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When ref. 1 was in press, L. S. Young pointed out a mistake in the proof 
of a lemma in it to the author. The present note is devoted to the 
correction of that mistake. We use the notations and the terminology of 
the original paper. (~) 

The mistake is in the proof of Lemma 5.5. A counterexample to the 
proof has been constructed by L. S. Young. The idea is shown in Fig. 1. 
Here an irregular part of the intersection TPQ c~ Q, denoted by Ip, contains 
a regular part of TqQ n Q for some q > p > 0. If this happens, then we may 
find a point x ~ A c ~ T P A ~ T q A  such that x e g t ( T q A c ~ A )  and T Px~ 
OI( T q-pA ~ A ), but x r OI( TPA r A ). This counterexample destroys the 
convolution law (5.2) in the proof of Lemma 5.5 of ref. 1 and thus makes 
the proof incorrect. 

Here we present a new version of Lemma 5.5 and prove it. The new 
version is slightly weaker than the original Lemma 5.5, and it is necessary 
to modify the proof of the main Theorem 5.1 of ref. 1 as well. We 
provide the necessary modifications after establishing the new version of 
Lemma 5.5. 

We start our considerations by turning back to the counterexample 
shown in Fig. 1. The idea is to redefine the parallelogram A by removing 
certain parts from the maximal parallelogram A(Q). I1) In particular, we 
remove all the points of A c~ T-PIp from A. Precisely, if an irregular part 
Ip of TPQ ~ Q with a p > 0 can contain a regular part of TPQ c~ Q for a 
q > p ,  i.e., if Ip touches both s-sides of Q, then we remove the subset 
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Fig. 1. The counterexample--a quadrilateral Q intersected by its images TPQ and TqQ. 

A ~ T-PIp from A. However, if an irregular part of TqQ n Q does not 
touch either of the s-sides of Q (e.g., see the dashed contour on Fig. 1), we 
do not remove its preimage from A. After removing the specified parts from 
A for all p > 0 we get a new parallelogram. We call it the s-reduced 
parallelogram and denote it A s. Its s-gaps are wider that those of A = A(Q).  
Likewise, one can define the u-reduced parallelogram A u by applying the 
same procedure with p < 0. We work with A s only. 

First, observe that the counterexample shown in Fig. 1 does not work 
for the s-reduced parallelogram AL Therefore, the convolution law (5.2) 
becomes true if we substitute A s for A in Lemma 5.5. However, the rest of 
the proof of the lemma is not automatically transferred from A to AL To 
complete the proof of the lemma, we first establish certain properties of A s 
similar to the properties of maximal parallelograms obtained in ref. 1. As a 
by-product of the considerations we also establish the existence of an A s 
with m(A s) > O. 

First, note that all the s-sides of the s-gaps of A s are the preimages of 
the s-sides of Q. The following is an analogue of Lemma 4.2 in ref. 1. 

L e m m a  4.2 ' .  Each irregular part of TPQ c5 Q, p > 0 ,  contains an 
irregular part of T P A S ~  A s (which may be empty). Each regular part of 
TPQ (~ Q, p > 0, contains a regular part of TPA s ~ A s, which may be empty 
as well. 

The last possibility in the lemma, that of emptiness of the regular part 
of TPASc~A s, is new compared to Lemma4.2 in ref. 1. The proof of 
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Lemma 4.2' is rather straightforward. It consists in detailed analysis of all 
the possible intersections T p Q n Q .  The pre-Markov property of the 
boundary •Q is heavily used. (1) We leave the proof  to the reader. 

Lemma4.2 '  enables us to extend Proposition 5.2 to the s-reduced 
parallelogram A s, as follows. 

t t k P r o p o s i t i o n  5.2 ' .  m(fg(TkA'~A'))<~C2(22) for any k > 0  with 
some C; > 0 and 2; ~ (0, 1 ) determined by the map T. 

Next, despite the fact that the s-gaps of A s are wider than those of A, 
an analogue of Lemma B. 1 of ref. 1 still holds for AS. 

