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Abstract. In this paper the canonical representation of an A-contraction T on a Hilbert
space H is used to obtain some conditions concerning the concept of A-ergodicity studied in
[14–17]. The regular case and the case of R(A) closed are considered, and specifically, the
TT ∗-contractions are studied. Some spectral properties are also given for certain particular
class of A-isometries.
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1. PRELIMINARIES

Let H be a complex Hilbert space and B(H) be the C∗-algebra of all bounded linear
operators on H. For T ∈ B(H) we denote the range and the kernel of T by R(T ) and
N (T ), respectively. We also write σ(T ), σa(T ) and σp(T ) to designate the spectrum,
the approximate point spectrum and the point spectrum of T , respectively.

An operator T is quasinilpotent if σ(T ) = {0}, and T is nilpotent if Tn = 0 for
some integer n ≥ 2.

The operator T is strongly stable if {Tn} converges to zero in the strong operator
topology of B(H). In this case, T is a power bounded operator, that is it satisfies the
condition

sup
n≥1

‖Tn‖ < ∞.

For a (closed) subspace M ⊂ H, by PM ∈ B(M), we denote the orthogonal pro-
jection associated to M. We also use PH,M ∈ B(H,M) to denote the corresponding
projection from H onto M.

If T ∈ B(H) and S ∈ B(K) with H ⊂ K, then S is called a lifting of T if there is
PK,HS = TPK,H, that is PK,H intertwines S with T . Further, S is an extension of T
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if P ∗K,H (the canonical embedding of H into K) intertwines T with S. Clearly, S is a
lifting of T if and only if S∗ is an extension of T ∗.

An operator T is quasinormal if T and T ∗T commute, and T is hyponormal if
TT ∗ ≤ T ∗T . T is n-hyponormal for some (integer) n ≥ 2 if (TT ∗)n ≤ (T ∗T )n, and
T is ∞-hyponormal if T is n-hyponormal for all n ≥ 1. A quasinormal operator is
∞-hyponormal (see [10]).

All classes of operators mentioned above are closely related to that of contractions,
that is the family of such T ∈ B(H) that T ∗T ≤ I, where T ∗ is the adjoint operator
of T and I = IH is the identity operator on H. The contractions and their different
generalizations have been intensively studied recently (see, for instance, [2–9]). In [14–
18] there was considered a larger class of operators which generalize the contractions;
their structure and ergodic properties were studied there. We refer to such operators
below.

Let A, T ∈ B(H), A 6= 0 being a positive operator. The operator T is called an
A-contraction if it satisfies the inequality

T ∗AT ≤ A. (1.1)

T is an A-isometry if the equality holds in (1.1).
The case of A = I in (1.1) leads to the ordinary contractions and isometries,

respectively.
From (1.1), it is clear that one can define a contraction T̂ on R(A) = R(A1/2)

(A1/2 being the square root of A) by

T̂A1/2h = A1/2Th (h ∈ H). (1.2)

The contraction T̂ plays an important role in the study of A-contractions. Obviously,
T̂ is an isometry if and only if T is an A-isometry.

When A = T ∗mTm in (1.1) for some integer m ≥ 1, that is T is a
T ∗mTm-contraction, then T is called an m-quasicontraction. A T ∗mTm-isometry
is called an m-quasi-isometry. If this happens for m = 1, then we briefly say that T
is a quasicontraction (respectively, a quasi-isometry) (see [2,9,11,12]). In particular,
an m-nilpotent operator is an m-quasi-isometry.

An operator T on H is orthogonally mean ergodic if

lim
n→∞

1
n

n−1∑
j=0

T jh = PT h (h ∈ H) (1.3)

where PT = PN (I−T ). Clearly, in this case,

H = R(I − T )⊕N (I − T ), (1.4)

and if T is power bounded, then (1.4) also implies (1.3).
It is well known that any contraction is orthogonally mean ergodic, but not any

power bounded operator is.
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In the case that there exists limit (1.3) and PT is only a projection (non necessary
orthogonal) onto N (I − T ) with N (PT ) = R(I − T ), the operator T is called Cesàro
ergodic. For instance, the power bounded operators are Cesàro ergodic ([1, 19]).

In [15–17] a concept of ergodicity was introduced in the context of A-contractions
and different results were obtained.

In this paper we give some ergodic conditions for A-contractions, involving certain
related null-spaces. Two important cases are considered, when either R(A) is closed
or T is A-regular which means that AT = A1/2TA1/2. As an application, we study
the TT ∗-contractions for T ∈ B(H), and we find their unitary (isometric) parts, thus
generalizing a result from [8]. We also show that TT ∗-isometries and the contractive
quasi-isometries are ∞-hyponormal, improving in the last case a result from [11, 12],
and we prove that such operators are similar to partial isometries.

Finally, we obtain some spectral properties of m-isometries, TT ∗-isometries and
some more general A-contractions T , concerning the subsets σp(T ) and σa(T ). Es-
sentially, we see that these subsets are invariant with respect to complex conjugation,
under the involution map T 7−→ T ∗.

2. NULL-SPACES AND ERGODIC CONDITIONS

Let A, T ∈ B(H) with A ≥ 0 and such that N (A) is an invariant subspace for T .
Then T has the following matrix representation with respect to the decomposition
H = R(A)⊕N (A):

T =
(

T0 0
T1 T2

)
(2.1)

where T ∗0 = T ∗|R(A)
, T2 = T |N (A) and T1 = PN (A)T |R(A)

.
We use representation (2.1) when T is an A-contraction, to obtain some relations

between certain null-subspaces which appear in the A-ergodicity context (see [15–17]).

Lemma 2.1. Let A, T be as above and A0 = A|R(A)
. Then T is an A-contraction

(A-isometry) if and only if T0 is an A0-contraction (A0-isometry), T0 being as
in (2.1).

When T is an A-contraction, then A
1/2
0 T0 = T̂A

1/2
0 , and T0 is similar to T̂ by

A
1/2
0 if R(A) is closed, T̂ being as in (1.2).

Proof. Since A = A0 ⊕ 0 on H = R(A)⊕N (A), it follows that T ∗AT = T ∗0 A0T0 ⊕ 0
with respect to the same decomposition ofH. So T ∗AT ≤ A (respectively, T ∗AT = A)
if and only if T ∗0 A0T0 ≤ A0 (respectively, T ∗0 A0T0 = A0). This yields the first assertion
of the lemma.

Suppose now that T ∗AT ≤ A and let T̂ be the contraction on R(A) defined by
T̂A1/2h = A1/2Th, h ∈ H. Then

T̂A
1/2
0 = (A1/2T )|R(A)

= A
1/2
0 T0,

because it is easy to see that A1/2T = A
1/2
0 T0 ⊕ 0 on H = R(A)⊕N (A).
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When R(A) is closed, then R(A) = R(A1/2) and A0 is invertible in B(R(A)),
hence the above relation between T0 and T̂ shows that T0 is similar to T̂ by the
invertible operator A

1/2
0 .

Denote N = N (A1/2 −A1/2T ) and N∗ = N (A1/2 − T ∗A1/2), and A0 = A|R(A)
.

