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These papers are dedicated to George Mackey on his 60th birthday.*

Abstract. Let (X, ® ) be a standard Borel space, R c X X X an equiva-
lence, relation e® x S. Assume each equivalence class is countable.
Theorem 1:3a countable group G of Borel isomorphisms of (X, ÍB ) so that
R — {(x,gx): g e G). G is far from unique. However, notions like
invariance and quasi-invariance and R-N derivatives of measures depend
only on R, not the choice of G. We develop some of the ideas of Dye [1], [2]
and Krieger [l]-[5] in a fashion explicitly avoiding any choice of G; we also
show the connection with virtual groups. A notion of "module over R" is
defined, and we axiomatize and develop a cohomology theory for R with
coefficients in such a module. Surprising application (contained in Theorem
7): let a, ß be rationally independent irrationals on the circle T, and/Borel:
T-»T. Then 3 Borel g, h: T->T with/(x) - (g(ax)/g(x))(h(ßx)/h(x))
a.e. The notion of "skew product action" is generalized to our context, and
provides a setting for a generalization of the Krieger invariant for the R-N
derivative of an ergodic transformation: we define, for a cocycle c on R with
values in the group A, a subgroup of A depending only on the cohomology
class of c, and in Theorem 8 identify this with another subgroup, the
"normalized proper range" of c, defined in terms of the skew action. See
also Schmidt [1].

1. Introduction. This is the first of a series of two papers which will provide
the details of the results announced in Feldman-Moore [1]. The first of these
will be devoted more to a study of the equivalence relations and their
cohomology, while the second will be devoted more to the application of
these results and techniques to the study of von Neumann algebras.

Throughout, X will be a standard Borel space with a-field $. If G is some
countable group of Borel automorphisms of X we introduce the orbit equiva-
lence relation of this action, namely RG = {(x,y): 3g E G, y ■ g • x) c X
X X. If p is a a-finite measure on X, we say that it is quasi-invariant if its null
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290 JACOB FELDMAN AND C. C. MOORE

sets are invariant under the action of the group G. The starting point of this
work is two papers by Dye [1] and [2], in which he considers largely the case
when G = Z (so he is really studying a single Borel automorphism), and when
p is finite and invariant. Dye introduces the notion of weak equivalence (or
orbit equivalence) for two such Borel automorphisms, which means really that
the equivalence relations RG associated to the two actions are isomorphic
(mod null sets). He proceeds to classify Borel automorphisms under this
equivalence relation, and shows - for instance - that for ergodic
automorphisms there is (surprisingly) only one equivalence class. He
introduces a notion of hyperfiniteness for such countable group actions, and
explores the connections with von Neumann algebras. This work was exten-
ded by Krieger in a series of papers, [1], [2], [3], [4], [5] and [6]; Krieger
explores the non-measure-preserving case, and the rich and deep connections
with the theory of type III factors. Many other workers have made
contributions, especially Connes and Takesaki [1], [2], Dang-Ngoc-Nghiem
[1], Hamachi, Oka and Osikawa [1], K. Schmidt [1]. There is some overlap bf
our work and the above, especially Schmidt [1].

Meanwhile, Mackey [2], [3] introduced a program of classifying ergodic
group actions by mimicking the classification of transitive group actions. This
led him to look at RG for ergodic actions of general locally compact groups;
he introduced what he called ergodic groupoids; any RG is a principal ergodic
groupoid (or, to use another of his terms, an ergodic equivalence relation).

Our point of view will likewise be to ignore the group G; we will look just
at Rc, and axiomatize that object. Thus we will be considering equivalence
relations R c X X X which are Borel subsets of the product, and such that
each equivalence class is countable. Both Dye and Mackey noticed that
certain notions which superficially seem to depend on the action of G, such as
invariance of a measure, ergodicity, Radon-Nikodym derivatives, etc., really
can all be described in terms of RG alone; and we here define them for our
axiomatized R. It turns out (somewhat surprisingly) that any such R is an RG
for some countable group. Thus, any such R, if ergodic, is a principal ergodic
groupoid. Mackey has defined a notion of similarity for ergodic groupoids,
and we compare this with Dye's weak equivalence.

The advantage of working with the relation R itself rather than with a
group is that many constructions appear simpler, and their significance
becomes clearer.

Further we shall develop a cohomology theory for relations, and for
appropriately defined modules over relations. These were introduced in the
virtual group context by Westman [1]. We are able to characterize these
groups by a simple set of axioms, just as one can do for group cohomology.
We describe a number of applications of the cohomology, and conclude this
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paper with a study of what we call the asymptotic range of a one-cocycle.
This notion generalizes the Araki-Woods asymptotic ratio set [1] and the
work of Krieger [5]. There is overlap here with Connes-Takesaki [1], [2] and
with Hamachi-Oka-Osikawa [1], and some of the results were found earlier by
Schmidt [1]. As noted, the second paper will apply these results to the
construction and characterization of a certain class of von Neumann
algebras.

2. Countable group actions and equivalence relations. Let Ibea set and
R C X X X an equivalence relation. We write x~y for (x,y) E R, and
define tr,(x,y) = x, the left projection, and trr(x,y) = y, the right projection
of R. We let 0(x,y) = (y, x), the "flip", and note that 02 = id. For any
x E X, R(x) = {y: (x,y) E R) is the equivalence class of x, and for a
subset A c X, R(A) = U {R(x): (x E A)}, is called the saturation of X.
The relation R will be called countable (finite) if R (x) is countable (finite) for
each x.

Now if X is in addition a standard Borel space with a-field $, then we say
that R is standard if R is a Borel subset of X X X; that is, R is in the product
a-field © x ©. We write 6 for the restriction of % x ® to R. The objects
of study will be countable standard relations. It is important to notice in this
case that ir, and mr send Borel sets (in R) to Borel sets in X, since these maps
are countable to one (cf. Kuratowski [l]). It follows that if A is a Borel set in
X, then R(A) is also a Borel set in X. Now if ju is a a-finite measure on
(A', © ) with the property that n(R (A)) = 0 if ¡i(A) = 0, then p will be called
quasi-invariant for R, and R will be called nonsingular with respect to ¡i. These
notions depend only on the equivalence class of /x with respect to absolute
continuity. In the presence of a measure one may also speak of R being a.e.
countable (finite) and so on.

The example from which these definitions come is, of course, the following:
Let G be a countable group acting on (X, ® ) as Borel automorphisms. We let
RG = {(x, g • x): x E X, g E G). It is not hard to see that RG is a countable
standard equivalence relation. If jn is a o-finite measure on (X, %), p is
quasi-invariant for Rc if and only if p is quasi-invariant for G in the usual
sense. The group G may or may not act freely (G is said to act freely on X if
for each x the Borel map (g, x) h» g • x of G into R is injective). The first
result is that we have not enlarged the category of objects.

Theorem l. If R is a countable standard equivalence relation on (X, ■$), then
there is a countable group G of Borel automorphisms oj X so that R = RG.

Proof. Since (R, Q) is standard and tr¡ is countable to one, it follows from
Kuratowski [1, §39, III, Corollary 5] that there are countably many Borel sets
C, in ß forming a partition of R and so that m, is injective on each C¡.
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292 JACOB FELDMAN AND C. C. MOORE

Actually, the reference above requires that the range and domain be complete
separable metric spaces and that the function be continuous, but §37, II,
Corollary 1 of the same book enables one to reduce to that case. It follows
that the sets 9(CJ form a partition of R and tt, is injective on each. So the sets
{C¡ n 0(Cj), V/,y'} form a partition of R and both ttr and ir¡ are injective on
each. Now let A be the diagonal in X X X; then R — A is partitioned by
Borel sets {Dk), where the Dk are a relabeling of the nonvoid sets among
{(Cj: n 9(Cj)) - A}. But now Dj is the graph of a one-one function f} whose
domain is ir¡(Dj) and whose range is irr(Dj).

We wish to refine the partition {Dj) of R — A yet further by writing each
Dj as a union (J *•£>/ of Borel subsets so that it,(Djk) U •nr(Djk) = 0 for ally
and k. We may take X c [0, 1] and let {/*,} be a sequence of open rectangles
in [0, 1] X [0, 1] whose union is all of [0, 1] X [0, 1] minus the diagonal. Such
sequences obviously exist, and if P¡ = /, X J¡ with open intervals I¡ and J¡
then /,. n /, = 0.

Now we simply let Djk = Dj n Pk. Since ir,(Djk) c Ik and ir,(Djk) c Jk, we
have the desired property. Finally let us relabel the sets D}k as a single
sequence {£,}.

We then define a function g, from X to X by g,(jc) = v if (x,y) E E¡,
g¡(x) = y if ( v, x) E E¡ and g,(.x) = x otherwise. The fact that ir,(E,) n
irr(Ej) - Qi and that both ir, and wr are one-to-one on E¡ assures that g, is
unambiguously and completely defined. The graph Y( g¡) of g¡ is easily seen
to be E¡ u 0(Ej) U A n (F¡ X FJ where F¡ = X - (ir,(E,) u ^(f,)). This is a
Borel set, so g¡ is a Borel map. Since g2 = id, it is a Borel isomorphism. Now
let G be the (countable) group generated by the g¡. Since Y(g¡) c R by
inspection, RG c R; but on the other hand, UY(g¡) D R — A, so R = RG
and we are done.   □

The result above is actually somewhat better than we need, for we will
always have a quasi-invariant measure around and it would have been
sufficient to produce a group G so that R = RG almost everywhere in an
appropriate sense.

A much deeper question, and one which remains open, is whether one
could always select the G of Theorem 1 so that it acts freely; or more
conservatively, whether-given a quasi-invariant measure-one can find a freely
acting G so that p{x: R(x) ¥= RG(x)) = 0.

For the remainder of this section R will be a nonsingular countable
standard equivalence relation on (X, 'S, p).

Proposition 2.1. IfCEG, then p(vr(C)) = O^p^C)) = 0.

Proof. We note that 7r,(C) c Trt(^-\(c)) " RMC))- So if pK(O) =
0, it follows by nonsingularity that p(R (fl",(C))) = 0 and hence by the above,
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p(it¡(C)) = 0. The opposite implication follows by symmetry.   □
In the following, |5| will denote the cardinality of a set. The following

theorem provides two measures on (R, Q) which will play a fundamental role
in the sequel.

Theorem 2. (a) For any C E G, the Junction x h» \irfx(x) n C\ is Borel and
the measure v¡ defined by

v,(C)=f\vfx(x)nC\dii(x)

is o-jinite; it will be called the lejt counting measure oj p.
(b) The null sets ojv, are exactly those C E G such that p(it,(C)) = 0.
(c) The right counting measure oj p dejined analogously satisjies vr = v¡ ° 0,

and we have vr ~ v¡.

Proof, (a) As in the proof of Theorem 1, let {C¡} be a partition of R into
Borel sets so that ml is injective on each C,. Let j} be the restriction of it, to Cj
and let Aj = ^¡(CJ). Then j} is a Borel isomorphism of Cj onto A}. If
vJ(C) = p(tt,(Cj n C)), it is clear that v* is a a-finite measure on G. Notice
that \irfx(x) n C\ = 2, 1c(*>jÇ~'(•*)) is a sum of Borel functions, and hence
is Borel. We can integrate term by term to obtain

"/(C) =]>,-'(*) n c\dpix) -2^(C).
j

Thus !>, is a countable sum of o-finite measures with disjoint supports and
hence is a-finite.