L o m m a  B . I ' .  The union of all the s-gaps in A" whose widths 
are less than e has measure less than C'~ a', where a ' > 0  is a constant 
determined by T and C' > 0 depends on A s. 

ProoL Every s-gap H '  in A s contains a curve S_t  inside with some 
l > 0 .  (If there are more than one curve S t, we take the one with the 
smallest value of/.) As is shown in the proof  of Lemma B.1 of ref. 1, the 
widths of s-gaps with curves S_t  for l <  - C 2  In e are greater than e. Con- 
sider a gap H '  with a curve S_l  for an l~> - C 2  In e. It is the union of the 
corresponding gap H of the maximal parallelogram A = A ( Q )  and two 
additional strips adjacent to both s-sides of H specified in the construction 
of A s. Precisely, for some / ' > 0  the image T~+rH ' contains an irregular 
part  I '  of T t + l ' Q n Q  which touches both s-sides of Q, and then its 
preimage T -(~+ ~')I' is added to H in the construction of A s, thus producing 
the wider gap H' .  The total measure of all those parts I' for all l '  > 0 and 
l>~C21ne is less than cons t - (2)  C21ne due to Proposition 5.2 of ref. 1. 
Hence the lemma. 

C o r o l l a r y .  The set of points inside the s-gaps of A ~ located in the 
e-neighborhood of the s-sides of those gaps has measure ~< C"e '~' for some 
C" > 0 depending on A s. 

Now we are ready to extend the main technical Proposition 5.3 of 
ref. 1 to the s-reduced parallelogram A'. Let B denote an arbitrary maximal 
parallelogram or let B = As. Define, as in ref. 1, the function k~A,(x ) for 
x s B  as the minimum positive k such that Tkxe9t(T~:Bc',AS), and let 
piCAs(k) = m{x  ~ B: k[~a~(x) = k}/m(B). 

P r o p o s i t i o n  5,3 ' .  If  B is a maximal parallelogram or if B = A  s, 
then one has p~,A~(k)<~C'3(2'3)k/m(B)for every k > 0 .  Here C ; > 0  and 
2; e (0, 1) are determined by the map T and the s-reduced parallelogram A s. 

ProoL Note that the s-reduced parallelogram A s plays the same role 
here as the maximal parallelogram B in Proposit ion 5.3 of ref. 1. The proof 
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of the latter was given in Appendix B in ref. 1. Its first s tep--Lemma B.1-- 
is extended to the reduced parallelogram A ~ by Lemma B.I'. The following 
LemmasB.2 and B.3 of ref. 1 did not involve any parallelograms. 
Lemmas B.4 and B.5 were based on Lemma B.1, so they are transferable 
to the present case automatically. The rest of the proof of Proposition 5.3 
applies to Proposition 5.3' word for word. 

Now we state and prove a weaker version of Lemma 5.5 of ref. 1. 

kemma 5.5'. For every positive integer k one has m ( 9 1 ( T k A  ~ c~ A~)) 
>~m(AS) 2 ( 1 -  C;(2;)  k) with some constants C ~ > 0  and 2 ; e  (0, 1) deter- 

mined by A s . 

Proof .  As already stated, the convolution law (5.2) of ref. 1 now 
holds. Propositions 5.2' and 5.3' allow one to accomplish the proof of 
Lemma 5.5' in the same way as that of Lemma 5.5. (1) 

Now we adjust the rest of the proof of property G3 (see the end 
of Section 5 in ref. 1) to the s-reduced parallelogram A s instead of the 
maximal parallelogram A. As in ref. 1, take two parallelograms Ai, Aj~ G,. 
Then consider the function k+As(X)  on Ai defined above. It generates a 
partition of A i into s-inscribed subparallelograms A i, 1, A i,2,.., on which that 
function is constant�9 For  each p >/1, denote by ki+p the value taken by that 

�9 k + p  " " " " " s function on Ai, p. The linage T ,, Ai, p is a parallelogram u-inscribed in A 
for each p >/1. Note that the same property for the maximal parallelogram 
A instead of A ~, stated in ref. 1, Section 5, was wrong again due to the 
counterexample shown in Fig. 1. I do not explain this in detail. 