Proposition 2.2. Let T be an A-contraction on H with representation (2.1). Then
the following relations hold:

N = N (A−AT ) = N (A− T ∗A) = N (I − T0)⊕N (A), (2.2)

N∗ = N (I − T̂ )⊕N (A), (2.3)

N (I − T0) = N ((I − T̂ )A1/2
0 ) = (A1/2

0 )−1N (I − T̂ ), (2.4)

N (I − T̂ ) = N ((I − T ∗0 )A1/2
0 ) = (A1/2

0 )−1N (I − T ∗0 ), (2.5)

A1/2N = A1/2N (I − T0) = R(A1/2) ∩N (I − T̂ ), (2.6)

A1/2N∗ = A1/2N (I − T̂ ) = R(A1/2) ∩N (I − T ∗0 ) =

= R(A1/2) ∩N (I − T ∗).
(2.7)

Proof. From representation (2.1) we infer that A − AT = (A0 − A0T0) ⊕ 0 and so
A1/2 −A1/2T = (A1/2

0 −A
1/2
0 T0)⊕ 0 on H = R(A)⊕N (A). Therefore,

N = N (A1/2 −A1/2T ) = N (A1/2
0 −A

1/2
0 T0)⊕N (A) =

= N (I − T0)⊕N (A) = N (A0 −A0T0)⊕N (A) = N (A−AT ),

because A0 (and also A
1/2
0 ) is injective on R(A). This gives the two equalities in (2.2),

and it remains to prove that N = N (A − T ∗A). But A − T ∗A = (A0 − T ∗0 A0) ⊕ 0
and by Lemma 2.1 there is T ∗0 A

1/2
0 = A

1/2
0 T̂ ∗ and so T ∗0 A0 = A

1/2
0 T̂ ∗A

1/2
0 . Hence we

obtain

N (A− T ∗A) = N (A0 − T ∗0 A0)⊕N (A) =

= N (A1/2
0 − T̂ ∗A

1/2
0 )⊕N (A) =

= N (A1/2
0 − T̂A

1/2
0 )⊕N (A) =

= N (A1/2
0 −A

1/2
0 T0)⊕N (A) = N ,

because N (I − T̂ ∗) = N (I − T̂ ), T̂ being a contraction. Thus all equalities in (2.2)
are proved.

Now from the above remark there follows

A1/2 − T ∗A1/2 = (A1/2
0 − T ∗0 A

1/2
0 )⊕ 0,

whence we infer

N∗ = N (A1/2
0 − T ∗0 A

1/2
0 )⊕N (A) = N (A1/2

0 −A
1/2
0 T̂ ∗)⊕N (A) =

= N (I − T̂ ∗)⊕N (A) = N (I − T̂ )⊕N (A),

that is relation (2.3).
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In passing we also proved

N (I − T0) = N (A1/2
0 −A

1/2
0 T0) = N (A1/2

0 − T̂A
1/2
0 ) = (A1/2

0 )−1N (I − T̂ )

and

N (I − T̂ ) = N (A1/2
0 −A

1/2
0 T̂ ∗) = N (A1/2

0 − T ∗0 A
1/2
0 ) = (A1/2

0 )−1N (I − T ∗0 ),

that is relations (2.4) and (2.5).
Next, from (2.4) and (2.5), we infer, respectively

A1/2N = A1/2N (I − T0) = R(A1/2) ∩N (I − T̂ ),

and

A1/2N∗ = A1/2N (I − T̂ ) = R(A1/2) ∩N (I − T ∗0 ) = R(A1/2) ∩N (I − T ∗)

because T ∗0 = T ∗|R(A)
. Thus relations (2.6) and (2.7) also hold.

Theorem 2.3. For an A-contraction T on H having the matrix representation (2.1),
the following statements are equivalent:

(i) N (I − T0) = N (I − T̂ ) (equivalently, N = N∗);
(ii) N (I − T̂ ) ⊂ N (I − T0) (N∗ ⊂ N );
(iii) A1/2N (I − T̂ ) ⊂ N (I − T̂ ) (A1/2N∗ ⊂ N∗);
(iv) A1/2N (I − T̂ ) ⊂ N (I − T0) (A1/2N∗ ⊂ N );
If these conditions are satisfied then also:

(v) A1/2N (I − T0) ⊂ N (I − T0) (A1/2N ⊂ N ),

or equivalently

(vi) AN (I − T0) ⊂ N (I − T̂ ) (AN ⊂ N∗).

Proof. Clearly, (i) implies (ii), and (ii) implies (iii) by relation (2.4).
Suppose now that inclusion (iii) holds. So AN (I − T̂ ) ⊂ N (I − T̂ ) and using also

(2.4) we infer that A1/2N (I − T̂ ) ⊂ N (I − T0) that is (iv). Thus we proved that (iii)
implies (iv).

Next, inclusion from (iv) and relation (2.6) lead to the inclusion AN (I − T0) ⊂
N (I − T0). Hence (iv) implies (v), and obviously, (v) implies (vi) by relation (2.4).

Conversely, by (2.4), inclusion (vi) means that

A1/2N (I − T0) ⊂ (A1/2
0 )−1N (I − T̂ ) = N (I − T0),

that is inclusion (v), and so relations (v) and (vi) are equivalent.
It is clear that any of inclusions (i)–(iv) is equivalent to the corresponding one

from the bracket.
Let us now assume inclusion (iv). Then by (2.4) we obtain

AN (I − T̂ ) ⊂ A1/2N (I − T0) ⊂ N (I − T̂ ),
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whence
A1/2N (I − T̂ ) ⊂ R(A1/2) ∩N (I − T̂ ) = A1/2N (I − T0).

By the injectivity of A1/2 on R(A), this means that N (I − T̂ ) ⊂ N (I − T0), which
gives N∗ ⊂ N .

Let P, P∗ be the orthogonal projections in B(H) onto N ,N∗ respectively. Since
assumption (iv) implies (vi) (by the above remark), then AN ⊂ N∗ and so P∗AP =
AP . On the other hand, because N∗ ⊂ N , there is A(H	N ) ⊂ H	N∗; therefore

P∗A = P∗AP + P∗A(I − P ) = P∗AP = AP.

But (iv) also implies (v), that is AN ⊂ N , which means that N reduces A, hence
AP = PA. Thus P∗A = PA that is P∗ = P on R(A). As N (A) ⊂ N ∩ N∗ there
also is P∗ = I = P on N (A). Consequently, P∗ = P or, equivalently, N∗ = N . We
conclude that (iv) implies (i), which ends the proof.

Remark 2.4. According to [15,17], equivalent conditions (i)–(iv) mean that T is an
ergodic A-contraction, or briefly that T is A-ergodic. In fact, this means that the
following limits

lim
n→∞

1
n

n−1∑
j=0

A1/2T jh = P∗A
1/2h (h ∈ H)

and

lim
n→∞

1
n

n−1∑
j=0

T ∗jA1/2h = A1/2P∗h (h ∈ H)

are equal, that is P∗A
1/2 = A1/2P∗ = A1/2P , P∗ and P being as in the above proof.

These limits always exist, but in general they are different (see [15,17]).

By this remark, condition (i) from Theorem 2.3 says that T is A-ergodic if and
only if T0 is A0-ergodic (A0 being injective). So, the case of A injective deserves a
special attention. Also, in certain cases conditions (i)–(iv) from Theorem 2.3 are also
equivalent to (v) and (vi), respectively, as we will see this in the sequel.

Corollary 2.5. Let T be an A-contraction on H with the range R(A) closed. Then
T is A-ergodic if and only if N reduces A.

Proof. Since (iv) implies (v) in Theorem 2.3, it remains to prove the converse impli-
cation. If AN ⊂ N or, equivalently, A1/2N ⊂ N , then by (2.6) and the assumed
closedness of R(A) (hence R(A) = R(A1/2)) we obtain N (I− T̂ ) ⊂ N (I−T0), that is
N∗ ⊂ N . By Theorem 2.3, the last inclusion just means that N∗ = N ; consequently,
T is A-ergodic (by Remark 2.4).