(b) Let C c R; then v,(C) - 0<=> Iwf'Oc) n C| = 0 for p almost all jc<=>
p(ir,(C)) = 0, as 7T/(C) = {x: ^/"'(jc) n C\ ¥= 0), and this establishes (b).

(c) It is clear that v¡ = j»r ° f, and the equivalence of v, and i»r follows from
Proposition 2.1.  D

We note that if p' is equivalent to ju, and if v¡ and v'r are the left and right
counting measures for p', then dv¡/dv¡ = (dp'/dp) ° ir¡ for i = I ox r. Now we
define the Radon-Nikodym derivative of p with respect to R; it will have the
proper interpretation when R = RG.

Definition 2.1. The Radon-Nikodym derivative of ft with respect to R is the
Borel function D(x,y) = dv,/dvr(x,y) on R. It is unique up to null sets of
v, ~ vr, and we say that p is invariant if D = 1 a.e. Note that the Radon-
Nikodym derivative D' oi p' with respect to R, where /i ~ p', has the form
£'(•*> >0 = £(*)" '^ (*> y) S(y)I0r a certain positive Borel function g on X.

We now show that D is what it should be when R is realized as an RG.
Definition 2.2. A partial Borel isomorphism on X will be a Borel

isomorphism <> defined on some ¿4e9 with range some B E <3b.
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Proposition 2.2. If ^ is a partial Borel isomorphism with Y(<b) (the graph of
$) C R, then <#>„,( p), viewed as a measure on the range of <b, is absolutely
continuous with respect to p there, and d<b^(p)/dp(y) = D(<f>~x(y),y)for a.e.
y in the range of <b.

Proof. For A c R(<b),

4.p(A) = p(<t>~x(A)) = p(v,(T(4) n wr-\A)))

= !v(r(*) n *-x(A))=j(dVl/dv,)dvr

where B = Y($) n it~x(A). Since irr is one-to-one on B with image A, and
since vr on B projects under irr to p, the integral can be rewritten as

p(^-x(A))=j(dvt/dvr){^(y),y)dp(y),

which gives the desired result.   Q

Corollary 1. The following are equivalent:
(a) p is invariant under R.
(b) p is invariant under G for some G with R = RG.
(c) p is invariant under every partial Borel isomorphism with Y(<b) c R.

Corollary 2. There is a p-null set N so that if y E N, and x ~ v ~ z,we
have D (x, y)D (y, z) = D (x, z).

Proof. This is immediate if we use the fact that R = RG for some
countable group, Proposition 2.2, and the functional equation satisfied by the
Radon-Nikodym derivative of the product of two transformations. In fact the
formula of the corollary is completely equivalent to that functional equation.
Alternately, it is easy enough to construct a direct proof of this formula
without any reference to a countable group.   □

Remark 1. One way of reformulating this equation is to observe that if we
disintegrate the measure v¡ with respect to right projection, we obtain
measures ay living on R (y) so that

Vl{EÇMtr-x(F))=jay(E)dp(y).

Of course, R(y) is a countable set, so that oy is determined by the mass
oy({x)) (x ~y) which oy gives to singleton sets, and this is of course D(x, y).
The formula of Corollary 2 says that for z ~y, az is a multiple of o , or more
precisely, a2 = D (y, z)oy.

Remark 2. The formula of the corollary is, in the sense of §5, the cocycle
identity in dimension one, so that D is a one-cocycle with values in the
multiplicative positive reals. We have already observed that if D' is the
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Radon-Nikodym derivative of p' with respect to R, then D'(x,y) =
g(x)~xD(x,y)g(y) for some g, and this in the language of cohomology means
that D and D' are cohomologous. It also follows that p has an equivalent
invariant measure if and only if it is cohomologous to 1.

In the sequel we shall simply use v to denote a measure on R equivalent to
a counting measure. Moreover, we shall need later on a generalization of the
counting measures introduced above. Specifically for n > 0, let R" be the
subset of Xn+X = X X • • • X X (n + I times) consisting of all n + 1 tuples
(x0, x2,..., xn) with x0 ~ xx ~ • • • ~ xn. It is clear that R" is a Borel
subset of XH+ ', since R = R \ a Borel subset of X2. If F c {0, 1,...,«} is a
subset of cardinality m + 1, then the projection irF of Xn+X onto Xm+X
defined by trF(x0,..., x„) = ix,)UcF) E Xm maps R" onto Rm. The fiber in
R" over any point is countable as in the special case n = 1, where itF = trt or
mr. The following result is established just as in Theorem 2.

Proposition 2.3. lj C is a Borel set in R", then \irf\u) n C\ is a Borel
Junction oj u E Rm, where trF: R"-* Rm. IJXm is a o-finite measure on Rm,
then

v(F,Xm)(C) =f\irfx{u) n C\dXm{u)

defines a o-jinite measure on R" whose equivalence class depends only on Xm
and F.

Now if we take F = (0), so R° = X and we take vm = p, we obtain a
measure v" on X". We are not so much interested at this point in v" itself, but
rather in its equivalence class.

Proposition 2.4. IJ F is any subset oj (0, 1,..., n) oj cardinality m + 1
and Xm any measure on Rm equivalent to vm, then v(F, Xm) dejined above is
equivalent to v".

Proof. By definition, the null sets of v(F, Xm) consist of all C such that
ttf x(u) n C - 0 for Am almost all u E Rm. Let C be a v(F, Xm)-null set, and
let D be those u E Rm so that wfx(u) n C ¥= 0; thus D is a null set and
irfx(D) D C. Now let G denote the singleton set of indices (0, 1,..., «}
consisting of the first element of F, and let q be the surjection from Rm to X
defined by projection to the first coordinate, so that we have q ° itF = mG on
X". Now the null sets of Xm ~ vm are by definition those N such that
q~x(x) n N = 0 for p (= j»°)-almost all x E X. Thus there is a null set
E c X so that for x g E, q~\x) n D = 0, which implies that 0 =
trfx o q~x(x) n itfx(D) d trfx(x) n C. It follows immediately that C is a
v(G, u)-null set, and it is not hard to show conversely that a v(G, /i)-null set is
a v(F, Xm)-null set.
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Thus to prove the result we are reduced to proving the proposition in case
F is a singleton. Recall that v" is defined to be v(H, p) where H = {0} is the
singleton consisting of the first coordinate. If H = F we are done, and if not,
E = H u F is a two element set; we consider the projection mE of R" onto
R = Rl. The equivalence of the measures v(F, p) and v(H, p) follows
immediately from the fact that left and right counting measures v, and vr on
Rx are equivalent, since the null sets of v(F, p) are those C such that v,{u:
1% '(«) n C| ^ 0} =0, and the null sets of v(H, p) are those C such that
vr(u: \ir¿l(ü) n C\ ¥* 0}) = 0. The proposition is proved.   □

It follows that each R" has a unique measure class represented by r" with
the disintegration properties described by Proposition 2.4. When we say that
some property holds for almost all u E R", we shall always understand this
measure (class).

3. Classification and decomposition. In this section we recall and summarize
known facts about classification into von Neumann-Murray types and
decomposition into ergodic pieces as they apply to our relations. For proofs
the reader is referred to the article of Dang-Ngoc-Nghiem [1]. In the sequel, R
will always be a countable standard equivalence relation on (X, SJ, p), with p
quasi-invariant.

Definition 3.1. Let Rj on (Xj,^, pj) be given.
(a) A Borel map <f>: Xx -» X2 will be called a morphism if (¡>+(px) < p2 and

d> X <t>(Rx) C R2 up to a set of (pj), measure zero.
(b) Relations Rj on (Xjt tyj, pj) are isomorphic if there is a Borel

isomorphism <¡> from almost all of Xx to almost all of X2 with <b+( px) ~ p2 and
<¡>(Rx(x)) = R2(<b(x)) for px almost all x (or equivalently <f> X <b(Rx) = R2 up
to a set of (vj)¡ measure zero).

Definition 3.2. Given R on (X, <S, p), a set A E <& is called invariant if
R(A) = A up to null sets. The invariant sets, denoted by $(R), form a
o-subalgebra, and R is ergodic if 5(7?) consists only of null or conull sets. A
Borel function / is invariant if f(x) = f(y) for almost all pairs (x, y). The
algebra of such functions will also be denoted by $(/?)•

If B E %, then we can form the restriction of the relation to B, denoted by
R\B; it is by definition that relation on B given by R n (B x B). It is a
nonsingular relation on (B, "35 |a, p\B). If in addition B is invariant, then
$(P\b) = $(R)\b- R\b is sa'd to be a summand of R in this case, and R is the
sum in an obvious sense of R \B and R \X_B.

Definition 3.3. An R on (X, $, p) is said to be
(a) of semifinite type if 3pn~ p, with p0 invariant,
(b) of finite type if (a) holds for some p0 of finite mass,
(c) of purely infinite type if there is no nonzero invariant pn ■< p,
(d) of properly infinite type if there is no finite non-zero invariant p0 < p.
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The notion of a relation being of finite type in the sense above is of course
quite different from its being finite in the sense of §2.

Definition 3.4. A relation R is of type I„ (n = 1, 2,..., co) if it is
isomorphic to an R' on (A", <$>', p') where X' = S X X" with \S\ = n,
$ ' - 2s X a ", p' = (counting measure) x p" with (s, x") ~ (t,y") <=> x" =
y ".Ris said to be discrete or of type I if there is a partition of X into invariant
sets X„ with R \x of type I„. (These Xn axe of course unique.) R is of type II if
it is of semifinite type with no type I summand; of type II, if it is of type II
and of finite type; and of type II«, if it is of type II with no finite summands.
R is of type III if it is purely infinite type.

Proposition 3.1. Ij R is given, there is a decompositon oj X into invariant
sets, unique up to sets oj measure zero, X = UnXx" U XXXl U Ar"°° U A'111 so
that R \x. is oj type a.

Of course, if R is ergodic, one and only one of the A^'s above will be
nonnull. An ergodic relation of type I is isomorphic to (S, 2s, ps) where |S| is
finite or countable and ps is a counting measure. Following Mackey, we say
that R is strictly ergodic if it is ergodic and not type I. Note also that a
relation R is finite in the sense of §2 iff R is of type land X1" is null.

Any equivalence relation can be decomposed as a continuous sum of
ergodic ones. For simplicity we assume that that continuous decomposition
was already given in the definition of a relation of type I. Consider a space
Z X Y, with a-field $z X $y and let Rz for z E Z be an equivalence
relation on (Y, ®r) with a quasi-invariant measure pz such that pz(Az) is a
Borel function of z for any Borel seM e $z xSr; here^ = {y: (z,y) E
A). Suppose that R = {((z,y), (z,y')): (y,y') E Rz) is a Borel subset of
(Z X Y) X (Z X Y). If p is a measure on Z we can integrate the measures pz
with respect to p to obtain a measure p on Y X Z. Then R as defined is an
equivalence relation on (Z X Y, $z X ^>Y, p) and may be regarded as the
continuous sum of the Rz.

