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Abstract. We study the ergodic control problem of switching diffusions representing a typical
hybrid system that arises in numerous applications such as fault-tolerant control systems, flexible
manufacturing systems, etc. Under fairly general conditions, we establish the existence of a stable,
nonrandomized Markov policy which almost surely minimizes the pathwise long-run average cost. We
then study the corresponding Hamilton–Jacobi–Bellman (HJB) equation and establish the existence
of a unique solution in a certain class. Using this, we characterize the optimal policy as a minimizing
selector of the Hamiltonian associated with the HJB equations. As an example we apply the results
to a failure-prone manufacturing system and obtain closed form solutions for the optimal policy.
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1. Introduction. We address the problem of controlling switching diffusions by
continually monitoring the continuous and discrete component of the state. The ob-
jective is to minimize, almost surely (a.s.), the pathwise long-run average (ergodic)
cost over all admissible policies. A controlled switching diffusion is a typical example
of a hybrid system which arises in numerous applications of systems with multiple
modes or failure modes, such as fault-tolerant control systems, multiple target track-
ing, flexible manufacturing systems, etc. [13], [14], [23]. The state of the system at
time t is given by a pair

(
X(t), S(t)

)
∈ Rd × S, S = {1, 2, . . . , N}. The continuous

component X(t) is governed by a “controlled diffusion process” with a drift vector
which depends on the discrete component S(t). Thus, X(t) switches from one diffu-
sion path to another as the discrete component S(t) jumps from one state to another.
On the other hand, the discrete component S(t) is a “controlled Markov chain” with
a transition matrix depending on the continuous component. The evolution of the
process

(
X(t), S(t)

)
is governed by the following equations:

dX(t) = b
(
X(t), S(t), u(t)

)
dt+ σ

(
X(t), S(t)

)
dW (t),(1.1)

P
(
S(t+ δt) = j

∣∣ S(t) = i,X(s), S(s), s ≤ t
)

= λij
(
X(t), u(t)

)
δt+ o(δt), i 6= j,

(1.2)

for t ≥ 0, X(0) = X0, S(0) = S0, where b, σ, λ are suitable functions, λij ≥ 0 for i 6= j,∑N
j=1 λij = 0, W (·) is a standard Brownian motion, and u(·) is a nonanticipative

∗Received by the editors February 26, 1996; accepted for publication (in revised form) August
15, 1996. This research was supported in part by Texas Advanced Research Program (Advanced
Technology Program) grant 003658-186, Air Force Office of Scientific Research grants F49620-92-J-
0045 and F49620-92-J-0083, and National Science Foundation grants EEC 9402384, NCR-9211343,
and NCR-9502582.

http://www.siam.org/journals/sicon/35-6/29930.html
†Department of Mathematics, Indian Institute of Science, Bangalore 560012, India

(mkg@math.iisc.ernet.in).
‡Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,

TX 78712 (ari@mail.utexas.edu).
§Electrical Engineering Department and Institute for Systems Research, University of Maryland,

College Park, MD 20742 (marcus@src.und.edu).

1952



ERGODIC CONTROL OF SWITCHING DIFFUSIONS 1953

control process (admissible policy). The latter is called a Markov policy if u(t) =
v
(
X(t), S(t)

)
for a suitable function v. Our goal is to minimize a.s. over all admissible

policies the functional

lim sup
T→∞

1
T

∫ T

0
c
(
X(t), S(t), u(t)

)
dt ,(1.3)

where c is the running-cost function. Note that in (1.3) there is no expectation; we
are minimizing the limiting pathwise average cost. Such a criterion is very important
in practical applications since we often deal with a single realization. Under certain
conditions, we show that there exists a Markov policy v∗ and constant ρ∗ such that

lim
T→∞

1
T

∫ T

0
c
(
X(t), S(t), v∗(X(t), S(t))

)
dt = ρ∗ a.s.,

and for any other admissible policy v(·)

lim inf
T→∞

1
T

∫ T

0
c
(
X(t), S(t), v(t)

)
dt ≥ ρ∗ a.s.

This establishes that v∗ is optimal in a much stronger sense; viz., the most “pes-
simistic” average cost under v∗ is no worse than the most “optimistic” average cost
under any other admissible policy. Also, under the conditions assumed in this paper,
the optimal pathwise average cost coincides with the optimal expected average cost.
So we do not distinguish between these two criteria.

Our paper is organized as follows. In section 2 we present and analyze a moti-
vating example, while in section 3 we introduce a concise mathematical model of the
switching diffusion. Section 4 is devoted to the study of recurrence and ergodicity of
switching diffusions. The existence of an optimal policy is established in section 5.
The HJB equations are studied in section 6. Conclusions are in section 7.

2. A motivating example. The failure-prone manufacturing system presented
in [1], [5], [14] is a very good example of the class of systems studied in this paper.
This section is devoted to the analysis of this manufacturing model. Results from
subsequent sections will be used in this example and thus the reader will have the
opportunity to glimpse some of the key developments of the paper.

Suppose that there is one machine producing a single commodity. We assume
that the demand rate is a constant d > 0. Let the machine state S(t) take values in
{0, 1}, S(t) = 0 or 1, according as the machine is down or functional. We model S(t)
as a continuous time Markov chain with generator[

−λ0 λ0
λ1 −λ1

]
,

where λ0 and λ1 are positive constants corresponding to the infinitesimal rates of
repair and failure, respectively. The inventory X(t) is governed by the Ito equation

dX(t) =
(
u(t)− d

)
dt+ σdW (t) ,(2.1)

where σ > 0, u(t) is the production rate, and W (t) is a one-dimensional Wiener
process independent of S(t). The last term in (2.1) can be interpreted as “sales
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return,” “inventory spoilage,” “sudden demand fluctuations,” etc. A negative value
of X(t) represents backlogged demand. The production rate is constrained by

u(t) ∈
{
{0} if S(t) = 0,
[0, r] if S(t) = 1.

Let c : R → R+ be the cost function which is assumed to be convex and Lipschitz.
Also, c(x) ≥ g(|x|) for some increasing function g : R+ → R+. Thus, c satisfies (5.3),
a required condition for the validity of our results. We show later in this section that
a certain hedging-point policy is stable. Therefore, by the results of section 5, there
exists an a.s. optimal nonrandomized Markov policy with respect to the cost criterion

lim sup
T→∞

1
T

∫ T

0
c(X(t))dt .

The HJB equations in this case are

(2.2)

 σ2

2 V
′′(x, 0)− dV ′(x, 0)

σ2

2 V
′′(x, 1) + min

u∈[0,r]

{
(u− d)V ′(x, 1)

} +
[
−λ0 λ0
λ1 −λ1

](
V (x, 0)
V (x, 1)

)

+
(

1
1

)
c(x) =

(
1
1

)
ρ .

The results of section 6 ensure existence of a C2 solution (V, ρ∗) of (2.2), where ρ∗ is
the optimal cost. Using the convexity of c(·), it can be shown that V (·, i) is convex
for each i. Hence, there exists an x∗ such that

V ′(x, 1) ≤ 0 for x ≤ x∗,
V ′(x, 1) ≥ 0 for x ≥ x∗.(2.3)

It follows from (2.3) that the value of u which minimizes (u− d)V ′(x, 1) is

u =

{
r if x < x∗,

0 if x > x∗.

Since V ′(x∗, 1) = 0, any u ∈ [0, r] minimizes (u − d)V ′(x∗, 1). Therefore, in view of
Theorem 6.2, the action u ∈ [0, r] can be chosen arbitrarily at x = x∗. To be specific,
we let u(x∗) = d, i.e., we produce at the level that meets the demand exactly. Thus,
the following stable, nonrandomized Markov policy is optimal:

v∗(x, 0) = 0, v∗(x, 1) =


r if x < x∗,

d if x = x∗,

0 if x > x∗.

(2.4)

Note that the stability of the policy (2.4) follows from Theorem 6.3 provided that the
set of stable, nonrandomized Markov policies is nonempty. We show next that the
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zero-inventory policy v given by

v(x, 0) = 0, v(x, 1) =

{
r if x ≤ 0,
0 if x > 0

(2.5)

is stable if and only if

(r − d)
λ1

>
d

λ0
.(2.6)

The condition (2.6) is in accord with intuition. Note that λ−1
0 and λ−1

1 are the
mean sojourn times of the chain in states 0 and 1, respectively. In state 0 the mean
inventory depletes at a rate d while in state 1 it builds up at a rate (r−d). Thus, if (2.6)
is satisfied, one would expect the zero-inventory policy to stabilize the system. Our
analysis confirms this intuition. We first show that under v the process

(
X(·), S(·)

)
has an invariant probability measure ηv with a strictly positive density. In view of
Lemma 4.1, it then follows from the ergodic theory of Markov processes [25, Chap. 1]
that

(
X(·), S(·)

)
is positive recurrent, or equivalently that v is stable.

By Lemma 5.2, the density ϕ of the invariant probability measure ηv can be
obtained by solving the adjoint system

(Lv)∗ϕ(x, i) = 0 ,(2.7)

subject to

ϕ(x, i) > 0,
∑

i∈{0,1}

∫
R
ϕ(x, i) dx = 1 ,(2.8)

where Lv is the differential generator defined in (3.6)–(3.8). Define

λ̃0 :=
2λ0

σ2 , λ̃1 :=
2λ1

σ2 , d̃ :=
2d
σ2 , and r̃ :=

2r
σ2 .

Then (2.7) is equivalent to

ϕ′′(x, 0) + d̃ϕ′(x, 0)− λ̃0ϕ(x, 0) + λ̃1ϕ(x, 1) = 0
for x > 0,(2.9a)

ϕ′′(x, 1) + d̃ϕ′(x, 1)− λ̃1ϕ(x, 1) + λ̃0ϕ(x, 0) = 0

ϕ′′(x, 0) + d̃ϕ′(x, 0)− λ̃0ϕ(x, 0) + λ̃1ϕ(x, 1) = 0
for x < 0.(2.9b)

ϕ′′(x, 1)− (r̃ − d̃)ϕ′(x, 1)− λ̃1ϕ(x, 1) + λ̃0ϕ(x, 0) = 0

A solution of (2.9), subject to the constraint (2.8), exists if and only if (2.6) holds
and takes the form

ϕ(x) =
(
ϕ(x, 0)
ϕ(x, 1)

)
=

a1

(
λ̃1

λ̃0

)
e−s1x + a2

(
−λ̃1

λ̃1

)
e−s2x for x ≥ 0,

a3

(
λ̃1

−ψ(s3)

)
es3x + a4

(
−λ̃1
ψ(s4)

)
es4x for x < 0,

(2.10)
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where ψ(s) = s2 + d̃s− λ̃0, s1 = d̃, s2 = d̃
2 + 1

2

[
d̃2 + 4(λ̃0 + λ̃1)

]1/2, and s3, s4 are the
positive roots of the polynomial

s3 − (r̃ − 2d̃)s2 −
[
(r̃ − d̃)d̃+ λ̃0 + λ̃1

]
s+

[
(r̃ − d̃)λ̃0 − d̃λ̃1)

]
,

ordered by 0 < s3 < s4. Also, the coefficients {a1, a2, a3, a4} are given by

a1 =
1
∆

{ (s4 − s3)s2

λ̃0 + λ̃1
+
s4 + s2

s3 + d̃
− s3 + s2

s4 + d̃

}
,

a2 =
1
∆

(s4 − s3)s2

λ̃0 + λ̃1
,

a3 =
1
∆
s4 + s2

s3 + d̃
,

a4 =
1
∆
s3 + s2

s4 + d̃
,

∆ =
(s4 − s3)(s2 − d̃)

d̃
+
λ̃0 + λ̃1

d̃

{s4 + s2

s3
− s3 + s2

s4

}
.

(2.11)

Note that if ϕx∗(·) denotes the density of the invariant measure corresponding to a
hedging-point policy as in (2.4), then

ϕx∗(x) = ϕ(x− x∗) .

Given a convex cost function, the average cost ρ(x∗) corresponding to such a policy
can be readily computed and is a convex function of the threshold value x∗.

In [5], Bielecki and Kumar have studied the mean square stability of the piecewise
deterministic system, i.e., (2.1) with σ = 0. They have shown that under (2.6) the
policy (2.5) is mean square stable, and have computed the optimal threshold value x∗

in (2.4). These results can be easily reproduced here by computing the limiting value
of the invariant distribution as σ → 0, which we do next. The roots s2, s3, and s4
have the following asymptotic dependence on σ:

s2 =
2d
σ2 +O(1), s3 =

(r − d)λ0 − dλ1

d(r − d)
+O(σ2), s4 =

2(r − d)
σ2 +O(1) .(2.12)

Thus, using (2.11), we obtain

a1, a2 =
d
[
(r − d)λ0 − dλ1

]
r(λ0 + λ1)2 +O(σ2),

a3 =
σ2

2

[
(r − d)λ0 − dλ1

]
d(r − d)(λ0 + λ1)

+O(σ4),

a4 =
σ2

2
d
[
(r − d)λ0 − dλ1

]
r2(r − d)(λ0 + λ1)

+O(σ4) .

