It is evident that two sets in B(n, q) are intersecting if and only if the q-signed sets
corresponding to them are intersecting. Deza and Frankl in 1983 [6] proved that if F is a k-
uniform intersecting family in B(n, q), then |F| ≤

(

n−1
k−1

)

qk−1 for q ≥ 2 and k = 1, 2, . . . , n,
which is equivalent to the first part of Theorem 1.1. Engel [8] strengthened the result of
Deza and Frankl to an LYM-type inequality as follows.

Theorem 1.2 (Engel) Assume q ≥ 2 and let F ⊆ B(n, q) be an intersecting antichain
with profile (a1, . . . , an), where ak = |{A ∈ F : |A| = k}|. Then

n
∑

k=1

ak
(

n−1
k−1

)

qk−1
≤ 1.

Note that when F is k-uniform, the inequality above implies |F| = ak ≤
(

n−1
k−1

)

qk−1.
Note also that Erdős, Faigle and Kern in 1992 [11] gave a group-theoretic proof of Theorem
1.2.

Recently, Ku and Leader [15] established an Erdős-Ko-Rado-type theorem for partial
permutations. A k-partial permutation of [n] is a pair (A, f) where A ⊆ [n] with |A| = k
and f : A → [n] is an injective map. Note that an n-partial permutation of [n] is just a
permutation on [n]. By Sn we denote the set of all permutations on [n]. The intersecting
property for partial permutations is defined in the same way as for signed sets, that is, a
family F of partial permutations is intersecting if for any (A, f), (B, g) ∈ F there exists
x ∈ A ∩ B such that f(x) = g(x).

Theorem 1.3 (Ku and Leader) Fix k, n with k ≤ n − 1 and let F be an intersecting
family of k-partial permutations. Then

|F| ≤

(

n − 1

k − 1

)

(n − 1)!

(n − k)!
.
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They also showed that for 8 ≤ k ≤ n− 3, equality holds if and only if F consists of all
k-partial permutations (A, f) such that x0 ∈ A and f(x0) = ε0 for some fixed x0, ε0 ∈ [n].
And, they conjectured the following.

Conjecture 1.4 (Ku and Leader) Equality in Theorem 1.3 holds if and only if F consists
of all k-partial permutations (A, f) such that x0 ∈ A and f(x0) = ε0 for some fixed
x0, ε0 ∈ [n].

In fact, Theorem 1.3 and Conjecture 1.4 hold for k = n.

Theorem 1.5 Let F be an intersecting family in Sn. Then

(i) (Deza and Frankl [7]) |F| ≤ (n − 1)!.

(ii) (Cameron and Ku [5]) Equality in (i) holds if and only if F is a coset of the stabilizer
of a point.

The result in (ii) was also deduced from a more general result on certain vertex tran-
sitive graphs in Larose and Malvenuto’s paper [16].

Combining the signed sets and the partial permutations, we introduce the following
concepts.

Let N be a fixed finite set, and let pn be a subset of N [n], the set of all maps from [n]
to N . Then pn can be regarded as a set of colorings of [n]. Define

B(pn) = {(A, f |A) : A ⊆ [n], f ∈ pn},

where f |A is the restriction of f on A. We simply write the pair (A, f |A) as (A, f) for
short, which will not cause confusions. Define an ordering on B(pn) as follows:

(A, f) ≤ (B, g) ⇔ A ⊆ B and g|A = f |A.

With this ordering B(pn) forms a ranked poset with the rank function ρ(A, f) = |A|. By
Bk(pn) we denote the set of all elements of rank k. An element of rank 1 is usually called
an atom. An antichain of B(pn) is a subset of which no two elements are comparable in
B(pn). For example, Bk(pn) is an antichain.

From the definition, we see that B(pn) is determined by the set of colorings pn. If pn is
the empty set, then B(pn) is the boolean algebra Bn. Let qn = [q][n] for a positive integer
q ≥ 2, and let sn = Sn. Then B(qn) is the set of all q-signed sets, and B(sn) is the set of
all partial permutations.

Given an A ⊆ [n], let [pn]A denote the set of all pairs (A, f) ∈ B(pn). We say pn is
regular if the cardinality of [pn]A depends only on |A|.