Proposition 3.2. IJ R' is given on (X', %', p'), it is equivalent to a relation
R as dejined above on (Z X Y,^>z X <&Y,p)so that any set in S(R') is oj the
jorm AX Y up to a null set, and such that almost all oj the Rz are ergodic. Ij
Xa = Z" X Y are the sets in the partition into pure types, then Rz is oj type a
jor almost all z E Z".

We come now to an important notion: comparison of two subsets of X
with respect to an equivalence relation R. This is the analogue of comparison
of projection in a von Neumann algebra.

Definition 3.5. Given R on (X, %, p) and A, B e $, we say that A and B
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are equivalent, or A ~ B if there is a partial Borel isomorphism with domain
A and range B and with Y(<b) c R a.e.

One can characterize when two sets are equivalent, a result first proved in
full generality by Dang-Ngoc-Nghiem [1]. We state the result only in the
ergodic case, where it is simpler to state.

Proposition 3.3 Let R be ergodic on (X,%,p) and A,B E%. Then
necessary and sufficient conditions for A — B are as follows:

(a) // R is of type I or type II and px is the invariant measure, we must have
px(A) = px(B);

(b) If R is of type III, A and B are always equivariant if they are both of
positive measure.

Remark. If R = RG, then any partial Borel isomorphism can be written in
terms of G as follows: Let Ag = {x: <p(x) = gx). Then the domain A of <b is
the union of the Ag, and by replacing Ag by a suitable subset if G is not free,
we can make them disjoint. Then A ~ B if and only if there is a partition
A = U Ag of A such that {g(Ag)) is a partition of B.

A useful addendum to Proposition 3.3 concerns the existence of Borel maps
<> with Y(<b) c R, but not necessarily injective:

Proposition 3.4. If A,B c X and R (A) c R (B), then there exists a Borel
map fyfrom A into B with Y($) c R.

Proof. The condition R(A) c R(B) is clearly necessary for the existence
of such a <f>. If it is satisfied, then for each x E A, its class R(x) meets B.
Then we write R = RG for a countable group G and number the elements g¡
of G by the positive integers. We then define <b(x) = g¡(x) where / is the
smallest index such that g¡(x) E B. Since (b(x) = g¡(x) for x E A¡ where
A = U Ai, is a partition of A is into Borel sets, it is clear that <J> is a Borel
function.   □

We have already mentioned the notion of relativizing a relation to a subset
B c X. Let R (B) be the saturation of B, so that R (B) E 5 (R) and R \R,B) is
a summand of R.

Proposition 3.5. (a) R\B is ergodic if and only ifR\R,B) is ergodic.
(b) The type I, II and III summands of R\Bare B n Xa, a = I, II, III.

Remark. The notion of relativizing an equivalence relation generalizes
Kakutani's idea of the induced transformation [1]. Specifically, let G = Z be
the group generated by the powers <b" of a single conservative nonsingular
transformation on (X, "35, p), let R = RG, and let A c X be of positive
measure. If x E A, let n(x) = inf{n > 0: <t>"(x) E A) and define $A(x) =
$"(Jt)(x). (Note that «(*) < cx> a.e. as <b is conservative.) Now let G(A) be the
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group consisting of the powers of <$>A. Then it is virtually obvious that
r\a = RG(AY

Suppose now that R¡ axe relations on (X¡, <$,-, p¡), i = 1, 2. We form
X = Xx X X2, equipped with the product a-field 8,x82 and the product
measure, and we let R = Rx X R2 he the product of Rx and R2, specifically
(xx, x^)~ (yx,y2) if and only if xx~yx and x2~~y2. If R¡ — RG(¡), then
R - ^G(i)xc(2) witn G(l) x G (2) operating naturally on the product.

Proposition 3.6 IJRX and R2 are ergodic, so is Rx x R2.
Proof. Let E = R (E) be an invariant set in A", x X2 and let Ex (Ey) its

vertical (horizontal) section at x (y). Then as Ex and Ey axe invariant sets for
the ergodic relations Rx and R2 respectively, Ex and Ey are null and conull
for each x andy. \ipx andp2 are the projections to Xx and X2, it follows that
E is of the form pxx(Ex) a.e. and also of the form pfx(Efj a.e. for E¡ c X¡.
Clearly the only way this can happen is for Ex and E2 to be simultaneously
null or conull, and the result follows.   □

We will meet a generalization of this construction in a later section, but
now let us turn to a different topic. If R is an ergodic relation on (A", <&, p) it
has the algebraic structure of a principal groupoid, and is indeed a principal
ergodic groupoid in the language of Mackey [2], and therefore defines a
virtual group. Virtual groups are "similarity" classes of ergodic groupoids, but
the notion of equivalence used to identify two groupoids is broader than our
notion of isomorphism of relations. Thus it is natural to raise the question of
when two of our equivalence relations define the same virtual group. The
following theorem answers this question. We will use In to denote the ergodic
equivalence relation of type I„, n = 1,..., co.

Theorem 3. For countable standard ergodic equivalence relations R¡ on
(X¡, %i, p¡), the following are equivalent:

(i) Rx and R2 define the same virtual group (or are "similar");
(ii) there are Borel sets of positive measure E(i) so that the relativizations

r\\e(\) and R2\E(Z) are isomorphic.
(iii) RxXlos is isomorphic to R2 X 1^.

Proof. We first prove (i)=>(ii); according to Mackey [2], similarity of Rx
and R2 means that there are morphisms (Definition 3.1) <p, and <i>2 from A", to
X2 and from X2 to Xx such that <b2<bx and <bx<b2 send almost all x into Rx(x)
and almost all y into R2(y). It follows that </>,<i>2 and <¡>2<¡>x axe at most
countable-to-one, and so the same holds for <j>x and <b2. Then just as in
Theorem 1, we can find disjoint Borel sets C„ c Xx such that <£, restricted to
each C„ is an isomorphism and U C„ = Xx. Since <b(Xx — N) has positive ju2
measure in A"2 for any null set N in Xx, we take N to be the union of the C„
with px(C„) = 0 and conclude that there exists some C„ with px(C„) > 0 and
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P2OKQ)) > 0- If a\ is Pi restricted to C„ and o2 is p2 restricted to <p(C„), and \p
is <i> restricted to C,, then it follows that \p^(<bx) < a2. Then ^>(C„) is the
disjoint union <b(C„) = <f>(£(l)) u <f>(D(l)) of Borel sets such that ip+(ox) <— o2
on <>(£(1)) and ypt(ox) = 0 on <>(£>(1)). Then <p restricted to £(1) is an
isomorphism of /?i|£<i) onto R2\^Eo)) anc* tn's establishes (ii).

Now suppose that (ii) holds. From the construction of R x lK it is clear
that R is isomorphic to a relativization of R x 1^. Thus if (ii) holds, Rx x IM
and Ä2 x I« have isomorphic relativizations, and are both of infinite type. So
to prove (ii) => (iii), it will suffice to assume that (ii) holds for Rx and R2 of
infinite type and show then that Rx is isomorphic to R2. Now by Proposition
3.5(a) and (b), it follows that Rx and R2 are both of type IM or H^ or III. If
both are type IM they are clearly isomorphic; if both are of type III it follows
by Proposition 3.3(b) that Rx is isomorphic to -Ril^i) and that R2 is
isomorphic to R2\E(2)' and hence that Rx is isomorphic to R2. If both are of
type 11^, and if one of the sets E(i) is of infinite invariant measure, so is the
other; then by Proposition 3.3(a) R¡ is isomorphic to R¡\E/t) and hence as
above Rx is isomorphic to R2. Finally in case both sets E(i) are of finite
invariant measure, we can partition Xx — U C(i) and X2 = \JD(i) with
C(l) - £(1), £»(1) = £(2) and so that p,(C(0) = Pi(C(l)) and p2(D(i)) =
p2(D(l)). Then by Proposition 3.3(a), /?i|C(/) is isomorphic to Ä1|cr(1) and the
same for R2, and it follows at once that R¡ is isomorphic to R¡\Eír) X Iw. Since
i?,|£(1) is isomorphic to R2\e(2) it follows that Rx is isomorphic to R2 as
desired.

Finally we establish that (iii) => (i), and for this it suffices to note that R
and R X 1^ define the same virtual group; for it is apparent that there are
morphisms going in both directions having the desired properties as outlined
at the beginning of the proof. Thus if Rx X 1^ is isomorphic to R2 X I,,,, they
define a fortiori the same virtual group, and by our comments above, so do
Rx and R2.   Q

As a corollary of the theorem and its proof we obtain the following result.

Corollary. If Rx and R2 are of infinite type and are Mackey equivalent via
morphisms <bx and <i>2 from Xx to X2 and <J>2 from X2 to Xx, then Rx and R2 are
isomorphic by means of an isomorphism <p such that <b(x) ~ $x(x)for almost all
x, and$~x(y) ~ <{>2(y)for almost ally.

Proof. If Rx and R2 are infinite, R¡ ss R¡ X 1^, and if we trace through the
argument, we see that the <b which the argument constructs has the desired
property.   □

4. Hyperfiniteness. In this section we shall investigate the notion of
hyperfiniteness in the context of our equivalence relations. Again for the most
part this recalls known facts.
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Definition 4.1. A relation R on (X,^>, p) is said to be hyperfinite if there
are finite relations Rn with Rn c Rn+X and U R„ = R a.e.

We recall a result that is basically known.

Proposition 4.1. For a relation R on (X, ©, p) thejollowing are equivalent:
(a) R is hyperfinite.
(b) R — Rz a.e.jor some action oj3L.
(c) There are periodic Borel isomorphisms <f>¡ with T(<b¡) c R and R¡1R a.e.

where R¡ is the relation generated by the powers oJ(¡>¡.
(d) For any countable G with R = RG a.e., the Jollowing holds: given

gx,...,g„ in Gande> 0, 3<bx, ...,<*>„ with T(<f>¡) c R such that p{x\ gj(x) ^
4>j(x)} < ejorj = 1,..., « and such that the ty generate a finite group.

Proof. The equivalence of (b), (c) and (d) are due to Dye [1] in the II, case
and to Krieger [1] in the general case. Condition (d) is Dye's original
definition of "approximate finiteness". We need only show that (a) is equiva-
lent to the others. Given (c), it is clear that Rj is a finite relation and so (a)
holds. Given (a), we construct for each of the finite relations RJt from the
definition of (a), a periodic transformation fy which generates it. We split X
into a union of X(n) where Rj is of type I„. Then X(n) looks like {0, 1,..., n
— 1} X Y„ and (i,y) ~ (k,y') if and only if y = y'. Then we define <fy on X„
by $j('>y) ■ («' + i. y) (mod n).

Proposition 4.2. (a) Any type I relation is hyperfinite;
(b) ifRx c R2 C ... are all hyperfinite, then R » UjRj is also;
(c) // S and R are two relations on (X, <3J, p) with S c R and ij R is

hyperfinite, so is S;
(d) ifR is hyperfinite on (X, ©, p) and A E ©, then R \A is hyperfinite.

Proof, (a) This is clear from the description of type I relations in §3. (b)
We can write Rj - RG(J) for a countable group G(j) so that G(n) c G(n +
1) (replace G(n) by the group generated by G(j), j < n). Then clearly
R = RG where G = G(j). Now condition (d) of Proposition 4.1 holds by
hypothesis for each G(j) and hence evidently also for G. Hence by that
proposition, R is hyperfinite. (c) This is clear from Proposition 4.1(a) since if
RJR a.e. R„ n SfS a.e. (d) As in (c) if RJR a.e., then R„\A1R\A a.e. and
R„\A is finite if R„ is.   □

Dye established the following remarkable isomorphism theorem for II,
hyperfinite group actions which was extended to the IIM ergodic case by
Krieger.