Corollary 2.6. Let T be an A-contraction on H with an injective operator A. If
AN ⊂ N , then

N (I − T ) ⊂ N (I − T ∗). (2.8)
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Proof. Since N (A) = {0}, then N = N (I − T ). So the inclusion AN ⊂ N becomes
AN (I−T ) ⊂ N (I−T ), which implies AN (I − T ) = N (I−T ), because A is positive
and injective. On the other hand, by (2.6) and (2.7), we get AN (I − T ) ⊂ A1/2N∗ ⊂
N (I − T ∗), and by the above remark we obtain inclusion (2.8).

Even if T is A-ergodic (which implies AN ⊂ N ), we cannot obtain the equality in
(2.8); hence in general, T may be A-ergodic without being orthogonally mean ergodic.
But, in the case of Cesàro ergodicity, the following holds true.

Corollary 2.7. Let T be an A-contraction on H with A injective and such that T is
Cesàro ergodic. Then the following statements are equivalent:

(i) T is A-ergodic;
(ii) AN ⊂ N ;
(iii) N (I − T ) = N (I − T ∗);
(iv) T is orthogonally mean ergodic.

Proof. Clearly, (i) implies (ii) by Theorem 2.3. Now, by Corollary 2.6 and the as-
sumption that T is Cesàro ergodic (which assures that H = R(I − T ) + N (I − T )
as a direct sum), one infers that (ii) implies (iii). Also, (iii) and (iv) are equivalent,
because T is Cesàro ergodic. Finally, (iii) implies (i), since by (iii) and (2.7) there is

A1/2N∗ ⊂ N (I − T ∗) = N ,

which by Theorem 2.3 means that T is A-ergodic.

In particular, if T is a power bounded A-contraction (A non injective), then from
the previous corollary and the above remark there follows that T is A-ergodic if and
only if T0 is orthogonally mean ergodic.

A more special case is mentioned in the following

Corollary 2.8. Let T be an A-contraction on H with A an invertible operator. Then
the following assertions are equivalent:

(i) T is A-ergodic;
(ii) AN (I − T ) = N (I − T );
(iii) N (I − T ) = N (I − T ∗);
(iv) T is orthogonally mean ergodic;
(v) T ∗ is orthogonally mean ergodic;
(vi) T ∗ is A−1-ergodic.

Proof. The equivalences (i)–(iv) follow from Corollary 2.7 and the assumption that A
is invertible, which assures that T is a power bounded operator and so T and T ∗ are
Cesàro ergodic. Then statements (iii), (v) and (vi) are also equivalent since T ∗ is an
A−1-contraction on H. To prove the last assertion, we use the fact that T ∗AT ≤ A,
whence A−1/2T ∗ATA−1/2 ≤ I, which means that A1/2TA−1/2 is a contraction, or
equivalently A1/2TA−1T ∗A1/2 ≤ I, that is TA−1T ∗ ≤ A−1. This ends the proof.

Next, we use representation (2.1) to obtain further properties of the subspaces
N (I − T ) and N (I − T ∗).
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Proposition 2.9. Let T be an A-contraction on H having the representation (2.1).
Then:

(i) N (I − T0)∩N (T1)⊕N (I − T2) ⊂ N (I − T ), and the equality occurs if and only
if

N (I − T ) ⊂ N (T1)⊕N (I − T2).

In particular, the equality in (i) holds if

R(T1) ∩R(I − T2) = {0}.

(ii) N (I − T ∗0 ) ⊕ N (T ∗1 ) ∩ N (I − T ∗2 ) ⊂ N (I − T ∗), and the equality occurs if and
only if

N (I − T ∗) ⊂ N (I − T ∗0 )⊕N (T ∗1 ).

In particular, the equality in (ii) holds if

R(I − T ∗0 ) ∩R(T ∗1 ) = {0}.

Proof. Using (2.1), we get

I − T =
(

I − T0 0
−T1 I − T2

)
,

hence (h, k) ∈ N (I − T ) if and only if h ∈ N (I − T0) and T1h = (I − T2)k, where
h ∈ R(A) and k ∈ N (A). This gives immediately the inclusion from (i). Furthermore,
since there always is N (I − T ) ∩R(A) ⊂ N (I − T0), it follows that

N (I − T ) = N (I − T0) ∩N (T1)⊕N (I − T2)

if and only if N (I − T ) ⊂ N (T1) ⊕ N (I − T2). Clearly, if R(T1) ∩ R(I − T2) = {0}
and (h, k) ∈ N (I − T ), then T1h = (I − T2)k = 0, so h ∈ N (T1), k ∈ N (I − T2) and
the above equality for N (I − T ) holds.

Now, by (2.1), there holds

I − T ∗ =
(

I − T ∗0 −T ∗1
0 I − T ∗2

)
,

whence we infer that (h, k) ∈ N (I − T ∗) if and only if (I − T ∗0 )h = T ∗1 k and
k ∈ N (I − T ∗2 ). This obviously yields the inclusion from (ii). Since there always is
N (I − T ∗) ∩N (A) ⊂ N (I − T ∗2 ), we infer that

N (I − T ∗) = N (I − T ∗0 )⊕N (T ∗1 ) ∩N (I − T ∗2 )

if and only if N (I − T ∗) ⊂ N (I − T ∗0 ) ⊕ N (T ∗1 ). If R(I − T ∗0 ) ∩ R(T ∗1 ) = {0} and
(h, k) ∈ N (I−T ∗) then (I−T ∗0 )h = T ∗1 k = 0, hence the above equality for N (I−T ∗)
holds. The proof is finished.

Notice that, in general, N (I − T ) ⊂ N , but N (I − T ∗) does not contain in N∗.
We see the relation between N (I − T ∗) and N∗ in the following
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Proposition 2.10. For an A-contraction T on H, the following statements are equiv-
alent:

(i) N (I − T ∗) ⊂ N ;
(ii) N (I − T ∗) ⊂ N∗;
(iii) AN (I − T ∗) ⊂ N (I − T ∗).

Moreover, if these conditions are satisfied, then T is A-ergodic.

Proof. Since by (2.2), there is N = N (A − T ∗A), condition (i) is equivalent to
R(A−AT ) ⊂ R(I − T ) and further to AR(I − T ) ⊂ R(I − T ), which also means
AN (I − T ∗) ⊂ N (I − T ∗). Thus conditions (i) and (iii) are equivalent.

Now from (ii), by (2.7), we infer

A1/2N (I − T ∗) ⊂ A1/2N∗ ⊂ N (I − T ∗),

that is AN (I − T ∗) ⊂ N (I − T ∗). Therefore (ii) implies (iii). Conversely, let us
assume (iii) and let (h, k) ∈ N (I − T ∗) with h ∈ R(A), k ∈ N (A). Then by (2.7),

A1/2h = A1/2(h, k) ∈ R(A1/2) ∩N (I − T ∗) = A1/2N (I − T̂ ),

and since A1/2 is injective on R(A) it follows that h ∈ N (I − T̂ ). Hence (h, k) ∈
N (I − T̂ )⊕N (A) = N∗, and we have proved the inclusion N (I − T ∗) ⊂ N∗. Conse-
quently (iii) implies (ii) and, in fact, the two conditions are equivalent.

If conditions (i)-(iii) hold, by (2.7), we obtain

A1/2N∗ ⊂ N (I − T ∗) ⊂ N∗,

and by Theorem 2.3 we infer that T is A-ergodic.

Next we refer to a class of A-ergodic operators, namely to the A-regular ones.
Recall that an A-contraction T on H is regular (briefly, T is A-regular) if AT =
A1/2TA1/2.

Proposition 2.11. For an A-contraction T on H, with representation (2.1), the
following statements are equivalent:

(i) T is A-regular;
(ii) T̂ is A0-regular, where A0 = A|R(A)

;

(iii) T is a lifting of T̂ ;
(iv) T̂ = T0;
(v) A

1/2
0 T̂ = T̂A

1/2
0 ;

(vi) AT = TAA, where TA = T̂ ⊕ {0} on H = R(A)⊕N (A).