In the sequel of this paper, all sets of colorings concerned are assumed regular, and by
[pn]k we denote the cardinality of [pn]A with |A| = k. Thus

|Bk(pn)| =

(

n

k

)

[pn]k.
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It is easy to verify that the sets of colorings qn and sn are regular with [qn]k = qk and
[sn]k = n!

(n−k)!
.

A subset F of B(pn) is called an intersecting family if for any (A, f), (B, g) ∈ F , there
exists x ∈ A∩B such that f(x) = g(x), in other words, both (A, f) and (B, g) are greater
than the atom ({x}, f0) where f0 is defined by f0(x) = f(x) = g(x). The profile (a1, a2, . . .)
of F is given by ak = |{(A, f) ∈ F : |A| = k}| for k = 1, 2, . . . , n. We say F is k-uniform if
F ⊆ Bk(pn). Let α be an atom of B(pn), and set Sk(α) = {(A, f) ∈ Bk(pn) : (A, f) ≥ α}.
Then Sk(α) is a k-uniform intersecting family, called a k-star. The regularity of pn implies
that |Sk(α)| =

(

n−1
k−1

)

[pn−1]k−1 for each atom α.
For 1 ≤ k ≤ n, we say B(pn) has the EKR property for rank k if every k-uniform in-

tersecting family F satisfies |F| ≤
(

n−1
k−1

)

[pn−1]k−1. And, we say B(pn) has the uniqueness
property for rank k if equality holds if and only if F is a k-star. We say B(pn) satis-
fies an LYM-type inequality for rank k if for each intersecting antichain F with profile
(a1, a2, . . . , ak), we have

k
∑

i=1

ai
(

n−1
i−1

)

[pn−1]i−1

≤ 1.

(Note that the previous notions can be generalized to a ranked poset in a similar way.)
Furthermore, we say B(pn) has the local EKR property for rank k if for every A ⊆ [n]
with |A| = k, [pn]A has the EKR property, that is, there is an x0 ∈ A and a y0 ∈ N such
that {(A, f) : f(x0) = y0} is a maximum intersecting family in [pn]A.

Example 1.6 From Theorem 1.1 we see that B(qn) has the EKR property for rank n.
Recall that qn = [q][n], where q is independent to n. We therefore obtain that B(qn) has
the local EKR property for all ranks k = 1, 2, . . . , n. We believe that B(sn) also has the
local EKR property for every rank k = 1, 2, . . . , n, but it can not follow from the EKR
property for rank n, because the domain and the image of sn are dependent.

Remark 1.7 Generally, the local EKR property does not imply the EKR property. For
example, when pn is empty, B(pn) is the boolean algebra Bn. For every A ⊆ [n] with
|A| > n/2, [pn]A trivially has the EKR property, but Bn has no the EKR property for
ranks greater than n/2.

In the next section, we first establish an LYM-type inequality for B(sn) which deduces
Theorem 1.3 immediately, then we prove Conjecture 1.4. Note that our proof of the
conjecture does not depend on the LYM-type inequality, but only on the inequality in
Theorem 1.3. In Section 3 we discuss the direct product of colorings (as sets), and present
a theorem on its EKR property, an LYM-type inequality, and the uniqueness property.
As a consequence, we give corresponding results on the direct product of qn and sn.

2 On partial permutations

Recall that a partial permutation, as defined in [15], is a pair (A, f), where A ⊆ [n] and
f is an injection from A into [n]. By our notation, f ∈ sn, and B(sn) denotes the set
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of all partial permutations. We first establish an LYM-type inequality for B(sn). The
techniques we use here are based on the ideas from [4, 13, 15], which originally came from
Katona [14].

As defined in [15], a cyclic ordering of [n] × [n] is a bijection σ : [n] × [n] → [n2].
Given such cyclic ordering σ, we may arrange the elements of [n]× [n] on a cycle of length
n2 in the natural way. Let k, n be positive integers where k ≤ n − 1. A k-interval in
the cyclic ordering is a sequence of k elements (x1, ε1), . . . , (xk, εk) in [n] × [n] such that
σ(xi+1, εi+1) = σ(xi, εi) + 1 (mod n2) for 1 ≤ i ≤ k − 1, and denote this k-interval by
[(x1, ε1), . . . , (xk, εk)]. A k-partial permutation (A, f) is compatible with a cyclic ordering
σ, written as (A, f) ≺ σ, if there is a k-interval [(x1, ε1), . . . , (xk, εk)] in the ordering such
that xi ∈ A and f(xi) = εi for i = 1, 2, . . . , k.