Proposition 4.3. Let Rj on (A), %Jf pj) be hyperfinite. I j both are oj type \n,
II,, or 11^, they are isomorphic ij and only ij the measure algebras of p,\5(K¿ are
isomorphic.
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Proposition 4.4. If G is a countable abelian group then RG is hyperfinite.

Proof. The II, case is due to Dye [2], the 11^, ergodic case to Krieger [1],
and the general case to Feldman and Lind [1].

Finally, it now appears that Connes and Krieger have established the much
more general (and difficult) fact that RG is hyperfinite for any countable
solvable group. In the opposite direction, the following may be noted:

Proposition 4.5. // RG is hyperfinite on (X, 95, p) and of finite type with G
freely acting, then G is amenable.

Proof. This follows from Sakai [1, 4.4.21].
Remark. This is false if the assumption that R is of finite type is dropped;

A. Connes pointed this out in conversation with one of us, by a simple
example.

Still open is the following question: Does a converse of Proposition 4.5
hold; that is, is RG hyperfinite for amenable (not just solvable) G1

5. Modules for equivalence relations. We now turn to discussion of
cohomology groups which can be associated to relations. The first order of
business is to define a category of modules for a relation R. This is somewhat
complicated by the fact that we wish to treat nonergodic relations as well as
the ergodic ones. To see what the proper definition is, we imagine a pair
(x, y) E R to be something like a group element, and so we should consider a
group A (abelian or not) together with a map u from R into Aat(A) with the
property that u(x, z) = u(x,y)u(y, z) for all x ~y ~ z. The proper kind of
group to consider here is a polonais group (cf. Moore [3]) and the function u
must be Borel in the obvious sense. Actually we also want to allow the group
A to vary as one moves about in the space X so that we replace A by a family
of polonais groups {Ax, x E X) subject to some regularity conditions
summarized below.

Definition 5.1. Let R be a relation on (X, "35, p). An /?-module A or (A, u)
will be specified by a countable partition X = U X„ of X into R-invariant
sets and the assignment of a polonais group A„ for each n together with a
map u of R into \J nAut(An) such that for (x,y) E R„ = R n X„ X Xn,
u(x,y) E Aat(A„) and satisfies

(i) u(x,y)u(y, z) = u(x, z), x,y,z E Rn, and
(ii) (x, y, o)i-» u(x, y)-a is jointly Borel on Rn X An for each n. For

x EXnviewriteAn = Ax.
Of course if R is ergodic, then one of the Xn is conull so that the module is

equivalent in the sense described below to one with X„ = X and An = A.
Definition 5.2. An i?-homomorphism <J> of an /?-module (A, u) into

another one (B, v) consists of a continuous homomorphism <f>x of Ax into Bx
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so that <¡>xu(x,y) = v(x,y)(by for almost all (x,y) E R (with respect to the
measure of Theorem 2) and so that <px is a Borel function from An into Bm for
xei,n Ym where {Xn} and {Ym) axe the partitions defining A and B
respectively.

Equivalence of modules is then defined in the obvious way; one may also
define the notion of a closed submodule, the quotient modulo by a closed
submodule, and the notion of a short exact sequence. Moreover, one may
define finite Cartesian products of modules and countably infinite products
provided that there is some fixed partition finer than all of those defining the
factors. Finally if we are given a standard measure space ( Y, o) equipped with
a partition Y = Ui"„ we can define the module Ü(Y, A) in analogy with
Moore [3]. Specifically, an Ä-module Ü(Y, A) is to be defined by the same
partition X„ of X as A and Û(Y, A)„ = U(Y„, An), the group of equivalence
classes of Borel maps from Yn into A„. For (xx, x¿) G R„ the corresponding
automorphism v(xx, x2) of U(Yn,An) is defined by (v(xx, xjf)(y) =
u(xx, ^z)(/(7)) ioxy E Yn.

We let U(Y, A) denote the product Il„ U(Yn,An) and view its elements
/ = (Jn) as functions on Y into \JAn mthj(y) = J„(y) ioxy E Y„. We call
U(Y, A) the functions from Y to A.

We shall now construct a module of importance to us; this is to be an
analogue of the regular representation with coefficients in a fixed polonais
group A and will be denoted 1(A). Let Xn consist of the subset of A*
corresponding to the part of R of type I„, or equivalently, the set of x such
that \R(x)\ = n. Then X = U~_, Xn (including oo) is a partition of X. Let
N„ be a set of n elements and let (I(A))„ = U(Nn, A). For x E Xn, we let
Nx = Nn and I(A)X = I(A)„.

Proposition 5.1. There exists a junction <j>x, x E X„, jrom Nn into R(x),
which is a bijection Jor each x and such that <bx(k) is a Borel junction oj xjor
each k.

Proof. This is more or less implicit in the proof of Theorem 1 above and
we omit the details.   □

Now for x~y, <¡>fx<py =p(x,y) is a bijection of N„ into itself and an
element of the permutation group P(N„) of Nn. It is immediate that for
x~y~z, we have p(x,y)p(y, z)=p(x,z), so that/? is a (nonabelian)
cocycle in the language to be introduced in a moment. If we were to select
another family of functions \bx, we would have \¡>x = 4>xc(x) where c(x) 6
P(Nn). Then the corresponding cocycle q associated to \¡>x would be given by
l(x>y) ~ c(x)~xp(x,y)c(y) so that p would be changed only by a
coboundary. Then p (or q) defines a unique cohomology class which will be
called the fundamental class of R. We shall return to this once we have
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introduced cohomology formally. In any case, p(x, y) defines an
automorphism i(x,y) of I(A)X by (i(x,y)f)(k) = f(p(x,y)~xk) for k E Nx
and/ G I(A)X. In the notation above, if we set (s(x)f)(k) = f(c(x)k) we see
that s(x)i(x, y) = f(x,y)s(y) where y(x, v) is the automorphism of I(A)X
defined using q(x,y) in place of p(x,y). Thus (1(A), i) and (I(A),j) are
equivalent modules in the sense of our definitions and 1(A) will denote this
(unique) R module.

Suppose now that A additionally already has the structure of an Ä-module,
with defining function u. Then we claim that A can be embedded in 1(A) as a
closed submodule, just as in Moore [3]. To do this we must define a 1-1 map
t(x) from Ax to I(A)X with closed range satisfying t(x)u(x,y) = i(x,y)t(y).
One may verify that the specification (t(x)a)(k) = u(<bx(k), x)a for k E Nx
does the job. As in Moore [3], we let U(A) be the cokernel of t so that we
have a short exact sequence

0->A-+I(A)-> U(A)->0.
We now consider the category ?y(R) of abelian polonais .R-modules, and

our object is to attach cohomology groups H"(R,A) for A E ^(R), n > 0
analogous to Eilenberg-Mac Lane groups. These groups will contain interest-
ing information about the relation R and about associated von Neumann
algebras. We shall also define a cohomology set for nonabelian modules A for
n = 1.

One cohomological object of interest that will appear often in the sequel is
defined below.

Definition 5.3. Let (A, u) be an J?-module (abelian or not) defined by a
partition (Xn); using the same partition, we define the group U(X, A) as
above. A function/ G U(X,A) will be said to be R equivariant if u(x,y)-
f(y) = f(x) holds for almost all pairs (x,y) E R. The set of such functions
will be denoted by AR; it is obviously a closed subgroup of U(X, A) and
hence is a polonais group.

Proposition 5.2. For A E ^(R), the map Ah* A R is a left exact covariant
functor from 9(R) to polonais abelian groups.

The routine proof is omitted.
The groups AR will be the zero dimensional groups H°(R, A); we have

already met the one dimensional groups informally above and we make this
precise. Suppose that A is a (not necessarily) abelian A-module defined using
U„X„ = X. Let C\R,A) be U(R,A) where it is understood that the
partition of R is {R„) with R„ = X„ X X„ n R. This consists of all classes of
Borel functions / from R into U„An with f(x, y) E A„ if (x, y) E R„. Let
ZX(R, A) consist of those functions satisfying f(x, z) = f(x,y)(u(x,y) •
f(y, z)) for almost all triples (x,y, z), x ~ y ~ z, with respect to the measure
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v2 on R2 defined in Proposition 2.4. It follows from the disintegration
properties of v2 in Proposition 2.4 that if /= g a.e. and if/is in ZX(R, A)
then g is also. We define an equivalence relation on ZX(R, A)hy saying that
/~g if there is an element b E U(X, A) such that J(x, y) «■
b(x)~xg(x,y)(u(x, y) • b(y)) for a.e. (x,y). The set of equivalence classes is
denoted by HX(R, A), the first cohomology set with coefficients in A. If A is
abelian, ZX(R, A) is a polonais group, being closed in U(R, A), and the
subgroup BX(R, A) = {b(x)~xu(x,y)- b(y), b E U(X,A)} of coboundaries.
The quotient group is H X(R, A).

If A <= R+ is the positive reals under multiplication, the Radon-Nikodym
derivative of §2 is a cocycle. Also if we let Ax = P(NX) he the permutation
group on the fixed set Nx of cardinality equal to the cardinality of R(x),
equipped with the topology of pointwise convergence, we have an J?-module
P(N) with « = 1. Then the fundamental class defined in the first part of this
section is an element of the setHx(R, P(N)).

6. Cohomology. Rather than immediately introducing the cohomology
groups we shall proceed axiomatically by Using some axioms that our
cohomology groups should satisfy, and then prove a uniqueness theorem. The
existence will then follow by a direct construction using an appropriate
cochain complex.

Definition 6.1. A cohomological functor on ^(R) is a sequence of
covariant functions H"(R,-) on'S'(R) to abelian groups so that to each short
exact sequence in^?(R) there corresponds functorially a long exact sequence
of cohomology (cf. Eilenberg-Mac Lane [1]) and such that

(1) H°(R, A) s A R as defined above, and
(2) H"(R, 1(A)) = 0 for any A and n > 1.

Proposition 6.1. IJ H" and H" are two cohomological junctors on 'S'(R),
there are junctorial isomorphisms H"(R, A) ss H"(R, A).

Proof. This follows easily just as in Moore [3], since all that argument
needed was the embedding of A into 1(A) with the latter having trivial
cohomology.   □

Recall that U(A) was defined as the cokernel of the embedding A-^ 1(A)
defined in the last section. We now let U"(A) = U(... U(A)...)(«- 1
times). Then the following result allows one to reduce higher dimensional
cohomology groups down to dimension one and is a consequence of the
argument of the above proposition, just as in Moore [3].

Proposition 6.2. // H"(R,-) is a cohomological Junctor, H"(R,A)st
HX(R, Un(A)).