(2.13)

Let

α0 :=
(r − d)λ0 − dλ1

d(r − d)
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and δz(x) denote the Dirac measure centered at z. Using (2.12) and (2.13), we can
show that as σ → 0, ϕx∗(·) converges weakly to a distribution with “density” ϕx∗(·),
given by

ϕx∗(x, i) =


λ1α0
λ0+λ1

eα0(x−x∗) for x ≤ x∗, i = 0,
dα0
λ0+λ1

δx∗(x) + dλ1α0
(r−d)(λ0+λ1)e

α0(x−x∗) for x ≤ x∗, i = 1,

0 for x > x∗.

Using, as in [5], a cost of the form

c(x) =
c+ + c−

2
|x|+ c+ − c−

2
x ,(2.14)

with c+ and c− positive constants, the average cost corresponding to the policy in
(2.4) takes the form

ρ(x∗) =
∑
i=0,1

∫ x∗

−∞
c(x)ϕx∗(x, i) dx

= c+x∗ − c+rλ1

(r − d)(λ0 + λ1)α0
+

rλ1(c+ + c−)
(r − d)(λ0 + λ1)α0

e−α0x
∗
.

In this manner, the results in [5] are reproduced exactly. One advantage of our
approach is that the class of admissible policies does not have to be restricted as is done
in [5], in order to guarantee the existence of solutions. With our method, optimality
is obtained with respect to the class of all nonanticipative policies. Furthermore, our
analysis shows that the stability of the zero-inventory policy is retained under additive
noise in (2.1). Let us also note that conditions for the optimality of the zero-inventory
policy under additive noise can be readily obtained for the cost in (2.14) using the
density in (2.10).

3. The mathematical model. We first show that the switching diffusion (1.1),
(1.2) can be constructed on a given probability space. Our presentation follows [13],
[14]; we repeat it here for the sake of clarity and completeness. Let U be a compact
metric space, S := {1, 2, . . . , N}, and

b =
[
b1, . . . , bd

]′ : Rd × S × U → Rd,
σ =

[
σij(·, ·)

]
: Rd × S → Rd×d,

λij : Rd × U → R, i, j ∈ S ,

λij ≥ 0 for i 6= j,
∑
j∈S

λij = 0 for any i ∈ S.

We also define the matrix Λ̃ : Rd × U → RN×N by

[
Λ̃(x, u)

]
ij

=

{
λij(x, u) , i 6= j,

0 , i = j .

We make the following assumptions which will be in effect throughout the paper.
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Assumption 3.1.
(i) The functions b(x, k, u), σij(x, k), and λij(x, u) are continuous and Lipschitz

in x, uniformly with respect to u, with a Lipschitz constant γ0. Let m0 denote the
least upper bound of ‖b(0, k, ·)‖∞, |σij(0, k)|, and ‖λij(0, ·)‖∞.

(ii) σij(·, ·) is uniformly elliptic; i.e., there exists a constant m > 0 such that
σ(·, k)σ′(·, k) ≥ mI.

(iii) The matrix Λ̃(x, u) is irreducible for all (x, u) ∈ Rd × U .
For a Polish space Y , B(Y ) denotes its Borel σ-field and P(Y ) the space of

probability measures endowed with the Prohorov topology, i.e., the topology of weak
convergence. Let M(Y ) be the set of all nonnegative, integer-valued, σ-finite measures
on B(Y ). Let Mσ(Y ) be the smallest σ-field on M(Y ) with respect to which all the
maps from M(Y ) to N

⋃
{∞} of the form µ 7→ µ(B) with B ∈ B(Y ) are measurable.

M(Y ) is assumed to be endowed with this measurability structure. Let V = P(U)
and b =

[
b1, . . . , bd

]′ : Rd × S × V → Rd be defined by

bi(·, ·, v) =
∫
U

bi(·, ·, u)v(du) .(3.1)

Similarly, for i, j ∈ S and v ∈ V, λij is defined as

λij(·, v) =
∫
U

λij(·, u)v(du) .(3.2)

For i, j ∈ S, x ∈ Rd, and v ∈ V, let ∆ij(x, v) be consecutive (with respect to the
lexicographic ordering on S ×S), left closed, right open intervals of the real line, each
having length λij(x, v). Define a function h : Rd × S × V × R −→ R by

h(x, i, v, z) =

{
j − i if z ∈ ∆ij(x, v),
0 otherwise.

(3.3)

Let
(
X(t), S(t)

)
be the (Rd ×S)-valued, controlled, switching diffusion process given

by the following stochastic differential equations:

dX(t) = b
(
X(t), S(t), v(t)

)
dt+ σ

(
X(t), S(t)

)
dW (t),

dS(t) =
∫
R
h
(
X(t), S(t−), v(t), z

)
p(dt, dz)

(3.4)

for t ≥ 0 with X(0) = X0, S(0) = S0, where
(i) X0 is a prescribed Rd-valued random variable.
(ii) S0 is a prescribed S-valued random variable.
(iii) W (·) =

[
W1(·), . . . ,Wd(·)

]′ is a d-dimensional standard Wiener process.
(iv) p(dt, dz) is an M(R+ × R)-valued Poisson random measure with intensity

dt×m(dz), where m is the Lebesgue measure on R.
(v) p(·, ·), W (·), X0, and S0 are independent.

(vi) v(·) is a V-valued process with measurable sample paths satisfying the
nonanticipativity property that the σ-fields Fvt and F

W,p
[t,∞) given by

F
v
t = σ{v(s), s ≤ t},

F
W,p
[t,∞) = σ

{
W (s)−W (t), p(A,B) : A ∈ B

(
[s,∞)

)
, B ∈ B(R), s ≥ t

}
are independent for each t ∈ R.
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A process v(·) satisfying (vi) is called an admissible (control) policy . If v(·) is a
Dirac measure, i.e., v(·) = δu(·), where u(·) is U -valued, then it is called an admissible
nonrandomized policy. An admissible policy is called feedback if v(·) is progressively
measurable with respect to the natural filtration Ft = {X(s), S(s), s ≤ t}.

A particular subclass of feedback policies is of special interest. A feedback policy
v(·) is called a (homogeneous) Markov policy if v(t) = ṽ

(
X(t), S(t)

)
for a measur-

able map ṽ : Rd × S → V. With an abuse in notation the map ṽ itself is called a
Markov policy. Let Π, ΠM , and ΠMD denote the sets of all admissible, Markov, and
nonrandomized Markov policies, respectively.

If
(
W (·), p(·, ·), X0, S0, v(·)

)
satisfying (i)–(vi) above are given on a prescribed

probability space (Ω,G, P ), then under Assumption 3.1, equation (3.4) admits an
almost sure unique strong solution [17, Chap. 3], and X(·) ∈ C(R+;Rd), S(·) ∈
D(R+;S), where D(R+;S) is the space of right continuous functions on R+ with left
limits taking values in S. However, if v(·) is a feedback policy, then there exists a
measurable map

f : R+ × C(R+;Rd)×D(R+;S) −→ V

such that for each t ≥ 0, v(t) = f
(
t,X(·), S(·)

)
and is progressively measurable with

respect to {Ft}. Thus, v(·) cannot be specified a priori in (3.4). Instead, one has to
replace v(t) by f

(
t,X(·), S(·)

)
, and (3.4) takes the form

dX(t) = b
(
X(t), S(t), f(t,X(·), S(·))

)
dt+ σ

(
X(t), S(t)

)
dW (t),

dS(t) =
∫
R
h
(
X(t), S(t−), f(t,X(·), S(·)), z

)
p(dt, dz) ,

(3.5)

for t ≥ 0 with X(0) = X0, S(0) = S0. In general, (3.5) does not even admit a weak
solution. However, if the feedback policy is Markov, then the existence of a unique
strong solution can be established.

IfK(Rd) is a vector space of real functions over Rd, we adopt the notationK(Rd×
S) to indicate the space

(
K(Rd)

)N , endowed with the product topology. For example,

Lp(Rd × S) :=
{
f : Rd × S → R : f(·, i) ∈ Lp(Rd) for all i ∈ S

}
,

and similarly, we define Ck(Rd × S), W k,p(Rd × S), etc. For f ∈ W 2,p
`oc (Rd × S) and

u ∈ U , we write

Luf(x, k) = Lukf(x, k) +
∑
j∈S

λkj(x, u)f(x, j) ,(3.6)

where

Luk =
1
2

d∑
i,j,`=1

σi`(x, k)σj`(x, k)
∂2

∂xi∂xj
+

d∑
j=1

bj(x, k, u)
∂

∂xj
(3.7)

and, more generally, for v ∈ V,

Lvf(x, k) =
∫
U

Luf(x, k)v(du) .(3.8)

The following result is proved in [14].
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THEOREM 3.1. Under a Markov policy v, (3.4) admits an almost sure unique
strong solution such that

(
X(·), S(·)

)
is a strong Feller process with differential gen-

erator Lv.
A Markov policy v is called stable if the corresponding process

(
X(·), S(·)

)
is

positive recurrent. In this case, the process has a unique invariant probability measure,
denoted by ηv ∈ P(Rd × S). The uniqueness of ηv is guaranteed by Assumption 3.1.
We assume that the set of stable Markov policies is nonempty.

The optimization problem. Let c : Rd × S × U → R+ be the cost function.
The following assumption on the cost, c, will be in effect throughout the paper.

Assumption 3.2. For each i ∈ S, c(·, i, ·) is continuous.
We define c : Rd × S × V → R+ by

c(x, i, v) =
∫
U

c(x, i, u)v(du) .(3.9)

Let v(·) be an admissible policy and
(
X(·), S(·)

)
the corresponding process. The

pathwise (long-run) average cost incurred under v(·) is

lim sup
T→∞

1
T

∫ T

0
c
(
X(t), S(t), v(t)

)
dt .(3.10)

We wish to a.s. minimize (3.10) over all admissible policies. Our goal is to establish
the existence of a stable Markov policy which is a.s. optimal. In general, this is not
the case, as the following simple counterexample shows [6]. Let c(x, i) = exp(−‖x‖2).
Then for every stable Markov policy the average cost is positive a.s., while we can find
an unstable Markov policy for which the average cost is a.s. zero, making it an optimal
policy. We want to rule out this possibility, as stability is a very desirable property.
We carry out our study under two alternate sets of hypotheses: (a) a condition on
the cost which penalizes unstable behavior, (b) a blanket stability condition which
implies that all Markov policies are stable. We describe these conditions in sec-
tion 6.

4. Recurrence, ergodicity, and harmonic functions of switching diffu-
sions. Due to the interaction between the continuous and discrete components, the
study of recurrence and ergodicity of switching diffusions is quite involved. Let v be
a Markov policy which will be fixed throughout this section unless explicitly stated
otherwise. Let P v : R+ × Rd × S → P(Rd × S) denote the transition function of the
corresponding process

(
X(·), S(·)

)
. Also P vx,i and Evx,i denote the probability mea-

sure and the expectation operator, respectively, on the canonical space of the process(
X(·), S(·)

)
starting at (x, i) ∈ Rd × S. The following result plays a crucial role in

recurrence.
LEMMA 4.1. For any (t, x, i) ∈ R+×Rd×S, the support of P v(t, x, i; ·) is Rd×S.
Proof. For each i ∈ S, let τi denote the sojourn time of S(t) in state i. Then

P vx,i
(
τi > t

)
= Evx,i

[
exp
(∫ t

0
λii
(
X(s), v(X(s), S(s))

)
ds
)]
.

Let λvij(s) := λij
(
X(s), v(X(s), S(s))

)
, IA,j(s) := I{X(s) ∈ A,S(s) = j}, and P vi be

the transition function of the diffusion corresponding to Lvi , i.e., the diffusion with no
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switching and S(t) ≡ i. For A ∈ B(Rd), i, j ∈ S, and t > 0,

P v
(
t, x, i, A× {j}

)
= Evx,i

[
IA,j(t)

∣∣ τi > t
]
P vx,i

(
τi > t

)
+ Evx,i

[
IA,j(t)I{τi < t}

]
= Evx,i

[
exp
(∫ t

0
λvii(s) ds

)]
P vi (t, x, A)δij

+ Evx,i

[∫ t

0
−λvii(s) exp

(∫ s

0
λvii(s

′)ds′
)
ds∫

Rd
P vi (s, x, dy)

∑
k 6=i

λvik(s)P v
(
t− s, y, k, A× {j}

)]

= Evx,i

[
exp
(∫ t

0
λvii(s) ds

)]
P vi (t, x, A)δij

+
∑
k 6=i

∫ t

0
Evx,i

[
−λvii(s)λvik(s) exp

(∫ s

0
λvii(s

′)ds′
)]

∫
Rd
P vi (s, x, dy)P v

(
t− s, y, k, A× {j}

)
ds .