The following n!2 good cyclic orderings constructed by Ku and Leader in [15] play an
essential role for our argument: the standard good cyclic ordering τ defined by τ(x, ε) =
x+dn where d = ε−x (mod n), and other good cyclic orderings τππ′ defined by τππ′(x, ε) =
τ(π(x), π′(ε)), where π, π′ ∈ Sn. Write the set of these good cyclic orderings as Cn.

Lemma 2.1 Let k ≤ n − 1 be a positive integer. Then every k-partial permutation is
exactly compatible with n2k!(n − k)!2 good cyclic orderings in Cn.

Proof. Let (A, f) be any selected k-partial permutation with A = {a1, . . . , ak} and
f(A) = {b1, . . . , bk} where bi = f(ai), i = 1, . . . , k. Then, for a σ ∈ Cn, (A, f) is
compatible with σ if and only if there is a k-interval of σ, say [(x1, ε1), . . . , (xk, εk)], such
that {(x1, ε1), . . . , (xk, εk)} = {(a1, b1), . . . , (ak, bk)}, which says that if σ = τππ′ , then
there is a k-interval [(y1, θ1), . . . , (yk, θk)] in τ such that

{(y1, θ1), . . . , (yk, θk)} = {(π(a1), π
′(b1)), . . . , (π(ak), π

′(bk))} (2)

as two sets. Clearly, τ has n2 many k-intervals, and for each one, there are k!(n − k)!2

pairs (π, π′)’s satisfying (2), completing the proof. 2

Theorem 2.2 Let F be an intersecting antichain of partial permutations with profile
(a1, . . . , an−1). Then

n−1
∑

k=1

ak
(

n−1
k−1

) (n−1)!
(n−k)!

≤ 1.

Proof. The argument below is standard, see e.g. [1, p.73]. For each σ ∈ Cn and each
partial permutation (Ai, fi) in F , define

F (σ, (Ai, fi)) =

{ 1
|Ai|

, if (Ai, fi) ≺ σ;

0, otherwise.

We count
∑

i, σ F (σ, (Ai, fi)) in two different ways. First we have

∑

i, σ

F (σ, (Ai, fi)) =
∑

σ

∑

(Ai,fi)≺σ

1

|Ai|
.
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Consider the inner sum where σ is fixed. Choose (Aj, fj) from (Ai, fi)’s compatible with
σ such that ρ(Aj, fj) is the smallest of the ρ(Ai, fi). Clearly, there are at most |Aj| of
the intervals of σ may intersect pairwise, i.e. at most |Aj| terms in the inner sum, each
≤ 1

|Aj |
. Therefore the inner sum is at most |Aj| ·

1
|Aj |

= 1, and we have

∑

i, σ

F (σ, (Ai, fi)) ≤
∑

σ

1 = n!2. (3)

On the other hand, we have

∑

i, σ

F (σ, (Ai, fi)) =
∑

i

1

|Ai|
n2|Ai|!(n − |Ai|)!

2 =
n−1
∑

k=1

akn
2(k − 1)!(n − k)!2. (4)

Comparing (3) and (4), we obtain the desired inequality. 2

From Theorem 2.2 it follows immediately that |F| ≤
(

n−1
k−1

) (n−1)!
(n−k)!

if F is a k-uniform
intersecting family. The theorem below confirms Conjecture 1.4.

Theorem 2.3 Fix k, n with k ≤ n − 1. Suppose that F is a k-uniform intersecting
family in B(sn) with |F| =

(

n−1
k−1

) (n−1)!
(n−k)!

. Then F = Sk(α) for some atom α ∈ B1(sn).

Proof. From a key observation in the well-known argument of Katona [14] we know that
given a σ ∈ Cn, there are at most k of the k-intervals of it may intersect pairwise, since
2k < n2. Suppose |F| =

(

n−1
k−1

) (n−1)!
(n−k)!