Proof. From (i), for h ∈ H, we obtain

ATh = A1/2TA1/2h = T̂Ah = A
1/2
0 T0A

1/2h

whence T̂A1/2h = A1/2Th = T0A
1/2h. This gives T̂ = T0 and so (i) implies (iv). Also

(iv) implies (iii), having in view the matrix (2.1).
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Now assertion (iii) says that T ∗ is an extension of T̂ ∗, that is T ∗|R(A)
= T̂ ∗. But

from the definition of TA in (vi), there follows ATh = A1/2T̂A1/2h = A1/2TAA1/2h
for h ∈ H, hence

AT = A1/2TAA1/2. (2.9)

Equivalently, T ∗A = A1/2T ∗AA1/2 and since T ∗|R(A)
= T̂ ∗ = T ∗A|R(A)

, we infer that

T̂ ∗A0 = A
1/2
0 T̂ ∗A

1/2
0 . This means that A0T̂ = A

1/2
0 T̂A

1/2
0 , whence A

1/2
0 T̂ = T̂A

1/2
0 ,

because A
1/2
0 is an injective operator. Thus (iii) implies (v), and since T̂ is a contrac-

tion, it follows that (v) implies (ii).
Next, assertion (ii) means A0T̂ = A

1/2
0 T̂A

1/2
0 and this condition is equivalent to

A
1/2
0 T̂ = T̂A

1/2
0 . Then from (2.9), for h ∈ H there follows,

ATh = A1/2TAA1/2h = A1/2T̂A1/2h = T̂Ah = TAAh,

hence AT = TAA. Thus (ii) implies (vi). Also, (vi) implies (i) because by (vi) one
has for h ∈ H,

ATh = TAAh = T̂Ah = A1/2TA1/2h.

Finally, if T is A-regular then (I − T ∗)A = A1/2(I − T ∗)A1/2, which shows that
N∗ ⊂ N , that is T is A-ergodic. The proof is finished.

Remark 2.12. The operator TA defined by condition (vi) above is the Douglas con-
traction ([3]) associated to an A-contraction T on H. Our condition (vi) shows that
T is A-regular iff TA also satisfies the condition AT = TAA.

Remark 2.13. From representation (2.1) of an operator T on H satisfying TN (A) ⊂
N (A) it follows that T is a P |R(A)

-contraction iff T0 is a contraction on R(A), and
in this case T is a lifting of a contraction. In particular, from Proposition 2.11 we
infer that if T is A-regular then T is a P |R(A)

-contraction. Conversely, any operator
T on H which is a lifting of a contraction C on a subspace M ⊂ H is a regular
PM-contraction. A particular case is mentioned in the following

Corollary 2.14. Let T be an operator on H, with representation (2.1) and ‖T0‖ ≤ 1.
If σp(T ∗0 ) 6= ∅, then T is a Pλ-contraction for any λ ∈ σp(T ∗0 ), where Pλ is the
orthogonal projection onto N (T ∗0 − λI).

Remark 2.15. If T is an A-contraction such that σp(T̂ ∗) 6= ∅, then σp(T̂ ∗) ⊂ σp(T ∗0 ).
Indeed, if λ ∈ σp(T̂ ∗) and 0 6= h ∈ H such that T̂ ∗h = λh, then λA

1/2
0 h = A

1/2
0 T̂ ∗h =

T ∗0 A
1/2
0 h and A

1/2
0 h 6= 0, hence λ ∈ σp(T ∗0 ). Thus, from previous corollary, we infer

the following

Corollary 2.16. Let T be an A-isometry on H such that T̂ is a non-unitary operator.
Then T is a Pλ-contraction for all λ with |λ| < 1.

Proof. The hypothesis that T is an A-isometry, that is T ∗AT = A, ensures that T̂ is
an isometry on R(A). Since T̂ is non-unitary, by the Wold decomposition, T̂ ∗ has a
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non-zero coshift part, hence σp(T̂ ∗) = D (the open unit disc). By the above remark,
D ⊂ σp(T ∗0 ), and the first statement of the corollary follows from Corollary 2.14.

We also mention the following facts concerning the regularity condition.

Proposition 2.17. Let T be a regular A-contraction on H such that N (A) ⊂ N (T ).
Then T ∗ is a quasicontraction on H.

Proof. Since N (A) ⊂ N (T ), representation (2.1) of T becomes

T =
(

T0 0
T1 0

)
on H = R(A)⊕N (A), and ‖T0‖ ≤ 1 by Proposition 2.11. But R(T ∗) ⊂ R(A) and is
invariant to T ∗, hence also to T ∗0 . Thus T ∗|R(T∗)

= T ∗0 |R(T∗)
is a contraction, which

means that T ∗ is a quasicontraction on H.

Corollary 2.18. If T ∈ B(H) is a regular m-quasicontraction such that N (T ) =
N (Tm) then T ∗ is a quasicontraction.

Proof. The hypothesis on T means that T is a regular T ∗mTm-contraction and
N (T ) = N (T ∗mTm). So the conclusion follows from Proposition 2.17.

We remark that any m-quasicontraction is similar to a contraction ([2]), hence the
spectral radius of such an operator is less or equal to 1. In addition, an injective regular
quasicontraction is necessarily a quasinormal operator, and so a contraction. But a
regular m-quasicontraction for m > 2 is not necessarily quasinormal, for example a
m-nilpotent operator.

Remark also that Proposition 2.17 generalizes the fact that if T is a regular
A-contraction with A an injective operator, then T ∗ is a contraction (T = T̂ ).

3. THE CASE OF A TT ∗-CONTRACTION

A major default of an A-contraction T when A 6= I is that T ∗ is not an A-contraction,
in general. But this obviously happens if ‖T‖ ≤ 1 and AT = TA.

In fact, when T and T ∗ are A-contractions, N (A) is a reducing subspace for T ,
but the converse assertions are not true in general. The converse holds true in the
case considered above.

In particular, the study of quasicontractions T with T ∗ also a T ∗T -contraction,
leads to considering the class of TT ∗-contractions, for T ∈ B(H).

Proposition 3.1.

(i) If T 6= 0 is a TT ∗-contraction, then ‖T‖ ≤ 1 and N (T ∗) ⊂ N (T ).
(ii) If T 6= 0 is a TT ∗-isometry, then ‖T‖ = 1 and N (T ) = N (T ∗).
(iii) T is TT ∗-regular if and only if T ∗ is quasinormal.
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Proof. Let 0 6= T ∈ B(H) satisfy T ∗TT ∗T ≤ TT ∗. This means that ‖T ∗Th‖ ≤ ‖T ∗h‖
for h ∈ H, whence ‖T‖2 ≤ ‖T‖, and thus ‖T‖ ≤ 1. It also follows that N (T ∗) ⊂
N (T ). When T is a TT ∗-isometry, that is (T ∗T )2 = TT ∗, then all above inequalities
become equalities; thus assertions (i) and (ii) are proved.

Now, sinceN (T ∗) ⊂ N (T ), it follows thatN (TT ∗) = N (T ∗) reduces T . Having in
view representation (2.1) of T in this case, one can easily see that the condition on T
to be TT ∗-regular means that TT ∗T = T 2T ∗, or equivalently that T ∗ is quasinormal.
This gives assertion (iii).

As we remarked above, N (T ∗) = N (TT ∗) reduces T , when T is a TT ∗-contraction,
and T ∗ is also a TT ∗-contraction, being a contraction.