(4.1)

Define the transition matrix Π̃v by

[Π̃v(t, x, A)]ij = P v
(
t, x, i, A× {j}

)
.

Then we can suitably define the matrix measures

Γv1,Γ
v
2 : R× Rd →

(
P(Rd)

)N×N
with Γv1(t, x, A) positive, diagonal and Γv2(t, x, A) nonnegative, irreducible (by As-
sumption 3.1 (iii)), for all (t, x, A) ∈ R+ × Rd × B(Rd), provided A has positive
Lebesgue measure, so as to write (4.1) in the form

Π̃v(t, x, A) = Γv1(t, x, A) +
∫ t

0

∫
Rd

Γv2(s, x, dy)Π̃v(t− s, y, A)ds .(4.2)

The desired result follows from (4.2), using the irreducibility of Γv2(t, x, A).
Let τii, τj be the stopping times defined as follows:

τii = inf
{
t > 0 : S(t) = i and S(t′) 6= i, for some 0 < t′ < t

}
,(4.3)

τj = inf
{
t > 0 : S(t) = j

}
.(4.4)

Let D ⊂ Rd be a bounded open set and J a subset of S. Define

τD,J = inf
{
t ≥ 0 :

(
X(t), S(t)

)
/∈ D × J

}
,(4.5)

τD = inf
{
t ≥ 0 : X(t) /∈ D

}
.(4.6)

Using (4.2) and well-known arguments in Markov processes [12, Vol. I, p. 111] the
following results can be proved.

LEMMA 4.2. If τ is a stopping time of the form τii, τj, τD,J , or τD, as defined in
(4.3)–(4.6), then, for each compact set K ⊂ Rd,

sup
v∈ΠM , x∈K

Evx,i[τ ] <∞ .
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It is well known that harmonic functions play an important role in the study
of recurrence and ergodicity of Markov processes [3]. Therefore, we now turn to the
analysis of some properties of the harmonic functions of the process

(
X(·), S(·)

)
under

the Markov policy v. The function f is called Lv-harmonic in D if it is bounded on
compact subsets of D, and for all x ∈ D, i ∈ S,

f(x, i) = Evx,if
(
X(τV,J), S(τV,J)

)
(4.7)

for every neighborhood V of x having compact closure V in D and every subset J ⊂ S
containing i. It is clear that if f is Lv-harmonic then

f(x, i) = Evx,if
(
X(τV ), S(τV )

)
.(4.8)

On the other hand, if (4.8) holds, then by conditioning on FτV,J we obtain

f(x, i) = Evx,i

[
Ev
[
f
(
X(τV ), S(τV )

) ∣∣ FτV,J ]]
= Evx,i

[
EvXτV,J ,SτV,J

[
f
(
X(τV − τV,J), S(τV − τV,J)

)]]
= Evx,i

[
f
(
X(τV,J), S(τV,J)

)]
,

concluding that (4.7) and (4.8) are actually equivalent.
LEMMA 4.3. Let D ⊂ Rd be open. Then we have the following:

(i) Every Lv-harmonic function in D is continuous in D.
(ii) If Lvf = 0 in D and f ∈W 2,p(D×S), then f is Lv-harmonic. Conversely,

if f is Lv-harmonic and f ∈W 2,p
`oc (D × S), then Lvf = 0 in D.

(iii) (Maximum principle) Let D be connected and f ≥ 0 and Lv-harmonic in
D. Then f is either strictly positive in D × S or identically zero.

Proof. The proof of (i) is standard [3], [12, Vol. II, Chap. 13], and (ii) can easily
be proved using the generalized Ito formula [18]. Let x0 ∈ D, i0 ∈ S, and r > 0 be
such that f(x0, i0) = 0 and B(x0, r) ⊂ D, where B(x0, r) =

{
x ∈ Rd : ‖x−x0‖ ≤ r

}
.

Then

0 = f(x0, i0) =
∑
j∈S

∫
∂B(x0,r)

f(y, j)P vx0,i0

(
X(τB(x0,r)) ∈ dy, S(τB(x0,r)) = j

)
.

Then, by Lemma 4.1, we can show using standard arguments [16, Chap. 6] that the
support of the measure P vx0,i0

(
X(τB(x0,r)) ∈ dy, S(τB(x0,r)) = j

)
is ∂B(x0, r) × S.

Hence,

f(y, j) = 0, for all y ∈ ∂B(x0, r), j ∈ S .

It follows that the set
{
y : f(y, j) = 0, j ∈ S

}
is open in D, and since D is connected,

the result follows.
We next state Harnack’s inequality for Lv-harmonic functions, which extends a

very important result in partial differential equations. This inequality plays a crucial
role in proving the existence of a solution to the HJB equation via the vanishing
discount method, as is done in section 6. As far as we know, this result is not known
in the literature on partial differential equations. The detailed proof of Harnack’s
inequality is quite elaborate and can be found in the appendix. The proof follows the
method introduced for diffusions by Krylov and Safonov [19] for deriving estimates
for the oscillation of a harmonic function. For the system of coupled elliptic operators
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characterizing switching diffusions, considerable complications arise in trying to follow
the same methodology due to the vector-valued nature of the Lv-harmonic functions.
A crucial step in the proof is “coupling” together the oscillations of the distinct
components of the harmonic function. The irreducibility of the matrix Λ̃ is essential
in accomplishing this task.

THEOREM 4.1 (Harnack’s inequality). Let Ω ⊂ Rd be a bounded domain and
K ⊂ Ω a closed set. There exists a constant C > 0, depending only on Ω, K,
the dimension d, N , the bounds m,m0, and the Lipschitz constant γ0 introduced in
Assumption 3.1, such that for any nonnegative function f ∈W 2,p

`oc (Ω×S), p ∈ [1,∞),
satisfying Lvf = 0 in Ω × S, for some Markov policy v,

f(x, i) ≤ Cf(y, j) ∀ x, y ∈ K ∀ i, j ∈ S .

We now discuss the recurrence properties of switching diffusions. Our treatment
closely follows [3], so we skip the details in several places. A point (x, i) ∈ Rd × S is
said to be recurrent if, given any ε > 0,

P vx,i
(
X(tn) ∈ B(x, ε), S(tn) = i, for a sequence tn ↑ ∞

)
= 1.(4.9)

A point (x, i) is transient if

P vx,i
(
‖X(t)‖ → ∞, as t→∞

)
= 1.(4.10)

If all points of the switching diffusion are recurrent, then it is called recurrent. A
transient switching diffusion is similarly defined. Note that the discrete component of
the process has been ignored in the definition (4.10). The reason for doing so is that,
in view of Assumption 3.1 (iii), we can show that, provided the continuous component
visits a bounded set infinitely often with probability 1, then the discrete component
is recurrent. More generally, a switching diffusion exhibits a dichotomy in that it is
either recurrent or transient, as we will later show.

LEMMA 4.4. The following statements are equivalent.
(i) The switching diffusion is recurrent;
(ii) P vx,i

(
X(t) ∈ D, S(t) = j, for some t ≥ 0

)
= 1, for any open set D ⊂ Rd

and any j ∈ S.
Proof. We prove (i) → (ii) (the converse is easier). We distinguish two cases.
Case 1. Let x ∈ D, i 6= j. Let B = B(x, ε) and B1 be bounded open sets such

that B ⊂ B1 and B1 ⊂ D. Let

η1 = inf
{
t ≥ 0 : X(t) ∈ ∂B1

}
,

and inductively, for n = 1, 2, . . . ,

η2n = inf
{
t > η2n−1 : X(t) ∈ ∂B

}
,

η2n+1 = inf
{
t > η2n : X(t) ∈ ∂B1

}
.

Then, by recurrence, ηn <∞, P vx,i a.s. Note that

y, ` 7→ P vy,`
(
τ(B×{j})c < τB1

)
is Lv-harmonic in B1 × S and not identically zero. Therefore, by Lemma 4.3,

inf
(y,`)∈B×S

P vy,`
(
τ(B×{j})c < τB1

)
> δ1 > 0(4.11)
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for some δ1 > 0. Next we define

A0 =
{
S(t) = j for some t ∈ [0, η1)

}
,

An =
{
S(t) = j for some t ∈ [η2n, η2n+1)

}
.

By (4.11) and the strong Markov property,

P vx,i
(
Ac0
)
≤ (1− δ1), P vx,i

( n⋂
k=0

Ack

)
≤ (1− δ1)n+1.

Now,

P vx,i
(
X(t) ∈ D, S(t) = j for no t ≥ 0

)
≤ P vx,i

(
X(t) ∈ B1, S(t) = j for no t ≥ 0

)
≤ lim
n→∞

P vx,i

( n⋂
k=0

Ack

)
= 0.

Case 2. Suppose x /∈ D and let B = B(x, ε), B1, and D1 be bounded open sets
such that B

⋂
D = ∅, B1 ⊂ D, and B

⋃
B1 ⊂ D1. Let

η′1 = τD1 ,

η′2n =
{
t > η′2n−1 : X(t) ∈ ∂B

}
,

η′2n+1 =
{
t > η′2n : X(t) ∈ ∂D1

}
.

Let δ2 > 0 be such that

inf
(y,`)∈∂D1×S

P vy,`
(
τ(B1×{j})c < τ(B×{i})c

)
> δ2 > 0.

Define

A′n =
{
X(t) ∈ B1, S(t) = j for some t ∈ [η2n−1, η2n)

}
.

Then, as in the previous case,

P vx,i
(
X(t) ∈ D, S(t) = j for no t ≥ 0

)
= 0.

In view of Lemma 4.4, the following results can be proved the same way as in [3],
[4].

LEMMA 4.5. The following statements are equivalent.
(i) The switching diffusion is recurrent.
(ii) P vx,i

(
X(t) ∈ D for some t ≥ 0

)
= 1 for all x ∈ Rd, i ∈ S, and any nonempty

open set D.
(iii) There exists a compact set K ⊂ Rd such that P vx,i

(
X(t) ∈ K for some t ≥

0
)

= 1 for all (x, i) ∈ Rd × S.
(iv) P vx,i

(
X(tn) ∈ D, for a sequence tn ↑ ∞

)
= 1 for all x ∈ Rd, i ∈ S, and any

nonempty open set D.
(v) There exists a point z ∈ Rd, a pair of numbers r0, r1, 0 < r0 < r1, and a

point y ∈ ∂B(z, r1) such that P vy,i
(
τB(z,r0)c <∞

)
= 1 for any i ∈ S.
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THEOREM 4.2. For any Markov policy, the switching diffusion is either recurrent
or transient.

A recurrent switching diffusion admits a unique (up to a constant multiple) σ-
finite invariant measure. The switching diffusion is called positive recurrent if it is
recurrent and admits a finite invariant measure.

A Markov policy v is called stable if the corresponding process is positive recur-
rent; the corresponding invariant probability measure is denoted by ηv.

As is well known from the general theory of dynamical systems, even if Lvi gener-
ates a positive recurrent diffusion, for each i ∈ S, and the parametric Markov chain
is ergodic, there is no reason to expect that the policy v is stable; i.e., the switching
diffusion is positive recurrent. Indeed, as the following example shows, the hybrid
process can be anything from transient to positive recurrent.

Example 4.1. We first consider a piecewise deterministic system with state de-
pendent Markovian switching. Let E+, E− ⊂ R2 be defined as follows:

E+ =
{

(x1, x2) : x1 > 0
}⋃{

x2 ≤ 0, x1 = 0
}
,

E− =
{

(x1, x2) : x1 < 0
}⋃{

x2 ≥ 0, x1 = 0
}
.

Let

A0 =
[

2 1
−1 2

]
, A1 =

[
−3 1
−1 −3

]
.

Consider two stable dynamical systems D0 and D1 defined by

D0 : ẋ =

{
A0x, x ∈ E+,

A1x, x ∈ E−,

and

D1 : ẋ =

{
A1x, x ∈ E+,

A0x, x ∈ E−.

For δ > 0, let Z be a (parameterized) Markov chain taking values in {0, 1} with rate
matrix [

−δ δ
1
δ − 1

δ

]
on E+ and

[
−1
δ

1
δ

δ −δ

]
on E−

and consider the dynamical system

D := DZ .

If we define η by

η =

{
Z, x ∈ E+,

1− Z, x ∈ E− ,

then η is Markovian with rate matrix[
−δ δ
1
δ − 1

δ

]
,
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and D can represented as

ẋ = Aηx.