Our next task is to give an explicit construction of these groups. As we have
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already noted in §3, an ergodic R is a principal ergodic groupoid and hence
defines a virtual group. Westman has introduced the cohomology groups
defined by cochains in this context in Westman [1], but for completeness we
give the definitions again as we shall need some specific properties of these
cochains. We consider the set R" c Ar"+1 together with the measure (class)
v" defined in §2. If UA^ = X is a partition of X by invariant sets, R" is
always assumed to be partitioned by the sets R" n Xm X • • • X Xm. Thus if
(A, u) is an abelian R module we let C(R, A) be the group U(R", A) of
classes of Borel functions of R" into A endowed with the usual topology in
which it is a polonais group. We define a coboundary operator 8„_x from
C"_l toCby

(A-l/)(*0. •••.*«)- "(*0> *l) •/(■*!> • • • . *n)
n

+ 2 (-l)'/(*0. •••>*/»• -"Xn)-

The disintegration properties of the measures v" described in Proposition 2.4
ensure that this formula makes sense modulo null sets. Moreover, each 8„ is a
continuous homomorphism. It is evident that C(R, A) is a complex. Let
Z"(R, A), B"(R, A) and H"(R, A) be respectively the cocycles, the cobound-
aries, and the cohomology in dimension n. Of course if the action of R on A
is trivial the formula for 8„ becomes especially simple and very reminiscent of
topology.

If <f> is a morphism of one R-module (A, u) into another J?-module (B, v)
then £ consists of a family of group homomorphisms <f>(jc) of continuous
homomorphisms of Ax into Bx; recall that Ax and Bx are constant on each set
of a partition of X into Ä-invariant Borel sets, so Ax = Ay and Bx = By if
x ~y\ <i>(x) satisfies the equation <b(x)u(x,y) = v(x,y)<b(y). We now define
a cochain map <f>" from C(R,A) into C(R, B) by (<t>nf)(xn, ...,x„) =
$(xn)f(x0,..., x„). It is routine to verify that the <i>" are homomorphisms of
complexes and so define natural induced homomorphisms $" on
cohomology.

Proposition 6.3. The assignments A i-> H"(R, A) are functors of cohomo-
logical type and H°(R, A) = AR as defined above.

Proof. The naturality of the maps is evident, and if0-»/4'-»./l->/4"-»0
is a short exact sequence in (3'(R) it is easy to see as in Moore [3] that the
corresponding three term sequence of cochain groups is a short exact
sequence of polonais groups. The existence of a long exact sequence of
cohomology is a standard construction in homological algebra.

For the second statement we observe that B°(R, A) = 0 by definition and
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that Z°(R, A) consists of classes of Borel functions / from X into U„An with
J(X„) c A„ (where X = U Xn is a partition of X and /!„ = /I, for x E X„)
such that u(xx, x2)j(x2) - j(xx) — 0 for almost all pairs xx, x2. But this is
precisely the group A R.   □

Proposition 6.4. The group HX(R,A) coincides with all classes oj Borel
junctions j: R^A satisfying J(x,z) = u(x,y)-j(y,z) + j(x,y) jor a.e.
x,y, z, modulo those oJtheJormj(x,y) = u(x,y)c(y) — c(x).

Thus these groups coincide with the informal definition of HX(R, A) given
at the beginning of this section for abelian A. Now in order to complete the
circle of ideas, we establish a vanishing theorem which by Proposition 6.1 will
establish existence and uniqueness of the cohomology groups.

Proposition 6.5. For any A, H"(R, 1(A)) = OJor n > 1.

Before proceeding with the proof of this fact let us first list a simple result
which will simplify many calculations for us. If X ■> U Xn is partitioned into
/?-invariant sets with R„ = R n Xn x Xn and if A is an Ä-module, then A
defines in a natural way an Rn-module An. Now cohomology commutes with
such decompositions:

Proposition 6.6. The group H"(R,A) is isomorphic to the product
UmH»iRm,Am).

Proof. For each m > 0, the set Rm c Xm+X is the disjoint union of the
subsets Rm = Rm niX„X • • • x X„) and the measure vm is the sum of the
corresponding measures vf on each Rf. It follows at once that the cochain
group Cm(R, A) = U(Rm, A) is isomorphic to the product IIn U(R?, An) by
mapping an / into the sequence /„ of its restrictions to each Rf. This
commutes with the coboundary operators and hence defines an isomorphism
on cohomology.   □

We now turn to the proof of Proposition 6.5. By Proposition 6.6, we may
assume that A «■ A„ is constant on A" and that the cardinality of R (x) is
constant, say equal to n, and we let N => Nn be a set of this cardinality. Then
the group I(A)X is constant for x E X and equal to U(N, A). The action of R
is defined in terms of the fundamental cocycle p E ZX(R, P(N)) by (u(x,
y)J)(k) - f(p(x,yyx ■ k), hyjE U(N, A), where p(x,y) = <*»(*)-' ° <Ky)
with <¡>(x) a bijection from N to R (x).

Now if F G CH(R, 1(A)), we define xb(F) = H E C"-X(R, 1(A)) by the
formula

H(y0, ■ ■ ■ ̂n-ÔW = F(yo,... ,yn_x, <b(xf)(k))(k).
Note that this is well defined; for if F = F' a.e. on R", then by Proposition
2.4 for almost all n-tuples (.y0,... ,y„.x) E R"~x,
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F(y0> • • • . yn-i> <*){k) - F'(y* • • • >yn-v «)(*)
for ail k G N and a E R(y0) since N x £(v0) is countable. Thus H is a
well-defined element in C~X(R, 1(A)). It is a routine calculation that
8n_x(H) - ± £if Sn(£) = 0 and so H"(R, 1(A)) = 0.   Q

Remark. This argument is quite simple because the countability of the
relations is the analogue of discrete groups so that the "algebraic" argument
applies directly and we do not need to use the more indirect and involved
argument as in Theorem 4 of Moore [3] to take care of almost everywhere
problems. For more general relations one would have to resort to such
techniques.

We summarize what we have established.

Theorem 4. The functors A i-» H"(R, A) are the unique objects satisfying the
conditions of Definition 6.1.

7. Some properties and applications. We now investigate the properties of
this cohomology theory, and the first item is the relation with group
cohomology. Let R = RG come from a countable group G of Borel
automorphisms of X, and let (A, u) be an R-module. Then we can define for
each pair (x, g) E X X G an element a(g, x) E Aut^) by a(g, x) = u(g •
x, x). The cocycle property of u then becomes the familiar condition a(gh, x)
= a(g, h • x)a(h, x). If conversely a is a function from G X X into
U„Aut(^n) with a(g, x) E Aut(An) for x E Xn, with a satisfying this
identity, we cannot quite recapture the structure of an £-module since G may
have a nontrivial isotropy group 07,. at x. It is easy to see that a comes from
an £-module if and only if a(g, x) = 1 for g G Gx for almost all x. In
particular, it always comes from an £-module if the action of G is free on X.

Suppose now that A is an R = RG-mod\xle. We form the group B =
U(X, A) as per our conventions. Then G operates as a group of
automorphisms of B by the prescription (g • F)(x) = a(g, g~x ■ x)F(g~x • x).
Each automorphism £i-> g • £ is continuous by the results in Moore [2], and
as G is discrete, £ is a polonais G-module in the language of Moore [3].
Moreover let <¡> be a morphism of one R-module (A,, ux) into another (A2, u2)
so that <f> consists of a family of continuous maps <b(x) from (A x)x into (Aj)x
satisfying <p(x)ux(x, y) = u2(x, v)t>( v). If B¡ = U(X, AJ we define a map $
of Bx into B2 by (¡¡>F)(x) = <f>(x)F(x), and it is easy to see that this is a
C7-module homomorphism, and that A h-* U(X, A) is an (exact) functor from
A-modules to G-modules.

Proposition 7.1. The set BG of G-invariants in B = U(X,A) coincides with
the group A R - H°(R,A).

Proof. An element £ G £ is G-invariant provided that a(g, g~x • x)F(g~x

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ERGODIC EQUIVALENCE RELATIONS. I 309

• x) = F(x) for almost all x for each G. The map (g, x) »-» (x, g~x • x) maps
G X X onto R and carries (Haar measure) X p onto v. Thus, if we put
y = g~x • x, we see that «(*, >0F(,y) = F(x) for p a.e. (x,y) and hence that
F G ,4*.   n

The following result interprets our cohomology as Eilenberg-Mac Lane
group cohomology, at least in some cases.

Theorem 5. If R = RG with G operating freely then H"(R, A) at
H"(G, U(X, A)), the latter group being the Eilenberg-Mac Lane cohomology of
the (discrete) group G.

Proof. We shall give two proofs of this fact. First note that, by virtue of
Proposition 7.1 and the comments preceding it, A r-*H"(G, U(X,A))
satisfies all the conditions of Definition 6.1 for functors of cohomological
type except possibly for the vanishing axiom, even if G is not free. Thus by
uniqueness, it suffices to show that H"(G, U(X, IR(A))) = 0 for n > 1 if G
acts freely, where IR(A) is 1(A) formed using R. In that case each orbit R(x)
can be identified with G itself via the map 4>(x)(g) — g- x, so that IR(A) as
U(G,A) and (u(x,y)F)(s) = F(g~xs) where s-y = x. By the Fubini
theorem in Moore [3], B = U(X, U(G, A)) as U(X X G, A) and so the map
F h» F of B onto B given by (F(x))(g) = F(g~x • x)(g) is an isomorphism.
After conjugating by this isomorphism the action of G on B has the form
((s ■ F)(x))(g) = F(x)(s-Xg). Thus B as a G-module is U(X, Ia(A)) where
Ia(A) is the regular representation of G with coefficients in A as defined in
Moore [4]. Now by Theorem 1 of Moore [4], H"(G, B) ss
U(X, H"(G, IG(A))) = 0 and we are done.

The second argument is in some sense a computational version of this
conceptual argument and consists of giving an isomorphism 0 of the cochain
group C(R, A) onto C(G, B). It may be verified that H H 0(H) where

0(H)(sx,....,sn)(x) = Hix,sx-x-x,sfx-sx-x-x,...,sfxsf.!x...srx-x)

does the job.   □
The result is also valid for n = 1 and for nonabelian R-modules A. Indeed

the cochain map above sets up the isomorphism of sets.
Now suppose we have a relation R on X and that R = RG = RG for two

freely acting groups Gx and G2. If A is any polonais abelian group i/(A", A) =
B is endowed with the structure of a Gx -module and also that of a C2-module.
The following yields an isomorphism of cohomology which is very strange
indeed from the point of view of group cohomology.

Corollary. There are natural isomorphisms from H"(GX, B) onto
H"(G2, B).
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A further consequence of this result is the following which is very much the
same as a result of Westman in [1].

Theorem 6. If R is hyperfinite and A is an R-module, then H"(R, A) = (0)
for n > 2.

Proof. By Proposition 6.6, and the fact that the relativization of
a hyperfinite relation is hyperfinite, it suffices to show Hn(Rm,A) = (0),
n > 2, for a partition X = (J Xm of X into invariant sets with Rm = R n Xm
X Xm. In particular we can take Am = A constant and may assume that R is
either of type lm for some finite m, or that all equivalence classes are infinite.
In the first case we shall prove what we want and somewhat more in
Proposition 7.2. We consider the case of infinite classes. According to
Proposition 4.2, R = Rz for action of the integers. If this action fails to be
free with a nonzero isotropy group Zx on a set of positive measure, the
equivalence classes R(x) would be finite contrary to assumption. Thus
Theorem 5 is applicable, and H"(R, A) ss H"(Z, U(X, A)) = 0 for n > 2 as
Z is free.   □

This provides a necessary but not sufficient condition for an equivalence
relation to be hyperfinite. To see that it is not sufficient, consider the free
group on two generators embedded as a dense subgroup of the rotation group
X = SO (3). Then G acting on X by left translation gives a countable
standard equivalence relation R on X, with Haar measure, which is in fact
ergodic of type II,. Again since G is a free group and acts freely, it follows
that H"(R, A) - (0) for n > 2. But R = £c is not hyperfinite, for if it were,
then by Proposition 4.5, G would have to be amenable, which is not.