On the contrary, the partition of Aj into A j,1, A j,2 .... is different from 
that in ref. 1. Its definition here is inductive. First, for any maximal 
parallelogram B, denote by 91S(T tB c~ A) the union of the parallelograms 
in 9t(T IB c~ A) whose distance from the s-reduced parallelogram A ~ is less 
than 2( (Recall that )~ is the smallest eigenvalue of the matrix of the map T; 
see Section 2 of ref. 1.) We find 

kj, 1 = min{k 7> n/10: 91S( T - k A j  c~ A )  --/: ~ } 

and set 
Aj,1 = Tkj, l(91~(T kJ, IAjc~ A ) )  

and A j, 1 = Aj \A j ,1 .  Then, for each q ~> 1, we find 

9 1 ( T  Aj, q n A ) # ~ }  kTq + l = m in  { k > kTq: " - k  , 

and set 
Aj, q+ l = TkJ,*+~(91S(T-~Tq+~A~,q n A ) )  

and A'j,q+ ~ = A j \ (A j ,  a u . . .  w A m ) .  Certainly, we get a partition Aj = U Aj, q 
into subparallelograms u-inscribed in Aj such that T ~JT~Aj, q are 
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parallelograms s-inscribed in A. Note that we used the maximal 
parallelogram A = A ( Q )  instead of A s. 

Proposit ion 5.3". For any j and n~> 1 one has 

m , ~< C3(23) 
q- >~n 

where C~' > 0 and 2~' ~ (0, 1 ) are determined by the parallelogram A alone. 

This is a slightly stronger version of Proposition 5.3 of ref. 1. A careful 
examination of the proof of the latter ~ shows that actually it applies to 
Proposition 5.3" as well, except for one point discussed below, 

The point here is our requirement that the distance of the 
parallelograms T kj.qAj, q from the s-reduced parallelogram A s is less than 
2kTq. To adjust the proof of Proposition 5.3 to this extra requirement, we 
strengthen Lemma B.3 of ref, 1. 

Lemma B.3'.  For  every p > 0 and every parallelogram A' such that 
m(A')  > 0, there are no 1> 0 and ~o > 0 such that ml(77,(A')) ~> ~o for every 
LUM 7 u of length p and every n ~> n o. 

The notation 7,~(A'), unlike 7~(Q) used in Lemma B.3 of ref. 1, stands 
here for the union of all the subintervals in 7 u whose images under T n are 
LUMs inscribed in Q(A')  and located within the distance ~<2 n from A'. 

The proof of Lemma B.3 of ref. 1 can be easily adjusted to Lemma B.3' 
due to the following observation. The mixing property of T implies that 
m ( T " B  cn A') > m(B)  m(A') /2  for all n > no(A', B) (see ref. 1 for notations). 
Whenever a quadrilateral in T"Q(B) c~ Q(A')  intersects also A', the part of 
Tn7" inside that quadrilateral is located within the distance 2 n from A' due 
to the hyperbolicity of T. This completes the proofs of Lemma B.3' and 
Proposition 5.3". 

We now set 
k + Bi, p= T i, pAi, p and Bj, q=(T-kJ,  qAj, q ) ~ A  s 

Obviously, 

m( TnAi ~ Aj) = ~ m( T'~Ai, p ~ Aj, q) >~ 2 m( T"PqBi.p n Bj, q) 
P,q P,q 

where Ftpq = 17 - - k  +i, p --kj~q., Since B i, p are u-inscribed in A s and Bj, q are 
s-inscribed in A s we can apply formula (4.1) of ref. 1 and then use 
Lemma 5.5' to get an inequality similar to (5.5) in ref. 1: 

m( T"rqB,,p ~ Bj, q) ~ m(B~,p) m(Bj, q)[1 -- C~5(~,'5) npq] 