Define

T0(t) = {τ ≤ t : η(τ) = 0},
T1(t) = {τ ≤ t : η(τ) = 1},

and λ0(t) = m(T0(t)), λ1(t) = m(T1(t)), where m is the Lebesgue measure on R+.
Then, the solution to D can be expressed as

x(t) = exp
(
2λ0(t)− 3λ1(t)

) [cos t − sin t
sin t cos t

]
x(0).

By the ergodic theory of Markov processes [25, Chap. 1], as t→∞,

λ1(t) ∼ δ2t

1 + δ2 , λ0(t) ∼ t

1 + δ2 .

Thus,

2λ0(t)− 3λ1(t) ∼ 2− 3δ2

1 + δ2 t .

Therefore, D is stable for δ <
√

2
3 and unstable for δ ≥

√
2
3 . The matrices A0, A1

can be suitably altered to exhibit various other possibilities.
Now let X(t) be defined as dX(t) = Aη(t)X(t)dt + σdW (t), where W (·) is a

standard two-dimensional Wiener process and σσ′ is a 2× 2 positive definite matrix
with constant entries. Then it is easily shown that the stability (instability) of D
implies the positive recurrence (transience) of X(t). Note that in this example the
drift is unbounded. However, in the study of recurrence, boundedness of the drift can
be replaced by local boundedness.

Remark 4.1. In view of the above example, it is clear that two positive recurrent
processes with suitable switching may result in a transient process. Similarly, the
random combination of two transient processes may give rise to a positive recurrent
process. This phenomenon can be exploited in many practical situations such as fault-
tolerant control systems, flexible manufacturing systems, etc. In a control system with
multiple modes, we can trade off the stability of some (or all) nodes to gain a desired
degree of flexibility. Addition of a few redundant nodes and/or the incorporation of a
suitable switching mechanism among the nodes could result in global stability of the
system, thereby gaining flexibility without sacrificing reliability.

A general criterion for positive recurrence of a switching diffusion is provided by
the following theorem.

THEOREM 4.3. Let z, r0, r1 be as in Lemma 4.5(v). Then the switching diffusion
is positive recurrent if

sup
y∈∂B(z,r1),i∈S

Evy,i
[
τB(z,r0)c

]
<∞ .(4.12)

The proof is standard [3]. Note that it may be very difficult to verify (4.12) for
general b, σ, λ. One usually verifies (4.12) by constructing a Lyapunov function [3].
For switching diffusions such a construction seems difficult, since it involves solving
a system of ordinary differential equations in closed form. However, we present some
criteria for positive recurrence and discuss some implications.
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(C1) There exists a w ∈ C2(Rd × S), w ≥ 0, such that
(i) w(x, i)→∞, as ‖x‖ → ∞.
(ii) For each v ∈ ΠM , Evx,i

[
w
(
X(t), S(t)

)]
and Evx,i

∣∣Lvw(X(t), S(t)
)∣∣

are locally bounded.
(iii) There exists p > 0, q > 0 such that Luw(x, i) ≤ p − qw(x, i), for

each u ∈ U .
(C2) There exists a C2 function w : Rd × S → R+ such that

(i) lim‖x‖→∞ w(x, i) = +∞.
(ii) There exists a > 0 and ε > 0 such that for ‖x‖ > a, Luw(x, i) < −ε,

for all u ∈ U , i ∈ S, and ‖∇w(x, i)‖2 ≥ m−1, where m is the constant in
Assumption 3.1 (ii).

(iii) w(x, i) and ‖∇w(x, i)‖ have polynomial growth.
THEOREM 4.4. Under either (C1) or (C2), the process

(
X(·), S(·)

)
under any

Markov policy v is positive recurrent. Thus, all Markov policies are stable.
Proof. Under (C1), the result follows from [25, Theorem 25, p. 70]. Under (C2),

the technique of the proof of [6, Lemma 6.2.2, p. 150] can be closely paralleled to
draw the desired conclusion.

Remark 4.2. If σ ≡ I and b is such that 〈b(x, i, u), x〉 < −(d + 1)/2 for all i ∈ S
and ‖x‖ sufficiently large, then w(x) = ‖x‖2 is a Lyapunov function for the system.
We can construct several examples using this idea. Note that in this case all the
diffusion generators Lui give rise to positive recurrent diffusions and have a common
Lyapunov function (i.e., one which is independent of i). If all Lui have a common
Lyapunov function, then switching does not destabilize the hybrid system. Of course,
this is a very strong condition and is rarely met.

5. Existence of an optimal policy. In this section we establish the existence
of a stable, nonrandomized Markov optimal policy under certain conditions. We follow
the methodology developed in [6], [8], [9], [10] for controlled diffusions. For switching
diffusions, similar techniques carry through with some extra effort. Therefore, we
present the main ideas, skipping some of the technical details.

Let ΠSM and ΠSMD denote the set of stable Markov and stable nonrandomized
Markov policies, respectively. Since we are searching for an optimal policy in ΠSMD,
it is natural to assume that ΠSM is nonempty. Let v ∈ ΠSM . Then

ρv :=
∑
i∈S

∫
Rd
c
(
x, i, v(x, i)

)
ηv(dx, i)(5.1)

= lim
T→∞

1
T

∫ T

0
c
(
X(s), S(s), v(X(s), S(s))

)
ds a.s.

Let

ρ∗ := inf
v∈ΠSM

{
ρv
}
.(5.2)

We assume that ρ∗ < ∞. We now state a condition on the cost function which
penalizes unstable behavior.

(C3) Assume that for each i ∈ S,

lim inf
‖x‖→∞

{
inf
u∈U

c(x, i, u)
}
> ρ∗.(5.3)

Intuitively, (5.3) penalizes trajectories lying outside the set infu∈U
{
c(x, i, u)

}
≤

ρ∗, forcing an optimal process to spend a nonvanishing fraction of time in a bounded



1968 M. GHOSH, A. ARAPOSTATHIS, AND S. MARCUS

neighborhood of this compact set. This behavior results in the stability of every
optimal policy. If c(x, i, u) = K(‖x‖) for some increasing function K : R+ → R+ then
it can be easily seen that (5.3) holds. Such cost functions arise quite often in practice.
Condition (C3) is referred to as the near-monotonicity condition [6, Chap. 6].

For v ∈ ΠSM (or ΠSMD), we define the ergodic occupation measure µ[v] ∈ P(Rd×
S × U) as

µ[v](dx, i, du) = ηv(dx, i)v(x, i)(du).(5.4)

Let

I1 =
{
µ[v] : v ∈ ΠSM

}
,

I2 =
{
µ[v] : v ∈ ΠSMD

}
.

The following results can be proved as in [10], [14].
LEMMA 5.1. The sets I1, I2 are closed, I1 is convex, and the set of extreme points

of I1 lies in I2.
Let v(·) be an arbitrary admissible policy. Define the P(Rd × S × U)-valued

empirical process µt(v) for t > 0 by

µt(v)
(
A× {i} ×B

)
=

1
t

∫ t

0
I
{
X(s) ∈ A,S(s) = i

}
v(s)(B) ds ,(5.5)

with A ∈ B(Rd), B ∈ B(U), and i ∈ S. Let Rd = Rd
⋃
{∞} be the one-point

compactification of Rd. We identify µt(v) with an element of P(Rd × S × U) by
assigning zero mass at {∞} × S × U . Since P(Rd × S × U) is compact, {µt(v)},
viewed as a P(Rd × S × U)-valued process, converges to a sample path-dependent
compact limit set in P(Rd × S × U). Note that any element µ ∈ P(Rd × S × U) can
be decomposed as

µ(C) = δµ µ
′(C⋂ (Rd × S × U)

)
+ (1− δµ)µ′′

(
C
⋂

({∞} × S × U)
)
,(5.6)

for C ∈ B
(
Rd × S × U

)
. In this decomposition δµ ∈ [0, 1] is always uniquely defined,

and µ′ ∈ P(Rd×S ×U) (respectively, µ′′ ∈ P({∞}×S ×U)) is also unique if δµ > 0
(respectively, δµ < 1). We may render µ′, µ′′ unique at all times by imposing an
arbitrary fixed choice thereof when δµ = 0, respectively, 1.

Combining the results in [20] with the technique in [6, Lemma 6.1.1, p. 144], we
establish the following lemma.

LEMMA 5.2. If µ ∈ P(Rd × S) satisfies∑
i∈S

∫
Rd
Lvf(x, i)µ(dx, i) = 0 ∀ f ∈ H(5.7)

for some Markov policy v, where H is a dense subset of C2
0 (Rd × S), then µ = ηv.

Proof. Using the usual approximation procedure we can show that (5.7) is true
for all f ∈ C2

b (Rd × S). Let
(
X(·), S(·)

)
be the process corresponding to the policy

v with initial law µ. The law µt of this process, for t > 0, satisfies the Kolmogorov
forward equation∑
i∈S

∫
Rd
f(x, i)µt(dx, i) =

∑
i∈S

∫
Rd
f(x, i)µ(dx, i) +

∑
i∈S

∫ t

0

∫
Rd
Lvf(x, i)µs(dx, i) ds
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for all f ∈ C2
b (Rd × S). The uniqueness of the solution to the above equation is

established in [26]. Since µt ≡ µ is a solution to (5.7), it follows that µ = ηv.
We disintegrate µ′ ∈ P(Rd × S × U) as

µ′(dx, i, du) = µ∗(dx, i)vµ(x, i)(du) ,(5.8)

where µ∗ is the marginal of µ′ on Rd×S and vµ is a version of the regular conditional
law defined as µ∗ a.s. We select an arbitrary version and keep it fixed henceforth.
Using the martingale stability theorem, the following characterization of the limit
points of {µt(·)} can be established as in [6, Lemma 6.1.2].

LEMMA 5.3. Outside a set of zero probability, each limit point µ of {µt(·)} for
which δµ > 0 satisfies µ∗ = ηvµ .

We now establish the existence of an optimal policy under (C3). Since the proof
closely follows the steps in [6, Theorem 6.1.1], we only present a brief sketch.

THEOREM 5.1. Under (C3), there exists a stable Markov policy which is a.s.
optimal.

Proof. Let vn ∈ ΠSM be such that∫
c dµ[vn] ↓ ρ∗.

We extend µ[vn] to P(Rd × S × U) in the usual manner and denote it also by µ[vn].
Let µ∞ be a limit point of {µ[vn]} and denote v∞ = vµ∞ , where vµ∞ is obtained from
µ∞ by the decomposition in (5.6) and (5.8). Then, for f ∈ C2

0 (Rd × S),∑
i∈S

∫
Rd
Lvnf(x, i)ηvn(dx, i) =

∑
i∈S

∫
Rd×U

Luf(x, i)µ[vn](dx, i, du) = 0 .

Hence, ∑
i∈S

∫
Rd×U

Luf(x, i)µ∞(dx, i, du) = 0 .

Thus, by Lemmas 5.2 and 5.3, µ∗∞ = ηv∞ , if δµ∞ > 0. Using (C3), we can demonstrate
as in [6, Lemma 6.1.3] that this is indeed the case. Therefore,

min
v∈ΠSM

∫
c dµ[v] =

∫
c dµ[v∞] = ρ∗.

Finally, following the technique in [6, Lemma 6.1.3], we can now show that for an
arbitrary policy u,

lim inf
T→∞

1
T

∫ T

0
c
(
X(s), S(s), u(s)

)
ds ≥ ρ∗ a.s.,

which establishes the optimality of v∞ in a much stronger sense.
THEOREM 5.2. Under (C3) there exists a v∗ ∈ ΠSMD which is a.s. optimal.
Proof. We have already established the existence of v∞ ∈ ΠSM which is a.s.

optimal. We argue as in [7, p. 58]. Embed I1 in P(Rd × S × U) by assigning zero
mass at {∞} × S × U . Let I1 denote the closure of I1 in P(Rd × S × U). Then
I1 is a compact convex set. By Choquet’s theorem [24], each element µ of I1 is the
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barycenter of a probability measure m supported on the set of extreme points of I1.
Now, each extreme point of I1 must be an extreme point of I1, since otherwise it
would be assigning a strictly positive mass to {∞} × S × U . If m assigns a strictly
positive mass to extreme points of I1, which are not extreme points of I1, then µ must
assign a strictly positive probability to {∞}×S×U , which is not true. Thus, m must
be supported on the set Ie1 consisting of the extreme points of I1. In particular,∫

c dµ[v∞] =
∫
Ie1

(∫
c dν

)
m(dν) .

It follows that there exists a v∗ ∈ ΠSMD such that∫
c dµ[v∞] =

∫
c dµ[v∗],

and since v∞ ∈ ΠSM is optimal, the optimality of v∗ ∈ ΠSMD follows.
We now investigate the existence of an optimal Markov policy under the blanket

stability conditions in (C1)–(C2).
LEMMA 5.4. Under either (C1) or (C2), for any admissible policy v ∈ Π, the

empirical process {µt(v)} defined in (5.5) is tight.
The proof of Lemma 5.4 closely follows the arguments in the proof of [6, Theorem

6.2.2]. Topologize the space ΠM as in [6], [14]. We now state another result, the proof
of which closely follows [14, Theorem 3.3, Lemma 4.4].