Corollary 3.2. Any TT ∗-contraction T is TT ∗-ergodic and the corresponding sub-
space N = N (I − T )⊕N (T ∗) reduces T .

Proof. We can assume T 6= 0, therefore ‖T‖ ≤ 1. Considering now the null-subspaces
N and N∗ corresponding to the TT ∗-contraction T , by (2.7), we get

(TT ∗)1/2N∗ ⊂ N (I − T ∗) = N (I − T ) ⊂ N ,

and by Theorem 2.3, T is TT ∗-ergodic. In fact, since matrix (2.1) of T in this case
gives T = T0 ⊕ 0 on H = R(T ) ⊕ N (T ∗), it follows that N (I − T ) = N (I − T0).
Hence N = N (I − T ) ⊕ N (T ∗), and so N reduces T because both subspaces of N
reduce T .

Recall that in [11, 12] it was proved that a non-zero contractive quasi-isometry
is hyponormal. We can now improve this result, and we obtain a similar result for
TT ∗-isometries.

Theorem 3.3. Let T ∈ B(H), T 6= 0. If either T is a contractive quasi-isometry, or
it is a TT ∗-isometry, then T is an ∞-hyponormal operator.

Proof. First suppose that T is a quasi-isometry with ‖T‖ = 1. Then {(T ∗T )n}n≥0

is a decreasing sequence of positive operators which strongly converges to P0 =
PN (I−T∗T ), the orthogonal projection onto N (I − T ∗T ). But for n ≥ 1, there holds

R((TT ∗)n) ⊂ R(T ) ⊂ N (I − T ∗T ),

the second inclusion being based on the fact that T is a quasi-isometry, that is T |R(T ) is
an isometry. Since (TT ∗)n is a positive contraction, for h ∈ H of the form h = h0 +h1

with h ∈ N (I − T ∗T ) and h1 ⊥ N (I − T ∗T ), there is

〈(TT ∗)nh, h〉 = 〈(TT ∗)nh0, h0〉 ≤ ‖h0‖2 = 〈P0h, h〉.

Therefore, (TT ∗)n ≤ P0 ≤ (T ∗T )n for any n ≥ 1, which means that T is an
∞-hyponormal operator.

Now assume that T is a TT ∗-isometry, that is (T ∗T )2 = TT ∗. By Proposition 3.1,
‖T‖ = 1 and for n ≥ 1, we infer

(TT ∗)2n ≤ (TT ∗)n = (T ∗T )2n.
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This, by Lowner-Heinz inequality [5], implies that (TT ∗)n ≤ (T ∗T )n for n ≥ 1;
consequently, T is an ∞-hyponormal operator. The proof is finished.

We can complete M. Patel’s result [11, 12] concerning the quasi-isometries as fol-
lows.

Corollary 3.4. For a quasi-isometry T 6= 0, the following statements are equivalent:

(i) ‖T‖ = 1;
(ii) T is hyponormal;
(iii) T is ∞-hyponormal.

Remark 3.5. This corollary clearly shows that the class of quasinormal
quasi-isometries is strictly included in the one of ∞-hyponormal quasi-isometries. In
fact, it is easy to see that a quasi-isometry is quasinormal iff it is a partial isometry,
that is it has the form V ⊕ 0 with V an isometry.

Next, for a contraction T on H, we denote by ST the strong limit of the (bounded
decreasing) sequence {T ∗nTn}n≥0. So, ST is the asymptotic limit associated to T
([4, 6]), ST being a positive operator, but it is not an orthogonal projection (that is
ST 6= S2

T ), in general.
However, if T is a cohyponormal contraction, that is it satisfies T ∗T ≤ TT ∗, then

T is a TT ∗-contraction, because

T ∗TT ∗T = (T ∗T )2 ≤ T ∗T ≤ TT ∗.

In this case, it is known (see [6]) that ST = S2
T .

We now formulate the following

Theorem 3.6. Let T be a TT ∗-contraction on H. The following statements hold:

(i) N (I − ST ) is the maximum subspace reducing T to an isometry, equivalently, to
a unitary operator, and there is

N (I − ST ) =
⋂
n≥0

T ∗nN (I − T ∗T ) ⊂ N (I − ST∗). (3.1)

(ii) If R(T ∗−λI) ⊂ R(T−λI) for every λ ∈ σa(T ∗), then ST = S2
T and N (I−ST )⊕

N (T ∗) is the maximum subspace reducing T to a quasi-isometry, or equivalently,
to a normal partial isometry.

Proof. Since T is a TT ∗-contraction, then for h ∈ N (I − T ∗T ),

‖h‖ = ‖T ∗Th‖ ≤ ‖T ∗h‖,

hence ‖T ∗h‖ = ‖h‖, T being a contraction. This means that h = TT ∗h and also
T ∗h = T ∗TT ∗h. Therefore, h ∈ N (I − TT ∗) and T ∗h ∈ N (I − T ∗T ). We infer
that N (I − T ∗T ) is an invariant subspace for T ∗ and T ∗ is an isometry on this
subspace. Since N (I − ST∗) is the maximum invariant subspace for T ∗ on which T ∗

is an isometry, we get the following inclusions:

N (I − ST ) ⊂ N (I − T ∗T ) ⊂ N (I − ST∗) ⊂ N (I − TT ∗).
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Hence N (I−ST ) = N (I−ST )∩N (I−ST∗) is the maximum subspace reducing T to
a unitary operator, or equivalently to an isometry, because N (I − ST ) has the same
maximal property as an invariant subspace for T on which T is an isometry.

From the above remarks there follows

N (I − ST ) ⊂
⋂
n≥0

T ∗nN (I − T ∗T ) =: M,

and it is clear that M is an invariant subspace for T ∗. Now, if h ∈ M, then for
any n ≥ 1 there exists hn ∈ N (I − T ∗T ) such that h = T ∗nhn. As T ∗(n−1)hn ∈
N (I − T ∗T ) ⊂ N (I − TT ∗), we infer that

Th = TT ∗T ∗(n−1)hn = T ∗(n−1)hn ∈ T ∗(n−1)N (I − T ∗T ),

for all n ≥ 1. So Th ∈ M, and it follows that M is an invariant subspace for T .
Hence M reduces T and T is a unitary operator on M because M⊂ N (I − T ∗T ) ⊂
N (I − TT ∗). By the maximality of N (I − ST ), one obtains M⊂ N (I − ST ); in fact
N (I − ST ) = M. Assertion (i) is proved.

Next suppose that R(T ∗−λI) ⊂ R(T −λI) for λ ∈ σa(T ∗). Since for λ /∈ σa(T ∗)
we have that T ∗−λI is injective with closed range, it results that our assumed inclusion
is true for every scalar λ. This means ([7]) that T ∗ is a dominant contraction, T being
also a TT ∗-contraction. Finally by [7] it follows that ST is an orthogonal projection.

The subspace Mq := N (I − ST )⊕N (T ∗) clearly reduces T to an operator of the
form T |Mq

= U ⊕0 with U a unitary operator. So T |Mq
is a normal partial isometry,

hence a quasi-isometry.
Now let M⊂ H be a (closed) subspace reducing T to a quasi-isometry. Then it is

easy to see thatM⊂ N (T ∗T−ST ). But as ST = S2
T , there isH = N (I−ST )⊕N (ST ),

and from the inclusions

N (I − ST )⊕N (T ) ⊂ N (T ∗T − ST ) ⊂ N (I − ST )⊕N (ST )

we infer that
N (T ∗T − ST ) = N (I − ST )⊕N (T ).