. Then each σ ∈ Cn must contain exactly k members
of F , and since the corresponding k-intervals must intersect pairwise, all these intervals
must contain a fixed element of [n] × [n]. We shall denote this fixed element (depending
on F) by (x(σ), ε(σ)), and call each k-interval containing (x(σ), ε(σ)) in σ an F -interval,
which corresponds to an element of F .

Consider the standard ordering τ , and assume without loss of generality that (x(τ), ε(τ))
= (n, n). Then, in τ , the (2k−1)-interval [(n−k+1, n−k+1), . . . , (n, n), (1, 2), (2, 3), . . . ,
(k − 1, k)] contains k F -intervals.

Let C ′
n denote the set of good cyclic orderings τππ′’s with π(n) = n and π′(n) = n. We

claim that (x(τππ′ ), ε(τππ′)) = (n, n) for any τππ′ ∈ C ′
n.

We first prove (x(τππ), ε(τππ)) = (n, n). Set I = {(i, i) : 1 ≤ i ≤ n−1} and Ī = [n]×[n]\
(I ∪ {(n, n)}). Then (π × π)(I) = {(π(i), π(i)) : 1 ≤ i ≤ n − 1} = I and (π × π)(Ī) = Ī.
Suppose (x(τππ), ε(τππ)) 6= (n, n). Then (x(τππ), ε(τππ)) ∈ I or (x(τππ), ε(τππ)) ∈ Ī. If the
former, then τππ has an F -interval contained in I, which is clearly disjoint with the F -
interval [(n, n), (1, 2), . . . , (k− 1, k)]; if the latter, then τππ has an F -interval contained in
Ī, which is clearly disjoint with the F -interval [(n− k +1, n− k +1), . . . , (n, n)]. It yields
contradictions in both cases.

Suppose now (x(τππ′ ), ε(τππ′)) 6= (n, n) for some τππ′ ∈ C ′
n with π 6= π′. Then τππ′ has an

F -interval, written as J , which contains no (n, n). From the above discussion we see that
J 6⊂ I and J 6⊂ Ī. Set I ∩ J = {(a1, a1), . . . , (ar, ar)} where 1 ≤ r < k. Define a permuta-
tion π by π−1(i) = ai for i ∈ [n] with an = n. Then τππ ∈ C ′

n, and τππ has an F -interval
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which is contained in the (n − 1)-interval [(ar+1, ar+1), . . . , (n, n), (a1, a2), . . . , (ar−1, ar)].
It is clear that J is disjoint with this (n − 1)-interval. It yields a contradiction again.

Therefore, we have (x(τππ′ ), ε(τππ′ )) = (x(τ), ε(τ)) = (n, n) for any τππ′ ∈ C ′
n. However,

from Lemma 2.1 we know that if (A, f) is any selected k-partial permutation with n ∈ A
and f(n) = n, then there are k!(n−k)!2 pairs (π, π′)’s such that τππ′ ∈ C ′

n and (A, f) ≺ τππ′ .
It follows that F consists of all k-partial permutations (A, f) with n ∈ A and f(n) = n,
as required. 2

3 Direct product of colorings

Let pn and p′
n be two sets of colorings. As two sets we consider their direct product pn×p′

n,
whose element (f, g) is regarded as a function on [n]. We thus get a new set of colorings
from the old ones, and write B(pn × p′

n) = {(A, f, g) : A ⊆ [n], f ∈ pn, g ∈ p′
n}. From

definition it is easy to see that B(pn×p′
n) and B(p′

n×pn) are isomorphic; pn×p′
n is regular

if both pn and p′
n are regular, and [pn × p′

n]k = [pn]k[p
′
n]k for 1 ≤ k ≤ n. More generally,

we may consider the product p
(1)
n × · · ·× p

(m)
n and write an element of B(p

(1)
n × · · ·× p

(m)
n )

as (A, f1, . . . , fm) where A ⊆ [n] and fi ∈ p
(i)
n for i = 1, . . . , m.

We may reformulate (A, f1, . . . , fm) as a matrix [α1, . . . , αn], where αi = (a1i, . . . , ami)
T

is a column vector defined by

aji =

{

fj(i) if i ∈ A,
0 if i 6∈ A,

for j = 1, 2, . . . , m.