LEMMA 5.5. Under either (C1) or (C2), the sets I1, I2 are compact in total
variation and the map v 7→ µ[v] (as defined in (5.4)) is continuous.

THEOREM 5.3. Under either (C1) or (C2), there exists a v∗ ∈ ΠSMD which is
a.s. optimal.

Proof. First note that under (C1) or (C2), ΠSM = ΠM and ΠSMD = ΠSD. By
Lemma 5.5, there exists a v ∈ ΠSM such that

min
v∈ΠSM

∫
c dµ[v] =

∫
c dµ[v].

In view of Lemma 5.4 and the decomposition and disintegration of the measure as
defined in (5.6), (5.8), it suffices to confine our attention to ΠSM for optimality. Thus,
the existence of an a.s. optimal v∗ ∈ ΠSMD then follows via Choquet’s theorem as in
Theorem 5.2.

6. HJB Equations. In this section, we study the HJB equations and char-
acterize the optimal policy in terms of their solution. We introduce the following
condition:

(C4) The cost function c is bounded, continuous, and Lipschitz in its first argument
uniformly with respect to the third.

We follow the vanishing discount approach; i.e., we derive the HJB equations
for the ergodic criterion by taking the limit of the HJB equations for the discounted
criterion as the discount factor approaches zero. The results and the broad outline of
these proofs follow those of [9]. However, they differ in important technical details.

Let Vα(x, i) denote the discounted value function with discount factor α > 0; i.e.,

Vα(x, i) = inf
v∈Π

Evx,i

[∫ ∞
0

e−αtc
(
X(t), S(t), u(t)

)
dt

]
, x ∈ Rd, i ∈ S .(6.1)

The following result is proved in [14].
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THEOREM 6.1. Under (C4), Vα is the unique solution in C2
(
Rd×S

)⋂
Cb
(
Rd×S

)
of

inf
u∈U

{
LuVα(x, i) + c(x, i, u)

}
= αVα(x, i).(6.2)

For i ∈ S, define

Gi :=
{
x ∈ Rd : inf

u∈U
c(x, i, u) ≤ ρ∗

}
,

G :=
⋃
i∈S

Gi .(6.3)

Observe that by (C3), G is compact.
The following result plays a very crucial role.
LEMMA 6.1. Under (C3) and (C4), there exists α0 ∈ (0, 1) such that if α ∈ (0, α0],

inf(x,i)∈Rd×S Vα(x, i) is attained on the set G as defined in (6.3).
Proof. Let vα ∈ ΠMD be an optimal policy for the discount factor α. By the

results of [14], for i ∈ S,
(6.4)

d∑
k=1

bk(x, i, vα(x, i))
∂Vα(x, i)
∂xk

+
∑
j∈S

λij(x, vα(x, i))Vα(x, j) + c(x, i, vα(x, i))

= inf
u∈U


d∑
k=1

bk(x, i, u)
∂Vα(x, i)
∂xk

+
∑
j∈S

λij(x, u)Vα(x, j) + c(x, i, u)

 a.e.

We let ‖xn‖ → ∞ in Rd and fix i ∈ S. For given α, let
(
Xn(·), Sn(·)

)
be the process

under the policy vα with Xn(0) = xn and Sn(0) = i. We can show as in [21] that
{Xn(·) − xn} are tight as C

(
[0,∞);Rd

)
-valued random variables. Dropping to a

subsequence and using Skorohod’s theorem [16, p. 9] we may assume that they are
defined on a common probability space and converge a.s. in C

(
[0,∞);Rd

)
to some

process Y (·). Hence, ‖Xn(t)‖ → ∞ uniformly in t ∈ [0, T ] for each T < ∞, a.s. By
(C3), there exist ε > 0 and M > 0, such that

inf
u∈U

{
c(x, i, u)

}
> ρ∗ + 2ε if ‖x‖ > M , ∀ i ∈ S .

We select a constant Tα such that

(ρ∗ + 2ε)
(
1− e−αTα

)
> ρ∗ + ε;

i.e., e−αTα < ε
(ρ∗+2ε) . Since

Vα(xn, i) ≥ Evαxn,i
[∫ Tα

0
e−αtc

(
Xn(t), Sn(t), vα(Xn(t), Sn(t))

)
dt

]
,

it follows that

Vα(xn, i) >
ρ∗ + ε

α
(6.5)

for n sufficiently large. On the other hand, by a standard Tauberian theorem,

lim sup
α→0

{
αVα(x, i)

}
≤ ρ∗ ∀ (x, i) ∈ Rd × S .(6.6)
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Fix x0 ∈ Rd. By (6.6), there exists α0 = α0(x0) such that Vα(x0, ·) ≤ (ρ∗ + ε
2 )/α,

for all α ≤ α0. Hence, it follows from (6.5) that if α ≤ α0, then infx∈Rd Vα(x, i) is
attained in a set

{
x ∈ Rd : ‖x‖ ≤ R(α)

}
for all i ∈ S. Let

xα,i := →
x∈Rd

arg min
{
Vα(x, i)

}
, (xα, iα) :=→

i∈S
arg min

{
Vα(xα,i, i)

}
.

Using (6.2) and the fact that, at a minimum, the gradient of Vα(·, i) vanishes and its
Hessian is positive semidefinite, we have, for α ≤ α0,

inf
u∈U

{
c
(
xα,i, i, u

)
+
∑
j∈S

λij
(
xα,i, u

)
Vα
(
xα,i, j

)}
≤ αVα(xα,i, i).(6.7)

In turn, from (6.7),

inf
u∈U

{
c(xα, iα, u)

}
≤ αVα(xα, iα) ∀ α ≤ α0 .(6.8)

We claim that αVα(xα, iα) ≤ ρ∗ for all α > 0. Indeed, for any v ∈ ΠSM ,

Vα(x, i) ≤ Evx,i
[∫ ∞

0
e−αtc

(
X(t), S(t), v(X(t), S(t))

)
dt

]
∀ (x, i) ∈ Rd × S .(6.9)

Integrating both sides of (6.9) with respect to ηv(dx, i) and using Fubini’s theorem,
we obtain ∑

i∈S

∫
Rd
Vα(x, i)ηv(dx, i) ≤

ρv
α
.

Hence,

Vα(xα, iα) ≤ ρ∗

α
.(6.10)

From (6.8),

inf
u∈U

{
c(xα, iα, u)

}
≤ ρ∗,

concluding that (xα, iα) ∈ G× S.
LEMMA 6.2. Under (C3) and (C4), the map (x, y, i, j) 7→ |Vα(x, i) − Vα(y, j)| is

bounded on compact subsets, uniformly in α ∈ (0, α0].
Proof. Let V α(·, ·) := Vα(·, ·) − Vα(xα, iα). In view of Lemma 6.1, it suffices to

prove that V α is uniformly bounded on compacta. By (6.2) and (6.4),

LvαVα(x, i) = αVα(x, i)− c
(
x, i, vα(x, i)

)
a.e.

Let R > 0 be large enough so that G ⊂ B(0, R). Let
(
X(·), S(·)

)
be the process under

the policy vα and define τ = inf
{
t ≥ 0 : X(t) /∈ B(0, 2R)

}
. Then for x ∈ B(0, R),

using the strong Markov property,

Vα(x, i) = Evαx,i

[∫ ∞
0

e−αtc
(
X(t), S(t), vα(X(t), S(t))

)
dt

]
= Evαx,i

[∫ τ

0
e−αt

{
c
(
X(t), S(t), vα(X(t), S(t))

)
− αVα

(
X(τ), S(τ)

)}
dt

]
+ Evαx,i

[
Vα
(
X(τ), S(τ)

)]
.



ERGODIC CONTROL OF SWITCHING DIFFUSIONS 1973

Thus,∣∣Vα(x, i)− Evαx,iVα
(
X(τ), S(τ)

)∣∣
=
∣∣∣∣Evαx,i ∫ τ

0
e−αt

{
c
(
X(t), S(t), vα(X(t), S(t))

)
− αVα

(
X(τ), S(τ)

)}
dt

∣∣∣∣.
Using (C4) and Lemma 4.2, we deduce that there exists a constant C1 (independent
of α) such that∣∣Vα(x, i)− Evαx,iVα

(
X(τ), S(τ)

)∣∣ ≤ C1 ∀ (x, i) ∈ B(0, R)× S .(6.11)

We write

(6.12) Vα(x, i)− Vα(xα, iα) =
(
Vα(x, i)− Evαx,iVα

(
X(τ), S(τ)

))
+
(
Evαx,iVα

(
X(τ), S(τ)

)
− Vα(xα, iα)

)
.

Let

f(x, i) = Evαx,iVα
(
X(τ), S(τ)

)
− Vα(xα, iα).

We observe that f ≥ 0 and Lvαf = 0 in W 2,p
(
B(0, 2R) × S

)
, 2 ≤ p < ∞. Then,

by Theorem 4.1, there exists a constant C2 (independent of α) such that, in view of
(6.11),

f(x, i) ≤ C2f(xα, iα) ≤ C1C2 ∀ (x, i) ∈ B(0, R)× S .

Hence,

Vα(x, i)− Vα(xα, iα) ≤ C1(1 + C2) ∀ (x, i) ∈ B(0, R)× S .

COROLLARY 6.1. For any ε > 0 and any compact K ⊂ Rd, there exists αε ∈
(0, α0] such that for all x ∈ K, i ∈ S, and α ∈ (0, αε),

αVα(x, i) < ρ∗ + ε.(6.13)

Proof. The proof follows directly from Lemma 6.2 and (6.10).
THEOREM 6.2. Under (C3) and (C4), there exists a function V ∈ C2(Rd × S)

and a scalar ρ ∈ R such that for some fixed i0 ∈ S,

ρ ≤ ρ∗, V (0, i0) = 0, inf
(x,i)∈Rd×S

V (x, i) > −∞(6.14)

and the pair (V, ρ) satisfies the HJB equations given by

inf
u∈U

{
LuV (x, i) + c(x, i, u)

}
= ρ.(6.15)

Moreover, among all pairs (ϕ, ρ) ∈ W 2,p
`oc (Rd × S)× R, 2 ≤ p < ∞, satisfying (6.15),

(V, ρ∗) is the unique one satisfying (6.14).
Proof. Set V α(x, i) = Vα(x, i)− Vα(0, i0). Then V (0, i0) = 0, and by (6.2), (6.4),

LvαV α(x, i) = αVα(x, i)− c(x, i, vα(x, i)).
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By Corollary 6.1, Lemma 6.2, and the interior estimates for solutions of uniformly
elliptic systems [22, pp. 398–402], we can show using a standard bootstrap argument
that for any R > 0, 2 ≤ p <∞,

sup
α∈(0,αε)

∥∥∥V α(·, ·)
∥∥∥
W 2,p(B(0,R)×S)

≤ C

for some constant C. Since W 2,p
`oc ↪→W 1,p

`oc is compact for p ≥ 1, {V α(·), α ∈ (0, αε)} is
sequentially compact in W 1,p

`oc . Let αn → 0 in (0, αε). By dropping to a subsequence,
if necessary, let V αn → V in W 1,p

`oc for some V . By the Sobolev imbedding theorem,
this convergence is also uniform on compact subsets of Rd. Let ρ be a limit point of
αnVαn(0, i0) and hence of αnVαn(x, i) for any (x, i) ∈ Rd × S, in view of Lemma 6.2.
By (6.13), ρ ≤ ρ∗. It can be shown as in [2], [22, p. 420] that

inf
u∈U


d∑
k=1

bk(x, i, u)
∂V αn(x, i)

∂xk
+
∑
j∈S

λij(x, u)V αn(x, j) + c(x, i, u)


−→
n→∞

inf
u∈U


d∑
k=1

bk(x, i, u)
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, u)V (x, j) + c(x, i, u)


in Lp`oc strongly. From the above discussion, it follows that V ∈ W 1,p

`oc , for any 2 ≤
p < ∞, and V satisfies (6.15) in D′ (i.e., in the sense of distributions). By elliptic
regularity, V ∈ W 2,p

`oc , 2 ≤ p < ∞. In turn, by the Sobolev imbedding theorem,
V ∈ C1,γ(Rd ×S) for 0 < γ < 1, γ arbitrarily close to 1. Hence by (C4), it is easy to
see that

inf
u∈U


d∑
k=1

bk(x, i, u)
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, u)V (x, j) + c(x, i, u)


is in C0,γ(Rd × S). By elliptic regularity [15, p. 287] applied to (6.15), we conclude
that V ∈ C2,γ(Rd × S). Clearly, V (0, i0) = 0. It suffices to show that V is bounded
below. For any x ∈ Rd, i ∈ S,
(6.16)
V (x, i) = lim

n→∞

[
Vαn(x, i)− Vαn(0, i0)

]
≥ lim
n→∞

[
Vαn(xαn , i)− Vαn(0, i0)

]
+ lim
n→∞

[
Vαn(xαn , iαn)− Vαn(xαn , i)

]
.