Hence every h ∈ M can be written h = h1 ⊕ h0 with h1 ∈ N (I − ST ), h0 ∈ N (T ).
But T ∗h = T ∗h1 + T ∗h0 and T ∗h0 ∈ T ∗N (T ) ⊂ T ∗N (ST ) ⊂ N (ST ), and so T ∗h0 ∈
N (ST ) 	 N (T ). On the other hand, T ∗h ∈ M ⊂ N (I − ST ) ⊕ N (T ), therefore
T ∗h0 = 0.

Thus M ⊂ N (I − ST ) ⊕ N (T ∗) = Mq; consequently, the subspace Mq has the
required maximal property from (ii). The proof is finished.

Corollary 3.7. If T is a TT ∗-contraction on H with R(T ∗ − λI) ⊂ R(T − λI) for
λ ∈ σa(T ∗), then the completely non-unitary part of T is strongly stable.

Proof. The assumption ensures that ST = S2
T by above assertion (ii). Therefore

H = N (I−ST )⊕N (ST ), N (ST ) being the completely non-unitary part in H for T in
this case. Clearly, h ∈ N (ST ) if and only if Tnh → 0 (n →∞), hence T is a strongly
stable contraction on N (ST ).
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Recall ([6]) that if T is a cohyponormal contraction on H, the conclusion from
Corollary 3.7 holds true.

Corollary 3.8. Let T be a TT ∗-contraction on H. Then the completely non-unitary
part of T is a proper contraction if and only if N (I − ST ) = N (I − T ∗T ).

Proof. IfN (I−ST ) = N (I−T ∗T ), then for 0 6= h ∈ H	N (I−ST ) there is h 6= T ∗Th,
or equivalently ‖Th‖ < ‖h‖, that is T is a proper contraction on H 	N (I − ST ) in
this case. Clearly, by Theorem 3.6, H	N (I−ST ) is the completely non-unitary part
in H for T .

Conversely, if T is a proper contraction on H	N (I−ST ), then [H	N (I−ST )]∩
N (I − T ∗T ) = {0} which leads to N (I − ST ) = N (I − T ∗T ).

Proposition 3.9. Let T be a TT ∗-isometry on H. Then N (T ) = N (ST ) and,
furthermore, ST = S2

T if and only if T is a unitary operator on R(T ). In this last
case, T is a normal partial isometry.

Proof. Since (T ∗T )2 = TT ∗, there is T ∗nTT ∗Tn = TT ∗, for any n ≥ 1. But T is
hyponormal by Theorem 3.3, and so we infer for n ≥ 1,

TT ∗ = T ∗nTT ∗Tn ≤ T ∗(n+1)Tn+1 ≤ T ∗T.

From N (T ∗) = N (T ) and the definition of ST , we get N (T ∗) = N (ST ) = N (T ),
hence ST is an injective operator on R(T ) = H	N (ST ). Clearly, R(T ) reduces ST ,
and this operator is positive.

Suppose ST = S2
T , that is ST is an orthogonal projection. Then we have R(ST ) =

R(T ), hence ST is the identity operator on R(T ). Since ST ≤ T ∗T (by an above
inequality), for h ∈ R(T ) we obtain

‖h‖2 = ‖ST h‖2 = 〈ST h, h〉 ≤ ‖Th‖2 ≤ ‖h‖2,

hence ‖Th‖ = ‖h‖. So T is an isometry on R(T ), and it follows that R(T ) ⊂
N (I − ST ). But R(T ) reduces T , and N (I − ST ) is the unitary part in H for T by
Theorem 3.6. In conclusion, T is unitary on R(T ).

Conversely, if T |R(T )
is unitary, from the definition of ST we infer that ST is the

identity on R(T ) = H	N (ST ); consequently, ST is an orthogonal projection on H.
This ends the proof.

As a consequence of Theorem 3.6, we give W. Mlak’s following result [8], which
was obtained using the unitary dilation of a contraction.

Corollary 3.10 (Mlak). If T is a hyponormal contraction on H, then the maximum
subspace which reduces T to a unitary operator is

N (I − ST∗) =
⋂
n≥0

TnN (I − TT ∗). (3.2)

Proof. We apply (3.1) to T ∗, because T ∗ is a T ∗T -contraction.
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In the sequel, we propose the construction of some TT ∗-isometries without assum-
ing ST to be an orthogonal projection.

Example 3.11. Let {en}n≥0 be the canonical basis of l2(N) and let {an}n≥0 be a
bounded increasing and strictly positive sequence of scalars. Let T be the unilateral
weighted shift with weight sequence {an}, defined by Ten = anen+1, n ≥ 0. It is
known ([7]) that T is hyponormal, in fact even ∞-hyponormal.

Now the condition of TT ∗-isometry for T implies that a2
n = an−1 and 0 < a0 < 1.

On the other hand, T is quasinormal if and only if there exists n0 ∈ N such that
an = 0 for n < n0 and an = an0 for n ≥ n0. So, we can get such unilateral weighted
shifts T which are TT ∗-isometries, but are not quasinormal, and in this case we have
ST 6= S2

T by Proposition 3.9.

In [11] Patel showed that left invertible quasi-isometries are similar to isometries.
Concerning the operators considered in Theorem 3.3, we may now prove their simi-
larity to partial isometries.

Theorem 3.12. Let T ∈ B(H) such that the range R(T ) is closed. If either T is a
TT ∗-isometry, or T is a quasi-isometry with N (T ) ⊂ N (T ∗), then T is similar to a
partial isometry.

Proof. Suppose that T is a TT ∗-isometry. Then N (T ) = N (T ∗) is a reducing sub-
space for T , hence in the case representation (2.1) for T reduces to T = T0 ⊕ 0 on
H = R(T ) ⊕ N (T ∗). If V is the isometry on R(T ) associated to T and satisfying
V (TT ∗)1/2h = (TT ∗)1/2V h for h ∈ H, then since R(T ) is closed, by Lemma 2.1 it
follows that T0 is similar to V by the invertible operator S = (TT ∗)1/2|R(T ) on R(T ).
But this clearly implies that T = T0⊕0 is similar to V ⊕0 by S⊕IN (T∗); consequently,
T is similar to a partial isometry.

When T is a quasi-isometry (T ∗T -isometry) with N (T ) ⊂ N (T ∗) one can use the
same argument.

It is clear that a contractive quasi-isometry T , being hyponormal, satisfies the
condition N (T ) ⊂ N (T ∗). In fact, this condition may be dropped for a quasi-isometry
in the above theorem, as can be seen in [9]. Here we only remark that in the presence
of this condition, the similarity of a quasi-isometry with closed range to a partial
isometry is immediate.

Corollary 3.13. Let T be an injective operator on H with R(T ) closed. If either T
is a quasi-isometry, or it is a TT ∗-isometry, then T is similar to an isometry.

4. SPECTRAL PROPERTIES

In the sequel we give some spectral properties for certain A-contractions, particularly
for m-isometries.
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Proposition 4.1. Let T be an A-contraction on H with representation (2.1).Then:

(i) If N (A) 6= {0} and T |N (A) is nilpotent, then 0 ∈ σp(T ).
(ii) Suppose that T |N (A) is quasinilpotent and that either T0 is hyponormal, or it is

a quasi-isometry. If λ 6= 0 is an isolated point in σ(T ) then λ ∈ σp(T0). If
furthermore N (T0 − λI) ∩N (T1) 6= {0} then λ ∈ σp(T ).

(iii) If λ ∈ σp(T ) then either |λ| ≤ 1, or N (T − λI) ⊂ N (A).

Proof. (i) Since T2 = T |N (A) is nilpotent one has 0 ∈ σ(T2). When T2 6= 0, there
exists n ≥ 2 such that Tn

2 = 0 and Tn−1
2 6= 0, hence N (T2) 6= {0}. If T2 = 0 then

N (T2) = N (A) 6= {0}. Now if 0 6= h ∈ N (T2) then T (0, h) = (0, T2h) = 0 and so
N (T ) 6= {0}, that is 0 ∈ σp(T ).