Theorem 5 has other rather interesting and unexpected corollaries. For
instance, let ux,..., u„ be n commuting Borel automorphisms of a space X
with quasi-invariant measure u. Then this «-tuple defines an action of the
group Z" and let us assume that this action is free, which means that the «,'s
are independent in that the fixed points of uf'... urn" form a null set. If they
are jointly ergodic this can be weakened to the conditon that there is no
nontrivial relation uf'... u¡¡" = 1 holding a.e.

By Proposition 4.4, the relation R generated by this action is hyperfinite
and so Hm(R, A) = 0iotm> 2, and then by Theorem 5, Hm(Z", U(X, A))
= 0 for m > 2. Let us take n = 2 and m = 2; then the group above is
calculable by spectral sequence methods; cf. Moore [1], [2]. Let G = Z2,
H = the subgroup generated by, say, «, and K = G/H. Then the spectral
sequence produces a three term grading S0 D Sx D S2 D 0 on
H2(G, U(X, A)); here 52 is the image by inflation of H2(K, U(X, A)), which
is zero as K = Z is free; and Sx is the kernel of the restriction map into
H2(H, U(X, A)k), which is also zero as H s Z is free. Finally there is an
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injection i of Sx/S2 (which is S0) into HX(K, HX(H, U(X,A))), with range
equal to the kernel of a map from this group into H\K, U(X, A)) which is
again zero. The conclusion is that

(0) = H2{G, U(X, A)) ^HX(K, Hl(H, U(X, A))),

which we can evaluate. Any a E Zl(H, U(X, A)) is determined by its value
at the generator ux of H and it is easy to see that HX(H, U(X,A)) is
isomorphic to U(X, A)/TX(A), where TX(A) consists of all functions from X
to A of the form f(ux(x))/f(x) for / G U(X, A). Now the quotient group
K—G/H operates in a natural way, and if we identify u2 with a generator of
k, this generator operates by sending the coset g(x)TX(A) into h(x)Tx(A),
where h(x) = g(u2~x(x)). The same calculation above shows that
H\K,H\H, U(X,A))) is isomorphic to U(X,A)/TX(A) modulo cosets of
the form h(u2(x))/h(x)Tx(A). Thus if we let T2(A) be the group of elements
of the form h(u2(x))/h(x), we see that H\K, HX(H, U(X, A))) is isomorphic
to U(X, A)/ TX(A)T2(A). We then obtain the following theorem.

Theorem 7. If ux and u2 are commuting automorphisms of (X, $, p) such
that «[r|M22 has a fixed point set of measure zero unless rx** r2 = 0, then any
f E U(X, A) can be written in the form

Kx) - (/. («.(*))//. (x))(f2(u2(x))/f2(x))

for some fx,f2E U(X,A).
It is of course quite false that any / can be written as a quotient

g(u(x))/g(x) for a single u and a single g, and it is somewhat surprising that
the result of Theorem 7 is true. If we take w, and u2 to be independent
irrational rotations with X = T, the circle and with X = T or R, we obtain
very concrete and elementary statements that seem quite inaccessible by any
other method.

We turn now to some other vanishing theorems which are related to the
above.

Proposition 7.2. // £ is type I, H"(R,A) = 0 for n > 1 and any A
(including, for n = I, nonabelian A).

Proof. In view of Proposition 6.2, it suffices to prove the result for n = 1,
in which case we may take it nonabelian. As usual, we may and shall assume
that A = An is constant and that £ is uniformly of type I„ for some
n = 1,.. ., oo. In this case it is clear from Proposition 3.2 that £ is the
relation associated to a free action of the cyclic group Z„, where for
convenience of notation ZM = Z. According to Proposition 3.2 we can write
X up to null sets as X - Y XZm withZm acting by translation on the second
factor. The module structure is given by a Borel function a of Zm X (Y X
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Zm) into Aut(j4) satisfying the usual cocycle identity, which in view of the
nature of the action has the form aig,y,s) = b(y, gs)b(y, s)~x for some
Borel function b on Y X Zm. ThenZ„ acts on U(X) = U(Y X ZTO) by

(g-n(y.s) - *(y> s)b(y> ¿r1-*)-V(y, 8-xs),

and it is immediate that U(X) is isomorphic to U(X) with Zm acting by
(g o F)(y, s) = F(y, g~xs). Thus, as a Zm-module, U(X) is isomorphic to
U(Y, 1(A)) where 1(A) is (as in Moore [3]) the regular representation of Zm
with coefficients in A. Since Hx(fLm, 1(A)) = (0) it follows that
Hx(Zm,U(Y,I(A))) = (0) by Theorem 1 of Moore [4].   □

We have something of a converse to this result; recall that associated with a
relation we defined the fundmanental class a E HX(R, P(N)). Here P(N) is
the module defined by the partition of X = \JX„ where X„ = {x: \R(x)\ =
n) and where Nn = Nx (x G N„) is a fixed set of n elements and P(N)X =
P(NX), x G X„, is the permutation group on Nx.

Proposition 7.3. A relation R is type I if and only if its fundamental class is
trivial.

Proof. If R is type I, a is trivial by the previous proposition. Suppose
conversely that a is trivial. We may assume without loss of generality that all
the classes are infinite, since there is nothing to prove for the components of
type I„ (n < oo). So let N = Z be the integers. The triviality of a means that
we may select bijections >p(x), x G X, of N onto R (x) such that <b(x) = <b(y)
for almost all pairs (x,y) E R. Let Y = {x: <p(x)(0) »■ -*}> which is evidently
a Borel set. Then Y meets each class R (x) in exactly one point for almost all
x. The map (n, y) (-> <l>(y)(n) from Z X Y is an equivalence between the
relation J?0 on Z X Y given by (n,y) ~ («', y') Hi y = y' and the relation R
on X. Since R0 is type I by definition, we are done,   fj

One could ask for converses to Proposition 7.2 of a slightly different kind;
in particular it is appealing to conjecture that R is type I if and only if
H X(R, T) = (0) where T is the circle group with trivial action. At any rate,
one can show the following.

Proposition 7.4. R is type I ifand only if HX(R, A) = 0 for all abelian A.

Proof. First, we observe that every non-type I relation R contains a
hyperfinite subrelation S which is not type I. This may be seen by the same
argument which Dye [1] uses in the II case. Now, one can define the notion
of induced module which constructs from each S-module A an A-module
Is (A) when R d S. This is the analogue of induced modules from a
subgroup to a group defined in Moore [3] and in case S = A(A"), the diagonal
of X, IR(A) is simply 1(A) which we defined above. In addition one has a
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Shapiro's lemma which says that H"(S,A)ssHn(R,IR(A)), just as in
Moore [3]. As we do not need this construction, we shall not explore the
matter further. Then if S is hyperfinite and non type I, it is easy to see that
HX(S, T)=£0 where T is the circle so that R has nontrivial cohomology.   □

In regard to the conjecture about HX(R, T), it reduces to showing that if R
is a strictly ergodic relation (i.e., non type I) then H '(£, T) =£ 0. If R is type
III, this is true since R has a nontrivial Radon-Nikodym cocycle D in
//'(£, R+) as defined in §2, and if D'a is the image of this cocycle in
Hl(R, T) under the map xi-* x'a, it may be shown without too much trouble
that Dia is nontrivial for almost all a. If £ is type II^, the question can be
reduced by relativization (see Proposition 7.6 below) to the II, case, where we
do not know the answer. As we shall see in the second paper, the assertion
that Hx(R,T)^0 means that certain II, factors have nontrivial outer
automorphisms of a specified type.

We shall conclude this section with some complements concerning
cohomology that will be of use later on. Let £, be relations on (X¡, ®,, p,), let
4> be a morphism of £, into £2, and let (A¡, u¡) be ^-modules and ^ a map of
modules compatible with <J> in that \p is given by a Borel family of maps ¡¡/(x)
from (A2\(x) into (Ax)x so that \P(x)u2(<b(x), <b(y)) = ux(x, y)i(y). We define
a cochain map f: C(R2, Aj) -» Cn(£„ Ax) by

(t"f)(xn, ...,x„) = Hx0)-f(<b(xn),..., <t>(x„))
and we obtain induced maps on cohomology, also denoted by t". We are
interested in the special case when £=»£, = £2 and A = Ax = A2 and
\¡/ = id and when </> is not only a morphism but satisfies Y(<b) c £, so that in
some sense it is an "inner" morphism. The following is the analogue of the
well-known fact that inner automorphisms of a group operate trivially on
cohomology.

Proposition 7.5. The induced map t" on cohomology corresponding to <f> is
the identity in all dimensions.

Proof. In view of Proposition 6.2, Hn(R, A) is isomorphic to
H\R, U"(A)) in a way that commutes with the maps /", so that it suffices to
consider the case n- I. But if / G Z '(£, A), then

txU)(x,y)-Mx),*{y))

= f(<b(x), x)f(x,y)f(y, <t>(y)) = b(x)~xf(x,y)b(y)
with b(y) = f(y, <b(y)). Thus tx(f) ~/ and we are done. We note that the
same argument works even for nonabelian A.   □

Corollary. If <j> is as above and A is a nonabelian R-module, the natural
map t ' of the set H '(£, A) to itself induced by <J> is the identity map.
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Now if i? is a relation on (A", %, p) and if B c X, we have a relation R\B
on B as discussed earlier. The injection map i: B -»X is a morphism of R\B
into B and if A is an i?-module, \j/(x) ■ id gives a consistent map of the
module ^4 into restriction of the module A to B,A\B. We obtain then maps on
cohomology r"(B) from Hn(R, A) into //"(Ä^, A\B), which we think of as
restriction to B.

Proposition 7.6. The maps r"(B) are surjective in all dimensions, and ij the
saturation R(B)oj B is conull, they are bijective in all dimensions.

Proof. By Proposition 6.6 we can immediately reduce to the case when
R(B) = A". Then by Proposition 3.4 there is a map <b from X into B with
T(<f>) c R, and we let t" be the induced maps on cohomology, H"(R\B, A\B)
into H"(R, A). Now / ° <f> maps X into X and T(i » <b) c R, and <j> ° / maps B
into B and T(<j> ° /) c R\B. It follows by Proposition 7.5 that these maps
induce the identity on cohomology and hence r" ° t" and /" » r" are both the
identity and so r" is bijective for all n as desired.   □

In dealing with two dimensional cocycles in the second paper in this series,
it will be quite convenient to work with a particular kind of cocycle repre-
sentative; specifically we say that a E Z2(R, A) with A a trivial Ä-module is
normalized if s (•,•,•) = 1 whenever two of three variables are the same.

Proposition 7.7. Ij A is divisible by two (i.e., ij each Ax is), then any
s E Z2(R, A) is cohomologous to a normalized one.