Using Lemmas 6.1 and 6.2, it follows from (6.16) that for each i ∈ S,

inf
(x,i)∈Rd×S

V (x, i) > −∞,

and the proof of the first part of the theorem is complete. The second assertion can
be shown by following the methodology in [9].

Further, based on Lemmas 6.1 and 6.2 and Theorem 4.1, the following theorem
can be proved using the techniques presented in [9]. We therefore skip the proof.
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THEOREM 6.3. Assume (C3) and (C4). Let v∗ ∈ ΠMD be such that for each i
(6.17)

inf
u∈U


d∑
k=1

bk(x, i, u)
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, u)V (x, j) + c(x, i, u)


=

d∑
k=1

bk
(
x, i, v∗(x, i)

)∂V (x, i)
∂xk

+
∑
j∈S

λij
(
x, v∗(x, i)

)
V (x, j) + c

(
x, i, v∗(x, i)

)
a.e.

Then v∗ ∈ ΠSMD. The scalar ρ in (6.15) equals ρ∗, and v∗ is a.s. optimal. Moreover,
v ∈ ΠSMD is a.s. optimal if and only if it satisfies (6.17).

Remark 6.1. The boundedness condition on the cost function c may be relaxed.
For unbounded c we can use a suitable truncation procedure to approximate c by a
sequence of bounded functions. Then the arguments in [9, p. 202] can be paralleled
to establish the results in Theorems 6.2–6.3.

We now study the HJB equation under (C1) and (C4). Recall that under (C1),
ΠM = ΠSM .

LEMMA 6.3. Let w satisfy (C1). Then for any v ∈ ΠSM ,
(i)
∑
i∈S
∫
Rd w(x, i)ηv(dx, i) <∞,

(ii) limt→∞
1
tE

v
x,i

[
w
(
X(t), S(t)

)]
= 0.

Proof. Let R > 0 and τR be the exit time of X(t) from B(0, R). Then by Ito’s
formula

Evx,i

[
w
(
X(t ∧ τR), S(t ∧ τR)

)]
− w(x, i) = Evx,i

[∫ t∧τR

0
Lvw

(
X(s), S(s)

)
ds

]
.

Letting R→∞, we have

Evx,i
[
w
(
X(t), S(t)

)]
− w(x, i) = Evx,i

[∫ t

0
Lvw

(
X(s), S(s)

)
ds

]
.

Therefore, by using (C1), we have

d

dt
Evx,i

[
w
(
X(t), S(t)

)]
≤ p− qEvx,i

[
w
(
X(t), S(t)

)]
.

Then by Gronwall’s inequality,

Evx,i
[
w
(
X(t), S(t)

)]
≤ p

q
+ w(x, i)e−qt.(6.18)

Both (i) and (ii) follow directly from (6.18).
LEMMA 6.4. Assume (C1) holds. Let a > 0 be such that

Luw(x, i) ≤ −1 for all ‖x‖ > a , u ∈ U , i ∈ S .

If

τa := inf
{
t ≥ 0 : ‖X(t)‖ ≤ a

}
,(6.19)

then, for all v ∈ ΠM , ‖x‖ > a, and i ∈ S,

Evx,i
[
τa
]
≤ w(x, i) .(6.20)
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Proof. Let v ∈ ΠM . Choose R > 0 such that a < ‖x‖ < R. Let

τ ′R = inf
{
t ≥ 0 : X(t) /∈ B(0, R) \B(0, a)

}
.

Then by Ito’s formula

Evx,i

[
w
(
X(t ∧ τ ′R), S(t ∧ τ ′R)

)]
= w(x, i) + Evx,i

[∫ t∧τ ′R

0
Lvw

(
X(s), S(s)

)
ds

]
.

Therefore,

Evx,i

[
w
(
X(t ∧ τ ′R), S(t ∧ τ ′R)

)]
≤ w(x, i)− Evx,i

[
t ∧ τ ′R

]
.

Thus,

Evx,i
[
t ∧ τ ′R

]
≤ w(x, i).(6.21)

Letting first t→∞ and then R→∞, invoking Fatou’s lemma at each step, we obtain
(6.20).

THEOREM 6.4. Under (C1) and (C4), the HJB equation (6.15) admits a unique
solution (V, ρ) in the class C2(Rd ×S)

⋂
O(w), satisfying V (0, i0) = 0 for some fixed

i0 ∈ S.
Proof. Let v∗ ∈ ΠSMD be a.s. optimal. The existence of such a v∗ is guaranteed

by Theorem 5.3. Let

K1 = sup
x,i,u

{
c(x, i, u)

}
,

K2 = sup
v∈ΠSMD

∫
c dµ[v].

We select an arbitrary sequence of smooth functions ψn : Rd → [0,K1 + 4K2], n ≥ 1,
that are zero on B(0, n) and equal to K1 + 4K2 on the complement of B(0, n + 1),
and define

c1n(x, i, u) =
1
2
[
c(x, i, u) + ψn(x)

]
,

c2n(x, i, u) =
1
2
[
ψn(x)− c(x, i, u)

]
.

Then, for a sufficiently large n, c1n and c2n both satisfy the penalizing condition
(C3). We select one such term of the sequence from now on and drop the subscript n
for notational convenience. Let

(
X(·), S(·)

)
be the process under the policy v∗. For

α > 0, we define

Vα,1(x, i) = Ev
∗

x,i

[∫ ∞
0

e−αtc1
(
X(t), S(t), v∗(X(t), S(t))

)
dt

]
,

Vα,2(x, i) = Ev
∗

x,i

[∫ ∞
0

e−αtc2
(
X(t), S(t), v∗(X(t), S(t))

)
dt

]
,

Vα(x, i) = Ev
∗

x,i

[∫ ∞
0

e−αtc
(
X(t), S(t), v∗(X(t), S(t))

)
dt

]
.
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Then we can modify the arguments in the proof of Lemma 6.2 to conclude that for
a fixed i0 ∈ S,

(
Vα,1(x, i) − Vα,1(0, i0)

)
and

(
Vα,2(x, i) − Vα,2(0, i0)

)
are bounded on

compacta uniformly in α ∈ (0, α0], for some α0 > 0. Hence,

V α(x, i) :=Vα(x, i)− Vα(0, i0)

=
[
Vα,1(x, i)− Vα,1(0, i0)

]
−
[
Vα,2(x, i)− Vα,2(0, i0)

]
is bounded on compact sets, uniformly in α ∈ (0, α0]. Arguing as in the proof of
Theorem 6.2 we conclude that V α(x, i)→ V (x, i), as α→ 0, uniformly on compacta
and in W 2,p

`oc (Rd × S) for any p ∈ [2,∞), and that the limit V satisfies

Lv
∗
V (x, i) + c(x, i, v∗(x, i)) = ρ∗,

with V (0, i0) = 0. Using the strong Markov property, relative to the stopping time τa
in (6.19), we obtain

V α(x, i) = Ev
∗

x,i

[∫ τa

0
e−αt

{
c
(
X(t), S(t), v∗(X(t), S(t))

)
− αVα(0, i0)

}
dt

]
+ Ev

∗

x,i

[
e−ατaV α

(
X(τa), S(τa)

)]
.

Hence, by Lemma 6.4, for α ∈ (0, α0] and ‖x‖ > a,∣∣V α(x, i)
∣∣ ≤ C1 + C2E

v∗

x,i

[
τa
]

≤ C1 + C2w(x, i),

where C1, C2 are positive constants independent of α. Passing to the limit as α→ 0,
it follows that V is in the class O(w). Next we let v ∈ ΠSMD be such that for each
i ∈ S,

d∑
k=1

bk(x, i, v(x, i))
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, v(x, i))V (x, j) + c(x, i, v(x, i))

= inf
u∈U


d∑
k=1

bk(x, i, u)
∂V (x, i)
∂xk

+
∑
j∈S

λij(x, u)V (x, j) + c(x, i, u)

 a.e.

Suppose that for some i′ ∈ S, there exist δ > 0 such that the set

D =
{
x ∈ Rd : LvV (x, i′) ≤ ρ∗ − c

(
x, i′, v(x, i′)

)
− δ
}

has positive Lebesgue measure. By Ito’s formula

Evx,i
[
V
(
X(t), S(t)

)]
− V (x, i) = Evx,i

[∫ t

0
LvV

(
X(s), S(s)

)
ds

]
.

This is justified because V is O(w). Therefore,

Evx,i
[
V
(
X(t), S(t)

)]
− V (x, i) ≤ Evx,i

[∫ t

0

[
ρ∗ − c

(
X(s), S(s), v(X(s), S(s))

)]
ds

]
− δEvx,i

[∫ t

0
I
{
X(s) ∈ D,S(s) = i′

}
ds

]
.
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Dividing by t, letting t→∞, and using Lemma 6.3, we have

ρv ≤ ρ∗ − δηv
(
D × {i′}

)
.

Lemma 4.1 implies that ηv is mutually absolutely continuous with respect to the
Lebesgue measure. Therefore, ηv

(
D × {i′}

)
> 0. Hence, ρv < ρ∗, which contradicts

the optimality of v∗. Thus, for each i ∈ S,

inf
u∈U

{
LuV (x, i) + c(x, i, u)

}
= ρ∗ a.e.(6.22)

Similar arguments as in the proof of Theorem 6.2 establish that V ∈ C2,γ(Rd × S),
where 0 < γ < 1, γ arbitrarily close to 1. We now proceed to show uniqueness.
Let (V ′, ρ′) be another solution of (6.15) in the desired class satisfying V ′(0, i0) = 0.
Using Ito’s formula and Lemma 6.3, it again follows that ρ′ = ρ∗. Therefore,

Lv
∗(
V ′(x, i)− V (x, i)

)
≥ 0.

Let
(
X(t), S(t)

)
be the process governed by v∗ and with initial law ηv∗ . Then,

M(t) := V ′
(
X(t), S(t)

)
− V

(
X(t), S(t)

)
is a submartingale satisfying

sup
t≥0

Ev
∗ |M(t)| ≤ C ′1 + C ′2

∑
i∈S

∫
Rd
w(x, i)ηv∗(dx, i) <∞,

by Lemma 6.3, where C ′1, C ′2 are suitable constants. Here we are using the fact
that both V and V ′ are of O(w). By the submartingale convergence theorem, M(t)
converges a.s. Since

(
X(t), S(t)

)
is ergodic and irreducible under v∗, it follows that

V ′(x, i)− V (x, i) must be constant a.s. This constant must be zero, since V ′(0, i0)−
V (0, i0) = 0.

Remark 6.2. For the stable case we have carried out our analysis under the
Lyapunov condition (C1). Analogous results can be derived under the condition
(C2).

7. Conclusions. We have analyzed the optimal control of switching diffusions
with a pathwise average cost criterion. Under certain conditions we have established
the existence of a stable, nonrandomized Markov policy which is a.s. optimal in the
class of all admissible policies. Also, we demonstrate the existence of a unique solution
to the associated HJB equations in C2, under varying conditions, and the optimal
policy is characterized as a minimizing selector of the Hamiltonian. We have applied
our results to a manufacturing model of Bielecki and Kumar and have shown that
our methodology affords both greater generality and ease of solution. By studying
the recurrence and ergodic properties of switching diffusions we have also obtained
two new results in partial differential equations, viz. a strong maximum principle and
Harnack’s inequality for a weakly coupled elliptic system.

Appendix. This appendix is devoted to the proof of Theorem 4.1.
Given a domain Ω ⊂ Rd, a real function u defined on Ω×S is viewed as a vector-

valued function u = (u1, . . . , uN ), with each component ui being a real function on
Ω.
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Consider a second order operator L defined by (note that Lk is different from the
operator in (3.7))

(Lu)k(x) := Lkuk(x) +
∑
j∈S
j 6=k

ckj(x)uj(x) , k ∈ S,

Lk :=
d∑

i,j=1

akij(x)
∂2

∂xi∂xj
+

d∑
i=1

bki (x)
∂

∂xi
+ ckk(x) .(A.1)

Let m,m, γ, and εΩ be given positive constants, the last depending on the choice of a
bounded domain Ω. We denote by L = L(m,m, γ, εΩ) the class of all such operators
L, with coefficients akij(·) ∈ C0,1(Rd) and bki (·), ckj(·) ∈ L∞(Rd), satisfying

(A.2) m‖ζ‖2 ≤
d∑

i,j=1

akij(x)ζiζj ≤ m‖ζ‖2 for all x, ζ ∈ Rd, k ∈ S.