(ii) Let 0 6= λ ∈ σ(T ) be an isolated point in σ(T ). Since T2 is quasinilpotent, then
σ(T2) = {0}; therefore, λ /∈ σ(T2). Hence λ ∈ σ(T0) and both hypotheses on T0 in (ii)
ensure that λ ∈ σp(T0) (see [11–13]). Now, if there exists h ∈ N (T0 − λI) ∩ N (T1),
h 6= 0, then

(T − λI)(h, 0) = ((T0 − λI)h, T1h) = (0, 0);

therefore, N (T − λI) 6= {0} and λ ∈ σp(T ).
(iii) Let λ ∈ σp(T ). Assume that N (T − λI) * N (A), hence there exists h 6= 0

such that Th = λh and A1/2h 6= 0. Since T is an A-contraction, we obtain

|λ| ‖A1/2h‖ = ‖A1/2Th‖ ≤ ‖A1/2h‖,

and so |λ| ≤ 1. The proof is finished.

Corollary 4.2. If T is an A-contraction on H such that T |N (A) is quasinilpotent,
then σp(T ) is a subset of the closed unit disc.

Proof. If T2 = T |N (A) is quasinilpotent, then σ(T2) = {0}. So, if 0 6= λ ∈ σp(T ),
then λ /∈ σp(T2), that is (T2 − λI)k 6= 0 for any k ∈ N (A), k 6= 0. This implies
N (T − λI) * N (A), hence |λ| ≤ 1 by Proposition 4.1 (iii).

Corollary 4.3. If T is an A-isometry on H and N (A) = {0}, then σp(T ) is a subset
of the unit circle.

Proof. It follows from the proof of assertion (iii) above.

Other spectral properties may be proved for m-quasi-isometries.

Theorem 4.4. Let T be an m-quasi-isometry for m ≥ 2 such that C = T |R(T )
is

injective. If either C is hyponormal, or C is a quasi-isometry, then any isolated point
in the spectrum of T is an eigenvalue.

Proof. We use the following matrix representation of T with respect to the decompo-
sition H = R(T )⊕N (T ∗):

T =
(

C S
0 0

)
. (4.1)
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Let λ ∈ σ(T ) be an isolated point. First assume λ = 0. If 0 ∈ σ(C), then the
hypothesis on C implies 0 ∈ σp(C), which contradicts the injectivity of C. So 0 /∈ σ(C)
that is C is an invertible operator. This fact and the assumption 0 ∈ σ(T ) ensure
N (T ∗) = {0}. If S 6= 0 and k ∈ N (T ∗) such that Sk 6= 0, then h = −C−1Sk 6= 0
and T (h, k) = (Ch + Sk, 0) = (0, 0). If S = 0, then, for 0 6= k ∈ N (T ∗), there is
T (0, k) = (0, 0). In both cases, there follows N (T ) 6= {0}, hence 0 ∈ σp(T ).

Now assume λ 6= 0. Then λ ∈ σ(C) and, by the hypothesis on C, there is
λ ∈ σp(C). Therefore, N (C − λI) 6= {0}, and for 0 6= h ∈ N (C − λI), we get
(T − λI)(h, 0) = (0, 0). Consequently, λ ∈ σp(T ), which ends the proof.

The case of m = 1 for the previous theorem was proved in [11, 12]. In this case,
C = T |R(T )

is an isometry; therefore, C satisfies the hypothesis of Theorem 4.4.
In the case of m = 2, we derive the following

Corollary 4.5. Let T be a 2-quasi-isometry on H such that R(T )∩N (T ) = {0}. Then
any isolated point in the spectrum of T is an eigenvalue. If, furthermore, N (T2) =
{0}, then σp(T ) is a subset of the unit circle.

Proof. It was proved in [2] that in this case (m = 2) the operator C = T |R(T )
in

(4.1) is a quasi-isometry. Therefore, one can apply the previous theorem to obtain
the first assertion. The second statement follows from Corollary 4.3 because T is a
T ∗2T 2-isometry and N (T 2) = {0}.

The case of m = 1 in the theorem below appeared in [11] and has inspired the
study of a general case.

Theorem 4.6. Let T 6= 0 be an m-quasi-isometry on H for m ≥ 1. The following
statements hold:

(i) λ ∈ σp(T ) implies λ ∈ σp(T ∗);
(ii) λ ∈ σa(T ) implies λ ∈ σa(T ∗);
(iii) σa(T )− {0} is a subset of the unit circle;
(iv) the eigenspaces corresponding to distinct non-zero eigenvalues of T are mutually

orthogonal.

Proof. (i) Let λ ∈ σp(T ). Suppose that λ = 0 and 0 /∈ σp(T ∗). So N (T ∗) = {0}, that
is T ∗ is injective. Since T ∗(m+1)Tm+1 = T ∗mTm, we infer T ∗mTm+1 = T ∗(m−1)Tm

or T ∗(m+1)Tm = T ∗mTm−1. This also implies T ∗mTm = T ∗(m−1)Tm−1, which means
that T is an (m− 1)-quasi-isometry. If m− 1 > 1, one may recursively prove that T
is an isometry, which contradicts 0 ∈ σp(T ). Thus 0 ∈ σp(T ∗).

Assume now λ 6= 0 and let 0 6= h ∈ H be such that Th = λh. Since T is an
isometry on R(Tm), then T ∗Tm+1h = Tmh or λm+1T ∗h = λmh, and also (λ 6= 0)
λT ∗h = h. So λ−1 is an eigenvalue of T ∗. As T (and so T ∗) is a power bounded
operator, there is |λ| ≤ 1 and |λ−1| ≤ 1, hence |λ| = 1. Thus λ = λ−1 ∈ σp(T ∗).

(ii) Let λ ∈ σa(T ). First suppose that λ = 0 and 0 /∈ σa(T ∗). Then for any vector
h ∈ H with ‖h‖ = 1 there is T ∗h 6= 0, and it follows that N (T ∗) = {0}. But, as above,
T may be proved to be an isometry, which contradicts 0 ∈ σa(T ). So 0 ∈ σa(T ∗).
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Next, we assume λ 6= 0. Let hn ∈ H with ‖hn‖ = 1 such that (T − λI)hn → 0
(n →∞). Then

‖(T 2 − λ2I)hn‖ ≤ (|λ|+ ‖T‖)‖(T − λI)hn‖ → 0 (n →∞),

and, assuming (T j − λjI)hn → 0 (n →∞) for some integer j > 2, we also obtain

(T j+1 − λj+1I)hn = T j(T − λI)hn + λ(T j − λjI)hn → 0.

By induction it follows that (T p − λpI)hn → 0 (n → ∞) for all p ∈ N. Since
T ∗(m+1)Tm+1 = T ∗mTm, we infer that

(λm+1T ∗(m+1) − λmT ∗m)hn = T ∗(m+1)(λm+1I − Tm+1)hn+

+T ∗m(Tm − λm)hn → 0 (n →∞),

and as λ 6= 0, we get

(λT ∗ − I)T ∗mhn → 0 (n →∞). (4.2)

But
〈T ∗mhn, hn〉 = 〈hn, (Tm − λmI)hn〉+ λ

m → λ
m

(n →∞),

whence it follows that T ∗mhn does not converge to 0 (n → ∞). So there exist an
ε0 > 0 and a subsequence {hnj

} of {hn} such that ‖T ∗mhnj
‖ ≥ ε0 for any j. We put

kj = ‖T ∗mhnj
‖−1T ∗mhnj

.