Proof. If s is given, then the function c(x,y) = s(x,y, x)~x is a well-
defined function on R as the map j: (x, y) I-» (x, y, x) embeds R = Rx into
R2 and the image jm(vx) is absolutely continuous with respect to v2. The
coboundary 5(c) of c evaluated at (x, x, x) is obviously equal to s(x, x, x)~x,
and therefore we may modify s by fie and assume that s(x, x, x) = e. Now
notice that Ss(x, x,y,y) = e; this holds for almost all pairs (x,y) by the same
kind of reasoning as above. So we find that s(x,y,y) = s(y, y,y) = 1 for a.a.
x,y. By a similar argument, we see s(y, y, x) = e for a.a. x, y. Finally, the
relation Ss(x,y, x, y) = e tells us that s(x, y, x) = s(y, x,y) » c(x,y) is a
symmetric function of two variables, and that c(x, x) = e. We may find for
each x a Borel map rx from Ax to Ax so that rx(a)2 = a and rx(e) = e and so
that rx is constant on a countable partition of X into invariant sets. Then let
d(x, y) = rx(c(x,y)) and replace s by t «= s(8d)~x, noting that t vanishes
when all three variables agree since d(x, x) = e. Then Ôd(x,y, x) =
d(y, x)d(x,y) = c(x,y) = s(x, y, x) and so t(x, y, x) = e a.e. Then t is a
normalized cocycle cohomologous to s.   □

Proposition 7.8. Ijs is a normalized cocycle, s is skew symmetric in its three
variables.
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Proof. The equation 8s(x, y, z, y) = 1 and the fact that s is normalized
yields the result that s(x, z,y) = s(x,y, z)~x. Similarly we obtain the same
result for transposing the first two variables and the result follows.   □

8. The Poincaré flow of a one-cocycle. We now turn to a most important
and significant construction which has been discussed in the literature in
many contexts; see for example Anzai [1] and Ambrose [1]. We are given a
relation £ on (X, ®,p) and a separable locally compact group A, not
necessarily abelian, and view it as a trivial £-module. If c E Z '(£, A) we will
associate to the pair (£, c) an action of the group A on a standard measure
space Z, which generalizes the Poincaré suspension of an automorphism and
the construction of a flow built under a function (cf. Ambrose [1]). In the
context of virtual groups this construction has been introduced by Mackey
[2]-

We first form the product X X A and endow it with the measure o = p X
A where À is a finite measure equivalent to Haar measure on A, and then
introduce an equivalence relation £ (c) on X X A by defining (x, a) ~
(x', a') if (x, x') E R and a' = ac(x, x'). It is not hard to verify that this is a
countable standard equivalence relation and that a is a quasi-invariant
measure. The point is that even though £ is ergodic, £ (c) is usually not; let
5 (£ (c)) be the a-field of invariant sets, and let M0 be the image of 5 (£ (c)) in
the measure algebra M of the measure o. We note that A operates on X X A
by a(x, a') = (x, aa') and that these automorphisms are in the normalizer
N (R (c)) of £ (c) and preserve the measure class of a. It follows that A sends
5 (£ (c)) into itself and hence each a E A defines an automorphism of the
a-algebra M0. It is clear that the action of A as a group of automorphisms of
MQ satisfies the conditions of the point realization theorem in Mackey [1], and
hence there exists an essentially unique standard Borel space Z with measure
t and an action of A on (Z, t) so that the action of A on the measure algebra
M (t) of t is equivalent to the action of A on M0.

Definition 8.1. We call the above action of A on (Z, t) the Poincaré flow
£(£, c) associated to £ and c.

It is evident that the invariants in M(t) of the Poincaré flow are the
^-invariants in M0, or equivalently the £(c)-invariant sets among the A-
invariant sets in the measure algebra M. However, the A -invariant sets are
evidently those of the form £ X A c X X A and such a set is £ (c)-invariant
if and only if £ is an £-invariant set. Hence the ^-invariants in M(t) can be
identified with the measure algebra of £-invariants, and this proves the first
part of the following proposition.

Proposition 8.1. The Poincaré flow £(£, c) is ergodic if and only if R is
ergodic. Moreover, P (R, c) depends only on the cohomology class of c.
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Proof. If b(x,y) = d(x)~xc(x,y)d(y), the map (x, a)\-*(x, ad(x)) carries
R(c) onto R(b) and commutes with left translation by A. The result follows
immediately.   □

We shall now assume without further mention that R is ergodic. We now
want to describe an important invariant of the pair (R, c), namely the proper
range of c. If A is abelian there is not much problem, but if A is nonabelian,
things are more involved. If z E Z, the underlying space of the Poincaré flow,
let A(z) be the isotropy group of this point. Then A(z) E S (A), the space of
all closed subgroups of A. Fell [1] has introduced a topology on S (A) in
which it is a compact metric space, and we observe that <b: zh*A(z) is a
Borel map of Z into S (A) (Auslander and Moore [1]). We transport t, or
rather its measure class, by </> to obtain a measure (class) p = <î>,(t) on S (A).
Since S (.4) is a topological transformation group for A with A acting by
conjugation and since <i> is equivariant, the measure p or rather its class is
quasi-invariant and ergodic, an object which Mackey calls a quasi-orbit. We
denote this quasi-orbit by C(R, c) and call it the proper range of c. Now let
NS(A) denote the subset of S (A) consisting of normal subgroups, i.e., the
fixed points of the A action. Now if H G S (A), the subgroup C\{aHa~x:
a E A} = \p(H) is a normal subgroup, and it is not hard to see that uV is a
Borel map which is also evidently equivariant. Then \f/^(C(R, c)) is a quasi-
orbit for the (trivial) action of A on NS(A) and we denote this by NC(R, c),
the normalized proper range. Of course if A is abelian, which is the case of
prime interest, NC(R, c) = C(R, c). Since a quasi-orbit for a trivial action
must be concentrated on one point, we have the following result:

Proposition 8.2. The normalized proper range is a Dirac measure
concentrated at a single point B in NS(A); this subgroup will also be called the
normalized proper range oj c, and denoted by npr(c), or the proper range pr(c)
ojc ij A is abelian.

The following provides a characterization of npr(c) that will be essential
later on.

Proposition 8.3. The subgroup npr(c) oj A is the kernel oj the natural action
oj A on the measure algebra M(r) oj the Poincaré flow, or equivalently
npr(c) = {a: f(x, ab) = f(x, b) a.e.) for every R(c) invariant function f on
XX A.

Proof. If a is in the kernel of the action of A on M(i) so that a • E «■ E
for all E E M(r), then evidently a fixes almost all points in any point
realization of the action of A on A/(t). In particular a E A(z) for almost all
z E Z. By Fubini's theorem we may conclude that, for almost all z, a E A (b
• z) = bA(z)b~x for almost all b. Some further argument shows that this
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implies that for almost all z, a E bA(z)b~x for all b. Thus a E nbbA(z)b~x
= ¡p(A (z)) for almost all z. But \p(A (z)) is a.e. constant and equal to npr(c)
by definition. Hence a E npr(c).

Conversely if a G npr(c), this says that a E A (z) for almost all z and hence
that a • z = a for almost all z and hence that a acts trivially on the measure
algebra M(r) of (Z, t), and we are done. The fact that the kernel of the
action on M(t) is the same as those a fixing all R(c) invariant functions/
(i.e., those that are constant on £ (c) equivalence classes) is clear.

It is our intention to identify the normalized proper range and hence the
proper range itself for A abelian in terms of a more concrete and accessible
object which we call the asymptotic range of c. This result extends results of
Krieger [5] and Araki-Woods [1], and is closely related to the recent work of
Connes and Takesaki [1], [2]. See also Hamachi, Oka and Osikawa [1]. Since
we obtained this result we learned that K. Schmidt [1] has obtained the same
result for abelian A and hyperfinite £.   □

We recall that Araki and Woods introduced the notion of the asymptotic
ratio set for the classification of infinite tensor products of finite type I
factors. This invariant is really an invariant of ergodic theory associated with
the natural abelian group operating on an infinite product of finite proba-
bility spaces which describes the failure of this action to be measure preserv-
ing. Krieger [5] then extended this invariant to the context of a single ergodic
transformation T, to obtain the set r^T) c [0, oo). This set describes in
some sense the essential range of the Radon-Nikodym derivatives of T"p with
respect to p. A moment's reflection on the definition shows that all that
matters is the relation £ generated by the powers of T, and that what is
relevant is the Radon-Nikodym cocycle D E ZX(R, R+). It is evident then
that one should be able to define the asymptotic ratio set associated to any
countable standard relation £ and a cocycle c E Zl(R,A) where A is a
locally compact group, abelian or not. In view of its true nature, the
terminology "asymptotic range" is more appropriate than "asymptotic ratio
set". It turns out in fact that when phrased in terms of relations, the definition
becomes simpler and its meaning (we feel) becomes more transparent. Recall
that the essential range of a Borel map / from a measure space (A", p) into a
topological space is the smallest closed set £ such tnatf~\Fc) has comple-
ment of p measure zero; call this set o(f).

Definition 8.2. Let £ be a relation on (X, $, p) and let A be a locally
compact trivial £-module and let c E ZX(R, A). The asymptotic range r*(c)
is H p(bi>o°(cb)> where cB is the restriction of c to £ described in Proposition
7.6. If A is the one point compactification of A and c is c viewed as a function
with values in A, the extended asymptotic range is

^(c)= n o{c-B).
f«(S)>0
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Note that r*(c) and r* (c) are closed subsets of A and A respectively, and that
r*(c) = r^(c) n A ; the point oo G A — A belongs to r* (c) if and only if for
each set B of positive measure c is essentially unbounded on B x B n R.
The following characterization of points in r* (c) will be useful.

Proposition 8.4. If a E A, then a E r^(c) if and only if for every neigh-
borhood U of a and every subset Y of X of positive measure the set {(x,y):
x, y E Y, c(x, y) E U) has projection onto the first (second) coordinate equal
to almost all oj Y.

Proof. The argument below is evidently symmetric in X and Y, so it is
enough to consider projection to the first coordinate. If a G r%(c), then for
all Y and all neighborhoods U of a, {(x, y): x, y E Y, c(x,y) E U) has
positive measure. Since R is a countable relation, its projection to the first
coordinate is a Borel set. If its complement in Y, say N, were of positive
measure, then c restricted to N X N would miss U entirely, and so a G o(cN),
contrary to assumption.

Conversely if the condition of the proposition is satisfied, we must show
that Ct(vy)(U) has positive measure for each neighborhood U of a and each
set Y of positive measure where j»yis the measure v restricted to Y X Y. But
the measure of the above set is the v measure of {(x, y): x,y E Y, c(x,y) G
U) and our hypothesis is that for almost all x the section of this set over x is
nonvoid and hence has positive measure for the counting measure on R (x). It
follows that the set has positive v measure by the definition of v.   □

We start to establish properties of r*(c).

Proposition 8.5. The asymptotic range r*(c) is a closed subgroup oj A; if
r*(c) is noncompact then oo G r*M(c).

Proof. The last statement is obvious since r^(c) is closed. We have to
show that r*(c) is a subgroup since we know it is closed. First, if Y is a set of
positive measure A(Y) the diagonal on Y is a set of positive v measure.
Moreover, c(y,y) = e so that cY takes on the identity element e of A on a set
of positive measure. Thus e is surely in the essential range of cY and hence in
r*(c). Moreover, since c(x,y) — c(y, x)~x an easy argument shows that
a E r*(c) if and only if a~ ' G r*(c).