(A.3) ‖bki ‖∞ ≤ m, ‖ck`‖∞ ≤ m and ‖akij(x)− akij(y)‖∞ ≤ γ‖x− y‖ for all
x, y ∈ Rd, i, j ∈

{
1, . . . , d

}
, k, ` ∈ S.

(A.4)
∑
i∈S

cki(·) = 0 and ckj ≥ 0, for j 6= k.

(A.5) The matrix C (x; εΩ) :=
[
cij(x) : cij(x) ≥ εΩ , i 6= j

]
is irreducible at each

x ∈ Ω.
We denote by UΩ the class of all nonnegative functions u ∈W 2,d

`oc (Ω×S)
⋂
C0(Ω×

S), satisfying Lu = 0 in Ω, for some L ∈ L. If ξ ∈ R, then u ≥ ξ is to be interpreted
as ui ≥ ξ for all i ∈ S, and if ξ = (ξ1, . . . , ξN ) ∈ RN , then u ≥ ξ ⇐⇒ ui ≥ ξi for all
i ∈ S. For better clarity, we denote all RN -valued quantities by a bold letter. Also,
operations such as “inf” on RN -valued functions are meant to be componentwise. If
Γ is a closed subset of Ω, we define, for x ∈ Ω and ξ ∈ RN+ ,

Ψx
(
UΩ , Γ ; ξ

)
:= inf

u∈UΩ

{
u(x) : u ≥ ξ on Γ

}
.

Deviating from the usual vector space notation, if D is a cube in Rd and δ > 0,
δD denotes the cube which is concentric to D and whose edges are δ times as long.
For a measurable set A ⊂ Rd, |A| denotes the Lebesgue measure of A, while B(A)
and Ld(A) denote the sets of real-valued, measurable functions on A such that

‖f‖B(A) := ess sup
x∈A

|f(x)| <∞ ∀ f ∈ B(A)

and

‖f‖d;A :=
(∫

A

|f(x)|ddx
)1/d

<∞ ∀ f ∈ Ld(A) .

We use quite frequently the following comparison principle, which can be viewed
as a weaker version of the maximum principle in that it holds even without condition
(A.5): If ϕ,ψ ∈W 2,d

`oc (Ω×S)
⋂
C0(Ω×S) satisfy Lϕ ≤ Lψ in Ω and ϕ ≥ ψ on ∂Ω,

then ϕ ≥ ψ in Ω. The same comparison principle holds for ϕ,ψ ∈W 2,d
`oc (Ω)

⋂
C0(Ω)

relative to the set of operators {Lk}k∈S as defined in (A.1).
We start with a measure-theoretic result, announced in [19].
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LEMMA A.1. Let K ⊂ Rd be a cube, Γ ⊂ K be a closed subset, and 0 < α < 1.
Define

Q :=
{
Q : Q is a subcube of K and |Q

⋂
Γ | ≥ α|Q|

}
,

Γ̃ :=
⋃
Q∈Q

(
3Q
⋂
K) .

Then either Γ̃ = K or |Γ̃ | ≥ 1
α |Γ |.

Proof. If |Γ | ≥ α|K|, then K ∈ Q and Γ̃ = K. So we assume |Γ | < α|K|
or, equivalently, K /∈ Q. We subdivide K into 2d congruent subcubes with disjoint
interiors. We select the ones in Q, while the remaining ones are similarly subdivided
and the process is repeated indefinitely. Let Q0 be the collection thus obtained, and
with Q̂ denoting the ancestor of Q, we define

Γ̂ :=
⋃

Q∈Q0

Q̂.

Clearly, Q̂ ⊂ 3Q
⋂
K; hence, Γ̃ ⊃ Γ̂ . Note that, discarding repetitions, Γ̂ can be

represented as a disjoint union of cubes Q̂ which are not in Q. Therefore, each
member Q̂ of this union satisfies |Q̂

⋂
Γ | < α|Q̂|, and by σ-additivity, we obtain

|Γ̂
⋂
Γ | < α|Γ̂ | ≤ α|Γ̃ | .

By the regularity properties of the Lebesgue measure, |Γ̂
⋂
Γ | = |Γ | and the proof is

complete.
Next we state without proof a ramification of the weak maximum principle of

A. D. Aleksandroff.
LEMMA A.2. There exist constants C1 > 0 and κ0 ∈ (0, 1] such that if D ⊂ Rd is

any cube of volume |D| ≤ κ0 and ϕ ∈W 2,d
`oc (D)

⋂
C0(D), f ∈ Ld(D) satisfy Lkϕ ≥ f

in D, and ϕ = 0 on ∂D for some L ∈ L, then

sup
x∈D

{
ϕ(x)

}
≤ C1|D|1/d‖f‖d;D .

For the remainder of this appendix, D will denote an open cube in Rd of volume
not exceeding the constant κ0 in Lemma A.2.

LEMMA A.3. There exist constants β0 > 0 and α0 < 1 such that, if Γ is a closed
subset of some cube D ⊂ Rd, satisfying |Γ | ≥ α0|D|, then

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ β0ξ ∀ ξ ∈ RN+ .

Proof. Observe that if u ∈ UD, then each component uk satisfies Lkuk ≤ 0 in D.
Define ϕ′, ϕ′′ ∈W 2,d

`oc (D)
⋂
C0(D) by

Lkϕ
′(x) = −IΓ (x), Lkϕ

′′(x) = −IΓ c(x) in D

and ϕ′(x) = ϕ′′(x) = 0 on ∂D .

Then ϕ := ϕ′ + ϕ′′ satisfies Lkϕ = −1 in D and ϕ = 0 on ∂D. Without loss of
generality, suppose that D is centered at the origin and consider the function

ψ(x) :=
d∏
i=1

(
|D|2/d − 4x2

i

)
.
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Note that ψ = 0 on ∂D and ψ > 0 in D. In addition, there exists a positive constant
C2 such that

inf
x∈ 1

3D

{
ψ(x)

}
≥ C2|D|2/d‖Lkψ‖B(D) ∀ L ∈ L .

Therefore, by the comparison principle,

ϕ(x) ≥ ψ(x)
‖Lkψ‖B(D)

≥ C2|D|2/d ∀ x ∈ 1
3D .(A.6)

Using Lemma A.2, we obtain

ϕ′ ≤ C1|D|1/d|Γ |1/d = C1|D|2/d
(
|Γ |
|D|

)1/d
,

ϕ′′ ≤ C1|D|1/d|Γ c|1/d = C1|D|2/d
(

1− |Γ ||D|
)1/d

.

(A.7)

By (A.6) and (A.7),

ϕ′(x) ≥ C2|D|2/d − C1|D|2/d
(

1− |Γ ||D|
)1/d

∀ x ∈ 1
3D .

On the other hand, since Lkϕ′ = 0 in D \ Γ and ϕ′ = 0 on ∂D, the comparison
principle yields

inf
x∈ 1

3D

{
uk(x)

}
≥ ξk

C2 − C1

(
1− |Γ ||D|

)1/d

C1

(
|Γ |
|D|

)1/d .(A.8)

Selecting α0 to satisfy

α0 ≥ 1−
( C2

2C1

)d
,

(A.8) yields

inf
x∈ 1

3D

{
uk(x)

}
≥ C2ξk

2C1
.

Hence, the claim follows with β0 = C2
2C1

.
LEMMA A.4. For each δ > 0, there exists a constant k′δ > 0 such that if Q ⊂

(1− δ)D is a subcube of an open cube D ⊂ Rd, then

Ψx
(
UD,

1
3Q; ξ

)
≥ k′δξ ∀ x ∈ 3Q

⋂
(1− δ)D ∀ ξ ∈ RN+ .

Proof. Let B(r) ⊂ Rd denote the ball of radius r centered at the origin. We claim
that there exists a constant m0 > 0 such that if r ≤ 1, then

inf
x∈B( 3r

4 )
Ψx
(
UB(r), B

(
r
4

)
; ξ
)
≥ m0 ξ ∀ ξ ∈ RN+ .(A.9)

In order to establish (A.9) we use the function

ϕ(x) := exp
{
a
(

1− ‖x‖
2

r2

)}
− 1 , a := m

m (16d+ 2) , x ∈ B(r) ,
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which satisfies Lkϕ(x) ≥ 0 for all L ∈ L, provided ‖x‖ ≥ r
4 and r ≤ 1. By the

comparison principle, (A.9) holds with

m0 =
e

7a
16 − 1

e
15a
16 − 1

.

It follows that if B(r, y) is a ball of radius r centered at y, and x is an arbitrary point
in D such that the distance between ∂D and the line segment joining x and y is at
least r, then

Ψx
(
UD, B

(
r
4 , y
)
; ξ
)
≥ (m0)` ξ , with ` =

⌈
4‖x−y‖−r

2r

⌉
∀ ξ ∈ RN+ .(A.10)

Choosing r = min
{ 2

3 ,
δ
2

}
|Q|1/d and applying (A.10), an easy calculation shows that

the result holds with

k′δ := m
`(δ)
0 , `(δ) :=

⌈ 6
√
d

min{1, δ}

⌉
.

LEMMA A.5. Suppose that there exist constants ε and θ such that if Γ ⊂ (1− δ)D
is a closed subset of some cube D and ξ ∈ RN+ , then

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ εξ whenever |Γ | ≥ θ|D| .

Then there exists a constant kδ > 0 such that

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ εkδξ whenever |Γ | ≥ α0θ|D| ,

where α0 is the constant in Lemma A.3.
Proof. Suppose |Γ | ≥ α0θ|D| and let y ∈ Γ̃ , with Γ̃ as defined in Lemma A.1

corresponding to α = α0 and K = (1 − δ)D. Then there exists a subcube Q ⊂ K
such that |Γ

⋂
Q| ≥ α0|Q| and y ∈ 3Q

⋂
K. We use the identities

Ψx
(
UD, Γ ; ξ

)
≥ Ψx

(
UD, Γ̃ ; inf

y∈Γ̃
Ψy
(
UD, Γ ; ξ

))
(A.11)

and

Ψy
(
UD, Γ ; ξ

)
≥ Ψy

(
UD,

1
3Q; inf

z∈ 1
3Q
Ψ z
(
UD, Γ ; ξ

))
(A.12)

≥ Ψy
(
UD,

1
3Q; inf

z∈ 1
3Q
Ψ z
(
UQ, Γ

⋂
Q; ξ

))
.

From Lemma A.3, we have

inf
z∈ 1

3Q
Ψ z
(
UQ, Γ

⋂
Q; ξ

)
≥ β0ξ .(A.13)

From Lemma A.4, we obtain Ψy
(
UD,

1
3Q;β0ξ

)
≥ β0k

′
δξ, for all y ∈ 3Q

⋂
K. Hence,

combining (A.12) and (A.13) yields

inf
y∈Γ̃

Ψy
(
UD, Γ ; ξ

)
≥ kδξ , with kδ := β0k

′
δ .(A.14)
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From Lemma A.1, |Γ̃ | ≥ 1
α0
|Γ | ≥ θ|D|. Therefore, by hypothesis,

inf
x∈ 1

3D
Ψx
(
UD, Γ̃ ; kδξ

)
≥ εkδξ ,

which along with (A.11) and (A.14) yield the desired result.
THEOREM A.1. The following estimates hold.

(i) Let D be a cube and Γ ⊂ (1− δ)D a closed subset. Then for all ξ ∈ RN+ ,

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ β0

(
|Γ |
|D|

)ρ(δ)
ξ , ρ(δ) :=

log kδ
logα0

,(A.15)

where the constants α0, β0, and kδ are as in Lemmas A.3 and A.5.
(ii) There exists a real function F defined in [0, 1], with F (θ) > 0 if θ > 0, such

that if Γ ⊂ D is a closed subset of a cube D, then

inf
x∈ 1

3D
Ψx
(
UD, Γ ; ξ

)
≥ F

(
|Γ |
|D|

)
ξ ∀ ξ ∈ RN+ .(A.16)

Proof. Part (i) is a direct consequence of Lemmas A.3 and A.5. For part (ii),
choose δ = |Γ |

4d|D| . Then,

|Γ
⋂

(1− δ)D|
|D| ≥ |Γ ||D| −

(
1− (1− δ)d

)
≥ |Γ ||D| − dδ ≥

3|Γ |
4|D| .(A.17)

Since

Ψx
(
UD, Γ ; ξ

)
≥ Ψx

(
UD, Γ

⋂
(1− δ)D; ξ

)
,

the bound in (A.16) follows from (A.15) and (A.17), with

F (θ) := β0
( 3θ

4

)ρ( θ4d )
.