Then ‖kj‖ = 1 for any j, and using (4.2) we obtain

‖(λT ∗ − I)kj‖ ≤
1
ε
‖(λT ∗ − I)T ∗hnj

‖ → 0 (j →∞).

This means that λ−1 ∈ σa(T ∗) hence |λ| = 1 and λ = λ−1 ∈ σa(T ∗).
Assertion (iii) follows as a consequence of the proof of (ii).
(iv) Let λ, µ ∈ σp(T ), λ 6= µ, λ, µ 6= 0. Choose h, k 6= 0 such that Th = λh,

Tk = µk. Then we obtain

0 = 〈Tm+1h, Tm+1k〉 − 〈Tmh, Tmk〉 = (λm+1µm+1 − λmµm)〈h, k〉 =
= λmµm(λµ− 1)〈h, k〉,

and since λ 6= µ and |λ| = |µ| = 1, it follows that h ⊥ k. Hence the subspaces
N (T − λI) and N (T − µI) are orthogonal, and the proof is finished.
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The corresponding spectral properties for TT ∗-isometries are included in the fol-
lowing

Theorem 4.7. Let T 6= 0 be a TT ∗-isometry on H. Then the following statements
hold:

(i) λ ∈ σp(T ) implies λ ∈ σp(T ∗);
(ii) λ ∈ σa(T ) implies λ ∈ σa(T ∗);
(iii) σa(T )− {0} is a subset of the unit circle;
(iv) the isolated points of σ(T ) are eigenvalues.

Proof. (i) Let λ ∈ σp(T ). Since N (T ) = N (T ∗) (by Proposition 3.1 (ii)), if λ = 0,
then clearly 0 ∈ σp(T ∗). Assume λ 6= 0 and let h 6= 0 be such that Th = λh.
Then T ∗Th = λT ∗h, and also TT ∗h = (T ∗T )2h = λT ∗TT ∗h. If k = TT ∗h = 0,
then T ∗h = 0, that is Th = 0 and so h = 0, a contradiction. Hence k 6= 0 and
T ∗k = λ−1k; therefore, λ−1 ∈ σp(T ∗). Thus |λ−1| ≤ 1 and, as |λ| ≤ 1, it follows that
λ = λ−1 ∈ σp(T ∗).

(ii) Suppose that λ ∈ σa(T ). If λ = 0, then there exists {hn} ⊂ H with ‖hn‖ = 1
for all n such that Thn → 0 (n → ∞). This yields T ∗Thn → 0, or equivalently,
T ∗hn → 0, because T is a TT ∗-isometry. Therefore, 0 ∈ σa(T ∗).

Assume now that λ 6= 0 and let us choose hn as above and so that (T −λI)hn → 0
(n →∞). This implies ((T ∗T )2 − λT ∗TT ∗)hn → 0, whence one obtains

(I − λT ∗)TT ∗hn → 0 (n →∞). (4.3)

Since T is a TT ∗-contraction (so ‖T‖ ≤ 1) and ‖hn‖ = 1, then

‖T ∗hn‖ = 〈TT ∗hn, hn〉 ≤ ‖TT ∗hn‖ = ‖(T ∗T )2hn‖ ≤

≤ ‖T ∗Thn‖ ≤ ‖Thn‖ ≤ ‖T ∗Thn‖ = ‖T ∗hn‖.

In fact all these inequalities become equalities. So, assuming TT ∗hn → 0, that is
Thn → 0, from the choice of hn we infer λ = 0, a contradiction. Hence TT ∗hn does
not converge to 0, and there exist ε0 > 0 and a subsequence {hnj

} of {hn} such that
‖Thnj

‖ = ‖TT ∗hnj
‖ ≥ ε0 for any j. Putting

kj = ‖Thnj
‖−1TT ∗hnj

,

we get ‖kj‖ = 1 and (by (4.3)) (I−λT ∗)kj → 0 (j →∞). Thus we get λ−1 ∈ σa(T ∗);
therefore, |λ| = 1 and λ ∈ σp(T ∗). This proves (ii) and also (iii).

Since T is hyponormal by Theorem 3.3, assertion (iv) follows from the known
result ([13]) that an isolated point in the spectrum of a hyponormal operator is an
eigenvalue. This ends the proof.

Acknowledgements

This research was supported by the Contract CEX 05-D11-23/2005.



Ergodic conditions and spectral properties for A-contractions 215

REFERENCES

[1] P.L. Butzer, U. Westphal, The Mean Ergodic Theorem and Saturation, Indiana Univer-
sity Mathematical Journal, 20 (1971) 12, 1163–1174.

[2] G. Cassier, L. Suciu, Mapping theorems and similarity to contractions for classes of
A-contractions, Operator Theory: Advances and Applications, Proceedings of 21th
Conference on Operator Theory, Timisoara, 2006, 1–25 [to appear].

[3] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert
space, Proc. Amer. Math. Soc., 17 (1966), 413–416.

[4] R.G. Douglas, On the operator equation S∗XT = X and related topics, Acta. Sci. Math.
(Szeged), 30 (1969), 19–32.

[5] T. Furuta, Invitation to Linear Operators. From matrices to bounded linear operators
on Hilbert space, Taylor-Francis, 2001, 255.

[6] C.S. Kubrusly, An introduction to Models and Decompositions in Operator Theory.
Birkhäuser, Boston, 1997.

[7] C.S. Kubrusly, Hilbert Space Operators. A Problem Solving Approach. Birkhäuser,
Boston, 2003.

[8] W. Mlak, Hyponormal contractions, Coll. Math., 18 (1967), 137–142.

[9] M. Mbekhta, L. Suciu, Classes of operators similar to partial isometries, Preprint, 1–22.

[10] S. Miyajima, I. Saito, ∞-hyponormal operators and their spectral properties. Acta Sci.
Math. (Szeged), 67 (2001), 357–371.

[11] S.M. Patel, A note on quasi-isometries, Glasnik Matematicki, 35 (2000) 55, 307–312.

[12] S.M. Patel, A note on quasi-isometries II, Glasnik Matematicki, 38 (2003) 58, 111–120.

[13] J.G. Stampfli, Hyponormal operators, Pacific J. Math., 12 (1962), 1453–1458.

[14] L. Suciu, Orthogonal decompositions induced by generalized contractions, Acta Sci.
Math. (Szeged), 70 (2004), 751–765.

[15] L. Suciu, On the ergodic A-contractions, Analele Universitaţii de Vest din Timişoara,
Ser. Mat.-Inf., 2 (2004), 115–136.

[16] L. Suciu, Ergodic properties for regular A-contractions, Integral Equations and Operator
Theory, 56 (2006) 2, 285–299.

[17] L. Suciu, Ergodic properties and saturation for A-contractions, Operator Theory: Ad-
vances and Applications; Proceeding of 20th Conference on Operator Theory, Timişoara
2004, Theta 2006, 225–242.

[18] L. Suciu, Some invariant subspaces for A-contractions and applications, Extracta Math-
ematicae, 21 (2006) 3, 221–247.

[19] Y. Tomilov, J. Zemànek, A new way of constructing examples in operator ergodic theory,
Math. Proc. Camb. Philos. Soc., 137 (2004) 9.1, 209–225.



216 Laurian Suciu, Nicolae Suciu

Laurian Suciu
suciu@math.univ-lyon1.fr

University Claude Bernard Lyon1
Institut Camille Jordan
69622 Villeurbanne Cedex, France

Nicolae Suciu
suciu@math.uvt.ro

West University of Timişoara
Department of Mathematics
Bv. V. Parvan 4, Timişoara 300223, Romania

Received: October 8, 2007.
Accepted: December 12, 2007.