Now let a,b E r*(c) and let If be a neighborhood of ab and Y c X a set
of positive measure. Choose neighborhoods U and V of a and b respectively
so that UV c W and by Proposition 8.4 select null sets Nx and N2 so that if
x E Y - Nx, there exists y E Y with c(x, y) E U and if x g Y - N2, there
exists z E Y with c(x, Z0) G V. Let N3 = Y n R (N¿) which is also a null set
and let N = Nx u N3. Then if x E Y - N, the y above with c(x,y) G U
cannot belong to N2 since x ~y. Consequently we can use this.y as the x in
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the second statement and find z E Y with c(y, z) E V. Then c(x, z) =
c(x,y)c(y, z) E UV c W, and the criterion of Proposition 8.4 is satisfied so
that st E r*(c) and we are done.   □

Recall that we defined the map \p from S (A) the subgroups of A to NS(A),
the normal subgroups of A by H h» fl {aHa~x: a E A). Our purpose is to
find invariants that depend only on the cohomology class of the cocycle c.
We note that if A is nonabelian, r*(c) will (trivially) depend on more than just
the class of c; for d(x,y) = ac(x,y)a~x is eqivalent to c, and r*(d) is
evidently ar*(c)a~l, and it is easy to construct examples where r*(c) is not a
normal subgroup. The best that one could hope for is that conjugacy class
{ar*(c)a~l: a E A) should be an invariant of the class of c, but we cannot
establish this, and there are some doubts that it is true. We can, however,
establish the weaker result that \p(r*(c)) does depend only on the class of c.

Proposition 8.6. The normal subgroup ̂ (r*(c)) depends only on the class of
c, and hence if A is abelian r*(c) depends only on the class of c.

Proof. Let d(x,y) = b(x)~xc(x,y)b(y) be an equivalent cocycle and let
a E $(r*(c)) so that sas~l E r*(c) for all 5 G A. It will suffice to show that
a E r*(b). So let U be a neighborhood of a and Y c X a set of positive
measure. For each s G A, there is an open neighborhood 0(s) of s, and a
neighborhood V(s) of sas~l so that 0(s)~xV(s)0(s) c U. We can find a
countable family s¡ so that O (s¡) covers A and then we can find Borel sets
O; C 0(s¡) so that A = U.O,- is a partition. Now let Y, = b~x(Oj) n Y so
that Y = U¡Y¡ disjointly. Then as s¡as~x E r*(c) we may find, by
Proposition 8.4, null sets N¡ c Y¡ so that if x E N¡, there exists v G Y¡ with
c(x, y) E V(sJ Then N *= {J ¡N¡ is a null set, and if x E Y - N, x E Y¡ -
N¡ for some i and there is v G Y¡ so that c(x, y) E V(sJ But now b(x) and
b(y) belong to 0,'cO(sJ and so d(x, y) = b(x)~xc(x, y)b(y) C
0¡~ xV(s,)0¡ c U and by Proposition 8.4, a E r*(d) and we are done.   YJ

Remark. It may also be seen, without much difficulty, that if c — c', then
oo Eri(c)**oo GW).

We are now ready to state and prove the main result of this section
connecting the proper range and the asymptotic range.

Theorem 8. For any cocycle c we have \p(r*(c)) = npr(c), the normalized
proper range, so that for abelian A, the asymptotic range r*(c) is the same as the
proper range r(c).

Proof. We shall first show that npr(c) c \p(r*(c)). Thus suppose a E
^(^(c)); we have to show that a E. npr(c). We are given that there is some /
such tat~l E r*(c), and evidently we may assume for notational simplicity
that a E r*(c). This means that there is some Y c X with p(Y) > 0 so that
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a G o(cY). But now there is, by Proposition 3.4, a Borel map <j> of X onto Y so
that T(<f>) c R. By the corollary to Proposition 7.5, the cocycle c is equivalent
to the cocycle d(x, y) = c(<b(x), <b(y)) and d has the property that a G o(d),
so we may and shall assume that c has this property.

We may then select a neighborhood U of the identity and if necessary
modify c on a null set so that c(x,y) G Ua for any (x,y) E R. Now select a
neighborhood V of the identity in A so that VäxVa~x c t/. Then c(;c,.y) G
fr'û'F and so fc(x, y) n af = 0. Now let If - X X V c X X A and let
S(W) be its saturation with respect to the equivalence relation R(c). The
above equation says that S(W) n (A* X aV) = 0, but X X aV = a( If) in
the Poincaré action and so a(W) n S (ff) = 0- Since S(W) D If, it follows
that 5(If) =£ a5(H/) and by Proposition 8.3, a G npr(c), and the first part of
the proof is complete.

We now turn to the reverse inclusion ty(r*(c)) c npr(c). Thus if s E
(r*(c)), we must show by Proposition 8.4 that left translation by s on X X A
fixes every R (c)-invariant function /. We may clearly assume that / is
bounded, and let us assume for the moment that / has the following
continuity property: a \-+ /(•, a) is a continuous map from A into the norm
topology of L'°(X). We first prove that translation by a fixes any function
satisfying this additional property.

Let e > 0 be given and j G r*(c) and let A0 be any compact subset of A.
We may choose a larger compact set Ax so that A0 and A<£ are in the interior
of Ax. Then since bh*f(-, b) is uniformly continuous on Ax, there is a finite
partition" of Ax into Borel sets, Ax = \J?mXA'so that the norm variation of
/(•, b) for b G A' is less than e/4. Now select a¡ E A' and define a new
function g(x, a) = f(x, a¡) if a E A' and g(x, a) = f(x, a) if a G Ax. It is
clear that | g — f\M < e/4. Now for each i, we can find a finite partition P' of
the space X so that x \-+ g(x, a¡) = f(x, a¡) has variation less than e/4 as x
varies through each atom of the partition P'. We find a common refinement
P of all of these P' and label its atoms Xx,..., Xn. Then we know that
\g(x, a) - g(y, a)\ < e/4 for a E Ax provided x,y E X¡.

We shall now need the following fact.

Proposition 8.7. Suppose s G r*(c) and that U is a neighborhood of s. Then
there exists a Borel map fyfrom X to X with T(<b) c R so that c(x, <f>(x)) G U
for almost all x.

Proof. Let Z = {(x,y) E R: c(x,y) G U) so that, recalling that it, is
projection to the first coordinate, it¡(Z) is almost all of X according to
Proposition 8.4. By standard cross section theorems (cf. Theorem 1) we may
find a Borel function <£' from X into Z so that ^¡(^'(x)) = x. Then <p'(x) =
(x, <b(x)) and <b is the desired Borel function.   □
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Now we apply this as follows: let U be a neighborhood of our given
s E r*(c) which will be at our disposal, and let £( be the relativization of £ to
the atoms X¡ of the partition P. It is clear by the definitions that s G r*(cj
where c, is the restriction of c to £,., and so we may find by the proposition,
functions <f>,- from X¡ to X¡ with Y(<¡>¡) E R, and c(x, <b¡(x)) E U. We piece
these partial functions together to obtain a global function from X to X. We
select the neighborhood U of s as follows; first, find a neighborhood V of the
identity in A so that |/(-, a) - /(•, av)\x < e/4 for v E V and a E Ax and
so that AnsV c Ax. We then let U = sV. For convenience, introduce the
function k(x, a) = 1 for a E An and 0 otherwise, and use the notation c = d
to mean \c — d\< e/4.

Then we have

k(x, a)f(x, a) = k(x, a)f($(x), ac{x, <b(x)))

(as/is £(c) invariant)

= k(x, a)g(<b(x), ac(x, <b(x)))

(by the properties of g)

= k(x, a)g{x, ac{x, <b(xj))

(as x and <b(x) both belong to the same X¡, and A0U c Ax)
= k(x, a)g(x, as)

(since <b(x, <b(x)) E U, and hence s~x<b(x, <b(x)) E s~xU = V)

= k(x, b)f(x, as)
(again by the approximation properties of g). Now we have four approx-
imations each to within e/4, and so we have \k(x, a)(f(x, a) - f(x, as))\ < e
almost everywhere. Since it is true for every e, k(x, a)f(x, a) =
k(x, a)f(x, as) holds almost everywhere. We exhaust A by a sequence of
compact sets A0 so we see that f(x, a) = f(x, as) a.e. for each í G r*(c)
wherever / satisfies the continuity property above. Note that we want
invariance by left translations by í rather than right translations, but the
above is the first step toward that end.

Now let/be an arbitrary bounded Borel invariant under £(c) and let 9 be
a continuous positive function on A with integral one with respect to right
Haar measure and with support concentrated in a small neighborhood of the
identity. We "smooth"/with 9 to form

fe(x, a) =ff(x, ta)9(t)dt = j'f(x, t)9(ta~x)dt

where dt is right Haar measure on A. Since left translations commute with
£ (c), it is clear that fe is again £ (c)-invariant, and it is evident from the
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second integral formula above that/9 satisfies our continuity condition. Now
let 0n he a sequence of such 0\ with supports shrinking to the identity, and let
f„ be the corresponding smoothed functions. It is elementary to show now
that for any g E LX(X x A),

jf„(x, a)g(x, a)dxda -^jf(x, a)g(x, a)dxda.

Then for any s G r*(c), fn(x, as) = fn(x, a) a.e. and it follows immediately
that

I f(x, as)g(x, a)dx da = j f(x, a)g(x, a)dxda

and hence that/(x, as) = f(x, a) a.e. This holds in particular for s E $(r*(c))
which is a normal subgroup of A, and since left invariance and right
invariance by translations from a normal subgroup amount to the same thing,
we see that/(x, sa) = f(x, a) a.e. for s E \p(r*(c)) and Theorem 8 is proved.
D

Remarks. 1. It was shown by K. Schmidt for hyperfinite R and abelian A
that r£(c) = 0 => c is a coboundary. His argument may easily be carried out
for general R.

2. It has been noted by several mathematicians that if A = R and c is
bounded in various senses, then c must be a coboundary. It follows from
Remark 1 that if A is any abelian group with no nontrivial bounded
subgroups, then c bounded => c is a coboundary. Another amusing proof of
this for the case A = R may be obtained by von Neumann algebra
techniques; this will be carried out in the sequel to the present paper.

We close with the observation that Krieger in [6], using Poincaré flows, has
in effect classified ergodic hyperfinite relations in a beautiful and far reaching
generalization of Dye's classification in the II, hyperfinite case. More
precisely: if R is strictly ergodic and infinite (i.e., is of type II«, or type III),
he shows that the Poincaré flow P(R, logD) associated to the cocycle
log D E Z X(R, R) is a complete isomorphism invariant for R. Of course, one
does not know isomorphism (i.e., conjugacy) invariants for ergodic actions of
the real line, but the equivalence of the classification schemes of these two
objects is of great potential value.

The II«, case corresponds to the case when P(R, log D) is translation on the
real line, and the subdivision of the type III relations into the IIIA categories
can be defined by corresponding properties of the Poincaré flow. Namely, R
is IIIA, 0 < X < 1, if the Poincaré flow is periodic of period -log(X) where
period oo means that it is free and nontransitive.
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