provided npq > O. 
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As in ref. 1, we have to sacrifice all the parallelograms Oi, p (Bj, q) such 
that k+p >n/3 (kj.q >n/3). Their union has measure less than C3,)~'~/3 due 
to Propositions5.3' and 5.3", where C3=2max{C'3,  C'3 '} and ,~3 = 
max{2~, 2~'}. Summing up the above inequality over p, q gives 

m( T'Ag ~ A j) >~ [m(Ai) - C32'~/3 ] [m(Aj) - C32'~/3 ] [1 - C~(2~) ~/3 ] 

where Aj = U Tk]'qBj, q is a subparallelogram in Aj. The complement Aj\Aj  
consists of the subsets Tkj.q(T-kjTqAj.q\AS), q~> 1. For each q>~ 1 the set 
T-kJ.qAj, q\A s is located in the union of the s-gaps of A s and, moreover, in 
the (2k;q)-neighborhood of the s-sides of those gaps. Applying the corollary 
after the Lemma B.I' and then summing up over all kfq >>.n/lO gives the 
estimate m(Aj\Aj)  <~ const- 2ha'/10. Recall that m(Ai) >>. const. 42" for every 
parallelogram Aie G, (1) and then we can complete the proof of property G3 
by setting 24 = max{2 ~'/3~ 2~/9 } and 2~---max{)~4, (j.~)1/3}. 

Finally, we establish the existence of an s-reduced parallelogram A s 
with a positive measure. We take a pre-Markov partition ~0 = ~o(e), (a~ with 
a sufficiently small 5. Denote by Q~, 1 <~i<<.I, all the quadrilaterals in ~o 

and Ai = A(Q~). Lemma 5.4 of ref. 1 ensures that m(U Ag) ~> 1 - const, x/-e-. 
We now estimate the measure of the set U (Ag\A~), where AS is the 

s-reduced parallelogram constructed out of the maximal parallelogram A~. 
This set can be covered with the preimages T Pip of the irregular parts Ip 
of TPQi n Qi, p >t 1, 1 <~ i<~ I, involved in our construction of s-reduced 
parallelograms. Each such part Ip touches a singularity curve St for some 
l, 1 <<. l<~p, inside the corresponding quadrilateral Q~, like the one shown 
in Fig. 1. Fix a pair of integers p >~ 1 and l s  [1, p-] and collect all the perti- 
nent parts Ip in all the quadrilaterals Qi, 1 <~ i <~ L Each of those parts has 
measure ~<const. e2)~ p, and their number is less than const. A~/~ with some 
A~> 1. On the other hand, their preimages T (t-nip are disjoint and 
located within the (e~J)-neighborhood of the singularity set S+. Therefore, 
the total measure of all those parts Ip with the values p and l fixed above 
is less than 

const, min{e2PA~l, e2 l} 

Adding these quantities for all p ~> 1 and 1 ~< l ~< p gives the bound 

m ( U  (Ai\A~)) <~ const, e 

Hence, m(U A~) >~ 1 - const, x/e  and the proof is completed. 
Assessing the problem with the original proof of Lemma 5.5 of ref. 1 

illustrated in Fig. 1 and our way of solving it, we have to admit that our 
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general idea stated in Section 4 of ref. 1 was not quite accurate. The crude 
approximations to the Markov partitions which we call the Markov sieves 
are good for establishing a subexponential decay of correlations. However, 
the exponential decay requires more than that. Namely, our s-reduced 
parallelogram here is trickier and more sophisticated than just a maximal 
parallelogram used in ref. 1. In a sense, it is almost an element of a Markov 
partition. Nonetheless, our technique still does not involve the Markov 
partitions, which are fairly difficult to construct and to use in dynamical 
systems with singularities. 

ACKNOWLEDGMENT 

I thank L. S. Young for pointing out the mistake in ref. 1 and for 
illuminating discussions. 

REFERENCES 

1. N. I. Chernov, Ergodic and statistical properties of piecewise linear hyperbolic 
automorphisms of the 2-torus, J. Stat. Phys. 69:111-134 (1992). 

822/71/1-2-23 