Definition A.1. If A ⊂ Ω we define the oscillation of a function u ∈ C0(Ω × S)
over A by

osc(u ;A) = max
k∈S

sup
x∈A

{
uk(x)

}
−min

k∈S
inf
x∈A

{
uk(x)

}
.

The oscillation of a function in C0(Ω) is defined in the usual manner.
THEOREM A.2. If D is a cube, u ∈ UD and q = F

( 1
2

)
, with F (·) as defined in

Theorem A.1 (ii), then

osc(uk; 1
3D) ≤

(
1− q

2

)
osc(u ;D) ∀ k ∈ S .

Proof. Let

Ma
k := sup

x∈ 1
3D

{
uk(x)

}
, Ma := max

k∈S
Ma
k ,

ma
k := inf

x∈ 1
3D

{
uk(x)

}
, ma := min

k∈S
ma
k,
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and M b, mb be the corresponding quantities relative to D. Consider the sets

Γ
(k)
1 :=

{
x ∈ D : uk(x) ≤ Mb+mb

2

}
,

Γ
(k)
2 :=

{
x ∈ D : uk(x) ≥ Mb+mb

2

}
.

Suppose |Γ (k)
2 | ≥ 1

2 |D|. Since u −mb is nonnegative and uk −mb ≥ Mb−mb
2 in Γ

(k)
2 ,

applying Theorem A.1 (ii) yields

uk(x)−mb ≥ qMb−mb
2 ∀ x ∈ 1

3D .

Consequently, ma
k ≥ mb + qM

b−mb
2 , and since Ma ≤M b, we obtain

Ma −ma
k ≤M b −mb − qMb−mb

2 ≤
(
1− q

2

)
(M b −mb) .(A.18)

On the other hand, if |Γ (k)
1 | ≥ 1

2 |D|, then using the nonnegative function M b−u , we
similarly obtain

Ma
k −ma ≤

(
1− q

2

)
(M b −mb) ,(A.19)

and the result follows by (A.18)–(A.19).
THEOREM A.3. There exists a constant M1 > 0 such that, for any u ∈ UD,

sup
x∈ 1

9D

{
ui(x)

}
≤M1 max

k∈S
inf
x∈ 1

9D

{
uk(x)

}
∀ i ∈ S .

Proof. Let β0 be as given in Lemma A.3, and with ρ(·) and q as in (A.15) and
Theorem A.2, respectively, define

ρ :=
1

dρ(2
3 )

and q0 :=
(1− q

4 )
(1− q

2 )
.(A.20)

We claim that the value of the constant M1 may be chosen as

M1 :=
4q0

qβ0

[
27N1/d

2
(
qρ0 − 1

)]1/ρ

.(A.21)

We argue by contradiction. Suppose u ∈ UD violates this bound. Let
{
x(1), . . . , x(N)

}
denote the points in 1

9D where the minima of u are attained; i.e.,

inf
x∈ 1

9D

{
uk(x)

}
= uk(x(k)) , k ∈ S .

Without loss of generality, suppose that maxk∈S
{
uk(x(k))

}
= 1 (u can always be

scaled to satisfy this) and that for some y0 ∈ 1
9D and k0 ∈ S, uk0(y0) = M > aM1

with a > 1. Using the estimate for the growth of the oscillation of u in Theorem A.2,
we will show that u has to be unbounded in 1

3D. By hypothesis, M
a exceeds M1 in

(A.21), and in order to facilitate the construction that follows, we choose to express
this as

1
9 + 3N1/d( 4a

qβ0M
)ρ
∞∑
n=0

( 1
q0

)nρ < 1
3 .(A.22)
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For ξ > 0, define

D(ξ)
k :=

{
z ∈ 1

3D : uk(z) ≥ ξ
}
, D(ξ) :=

⋃
k∈S
D(ξ)
k .

If 1k ∈ RN+ stands for the vector whose kth component is equal to 1 and the others
0, then

u(x(k)) ≥ Ψx(k)

(
UD,D(ξ)

k ; ξ1k
)

∀ k ∈ S ,(A.23)

while, on the other hand, Theorem A.1 yields,

Ψx(k)

(
UD,D(ξ)

k ; ξ1k
)
≥ β0

(
|D(ξ)
k |
|D|

)ρ( 2
3 )

ξ1k ∀ k ∈ S .(A.24)

By (A.23)–(A.24) and using (A.20), we obtain the estimate

|D(ξ)| ≤
∑
k∈S
|D(ξ)
k | ≤

∑
k∈S

(
uk(x(k))
ξβ0

)ρd
|D| ≤ N

(
1
ξβ0

)ρd
|D| ∀ ξ > 0 .(A.25)

Choosing ξ = qM
4 , we have by (A.25)∣∣∣∣{x ∈ 1

3D : max
k∈S

{
uk(x)

}
≥ qM

4

}∣∣∣∣ ≤ N( 4
qβ0M

)ρd|D| .

Hence, if Q0 is a cube of volume |Q0| = N
( 4a
qβ0M

)ρd|D| centered at y0, then

osc(uk0 ;Q0) ≥
(
1− q

4

)
M .(A.26)

By Theorem A.2, we obtain from (A.26)

osc(u ; 3Q0) ≥
(1− q

4 )
(1− q

2 )
M = q0M .(A.27)

Since u is nonnegative, (A.27) implies that there exists y(1) ∈ 3Q0 and k1 ∈ S such
that

uk1(y(1)) ≥ q0M .

Note that (A.22) implies that 3Q0 ⊂ 1
3D. Therefore, we can repeat the argument,

now choosing ξ = q0
qM
4 in (A.25) and a cube Q1 of volume N

( 4a
q0qβ0M

)ρd|D| centered
at y(1), to conclude that there exists y(2) ∈ 3Q1 and k2 ∈ S such that uk2(y(2)) ≥
q2
0M . Inductively, we can construct a sequence

{
y(n), kn, Qn

}∞
n=0 satisfying, for all

n = 0, 1, . . . ,

y(0) = y0 ∈ 1
9D
⋂
Q0 , y(n) ∈ Qn

⋂
3Qn−1 ,

|Qn|1/d = N
1/d( 1

q0

)nρ( 4a
qβ0M

)ρ|D|1/d ,
ukn(y(n)) ≥ qn0M .(A.28)

The inequality in (A.22) guarantees that y(n) ∈ 1
3D for all n. But (A.28) implies that

u is unbounded in 1
3D, which is a contradiction.
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Remark A.1. By the comparison principle, Lemmas A.3–A.5 and Theorem A.1
clearly hold unmodified for the class of Lk-superharmonic, nonnegative functions, i.e.,
functions u ∈W 2,d

`oc (D)
⋂
C0(D), satisfying Lku ≤ 0 in D, for some k ∈ S and L ∈ L.

This fact will be used in the next result.
LEMMA A.6. Let L ∈ L, k ∈ S and suppose ϕ is a solution to the Dirichlet

problem Lkϕ = −f in a cube D ⊂ Rd, with ϕ = 0 on ∂D, with f satisfying

0 ≤ f(x) ≤M ∀ x ∈ D and ‖f‖d;D ≥ ε > 0

for some constants M and ε. Then there exists a constant C ′ = C ′(M, ε,m,m, γ)
such that

inf
x∈ 1

3D

{
ϕ(x)

}
≥ C ′.

Proof. First note that the Dirichlet problem as defined has a unique strong solu-
tion ϕ ∈ W 2,p

`oc (D)
⋂
C0(D) for all p ∈ [d,∞). We argue by contradiction. Suppose

there exists a sequence of operators
{
L(n)

}∞
n=1 ⊂ L and a sequence of functions{

f (n)
}∞
n=1, in accord with the hypotheses of the lemma, such that the corresponding

solutions
{
ϕ(n)

}∞
n=1 of L(n)

k ϕ(n) = −f (n) satisfy

inf
x∈ 1

3D

{
ϕ(n)(x)

}
<

1
n2 , n = 1, 2, . . . .

Thus, by Theorem A.1,∣∣∣{x ∈ D : ϕ(n)(x) ≥ 1
n

}∣∣∣ ≤ ( 1
β0n

)ρd
|D| ,

with ρ as defined in (A.20). Since the sequence ϕ(n) is bounded in L∞(D) (by Lemma
A.2), it follows that ϕ(n) → 0 in Lp(D), as n → ∞, for all p ∈ [1,∞). Let D′ = δD,
with δ < 1, be a subcube of D, and let ‖·‖2,p;D′ denote the standard norm of W 2,p(D′).
We use the well-known estimate

‖ϕ(n)‖2,p;D′ ≤ C ′′
(
‖ϕ(n)‖p;D + ‖f (n)‖p;D

)
,

for some constant C ′′ = C ′′(|D|, p, δ, d,m,m, γ), to conclude that the first and second
derivatives of ϕ(n) converge weakly to 0 in Lp(D′), for all p ∈ [1,∞). In turn,
since W 2,p

0 (D′) ↪→W 1,p
0 (D′) is compact for p > d, using the standard approximation

argument we deduce that ∂ϕ(n)

∂xi
converges in Lp(D′) strongly for all i = 1, . . . , d. Also,

since the second order coefficients of L(n)
k are uniformly Lipschitz, we can extract

a subsequence, along which they converge uniformly. Combining all the previous
arguments, we deduce that the sequence

{
L

(n)
k ϕ(n)

}
converges weakly to 0 in Lp(D′),

p ∈ [1,∞). On the other hand, if we choose δ ≥ (1 − ε
2M |D| )

1/d, an easy calculation
yields ∫

D′
f (n)(x) dx ≥ ε

2
, n = 1, 2, . . . ,

resulting in a contradiction.
We pause to note that (A.5) has not been utilized in any of the results obtained

thus far. It will be used in the next result to provide the necessary “coupling” between
distinct components of the harmonic function.
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LEMMA A.7. For each cube D ⊂ Rd there exists a constant M2 > 0 such that, for
any u ∈ UD,

inf
x∈ 1

9D

{
ui(x)

}
≤M2 inf

x∈ 1
9D

{
uj(x)

}
∀ i, j ∈ S .

Proof. Let εD be the constant in hypothesis (A.5). Define a collection of functions
{ϕij(x), i, j ∈ S} ⊂W 2,d

`oc ( 1
3D)

⋂
C0( 1

3D), relative to some L ∈ L, by

Liϕij(x) = −cij(x) in 1
3D and ϕij(x) = 0 on ∂

( 1
3D
)

if i 6= j,

ϕij(x) = 0 if i = j ,(A.29)

and let Φ(x), C (x) denote the matrices with elements
{
ϕij(x)

}
and

{
cij(x)

}
i6=j ,

respectively. By (A.4), there exists a constant irreducible matrix CD ⊂ RN×N , with
elements equal to 0 or 1 such that∣∣∣{x ∈ 1

3D : C (x) ≥ εDCD

}∣∣∣ ≥ 1
N23d |D| .(A.30)

It follows by (A.29), (A.30), and Lemma A.6 that there exists a constant ε′D > 0 such
that

Φ(x) ≥ ε′DCD ∀ x ∈ 1
9D ,(A.31)

and (A.31) holds relative to any L ∈ L used to generate ϕij . Therefore, if u ∈ UD

and we define u := inf
x∈ 1

9D
u(x) and u ′ := inf

x∈ 1
3D

u(x), it is a direct consequence of the

comparison principle that

u(x) ≥ Φ(x)u ′ ∀ x ∈ 1
3D .(A.32)

On the other hand, by Theorem A.1,

u ′ ≥ F
( 1

9d
)
u .(A.33)

By (A.31)–(A.33),

u(x) ≥ ε′DF
( 1

9d
)
CDu ∀ x ∈ 1

9D ,

which yields u ≥ ε′DF
( 1

9d
)
CDu . In turn, the irreducibility of CD implies that

u i ≥
(
ε′DF

( 1
9d
))N−1

uj ∀ i, j ∈ S .

Combining Theorem A.3 and Lemma A.7 and letting M := M1M2, we have the
following theorem.

THEOREM A.4. For each cube D ⊂ Rd, |D| ≤ κ0, there exists a constant M > 0
such that, for any u ∈ UD,

ui(y) ≤Muj(x) ∀ x, y ∈ 1
9D ∀ i, j ∈ S .

Theorem 4.1 easily follows from Theorem A.4 by covering the domain Ω with
a collection of congruent cubes D of suitable size. For an elegant exposition of this
technique, see [11, p. 153]. The existence of a constant εΩ > 0 satisfying (A.5) is
guaranteed by the continuity and irreducibility conditions in Assumption 3.1 (i) and
(iii), along with the compactness of U . Concerning (A.3), (A.4), and the upper bound
in (A.2), observe that for each bounded domain Ω, Assumption 3.1 (i) implies the
existence of constants m and γ satisfying all these conditions in Ω. This suffices for
our purposes.
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