The rank of [α1, . . . , αn] is given by the number of nonzero αi’s. Let M(p
(1)
n × · · · × p

(m)
n )

denote the set of all such matrices. An order relation on M(p
(1)
n ×· · ·×p

(m)
n ) is defined by

[α1, . . . , αn] ≤ [β1, . . . , βn] iff αi = 0 (vector) or αi = βi for i = 1, 2, . . . , n.

Then, as posets, M(p
(1)
n × · · · × p

(m)
n ) is isomorphic to B(p

(1)
n × · · · × p

(m)
n ), so they both

can be regarded as generalizations of the function lattice (see [2] and [12]).

Theorem 3.1 Let pn and p′
n be two sets of regular colorings, and let k be a positive

integer with 1 ≤ k ≤ n.

(i) If both B(pn) and B(p′
n) have the EKR property for rank k and one of them has the

local EKR property for rank k, then B(pn × p′
n) also has the EKR property for rank

k;

(ii) If both B(pn) and B(p′
n) have the uniqueness property for rank k, then B(pn × p′

n)
also has the uniqueness property for rank k;

(iii) If B(pn) satisfies an LYM-type inequality for rank k, and B(p′
n) has the local EKR

properties for ranks from 1 to k, then B(pn × p′
n) satisfies an LYM-type inequality

for rank k.
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Proof. (i) Let F be a k-uniform intersecting family in B(pn × p′
n). Put

F1 = {(A, f) : there is a g ∈ p′
n such that (A, f, g) ∈ F} (5)

and

F2 = {(A, g) : there is a f ∈ pn such that (A, f, g) ∈ F}. (6)

Then F1 and F2 are k-uniform intersecting families in B(pn) and B(p′
n), respectively,

yielding |F1| ≤
(

n−1
k−1

)

[pn−1]k−1 and |F2| ≤
(

n−1
k−1

)

[p′
n−1]k−1. Now, suppose that B(p′

n) has
the local EKR property for rank k. Then, for each (A, f) ∈ F1, there are at most [p′

n−1]k−1

many g ∈ p′
n such that (A, f, g) ∈ F , which implies

|F| ≤

(

n − 1

k − 1

)

[pn−1]k−1[p
′
n−1]k−1 =

(

n − 1

k − 1

)

[pn−1 × p
′
n−1]k−1, (7)

as desired.
(ii) Suppose that F is a maximum k-uniform intersecting family in B(pn×p′

n), that is,
equality in (7) holds. This implies that |F1| =

(

n−1
k−1

)

[pn−1]k−1 and |F2| =
(

n−1
k−1

)

[p′
n−1]k−1,

so Fi is a star, written as Sk(αi), where i = 1, 2. Put α1 = ({x0}, f0) ∈ B1(pn) and
α2 = ({y0}, g0) ∈ B1(p

′
n). A careful analysis of the situation shows that x0 = y0 and

F = Sk(α) where α = ({x0}, f0, g0), as desired.
(iii) Let F be an intersecting antichain in B(pn × p′

n) with profile (a1, a2, . . . , ak), let
F1 be as defined in (5) with profile (b1, b2, . . . , bk), and let F2 be as defined in (6). Since
B(p′

n) has the local EKR property from rank 1 to rank k, we have that ai ≤ bi[p
′
n−1]i−1

for i = 1, 2, . . . , k, so

k
∑

i=1

ai
(

n−1
i−1

)

[pn−1 × p′
n−1]i−1

≤
k

∑

i=1

bi[p
′
n−1]i−1

(

n−1
i−1

)

[pn−1]i−1[p
′
n−1]i−1

=

k
∑

i=1

bi
(

n−1
i−1

)

[pn−1]i−1

≤ 1,

as desired. 2

As an application we consider B(qn × sn). We have known that for each k ≤ n − 1,
both B(qn) and B(sn) have the EKR property for rank k, the uniqueness property for
rank k, and satisfies an LYM-type inequality for rank k, B(qn) also has the local EKR
property for rank k. From Theorem 3.1 we immediately obtain the following

Corollary 3.2 Let F be an intersecting antichain in B(qn×sn) with profile (a1, . . . , an−1).
Then

n−1
∑

k=1

ak
(

n−1
k−1

)

(n−1)!
(n−k)!

qk−1
≤ 1.

Equality holds if and only if there is a k with 1 ≤ k ≤ n− 1 such that F is k-uniform and
F is a k-star.
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